
XLiFE++ tutorial

Nicolas Kielbasiewicz, Eric Lunéville

May 3, 2018

Contents

1 Introduction 1
1.1 What XLiFE++ is . 1
1.2 How to download XLiFE++ . 1

1.2.1 How XLiFE++ sources are organized ? 2
1.2.2 How XLiFE++ binaries are organized ? 2

1.3 Requirements . 3
1.3.1 Extensions . 3
1.3.2 Installation requirements . 3

1.4 Installation and usage with CMake . 3
1.4.1 How to use CMake ? . 4
1.4.2 Configuration step for XLiFE++ sources 5
1.4.3 Configuration step for XLiFE++ binaries 8
1.4.4 Installation of binaries under Windows 10
1.4.5 Compilation of a program using XLiFE++ 11

1.5 Installation and usage without cmake . 14
1.5.1 Installation process . 14
1.5.2 Compilation of a program using XLiFE++ 15

1.6 Installation and usage with Docker . 16
1.7 Writing a program using XLiFE++ . 17
1.8 License . 17
1.9 Credits . 18

2 Getting started 19
2.1 The variational approach . 19
2.2 How does it work ? . 20

3 XLiFE++ written in C++ 23
3.1 Instruction sequence . 23
3.2 Variables . 24
3.3 Basic operations . 24
3.4 if, switch, for and while . 25
3.5 In/out operations . 26
3.6 Using standard functions . 27
3.7 Use of classes . 27
3.8 Understanding memory usage . 28
3.9 Main user’s classes of XLiFE++ . 29

i

Preface

XLiFE++ is the heir of 2 main finite elements library developed in POems laboratory, namely
Melina (and its C++ avatar Melina++) and Montjoie, respectively developed since 1989
and 2003. It is a C++ high level library devoted to extended finite elements methods. Writing
programs using XLiFE++ needs only basic knowledge of C++ language, so that it can be used
to teach finite elements methods, but it is quite perfect for research.

XLiFE++ is self-consistent. It provides advanced mesh tools, with refinement methods, has every
kind of elements (including pyramids) needed by finite elements methods, boundary elements
methods or discontinuous galerkin methods, direct/iterative solvers and eigen solvers. Next to
this, it provides also a wide range of interfaces to well-known libraries or softwares, such that
UmfPack, Arpack++, and an advanced interface to the mesh generator Gmsh, so that you
can do everything needed in a single program.

This documentation is dedicated to students at Master level, to engineers and researchers at any
level, in so far as partial differential equations are concerned.

ii

1 Introduction

1.1 What XLiFE++ is

Partial differential equations (PDE hereafter) are the core of modelling. A wide range of problems
in Physics, Engineering, Mathematics, Banking are modelled by PDEs.

XLiFE++ is a C++ library designed to solve these equations numerically. It is a free extended
library based on finite elements methods. It is an autonomous library, providing everything you
need for solving such problems, including interfaces to specific external libraries or softwares, such
as Gmsh, Arpack++, UmfPack, . . .

What does XLiFE++ do ?

• Problem description (real or complex) by their variational formulations, with full access to
the internal vectors or matrices;

• Multi-variables, multi-equations, 1D, 2D and 3D, linear or non linear coupled systems;

• Easy geometric input by composite description , to build meshes thanks to Gmsh;

• Easy automatic mesh generation on elementary geometries, based on refinement methods;

• Very high level user-friendly typed input language with full algebra of analytic and finite
elements functions. Your main program will be very similar to the mathematical objects;

• A wide range of finite elements : segments, triangles, quadrangles, hexahedra, tetrahedra,
prisms and pyramids

• A wide set of internal linear direct and iterative solvers (LU, Cholesky, BiCG, BiCGStab,
CG, CGS, GMRES, QMR, SOR, SSOR, . . .) and internal eigenvalues and eigenvectors
solvers, plus additional interfaces to external solvers (Arpack, UmfPack,. . .);

• A full documentation suite : source documentation (online or inside sources), user
documentation (pdf), developer documentation (pdf);

• A parallel version using OpenMP.

1.2 How to download XLiFE++

XLiFE++ is downloadable at the following url . You can download releases and snapshots of
either the source code or binaries. Snapshots are supposed to be generated automatically every
day when necessary.

There are 2 kinds of archives (snapshots or releases):

1. a ”source” archive that contains all XLiFE++ source files and tex/pdf documentation;

2. a ”api” archive that contains only source documentation generated by Doxygen

1

http://uma.ensta-paristech.fr/soft/XLiFE++/

1.2.1 How XLiFE++ sources are organized ?

XLiFE++ sources are organized with several directories, described as follows for the main ones:

bin contains the xlifepp project setup.exe for Windows and the user scripts xlifepp.sh and
xlifepp.bat. This will be explained later.

doc contains the present user guide, the developer guide (also in pdf) and other specific
documentations extracted from the present user guide, such as a tutorial, an install
documentation, and explanations about examples.

etc contains a lot of stuff such as templates for installation, the multilingual files, . . .

examples contains example files ready to compile and use.

ext contains source files for external dependencies, such as Arpack++, Eigen, Amos libraries

src contains all C++ sources of the XLiFE++ library

tests contains all unitary and system tests to check your installation

lib will contain the static libraries of XLiFE++, after the compilation step.

usr contains the user files to write and compile a C++ program using XLiFE++

You also have a very important file CMakeLists.txt, that is the CMake compilation script.

1.2.2 How XLiFE++ binaries are organized ?

XLiFE++ binaries are organized with several directories, described as follows for the main ones:

bin contains the xlifepp project setup.exe for Windows and the user scripts xlifepp.sh and
xlifepp.bat. This will be explained later.

etc it contains a lot of stuff such as templates for installation, the multilingual files, . . .

share/doc it contains the present user guide, the developer guide (also in pdf) and other
specific documentations extracted from the present user guide, such as a tutorial, an install
documentation, and explanations about examples.

share/examples it contains example files ready to compile and use.

ext it contains source files for external dependencies, such as Arpack++, Eigen, Amos libraries

tests it contains all unitary and system tests to check your installation

lib After the compilation, it will contain the static libraries of XLiFE++.

You also have a very important file CMakeLists.txt, that is the CMake compilation script.

2

1.3 Requirements

1.3.1 Extensions

To use XLiFE++ full capabilities, you may need some external libraries to activate extensions:

• The main mesh engine needs Gmsh (http://gmsh.info). It is not a strong dependency
insofar as you just have to tell XLiFE++ where Gmsh binary is.

• To use them as solvers, you may install Arpack (http://www.caam.rice.
edu/software/ARPACK/) and/or UmfPack (http://faculty.cse.tamu.edu/davis/
suitesparse.html). On Unix systems, you may rely on your package manager to install
them. On Windows, we highly recommend you to download files on the XLiFE++ website
http://uma.ensta-paristech.fr/soft/XLiFE++/?module=main&action=dl

• To visualize solutions of your programs using XLiFE++, you may install Gmsh (http://
geuz.org/gmsh), Paraview (http://www.paraview.org), Matlab or Octave (https:
//sourceforge.net/projects/octave/files/).

�

XLiFE++ includes 2 external libraries: Eigen (http://eigen.tuxfamily.org/,
essentially for SVD, and Amos (http://www.netlib.org/amos/) for Bessel/Hankel functions
on complex arguments.

1.3.2 Installation requirements

Basically, XLiFE++ compilation depends on the cross-platform builder CMake, available at
http://cmake.org. To know how to install and use XLiFE++ this way, please read section 1.4.

For Unix systems, you can use an alternative installation procedure that does not require CMake.
To know how to install and use XLiFE++ this way, please read section 1.5.

Another way to install XLiFE++ is to download a Docker container (like a virtual machine
containing everything to build and run XLiFE++). It is cross-platform. To know how to install
and use XLiFE++ this way, please read section 1.6.

1.4 Installation and usage with CMake

You download XLiFE++ from its website http://uma.ensta-paristech.fr/soft/XLiFE++/.

• Either you download XLiFE++ sources: you have to unzip the archive at any place you
choose in the filesystem. Then, you follow configuration procedure by setting at least a C++
compiler, the path to Gmsh and eventually paths to external libraries Blas, Lapack,
Arpack and UmfPack. When done, you will have to compile XLiFE++ source code.

• Or you download XLiFE++ binaries: you will have to run the installer if you are on
Windows (see subsection 1.4.4), or follow the configuration procedure with cmake by
setting a C++ compiler, paths to Gmsh, and to Blas, Lapack, Arpack, UmfPack
libraries. In following sections, you will be guided on which options you may use or not as
far as sources or binaries are concerned.

If you are on Mac OS and want to use clang++ as a compiler, please download dedicated
binaries, as they are generated without OpenMP activated.

3

http://gmsh.info
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://uma.ensta-paristech.fr/soft/XLiFE++/?module=main&action=dl
http://geuz.org/gmsh
http://geuz.org/gmsh
http://www.paraview.org
https://sourceforge.net/projects/octave/files/
https://sourceforge.net/projects/octave/files/
http://eigen.tuxfamily.org/
http://www.netlib.org/amos/
http://cmake.org
http://uma.ensta-paristech.fr/soft/XLiFE++/

1.4.1 How to use CMake ?

CMake only needs a configuration file named CMakeLists.txt, at the root directory of the
XLiFE++ archive. Whatever the OS, CMake also asks for another directory where to put
generated files for compilation, called build directory hereafter. This directory can be anywhere.
It will contains compilation files (objects files, . . .), a Makefile or an IDE project file named
XLiFE++ (for Eclipse, CodeBlocks, Visual Studio, Xcode, . . .). So we suggest you to set this
directory as a subdirectory of XLiFE++ install directory, with the name build for instance.
CMake can be called and used different ways:

On the command line: On Linux and Mac OS, you can use the cmake command or its default
GUI ccmake. On Windows, you can use the cmake.exe command.

Figure 1.1: ccmake (MacOS, Linux)

When running CMake, the build directory is generally the directory in which you are when
calling the CMake command. If you want to know the general case, please take a look at
CMake option -b.

To compile XLiFE++, you just have to run CMake on the CMakeLists.txt file:

cmake path/ to /CMakeLists . txt [opt ions]
ccmake [opt ions] path/ to /CMakeLists . txt

Through GUI applications: When running CMake GUI application, you have to set the
directory Where is the source code containing CMakeLists.txt you want to run CMake
on, and to set the build directory: Where to build the binaries. Then, you click the Configure
button. It will ask ou the generator and the compiler you want. Then, you click the Generate
button, to generate your IDE project file or your Makefile. It may also be useful to check
Grouped and Advanced checkboxes.

4

Figure 1.2: CMake application (MacOS on the left and WIndows on the right)

Let’s now discuss about configuration options you may have to give to CMake. The first one is
the generator. By default, the cmake command generates a Makefile. This is the ”Unix Makefiles”
generator on Linux and Mac OS or ”MinGW Makefiles” generator on Windows. But you can
use other generators to have IDE files for your favorite IDE, such as Eclipse, CodeBlocks, Xcode,
Visual Studio, . . . :

cmake path/ to /CMakeLists . txt −G <generator name> [opt ions]

The following command chooses for instance to use codeblocks on unix platform:

cmake path/ to /CMakeLists . txt −G ”CodeBlocks − Unix Make f i l e s ” [opt ions]

Please read the cmake command help to known the potential list of available generators on your
computer.

���

Whatever the generator, to compile XLiFE++ sources, you will have to build the
target libs to compile the libraries, and the target tests to compile tests.

In the following sections, we will discuss about the other options. Each of them will be of the
form KEY=value and are used through the -D option with the following syntax:

cmake path/ to /CMakeLists . txt [−G <generator name >] −DKEY1=value1
−DKEY2=value2 −DKEY3=value3 . . .

�

Please notice that the key is always sticked to the -D option, and that the equal sign is
sticked to both key and value

1.4.2 Configuration step for XLiFE++ sources

General options

���

In the following, we will consider CMake used in command line mode, from a build
directory directly inside sources so that the path to CMakeLists.txt file is ..

By default, external dependencies to Eigen, Amos, and OpenMP are activated. So without
additional options, XLiFE++ will be configured with the first C++ compiler found in your
PATH, in Release mode, and without Arpack and UmfPack.

5

cmake . . [−G <generator name >]

If you want to change the compiler to use and/or the build type, you can use the
following options: CMAKE CXX COMPILER, CMAKE Fortran COMPILER and
CMAKE BUILD TYPE.

cmake . . −DCMAKE CXX COMPILER=g++−7 −DCMAKE Fortran COMPILER=gfor t ran−7
−DCMAKE BUILD TYPE=Debug

When you look at the CMake log, you are supposed to read that the rightful compiler is used with
the rightful build type, and that activated dependencies are found and used and that deactivated
dependencies are not used.

�

The fortran compiler is necessary to compile Amos library

��

When CMake is run, it stores values of options and a lot of internal variables in a cache
file CMakeCache.txt in the build directory. As a result, when you run CMake, you are not
forced to give already given options. This is the reason why in the following examples, only
options that are currently discussed will be used.

Basic options related to XLiFE++ dependencies

First, you can look at Gmsh and Paraview detection. If executables are reachable through the
PATH, they are automatically found. If not, you can use XLIFEPP GMSH EXECUTABLE
and XLIFEPP PARAVIEW EXECUTABLE.

�

On Mac OS, you have to give the full path to Gmsh/Paraview executables and not
applications. Executables are inside applications. If application names are Gmsh.app and
paraview.app and are located in the Applications directory, Gmsh and Paraview will be
correctly detected.

cmake . . −DXLIFEPP PARAVIEW EXECUTABLE=
/ App l i ca t i on s /Paraview −5 . 4 . 0 . app/ Contents /MacOS/ paraview

To activate dependencies, you can use the following options:

XLIFEPP ENABLE ARPACK To enable/disable use of Arpack. Possible values are ON
or OFF. Default is OFF.

XLIFEPP ENABLE UMFPACK To enable/disable use of UmfPack. Possible values are
ON or OFF. Default is OFF.

XLIFEPP ENABLE AMOS To enable/disable use of Amos. Possible values are ON or OFF.
Default is ON.

XLIFEPP ENABLE OMP To enable/disable use of OpenMP. Possible values are ON or
OFF. Default is ON.

XLIFEPP ENABLE EIGEN To enable/disable use of Eigen. Possible values are ON or
OFF. Default is the same as XLIFEPP ENABLE OMP, as Eigen needs OpenMP.

6

The default configuration being given, you may only use XLIFEPP ENABLE ARPACK and
XLIFEPP ENABLE UMFPACK.

�

To activate/deactivate all external dependencies, you can use XLIFEPP DEPS whose
possible values are ENABLE ALL, DISABLE ALL or DEFAULT.

cmake . . −DXLIFEPP ENABLE ARPACK=ON −DXLIFEPP ENABLE UMFPACK=ON
cmake . . −DXLIFEPP DEPS=ENABLE ALL

If libraries are installed in standard directories, reachable from paths environment variables (it is
often the case), they will be found. If not, additional options are available and explained in the
following section.

Intermediate options related to XLiFE++ dependencies

You can use specific option to give to CMake additional search paths for external dependencies:

XLIFEPP BLAS LIB DIR to specify an additional search directory CMake will use to find
Blas library

XLIFEPP LAPACK LIB DIR to specify an additional search directory CMake will use to
find Lapack library

XLIFEPP ARPACK LIB DIR to specify an additional search directory CMake will use to
find Arpack library

XLIFEPP UMFPACK INCLUDE DIR to specify an additional search directory CMake
will use to find UmfPack header

XLIFEPP UMFPACK LIB DIR to specify an additional search directory CMake will use
to find UmfPack header

XLIFEPP SUITESPARSE HOME DIR to specify an additional search directory CMake
will use to find the home directory of SuiteSparse, containing UmfPack. This option
is to be used if you compiled SuiteSparse by yourself. In this case, UmfPack will be
searched in the UMFPACK subdirectory.

cmake . . −DXLIFEPP DEPS=ENABLE ALL −DXLIFEPP BLAS LIB DIR=/usr / l i b /
−DXLIFEPP LAPACK LIB DIR=/usr / l i b / . . .

If external libraries have standard names, namely their filenames are like libarpack.a, libarpack.so,
libarpack.dylib, libarpack.dll, arpack.lib, . . . , they will be found. If their name contains a release
number, you can ask your sysadmin to add symbolic links of each of the libraries (as it should
be) and re-run CMake or you can use dedicated options to dodge the problem.

Advanced options related to XLiFE++ dependencies

You can use specific option to give directly external libraries:

XLIFEPP BLAS LIB to specify Blas library with full path

XLIFEPP LAPACK LIB to specify Lapack library with full path

7

XLIFEPP ARPACK LIB to specify Arpack library with full path

XLIFEPP XXX INCLUDE DIR to specify the XXX header, where XXX can be AMD,
COLAMD, CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSECONFIG or
UMFPACK.

XLIFEPP XXX LIB DIR to specify the XXX library, where XXX can be AMD, COLAMD,
CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSE (only on Mac OS),
SUITESPARSECONFIG or UMFPACK.

XLIFEPP FORTRAN LIB DIR to specify the directory where the gfortran library is. It is
necessary for compilers that are not able to find it by itself, such as clang++

XLIFEPP FORTRAN LIB to specify the gfortran library with full path. It is necessary if
the gfortran library has a non standard name.

1.4.3 Configuration step for XLiFE++ binaries

If you are under Windows, you can go directly to subsection 1.4.4 to learn how to configure
XLiFE++ with your installer.

General options

���

In the following, we will consider CMake used in command line mode, from a build
directory directly inside binary distribution so that the path to CMakeLists.txt file is ..

By default, all external dependencies to Arpack, UmfPack, Eigen, Amos, and OpenMP
are activated. So without additional options, XLiFE++ will be configured with the first C++
compiler found in your PATH, in Release mode.

cmake . . [−G <generator name >]

If you want to change the compiler to use, you can use the following option:
CMAKE CXX COMPILER.

cmake . . −DCMAKE CXX COMPILER=g++−7

When you look at the CMake log, you are supposed to read that the rightful compiler is used with
the rightful build type, and that activated dependencies are found and used and that deactivated
dependencies are not used.

��

When CMake is run, it stores values of options and a lot of internal variables in a cache
file CMakeCache.txt in the build directory. As a result, when you run CMake, you are not
forced to give already given options. This is the reason why in the following examples, only
options that are currently discussed will be used.

Basic options related to location of XLiFE++ dependencies

Now, you can look at Gmsh and Paraview detection. If executables are reachable through the
PATH, they are automatically found. If not, you can use XLIFEPP GMSH EXECUTABLE
and XLIFEPP PARAVIEW EXECUTABLE.

8

�

On Mac OS, you have to give the full path to Gmsh/Paraview executables and not
applications. Executables are inside applications. If application names are Gmsh.app and
paraview.app and are located in the Applications directory, Gmsh and Paraview will be
correctly detected.

cmake . . −DXLIFEPP PARAVIEW EXECUTABLE=
/ App l i ca t i on s /Paraview −5 . 4 . 0 . app/ Contents /MacOS/ paraview

On Windows, external libraries are provided with the binary distribution. On Linux and Mac
OS, if libraries are installed in standard directories, reachable from paths environment variables
(it is often the case), they will be found. If not, additional options are available and explained in
the following section.

Intermediate options related to XLiFE++ dependencies on Linux and Mac OS

You can use specific option to give to CMake additional search paths for external dependencies:

XLIFEPP BLAS LIB DIR to specify an additional search directory CMake will use to find
Blas library

XLIFEPP LAPACK LIB DIR to specify an additional search directory CMake will use to
find Lapack library

XLIFEPP ARPACK LIB DIR to specify an additional search directory CMake will use to
find Arpack library

XLIFEPP UMFPACK INCLUDE DIR to specify an additional search directory CMake
will use to find UmfPack header

XLIFEPP UMFPACK LIB DIR to specify an additional search directory CMake will use
to find UmfPack header

XLIFEPP SUITESPARSE HOME DIR to specify an additional search directory CMake
will use to find the home directory of SuiteSparse, containing UmfPack. This option
is to be used if you compiled SuiteSparse by yourself. In this case, UmfPack will be
searched in the UMFPACK subdirectory.

cmake . . −DXLIFEPP DEPS=ENABLE ALL −DXLIFEPP BLAS LIB DIR=/usr / l i b /
−DXLIFEPP LAPACK LIB DIR=/usr / l i b / . . .

If external libraries have standard names, namely their filenames are like libarpack.a, libarpack.so,
libarpack.dylib, libarpack.dll, arpack.lib, . . . , they will be found. If their name contains a release
number, you can ask your sysadmin to add symbolic links of each of the libraries (as it should
be) and re-run CMake or you can use dedicated options to dodge the problem.

Advanced options related to XLiFE++ dependencies on Linux and Mac OS

You can use specific option to give directly external libraries:

XLIFEPP BLAS LIB to specify Blas library with full path

9

XLIFEPP LAPACK LIB to specify Lapack library with full path

XLIFEPP ARPACK LIB to specify Arpack library with full path

XLIFEPP XXX INCLUDE DIR to specify the XXX header, where XXX can be AMD,
COLAMD, CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSECONFIG or
UMFPACK.

XLIFEPP XXX LIB DIR to specify the XXX library, where XXX can be AMD, COLAMD,
CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSE (only on Mac OS),
SUITESPARSECONFIG or UMFPACK.

XLIFEPP FORTRAN LIB DIR to specify the directory where the gfortran library is. It is
necessary for compilers that are not able to find it by itself, such as clang++

XLIFEPP FORTRAN LIB to specify the gfortran library with full path. It is necessary if
the gfortran library has a non standard name.

1.4.4 Installation of binaries under Windows

When downloading binaries under Windows, you just have to run the installer. To do so,
administrator elevation is required. If a previous distribution of XLiFE++ is installed in the
folder you choose, the installer can remove it itself. Furthermore, it is highly recommended to
install every component.
Now, in the bin subdirectory of the XLiFE++ install directory, you will find
xlifepp_configure.exe. Tu run it, administrator elevation is required.

1. First, you have to set the folder containing XLiFE++

2. As mentioned in the banner, a C++ compiler, CMake and Gmsh have to be installed on
your computer and defined in the Windows path1. An EDI such as CodeBlocks and
Paraview are not mandatory but highly recommended. Click on the Configure button

1A simple tool to edit the window path is patheditor2 that you can find easily on the web

10

3. When everything is OK, message ”Configuration complete” is displayed. To compile your own
program, you can click on the New project button or run xlifepp_new_project.exe. See
section 1.4.5

1.4.5 Compilation of a program using XLiFE++

The manual way

This way supposes that you know where XLiFE++ is installed.

1. You create your working directory,

2. You copy the main.cpp file into your working directory,

3. You copy the CMakeLists.txt file from the build directory (the directory in which you ran
installation process) into your working directory,

4. You run CMake on the CMakelists.txt file to get your makefile or files for your IDE project
(Eclipse, XCode, CodeBlocks, Visual C++, . . .),

5. You can now edit the main.cpp file to write your program and enjoy compilation with
XLiFE++.

The command-line way

This way is possible to make easier the manual way. In the bin directory of XLiFE++, you have
shell script called xlifepp.sh for MacOS and Linux, and a batch script called xlifepp.bat. You
can define a shortcut on it wherever you want.
Here is the list of options of both scripts:

USAGE:

xlifepp.sh --build [--interactive] [(--generate|--no-generate)]

xlifepp.sh --build --non-interactive [(--generate|--no-generate)]

[--compiler <compiler>] [--directory <dir>]

[--generator-name <generator>]

[--build-type <build-type>]

[(--with-omp|--without-omp)]

xlifepp.sh --help

xlifepp.sh --version

11

MAIN OPTIONS:

--build, -b copy cmake files and eventually sample of

main file and run cmake on it to prepare

your so-called project directory.

This is the default

--generate, -g generate the project. Used with --build option.

This is the default.

--help, -help, -h show the current help

--interactive, -i run xlifepp in interactive mode. Used with

--build option. This is the default

--non-interactive, -noi run xlifepp in non interactive mode. Used with

--build option

--no-generate, -nog prevent generation of your project. You will

do it yourself.

--version, -v print version number of XLiFE++ and its date

--verbose-level <value>, set the verbose level. Default value is 1

-vl <value>

OPTIONS FOR BUILD IN NON INTERACTIVE MODE:

--build-type <value>, set cmake build type (Debug, Release, ...).

-bt <value>

--cxx-compiler <value>, set the C++ compiler to use.

-cxx <value>

--directory <dir>, set the directory where you want to build

-d <dir> your project

--generator-name <name>, set the cmake generator.

-gn <name>

-f <filename>, copy <filename> as a main file for the user

--main-file <filename> project.

-nof, do not copy the sample main.cpp file. This is

--no-main-file the default.

--info-dir, -id set the directory where the info.txt file is

--with-omp, -omp activates OpenMP mode

--without-omp, -nomp deactivates OpenMP mode

The graphical way on Mac OS

This way is possible to make easier the manual way and more pleasant than the command-line
way. On the website, you have a GUI application called xlifepp-qt for MacOS, (Windows and
Linux will come soon). You can define a shortcut on it wherever you want.

12

Figure 1.3: The ”Configuration” tab of xlifepp-qt application

Figure 1.4: The ”Use” tab of xlifepp-qt application

This application is a graphical user interface to the first 3 steps of the manual way.

The graphical way on Windows

1. You run the generator xlifepp_new_project.exe, that is in the bin subdirectory of the
XLiFE++ install directory. The XLiFE++ folder should be correct by you can fix it if
necessary.

2. You select the folder in which you will write your rogram using XLiFE++. If it already
exists, the generator asks you to clean it or not. This window gives some information
about XLiFE++: the compiler used to generate it, if the library supports omp and the
debug/release status. You should use a compatible compiler with this library. If the default
C++ compiler found on your computer is not compatible, you can select another one by
clicking on the use compiler folder button.

13

3. Select the type of your project. For the moment only CodeBlocks-MinGW and Makefile are
working but CodeBlocks is highly recommended! Select a main file from the proposed
list. This main fill will be copied in your application folder. Be care, if you choose ”none”, no
main file will be copied and the generator will fail if there is no main file in your application
folder. This option is only useful if you want to keep an existing main file in your application
folder! Click on the Generate button and wait:

4. When everything is complete, you can either exit the tool or run the program that opens
the generated project (CodeBlocks in the example) by clicking on the run button.

1.5 Installation and usage without cmake

1.5.1 Installation process

The procedure presented above requires CMake for both the installation and the usage of the
libraries. Here is an alternative solution that do not use CMake, and is targeted for Unix-like
systems, namely Linux and Mac OS, since it needs the execution of a shell script.
To install the libraries:

• Download the archive (release or snapshot containing the sources) from

http://uma.ensta-paristech.fr/soft/XLiFE++/?module=main&action=dl

• Decompress the archive where the software is expected to be installed in the filesystem.
This can be in the user’s home or at system-wide level, in which case administrator rights
will be necessary. Let’s denote by $XLDIR the directory containing the files.

14

http://uma.ensta-paristech.fr/soft/XLiFE++/?module=main&action=dl

• Open a terminal and type in the command:

bash $XLDIR/etc/installLibs

This will create the libraries in the $XLDIR/lib directory.

XLiFE++ may use other libraries (UmfPack, Arpack, Lapack, Blas) or third party softwares
(Gmsh, Paraview), depending on their presence on the computer. The script installLibs

performs the installation in an automatic way, without any user action. This means that these
libraries or softwares are really used only if they are detected or built.

The installation requires a C++ compiler. The C++ compiler to use can be imposed by the
mean of the environment variable CPPCMP before calling the script installLibs. By default,
its name is g++, which is the GNU compiler generally used under Linux ; under Mac OS, this
will make use of the native compiler shipped with Xcode, but the GNU compiler may be used as
well.
The Fortran library is needed if Arpack is used. Thus, the name of the Fortran compiler,
from which is deduced the name of the Fortran library, can also be imposed by the mean of the
environment variable FCMP. By default, its name is gfortran.

The installation process conforms to the following rules:

1. if they are not found in the filesystem, Lapack and Blas are not installed, neither any
third party software,

2. UmfPack and Arpack libraries present on the system are used first and foremost,

3. if Arpack has not been found in the system and if a Fortran compiler is available,
Arpack library is built locally,

4. if UmfPack has not been found in the system, SuiteSparse libraries are built locally.

Some options may be used to alter the default configuration:
-noAmo prevents XLiFE++ to use Amos library,
-noArp prevents XLiFE++ to use Arpack library,
-noOmp prevents XLiFE++ to use OpenMP capabilities,
-noUmf prevents XLiFE++ to use UmfPack (SuiteSparse) libraries.

Thus, in case of trouble, the installation script may be relaunched with one or more of these
options. Using all the options leads to the standalone installation of XLiFE++, which is perfectly
allowed. The complete calling sequence is then:

bash $XLDIR/etc/installLibs [-noAmo] [-noArp] [-noOmp] [-noUmf]

Finally, the details of the installation are recorded in the file $XLDIR/installLibs.log.

1.5.2 Compilation of a program using XLiFE++

To use XLiFE++:

1. Create a new directory to gather all the source files related to the problem to be solved.

2. In this directory, create the source files. This can be done with any text editor. One of
them (only) should be a valid ”XLiFE++ main file” (see section 1.7). For example, start
by copying one of the files present in $XLDIR/examples.

15

3. In a terminal, change to this directory and type in the command:

$XLDIR/etc/xlmake

This will compile all the C++ source files contained in the current working directory (valid
extension are standard ones .c++, .cpp, .cc, .C, .cxx) and create the corresponding
executable file, named xlifeppexec.

4. Launch the execution of the program by typing in:

./xlifeppexec

The files produced during the execution are created in the current directory.

�

To improve comfort, one can make a link to the script xlmake in the working directory, as
suggested in the commentary inside the script:

ln -s $XLDIR/etc/xlmake .

or add $XLDIR/etc to the PATH environment variable. In both cases, the command typed in at
step 3. above would then reduce to:

xlmake

�

If OpenMP is used, it may be useful to adjust the number of threads to the problem size.
Indeed, by default all threads available are used, which may be completely counter productive
for example for a small problem size and a large number of threads. The number of threads
to use can be modified at program level, generally in the main function, or at system level, by
setting the environment variable OMP_NUM_THREADS before the execution is launched, e.g. with
a Bourne shell:

export OMP_NUM_THREADS=2 ; ./xlifeppexec

or with a C shell:

setenv OMP_NUM_THREADS 2 ; ./xlifeppexec

1.6 Installation and usage with Docker

This procedure allows to get a pre-installed version of the libraries which are gathered in a so-called
Docker container.

This first requires the installation of the Docker application, which can be downloaded from:
https://www.docker.com/products/overview

Once this is done:

• Download the XLiFE++ image (use sudo docker on linux system):

docker pull pnavaro/xlifepp

• Create a workspace directory, for example:

mkdir $HOME/my-xlifepp-project

• Run the container with interactive mode and share the directory created above with the
/home/work container directory:

docker run -it --rm -v $HOME/my-xlifepp-project:/home/work pnavaro/xlifepp

16

https://www.docker.com/products/overview

This allows the files created in the internal /home/work directory of the container to be
stored in the $HOME/my-xlifepp-project directory of the true filesystem, making them
available after Docker is stopped.

• Everything is now ready to use XLiFE++ as explained in section 1.4.5 above, for example:

xlifepp.sh

make

./exec-x86_64-linux-g++-5-Release

The files produced during the execution are in the directory $HOME/my-xlifepp-project

shared with running Docker, and are then available for postprocessing.

���

The Docker application requires Windows 10, or Mac OS 10.10 and higher. For
older OSes, you have to download Docker ToolBox instead. See https://docs.docker.com/
toolbox/toolbox_install_windows/ for Windows or https://docs.docker.com/toolbox/

toolbox_install_mac/ for Mac OS.

1.7 Writing a program using XLiFE++

All the XLiFE++ library is defined in the namespace xlifepp. Then the users, if they refer
to library objects, have to add once in their programs the command using namespace xlifepp;.
Besides, they have to use the ”super” header file xlife++.h only in the main. A main program
looks like, for instance:

#include ” x l i f e ++.h”
using namespace x l i f e p p ;

int main ()
{

in i t (en) ; // mandatory i n i t i a l i z a t i o n o f x l i f e++
. . .
}

If the users have additional source files using XLiFE++ elements, they cannot include the ”super”
header file xlife++.h because of global variable definitions. Instead, they will include the ”super”
header file xlife++-libs.h that includes every XLiFE++ header except the one containing the
definition of global variables.

1.8 License

XLiFE++ is copyright (C) 2010-2018 by E. Lunéville and N. Kielbasiewicz and is distributed
under the terms of the GNU General Public License (GPL) (Version 3 or later, see
https://www.gnu.org/licenses/gpl-3.0.en.html). This means that everyone is free to use
XLiFE++ and to redistribute it on a free basis. XLiFE++ is not in the public domain; it is
copyrighted and there are restrictions on its distribution. You cannot integrate XLiFE++ (in
full or in parts) in any closed-source software you plan to distribute (commercially or not). If you
want to integrate parts of XLiFE++ into a closed-source software, or want to sell a modified
closed-source version of XLiFE++, you will need to obtain a different license. Please contact us

17

https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_mac/
https://docs.docker.com/toolbox/toolbox_install_mac/

directly for more information.

The developers do not assume any responsibility in the numerical results obtained using the
XLiFE++ library and are not responsible of bugs.

1.9 Credits

The XLiFE++ library has been mainly developped by E. Lunéville and N. Kielbasiewicz of
POEMS lab (UMR 7231, CNRS-ENSTA ParisTech-INRIA). Some parts are inherited from
Melina++ library developped by D. Martin (IRMAR lab, Rennes University, now retired) and E.
Lunéville. Other contributors are :

• Y. Lafranche (IRMAR lab), mesh tools using subdivision algorithms, wrapper to Arpack

• C. Chambeyron (POEMS lab), iterative solvers

• M.H N’Guyen (POEMS lab), eigen solvers and OpenMP implementation

• N. Salles (POEMS lab), boundary element methods

• L. Pesudo (POEMS lab), boundary element methods and HF coupling

18

2 Getting started

2.1 The variational approach

Before learning in details what XLiFE++ is able to do, let us explain the basics with an example,
the Helmholtz equation:

For a given function f(x,y), find a function u(x,y) satisfying−∆u(x, y) + u(x, y) = f(x, y) ∀(x, y) ∈ Ω
∂u

∂n
(x, y) = 0 ∀(x, y) ∈ ∂Ω

(2.1)

To solve this problem by a finite element method, XLiFE++ is based on its variational
formulation : find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)∫

Ω

∇u.∇v dx dy −
∫

Ω

u v dx dy =

∫
Ω

f v dx dy. (2.2)

All the mathematical objects involved in the variational formulation are described in XLiFE++.
The following program solves the Helmholtz problem with f(x, y) = cosπx cosπy and Ω is the
unit square.

1 #include ” x l i f e ++.h”
2 using namespace x l i f e p p ;
3

4 Real cosxcosy (const Point& P, Parameters& pa = defau l tParameters)
5 {
6 Real x=P(1) , y=P(2) ;
7 return cos (p i ∗ x) ∗ cos (p i ∗ y) ;
8 }
9

10 int main (int argc , char∗∗ argv)
11 {
12 in i t (lang=f r) ; // mandatory i n i t i a l i z a t i o n o f x l i f e p p
13 Square sq (origin=Point (0 . , 0 .) , length=1, nnodes=11) ;
14 Mesh mesh2d (sq , t r i a n g l e , 1 , s t ruc tu r ed) ;
15 Domain omega = mesh2d .domain(”Omega”) ;
16 Space Vk(omega , P1 , ”Vk” , true) ;
17 Unknown u(Vk, ”u”) ;
18 TestFunction v (u , ”v ”) ;
19 BilinearForm auv = intg (omega , grad (u) | grad (v)) + intg (omega , u ∗ v) ;
20 LinearForm fv=intg (omega , cosxcosy ∗ v) ;
21 TermMatrix A(auv , ”a (u , v) ”) ;
22 TermVector B(fv , ” f (v) ”) ;
23 TermVector X0(u , omega , 1 . , ”X0”) ;
24 TermVector U = cgSolve (A, B, X0 , name=”U”) ;
25 saveToFile (”U” , U, vtu) ;
26 return 0 ;
27 }

19

Please notice how close to the Mathematics, XLiFE++ input language is.

2.2 How does it work ?

This first example shows how XLiFE++ executes all the usual steps required by the Finite
Element Method. Let us walk through them one by one.

line 12 : every program using XLiFE++ begins by a call to the init function, taking up to 4
key/value arguments:

lang enum to set the language for print and log messages. Possible values are en for
English, fr for French, de for German, or es for Spanish. Default value is en.

verbose integer to set the verbose level. Default value is 1.

trackingMode boolean to set if in the log file, you have a backtrace of every call to a
XLiFE++ routine. Default value is false.

isLogged boolean to activate log. Default value is false.

Furthermore, the init function loads functionalities linked to the trace of where such
messages come from. If this function is not called, XLiFE++ cannot work !!!

in i t (lang=f r) ; // mandatory i n i t i a l i z a t i o n o f x l i f e p p

lines 13-14 : The mesh will be generated on the unit square geometry with 11 nodes per edge.
Arguments of a geometry are given with a key/value system. origin is the bottom left
front vertex of Square. Next, we precise the mesh element type (here triangle), the mesh
element order (here 1), and an optional description. See ?? for more examples of mesh
definitions.

Square sq (origin=Point (0 . , 0 .) , length=1, nnodes=11) ;
Mesh mesh2d (sq , t r i a n g l e , 1 , s t ruc tu r ed) ;

line 15 : The main domain, named ”Omega” in the mesh, is defined.

Domain omega = mesh2d .domain(”Omega”) ;

line 16 : A finite element space is generally a space of polynomial functions on elements,
triangles here only. Here sp is defined as the space of continuous functions which are
affine on each triangle Tk of the domain Ω, usually named Vh. The dimension of such a
space is finite, so we can define a basis.

sp(Ω, P1) =

{
w(x, y) such that ∃(w1, . . . , wN) ∈ RN , w(x, y) =

N∑
i=1

wkϕk(x, y)

}

where N is the space dimension, i.e. the number of nodes, i.e. the number of vertices here.

Currently, XLiFE++ implements the following elements : Pk on segment, triangle and
tetrahedron, Qk on quadrangle and hexahedron, Ok on prism and pyramid (see Mesh chapter
for more details).

Space Vk(omega , P1 , ”Vk” , true) ;

20

lines 17-20 : The unknown u here is an approximation of the solution of the problem. v is
declared as test function. This comes from the variational formulation of Equation 2.1 :
multiplying both sides of equation and integrating over Ω, we obtain :

−
∫

Ω

v∆udxdy +

∫
Ω

vudxdy =

∫
Ω

vfdxdy

Then, using Green’s formula, the problem is converted into finding u such that :

a(u, v) =

∫
Ω

∇u · ∇vdxdy +

∫
Ω

uvdxdy =

∫
Ω

fvdxdy = l(v) (2.3)

The 4 next lines in the program declare u and v and define a and l.

Unknown u(Vk, ”u”) ;
TestFunction v (u , ”v ”) ;
BilinearForm auv = intg (omega , grad (u) | grad (v)) + intg (omega , u ∗ v) ;
LinearForm fv=intg (omega , cosxcosy ∗ v) ;

Please notice that:

• the test function is defined from the unknown. The reason is that the test function is
dula to the unknown. Through the unknown, v is also defined on the same space.

• the right hand side needs the definition of the function f . Such function can be defined
as a classical C++ function, but with a particular prototype. In this example, f (i.e.
cosx2) is a scalar function. So it takes 2 arguments : the first one is a Point, containing
coordinates x and y. The second one is optional and contains parameters to use inside
the function. Here, the Parameters object is not used. At last, as a scalar function, it
returns a Real.

{
Real x=P(1) , y=P(2) ;
return cos (p i ∗ x) ∗ cos (p i ∗ y) ;

}

lines 21-22 : The previous definitions are a description of the variational form. Now, we have
to define the matrix and the right-hand side vector which are the algebraic representations
of the linear forms in the finite element space. This is done by the first 2 following lines.

TermMatrix A(auv , ”a (u , v) ”) ;
TermVector B(fv , ” f (v) ”) ;

lines 23-24 : Matrix and vector being assembled, you can now choose the solver you want.
Here, a conjugate gradient solver is used, with an initial guess constant equal to 1.

XLiFE++ offers you a various choice of direct or iterative solvers :

• LU , LDU , LLt, LDLt, LDL∗ factorizations

• BICG, BiCGStab, CG, CGS, GMRES, QMR, Sor, SSor, solvers

• internal eigen solver

• interfaces to external packages such as UmfPack, Arpack

21

See ?? for more details.

TermVector X0(u , omega , 1 . , ”X0”) ;
TermVector U = cgSolve (A, B, X0 , name=”U”) ;

line 25 : To save the solution, XLiFE++ provides an export to Paraview format file (vtu).

saveToFile (”U” , U, vtu) ;

line 26 : This is the end of the program. A ”main” function always ends with this line.

return 0 ;

22

3 XLiFE++ written in C++

This chapter is devoted to the basics of C++ language required to use XLiFE++. It is adressed
to people who does not know C++.

3.1 Instruction sequence

All C++ instructions (ending by semicolon) are defined in block delimited by braces:

{
i n s t r u c t i o n ;
i n s t r u c t i o n ;
. . .
}

Instruction block may be nested in other one:

{
i n s t r u c t i o n ;
{

i n s t r u c t i o n ;
i n s t r u c t i o n ;
}
. . .
}

and are naturally involved in tests, loops, ... and functions.

A function is defined by its name, a list of input argument types, an output argument type and
an instruction sequence in an instruction block:

argout name of funct ion (argin1 , argin2 , . . .)
{

i n s t r u c t i o n ;
i n s t r u c t i o n ;
. . .
return something ;
}

The main program is a particular function returning an error code:

int main ()
{

. . .
return 0 ; //no error
}

23

3.2 Variables

In C++, any variable has to be declared, say defined by specifying its type. The fundamental
types are :

• integer number : int (Int type in XLiFE++), unsigned int (Number type in XLiFE++)
and short unsigned int (Dimen type in XLiFE++)

• real number : float for single precision (32bits) or double (64bits) for double precision
(Real type in XLiFE++)

• boolean : bool that takes true (1) or false (0) as value

• character : char containing one of the standard ASCII character

All other types are derived types (pointer, reference) or classes (Complex, String for instance).

All variable names must begin with a letter of the alphabet. Do not begin by underscore
() because it is used by XLiFE++. After the first initial letter, variable names can also
contain letters and numbers. No spaces or special characters, however, are allowed. Upper-case
characters are distinct from lower-case characters.

A variable may be declared any where. When they are declared before the beginning of the
main, they are available anywhere in the file where they are declared.

�

All variables declared in an instruction block are deleted at the end of the block.

3.3 Basic operations

The C++ provides a lot of operators. The main ones are :

• = : assignment

• +, -, * , / : usual algebric operators

• +=, -=, *=, /= : operation on left variable

• ++, --: to increment by 1 (+=1) and decrement by 1 (-=1)

• == != < > <= >= ! : comparaison operators and negation

• &&, || : logical and, or

• <<, >> : to insert in a stream (read, write)

All these operators may work on object of a class if they have been defined for this class. See
documentation of a class to know what operators it supports.

The operators +=, -=, *=, /= may be useful when they act on large structure because they,
generally, do not modify their representation and avoid copy.

24

3.4 if, switch, for and while

The syntax of test is the following:

i f (p r e d i c a t e)
{

. . .
}
else i f (p r ed i ca t e2)
{
. . .
}
else
{

. . .
}

else if and else blocks are optional and you can have as many else if blocks as you want.
predicate is a boolean or an expression returning a boolean (true or false):

i f ((x==3 && y<=2) | | (! a>b))
{

. . .
}

For multiple choice, use the switch instruction:

switch (i)
{

case 0 :
{

. . .
break ;

}
case 1 :
{

. . .
break ;

}
. . .

default :
{

. . . .
}

}

The switch variable has to be of enumeration type (integer or explicit enumeration).

The syntax of the for loop is the following:

for (i n i t i a l i z a t i o n ; end t e s t ; increment ing sequence)
{

. . .
}

The simplest loop is:

25

for (int i =0; i< n ; i++)
{

. . .
}

An other example with no initializer and two incrementing values:

int i =1, j =10;
for (; i< n && j >0; i ++, j−−)
{

. . .
}

A for loop may be replaced by a while loop:

int i =0;
while (i<n)
{

. . .
i ++;
}

3.5 In/out operations

The simplest way to print something on screen is to used the predefined output stream cout with
operator <<:

Real x =2.25;
Number i =3;
String msg=” X l i f e++ : ” ;
cout << msg << ” x=” << x << ” i=” << i << e o l ;

eol is the XLiFE++ end of line. You can insert in output stream any object of a class as the
operator << is defined for this class. Almost all XLiFE++ classes offer this feature.

To read information from keyboard, you have to use the predefined input stream cin with operator
>>:

Real x ;
Number i =3;
c in >> i >> x ;

The program waits for an input of a real value, then for an an input of integer value.

To print on a file, the method is the same except that you have to define an output stream on a
file :

ofstream out ;
out . open (”myf i l e ”) ;
Real x =2.25;
Number i =3;
String msg=” X l i f e++ : ” ;
out << msg << ” x=” << x << ” i=” << i << e o l ;
out . c l o s e () ;

26

To read from a file :

i f s t r e a m in ;
in . open (”myf i l e ”) ;
Real x ;
Number i =3;
in >> i >> x ;
in . c l o s e () ;

The file has to be compliant with data to read. The default separators are white space and
carriage return (end of line).

To read and write on file in a same time, use fstream.

�

All stream stuff id defined in the C++ standard template library (STL). To use it, write at
the beginning of your c++ files :

#include <iostream>
#include <fstream>
. . .

using namespace std ;

3.6 Using standard functions

The STL library provides some fundamental functions such as abs, sqrt, power, exp, sin,
To use it, you have to include the cmath header file :

#include <cmath>
using namespace std ;
. . .
double pi=4∗atan (1) ;
double y=sqrt (x) ;
. . .

3.7 Use of classes

The C++ allows to define new types of variable embedding complex structure : say class. A
class may handle some data (member) and functions (member functions). A variable of a class
is called an object.

In XLiFE++, you will have only to use it, not to define new one. The main questions are : how
to create an object of a class, how to access to its members and how to apply operations on it.
To illustrate concepts, we will use the very simple Complex class:

class Complex
{

public :
f loat x , y ;
Complex(f loat a=0, f loat b=0) : x (a) , y (b) {}
f loat abs () {return sqrt (x∗x+y∗y) ;
Complex& operator+=(const Complex& c)

27

{x+=c . x ; y+=c . y ; return ∗ this ;}
. . .

} ;

Classes have special functions, called constructors, to create object. They have the name of the
class and are invoked at the declaration of the object:

int main ()
{

Complex z1 ; // d e f a u l t cons t ruc t o r
Complex z2 (1 , 0) ; // e x p l i c i t cons t ruc t o r
Complex z4 (z2) ; // copy cons t ruc t o r
Complex z5=z3 ; // use copy cons t ruc t o r

Complex z4=Complex(0 , 1) ;
}

Copy constructor and operator = are always defined. When operator = is used in a declaration,
the copy constructor is invoked. The last instruction uses the explicit constructor and the copy
constructor. In practice, compiler are optimized to avoid copy.

To address a member or a member function, you have to use the operator point (.) :

int main ()
{

Complex z (0 , 1) ;
f loat r=z . x ;
f loat i=z . y ;
f loat a=z . abs () ;

}

and to use operators, use it as usual:

int main ()
{

Complex z1 (0 , 1) , z2 (1 , 0) ;
z1+=z2 ;

}

Most of XLiFE++ user’s classes have been developed to be close to natural usage.

3.8 Understanding memory usage

In scientific computing, the computer memory is often asked intensively. So its usage has to be
well managed:

• avoid copy of large structures (mainly TermMatrix)

• clear large object (generally it exists a clear function). You do not have to delete objects,
they are automatically destroyed at the end of the blocks where they have been declared !

• when it is possible, use +=, -=, *=, /= operators instead of +, -, *, / operators which
induce some copies

• in large linear combination of TermMatrix, do not use partial combinations which also
induce unnecessary copies and more computation time

28

3.9 Main user’s classes of XLiFE++

For sake of simplicity, the developers choose to limit the number of user’s classes and to restrict
the use of template paradigm. Up to now the only template objects are Vector and Matrix to
deal with real or complex vectors/matrices. The name of every XLiFE++ class begins with a
capital letter.

XLiFE++ provides some utility classes (see user documentation for details) :

String to deal with character string
Strings to deal with vector of character strings
Number to deal with unsigned (positive) integers
Numbers to deal with vector of unsigned (positive) integers
Real to deal with floats, whatever the precision.
Reals to deal with vector of floats, whatever the precision.
Complex to deal with complexes
Vector<T> to deal with numerical vectors (T is a real/complex scalar or real/complex Vector)
Matrix<T> to deal with numerical matrices (T is a real/complex scalar or real/complex Matrix)
RealVector, RealVectors, RealMatrix, RealMatrices are aliases of previous real vectors and

matrices
Complexes, ComplexVector, ComplexVectors, ComplexMatrix, ComplexMatrices are aliases

of previous complex vectors and matrices
Point to deal with Point in 1D, 2D, 3D
Parameter structure to deal with named parameter of type Real, Complex, Integer, String
Parameters a list of parameters
Function generalized function handling a c++ function and a list of parameters
Kernel generalized kernel managing a Function (the kernel) and some additional data

(singularity type, singularity order, ...)
TensorKernel a special form of kernel useful to DtN map

XLiFE++ also provides the main user’s modelling classes :

Geometry to describe geometric objects (segment, rectangle, ellipse, ball, cylinder, . . .). Each
geometry has its own modelling class (Segment, Rectangle, Ellipse, Ball, Cylinder, . . .)

Mesh mesh structure containing nodes, geometric elements, ...
Domain alias of geometric domains describing part of the mesh, in particular boundaries, and

Domains to deal with vectors of Domain’s
Space class handles discrete spaces (FE space or spectral space) and Spaces some vectors of

Space’s
Unknown, TestFunction abstract elements of space and Unknowns, TestFunctions to handle

vector of Unknown’s and TestFunction’s
LinearForm symbolic representation of a linear form
BiLinearForm symbolic representation of a bilinear form
EssentialCondition symbolic representation of an essential condition on a geometric domain
EssentialConditions list of essential conditions
TermVector algebraic representation of a linear form or element of space as vector
TermVectors list of TermVector’s
TermMatrix algebraic representation of a bilinear form
EigenElements list of eigen pairs (eigen value, eigen vector)

29

	1 Introduction
	1.1 What XLiFE++ is
	1.2 How to download XLiFE++
	1.2.1 How XLiFE++ sources are organized ?
	1.2.2 How XLiFE++ binaries are organized ?

	1.3 Requirements
	1.3.1 Extensions
	1.3.2 Installation requirements

	1.4 Installation and usage with CMake
	1.4.1 How to use CMake ?
	1.4.2 Configuration step for XLiFE++ sources
	1.4.3 Configuration step for XLiFE++ binaries
	1.4.4 Installation of binaries under Windows
	1.4.5 Compilation of a program using XLiFE++

	1.5 Installation and usage without cmake
	1.5.1 Installation process
	1.5.2 Compilation of a program using XLiFE++

	1.6 Installation and usage with Docker
	1.7 Writing a program using XLiFE++
	1.8 License
	1.9 Credits

	2 Getting started
	2.1 The variational approach
	2.2 How does it work ?

	3 XLiFE++ written in C++
	3.1 Instruction sequence
	3.2 Variables
	3.3 Basic operations
	3.4 if, switch, for and while
	3.5 In/out operations
	3.6 Using standard functions
	3.7 Use of classes
	3.8 Understanding memory usage
	3.9 Main user's classes of XLiFE++

