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. Preface

XLIFE++ is the heir of 2 main finite elements library developed in POEMS laboratory, namely
MELINA (and its C++ avatar MELINA++) and MONTJOIE, respectively developed since 1989
and 2003. It is a C+—+ high level library devoted to extended finite elements methods. Writing
programs using XLIFE++ needs only basic knowledge of C++ language, so that it can be used
to teach finite elements methods, but it is quite perfect for research.

XLIFE++ is self-consistent. It provides advanced mesh tools, with refinement methods, has every
kind of elements (including pyramids) needed by finite elements methods, boundary elements
methods or discontinuous galerkin methods, direct/iterative solvers and eigen solvers. Next to
this, it provides also a wide range of interfaces to well-known libraries or softwares, such that
UMFPACK, ARPACK++, and an advanced interface to the mesh generator GMSH, so that you
can do everything needed in a single program.

This documentation is dedicated to students at Master level, to engineers and researchers at any
level, in so far as partial differential equations are concerned.



Introduction
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1.1 What XLIFE++4 is

Partial differential equations (PDE hereafter) are the core of modelling. A wide range of problems
in Physics, Engineering, Mathematics, Banking are modelled by PDEs.

XLIFE++ is a C++ library designed to solve these equations numerically. It is a free extended
library based on finite elements methods. It is an autonomous library, providing everything you
need for solving such problems; including interfaces to specific external libraries or softwares, such
as GMSH, ARPACK++, UMFPACK, ...

What does XLIFE++ do ?

e Problem description (real or complex) by their variational formulations, with full access to
the internal vectors or matrices;

e Multi-variables, multi-equations, 1D, 2D and 3D, linear or non linear coupled systems;
e Easy geometric input by composite description , to build meshes thanks to GMSH;
e Easy automatic mesh generation on elementary geometries, based on refinement methods;

e Very high level user-friendly typed input language with full algebra of analytic and finite
elements functions. Your main program will be very similar to the mathematical objects;

e A wide range of finite elements : segments, triangles, quadrangles, hexahedra, tetrahedra,
prisms and pyramids

e A wide set of internal linear direct and iterative solvers (LU, Cholesky, BiCG, BiCGStab,
CG, CGS, GMRES, QMR, SOR, SSOR, ...) and internal eigenvalues and eigenvectors
solvers, plus additional interfaces to external solvers (ARPACK, UMFPACK,. .. );

e A full documentation suite : source documentation (online or inside sources), user
documentation (pdf), developer documentation (pdf);

A parallel version using OpenMP.

1.2 How to download XLIFE+-+

XLIFE++ is downloadable at the following url . You can download releases and snapshots of
either the source code or binaries. Snapshots are supposed to be generated automatically every
day when necessary.

There are 2 kinds of archives (snapshots or releases):

1. a "source” archive that contains all XLIFE++ source files and tex/pdf documentation;

2. a "api” archive that contains only source documentation generated by DOXYGEN

1


http://uma.ensta-paristech.fr/soft/XLiFE++/

1.2.1 How XLIFE++ sources are organized ?

XLIFE++ sources are organized with several directories, described as follows for the main ones:

bin contains the xlifepp_project_setup.exe for Windows and the user scripts xlifepp.sh and
xlifepp.bat. This will be explained later.

doc contains the present user guide, the developer guide (also in pdf) and other specific
documentations extracted from the present user guide, such as a tutorial, an install
documentation, and explanations about examples.

etc contains a lot of stuff such as templates for installation, the multilingual files, ...
examples contains example files ready to compile and use.

ext contains source files for external dependencies, such as ARPACK++, EIGEN, AMOS libraries
src contains all C++ sources of the XLIFE++ library

tests contains all unitary and system tests to check your installation

lib will contain the static libraries of XLIFE++, after the compilation step.

usr contains the user files to write and compile a C++ program using XLIFE++

You also have a very important file CMakeLists.txt, that is the CMAKE compilation script.

1.2.2 How XLIFE++ binaries are organized ?

XLIFE++ binaries are organized with several directories, described as follows for the main ones:

bin contains the xlifepp_project_setup.exe for Windows and the user scripts xlifepp.sh and
xlifepp.bat. This will be explained later.

etc it contains a lot of stuff such as templates for installation, the multilingual files, ...

share/doc it contains the present user guide, the developer guide (also in pdf) and other
specific documentations extracted from the present user guide, such as a tutorial, an install
documentation, and explanations about examples.

share/examples it contains example files ready to compile and use.
ext it contains source files for external dependencies, such as ARPACK++, EIGEN, AMOS libraries
tests it contains all unitary and system tests to check your installation

lib After the compilation, it will contain the static libraries of XLIFE++.

You also have a very important file CMakeLists.txt, that is the CMAKE compilation script.



1.3 Requirements

1.3.1 Extensions

To use XLIFE-++ full capabilities, you may need some external libraries to activate extensions:

e The main mesh engine needs GMSH (http://gmsh.info). It is not a strong dependency
insofar as you just have to tell XLIFE++ where GMSH binary is.

e To use them as solvers, you may install ARPACK (http://www.caam.rice.
edu/software/ARPACK/) and/or UMFPACK (http://faculty.cse.tamu.edu/davis/
suitesparse.html). On UNIX systems, you may rely on your package manager to install
them. On WINDOWS, we highly recommend you to download files on the X LIFE++ website
http://uma.ensta-paristech.fr /soft / XLiFE++/?module=main&action=dl

e To visualize solutions of your programs using XLIFE++, you may install GMSH (http://
geuz.org/gmsh), PARAVIEW (http://www.paraview.org), MATLAB or OCTAVE (https:
//sourceforge.net/projects/octave/files/).

@ XLIFE4++ includes 2 external libraries: EIGEN (http://eigen.tuxfamily.org/,
essentially for SVD, and AMOS (http://www.netlib.org/amos/) for Bessel/Hankel functions
on complex arguments.

1.3.2 Installation requirements

Basically, XLIFE++ compilation depends on the cross-platform builder CMAKE, available at
http://cmake.org. To know how to install and use XLIFE++ this way, please read section 1.4.

For UNIX systems, you can use an alternative installation procedure that does not require CMAKE.
To know how to install and use XLIFE++ this way, please read section 1.5.

Another way to install XLIFE++ is to download a DOCKER container (like a virtual machine
containing everything to build and run XLIFE++). It is cross-platform. To know how to install
and use XLIFE++ this way, please read section 1.6.

1.4 Installation and usage with CMAKE

You download XLIFE++ from its website http://uma.ensta-paristech.fr/soft/XLiFE++/.

e Either you download XLIFE++ sources: you have to unzip the archive at any place you
choose in the filesystem. Then, you follow configuration procedure by setting at least a C++
compiler, the path to GMSH and eventually paths to external libraries BLAS, LAPACK,
ARPACK and UMFPACK. When done, you will have to compile XL1IFE+-+ source code.

e Or you download XLIFE++ binaries: you will have to run the installer if you are on
WINDOWS (see subsection 1.4.4), or follow the configuration procedure with cmake by
setting a C++ compiler, paths to GMSH, and to BLAS, LAPACK, ARPACK, UMFPACK
libraries. In following sections, you will be guided on which options you may use or not as
far as sources or binaries are concerned.

If you are on MAC OS and want to use clang++ as a compiler, please download dedicated
binaries, as they are generated without OPENMP activated.
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1.4.1 How to use CMAKE ?

CMAKE only needs a configuration file named CMakeLists.txt, at the root directory of the
XLIFE++ archive. Whatever the OS, CMAKE also asks for another directory where to put
generated files for compilation, called build directory hereafter. This directory can be anywhere.
It will contains compilation files (objects files, ...), a Makefile or an IDE project file named
XLiFE++ (for Eclipse, CodeBlocks, Visual Studio, Xcode, ...). So we suggest you to set this
directory as a subdirectory of XLIFE++ install directory, with the name build for instance.
CMAKE can be called and used different ways:

On the command line: On LINUX and MAC OS, you can use the cmake command or its default
GUI ccmake. On WINDOWS, you can use the cmake.exe command.

® 00 build-st — ccmake — 80x25 'S
I ccmake bash
Page 1 of 1

ARPACKPP_INCLUDE_DIR
ARPACK_LTB_DIR
CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX
CMAKE_DSX_ARCHITECTURES
CMAKE_DSX_DEPLOYMENT_TARGET
CMAKE_OSX_SYSROOT

GMSH_DIR

LAPACKBLAS_LIB_DIR
UMFPACK_HOME_DIR
XLIFEPP_ENABLE_ARPACKPP
XLIFEPP_ENABLE_LAPACKBLAS
XLIFEPP_ENABLE_OMP
XLIFEPP_ENABLE_OPENBLAS
XLIFEPP_ENABLE_UMFPACK

re c] to co
Press [h] for hel,

P Press [q] to quit without generating
Press [t] to toggle advanced mode (Currently O0Ff)

Figure 1.1: ccmake (MacOS, Linux)

When running CMAKE, the build directory is generally the directory in which you are when
calling the CMAKE command. If you want to know the general case, please take a look at
CMAKE option -b.

To compile XLIFE++4, you just have to run CMAKE on the CMakeLists.txt file:

cmake path/to/CMakeLists.txt [options]
ccmake [options] path/to/CMakeLists. txt

Through GUI applications: When running CMAKE GUI application, you have to set the
directory Where is the source code containing CMakeLists.txt you want to run CMAKE
on, and to set the build directory: Where to build the binaries. Then, you click the Configure
button. It will ask ou the generator and the compiler you want. Then, you click the Generate
button, to generate your IDE project file or your Makefile. It may also be useful to check
Grouped and Advanced checkboxes.



eove A CMake3.4.1 -

Where is the source code: Browse Source.

Wnere to build the binaries: B srowsesBuid.

Search: Grouped  Advanced | AddEnty | 1 Remove Enry

Name Vaive

©O0RE £ 2 2 8

Press Configure to update and display new values in red, then press
Generate to generate selected buid files.

Configure

Current Generator: None

Figure 1.2: CMAKE application (MacOS on the left and WIndows on the right)

Let’s now discuss about configuration options you may have to give to CMAKE. The first one is
the generator. By default, the cmake command generates a Makefile. This is the "Unix Makefiles”
generator on LINUX and MAcC OS or "MinGW Makefiles” generator on WINDOWS. But you can
use other generators to have IDE files for your favorite IDE, such as Eclipse, CodeBlocks, Xcode,
Visual Studio, . ..:

cmake path/to/CMakeLists. txt —G <generator_name> [options]

The following command chooses for instance to use codeblocks on unix platform:
cmake path/to/CMakeLists.txt —G ”CodeBlocks — Unix Makefiles” [options]

Please read the cmake command help to known the potential list of available generators on your
computer.

M Whatever the generator, to compile XLIFE++ sources, you will have to build the
target [1bs to compile the libraries, and the target tests to compile tests.

In the following sections, we will discuss about the other options. Each of them will be of the
form KEY=value and are used through the -D option with the following syntax:

cmake path/to/CMakeLists.txt [—G <generator_name >] —DKEYl=valuel
—DKEY2=value2 —-DKEY3=value3

@ Please notice that the key is always sticked to the -D option, and that the equal sign is
sticked to both key and value

1.4.2 Configuration step for XLiFE++4 sources

General options

@% In the following, we will consider CMAKE used in command line mode, from a build
directory directly inside sources so that the path to CMakeLists.txt file is ..

By default, external dependencies to EIGEN, AMOS, and OPENMP are activated. So without
additional options, XLIFE+4++ will be configured with the first C++ compiler found in your
PATH, in Release mode, and without ARPACK and UMFPACK.



cmake .. [—-G <generator_name >]

If you want to change the compiler to use and/or the build type, you can use the
following options: CMAKE_CXX_COMPILER, CMAKE_Fortran COMPILER and
CMAKE_BUILD_TYPE.

cmake .. —DCMAKE CXX COMPILER=g++—7 —DCMAKE_Fortran COMPILER=gfortran —7
—DCMAKE BUILD_TYPE=Debug

When you look at the CMAKE log, you are supposed to read that the rightful compiler is used with
the rightful build type, and that activated dependencies are found and used and that deactivated
dependencies are not used.

@ The fortran compiler is necessary to compile AMOS library

% When CMAKE is run, it stores values of options and a lot of internal variables in a cache
file CMakeCache.txt in the build directory. As a result, when you run CMAKE, you are not
forced to give already given options. This is the reason why in the following examples, only
options that are currently discussed will be used.

Basic options related to XLIFE++ dependencies

First, you can look at GMSH and PARAVIEW detection. If executables are reachable through the
PATH, they are automatically found. If not, you can use XLIFEPP_GMSH EXECUTABLE
and XLIFEPP_PARAVIEW_EXECUTABLE.

@ On Mac OS, you have to give the full path to GMSH/PARAVIEW executables and not
applications. Executables are inside applications. If application names are Gmsh.app and
paraview.app and are located in the Applications directory, GMSH and PARAVIEW will be
correctly detected.

cmake .. —DXLIFEPP_PARAVIEW_EXECUTABLE=
/Applications /Paraview —5.4.0.app/Contents /MacOS/paraview

To activate dependencies, you can use the following options:

XLIFEPP_ENABLE ARPACK To enable/disable use of ARPACK. Possible values are ON
or OFF. Default is OFF.

XLIFEPP_ENABLE UMFPACK To enable/disable use of UMFPACK. Possible values are
ON or OFF. Default is OFF.

XLIFEPP_ENABLE_AMOS To enable/disable use of AMOS. Possible values are ON or OFF.
Default is ON.

XLIFEPP_ENABLE_OMP To enable/disable use of OPENMP. Possible values are ON or
OFF. Default is ON.

XLIFEPP_ENABLE_EIGEN To enable/disable use of EIGEN. Possible values are ON or
OFF. Default is the same as XLIFEPP_ENABLE _OMP, as EIGEN needs OPENMP.



The default configuration being given, you may only use XLIFEPP_ENABLE_ARPACK and
XLIFEPP_ENABLE_UMFPACK.

@ To activate/deactivate all external dependencies, you can use XLIFEPP_DEPS whose
possible values are ENABLE_ALL, DISABLE_ALL or DEFAULT.

cmake .. —DXLIFEPP_ENABLE ARPACK=ON —DXLIFEPP_ENABLE UMFPACK=0ON
cmake .. —DXLIFEPP_DEPS=ENABLE_ALL

If libraries are installed in standard directories, reachable from paths environment variables (it is
often the case), they will be found. If not, additional options are available and explained in the
following section.

Intermediate options related to XLiFE++ dependencies

You can use specific option to give to CMAKE additional search paths for external dependencies:

XLIFEPP_BLAS LIB DIR to specify an additional search directory CMAKE will use to find
Bras library

XLIFEPP_LAPACK_LIB_DIR to specify an additional search directory CMAKE will use to
find LAPACK library

XLIFEPP_ARPACK_LIB_DIR to specify an additional search directory CMAKE will use to
find ARPACK library

XLIFEPP_UMFPACK_INCLUDE_DIR to specify an additional search directory CMAKE
will use to find UMFPACK header

XLIFEPP_UMFPACK_LIB_DIR to specify an additional search directory CMAKE will use
to find UMFPACK header

XLIFEPP_SUITESPARSE HOME_DIR to specify an additional search directory CMAKE
will use to find the home directory of SUITESPARSE, containing UMFPACK. This option
is to be used if you compiled SUITESPARSE by yourself. In this case, UMFPACK will be
searched in the UMFPACK subdirectory.

cmake .. —DXLIFEPP_DEPS=ENABLE ALL —DXLIFEPP_BLAS_LIB_DIR=/usr/lib /
—DXLIFEPP_LAPACK LIB_.DIR=/usr /1lib/ ...

If external libraries have standard names, namely their filenames are like libarpack.a, libarpack.so,
libarpack.dylib, libarpack.dll, arpack.lib, ..., they will be found. If their name contains a release
number, you can ask your sysadmin to add symbolic links of each of the libraries (as it should
be) and re-run CMAKE or you can use dedicated options to dodge the problem.

Advanced options related to XLiIFE++ dependencies

You can use specific option to give directly external libraries:

XLIFEPP_BLAS_LIB to specify BLAS library with full path

XLIFEPP_LAPACK _LIB to specify LAPACK library with full path

7



XLIFEPP_ARPACK_LIB to specify ARPACK library with full path

XLIFEPP_ XXX INCLUDE_DIR to specify the XXX header, where XXX can be AMD,
COLAMD, CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSECONFIG or
UMFPACK.

XLIFEPP_XXX _LIB_DIR to specify the XXX library, where XXX can be AMD, COLAMD,
CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSE (only on Mac OS),
SUITESPARSECONFIG or UMFPACK.

XLIFEPP_FORTRAN_LIB_DIR to specify the directory where the gfortran library is. It is
necessary for compilers that are not able to find it by itself, such as clang++

XLIFEPP_FORTRAN_LIB to specify the gfortran library with full path. It is necessary if
the gfortran library has a non standard name.

1.4.3 Configuration step for XLIFE++ binaries

If you are under WINDOWS, you can go directly to subsection 1.4.4 to learn how to configure
XLIFE++ with your installer.

General options

%@ In the following, we will consider CMAKE used in command line mode, from a build
directory directly inside binary distribution so that the path to CMakeLists.txt file is ..

By default, all external dependencies to ARPACK, UMFPACK, EIGEN, AMOS, and OPENMP
are activated. So without additional options, XLIFE++ will be configured with the first C++
compiler found in your PATH, in Release mode.

cmake .. [-G <generator_name >]

If you want to change the compiler to wuse, you can wuse the following option:
CMAKE_CXX_COMPILER.

cmake .. —DCMAKE CXX COMPILER=g++—7
When you look at the CMAKE log, you are supposed to read that the rightful compiler is used with

the rightful build type, and that activated dependencies are found and used and that deactivated
dependencies are not used.

% When CMAKE is run, it stores values of options and a lot of internal variables in a cache
file CMakeCache.txt in the build directory. As a result, when you run CMAKE, you are not
forced to give already given options. This is the reason why in the following examples, only
options that are currently discussed will be used.

Basic options related to location of XLiFE++ dependencies

Now, you can look at GMSH and PARAVIEW detection. If executables are reachable through the
PATH, they are automatically found. If not, you can use XLIFEPP_GMSH EXECUTABLE
and XLIFEPP_PARAVIEW_EXECUTABLE.



@ On Mac OS, you have to give the full path to GMSH/PARAVIEW executables and not
applications. Executables are inside applications. If application names are Gmsh.app and
paraview.app and are located in the Applications directory, GMSH and PARAVIEW will be
correctly detected.

cmake .. —DXLIFEPP_PARAVIEW EXECUTABLE=
/Applications/Paraview —5.4.0.app/Contents /MacOS/paraview

On WINDOWS, external libraries are provided with the binary distribution. On LINUX and MAC
OS, if libraries are installed in standard directories, reachable from paths environment variables
(it is often the case), they will be found. If not, additional options are available and explained in
the following section.

Intermediate options related to XLiFE+4++ dependencies on LINUX and Mac OS

You can use specific option to give to CMAKE additional search paths for external dependencies:

XLIFEPP_BLAS LIB_DIR to specify an additional search directory CMAKE will use to find
BLAS library

XLIFEPP_LAPACK _LIB_DIR to specify an additional search directory CMAKE will use to
find LAPACK library

XLIFEPP_ARPACK _LIB_DIR to specify an additional search directory CMAKE will use to
find ARPACK library

XLIFEPP_UMFPACK INCLUDE _DIR to specify an additional search directory CMAKE
will use to find UMFPACK header

XLIFEPP_UMFPACK LIB_DIR to specify an additional search directory CMAKE will use
to find UMFPACK header

XLIFEPP_SUITESPARSE HOME_DIR to specify an additional search directory CMAKE
will use to find the home directory of SUITESPARSE, containing UMFPACK. This option
is to be used if you compiled SUITESPARSE by yourself. In this case, UMFPACK will be
searched in the UMFPACK subdirectory.

cmake .. —DXLIFEPP_DEPS=ENABLE ALL —DXLIFEPP_BLAS_LIB_DIR=/usr/lib/
—DXLIFEPP_LAPACK LIB_DIR=/usr/1lib /

If external libraries have standard names, namely their filenames are like libarpack.a, libarpack.so,
libarpack.dylib, libarpack.dll, arpack.lib, ..., they will be found. If their name contains a release
number, you can ask your sysadmin to add symbolic links of each of the libraries (as it should
be) and re-run CMAKE or you can use dedicated options to dodge the problem.

Advanced options related to XLIFE++ dependencies on LINUX and MAC OS

You can use specific option to give directly external libraries:

XLIFEPP_BLAS_LIB to specify BLAS library with full path



XLIFEPP_LAPACK LIB to specify LAPACK library with full path
XLIFEPP_ARPACK_LIB to specify ARPACK library with full path

XLIFEPP_ XXX INCLUDE_DIR to specify the XXX header, where XXX can be AMD,
COLAMD, CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSECONFIG or
UMFPACK.

XLIFEPP_XXX _LIB_DIR to specify the XXX library, where XXX can be AMD, COLAMD,
CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSE (only on Mac OS),
SUITESPARSECONFIG or UMFPACK.

XLIFEPP_FORTRAN_LIB_DIR to specify the directory where the gfortran library is. It is
necessary for compilers that are not able to find it by itself, such as clang++

XLIFEPP_FORTRAN_LIB to specify the gfortran library with full path. It is necessary if
the gfortran library has a non standard name.

1.4.4 Installation of binaries under WINDOWS

When downloading binaries under WINDOWS, you just have to run the installer. To do so,
administrator elevation is required. If a previous distribution of XLIFE++ is installed in the
folder you choose, the installer can remove it itself. Furthermore, it is highly recommended to
install every component.

Now, in the bin subdirectory of the XLIFE+4+ install directory, you will find
xlifepp_configure.exe. Tu run it, administrator elevation is required.

1. First, you have to set the folder containing XLIFE++

A ¥LFE++ configuration X

To configure and use the XLiFE++ library, the following tools are required:

- C++ compiler (32bits/64bits) consistant with the downloaded package (32bits/64bits)
for instance those provided by MINGW or MINGW6E4 (v=4.8)

- CMAKE (v =3) installed on your computer and defined in the window path

- CODEBLOCKS installed on your computer, not mandatory but recommended

- GMSH installed en your computer and defined in the window path
i | F E++ - PARAVIEW installed on your computer and defined in the window path (not mandatory)

Tie configure tool ias te be run once, then use xlifepp_project tool fo create new project

Configure | XLFEs+folder [C:\Program Files'wifepp2 ]

XLife++ 1.51-r861

venog (]

2. As mentioned in the banner, a C++ compiler, CMAKE and GMSH have to be installed on
your computer and defined in the WiINDOWS path!. An EDI such as CODEBLOCKS and
PARAVIEW are not mandatory but highly recommended. Click on the Configure button

LA simple tool to edit the window path is PATHEDITOR2 that you can find easily on the web
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A XLiFE++ configuration X

To configure and use the XLiFE++ library, the following tools are required:

- C++ compiler (32bits/G4bits) consistant with the downloaded package (32bits/G4bits)
for instance those provided by MINGW or MINGWE4 (v=4.8)

- CMAKE (v =3) installed on your computer and defined in the window path

- CODEBLOCKS installed on your computer, not mandatory but recommended

- GMSH installed on your computer and defined in the window path
1 F E++ - PARAVIEW installed on your computer and defined in the window path (not mandatory)

The configure tool has to be run once, then use xiifepp_project tool to create new project

XUFE++folder [C:\Frogram Fles ifepp2 ]

XLife++ 1.51-r861 C++ compiler ‘C:/ngram Files/mingw-w64/x86_64-6.2.0-posix-seht_v5-rev1/mingw64/bin/g++.exe |

GMSH exe [C/Program Files/gmsh-2.9.0/gmsh sxe |

PARAVIEW exe | |

viewlog [] configuration completed New project Exit

3. When everything is OK, message "Configuration complete” is displayed. To compile your own

program, you can click on the New project button or run xlifepp_new_project.exe.

section 1.4.5

1.4.5 Compilation of a program using XLiIFE+4+4

The manual

way

This way supposes that you know where XLIFE-++ is installed.

1. You create your working directory,

2. You copy the main.cpp file into your working directory,

See

3. You copy the CMakeLists.txt file from the build directory (the directory in which you ran
installation process) into your working directory,

4. You run CMAKE on the CMakelists.txt file to get your makefile or files for your IDE project
(Eclipse, XCode, CodeBlocks, Visual C++, ...),

5. You can now edit the main.cpp file to write your program and enjoy compilation with
XLiFE++.

The command-line way

This way is possible to make easier the manual way. In the bin directory of XLIFE+4, you have
shell script called x1ifepp.sh for MacOS and Linux, and a batch script called x1ifepp.bat. You
can define a shortcut on it wherever you want.
Here is the list of options of both scripts:

USAGE:
xlifepp.
xlifepp.

xlifepp.
xlifepp.

sh --build [--interactive] [(--generate|--no-generate)]
sh --build --non-interactive [(--generate|--no-generate)]
[--compiler <compiler>] [--directory <dir>]

sh —--help

[--generator-name <generator>]
[--build-type <build-type>]
[(--with-omp|--without-omp)]

sh --version

11



MAIN OPTIONS:

--build, -b copy cmake files and eventually sample of
main file and run cmake on it to prepare
your so-called project directory.

This is the default

--generate, -g generate the project. Used with --build option.
This is the default.

--help, -help, -h show the current help

-—interactive, -i run xlifepp in interactive mode. Used with

--build option. This is the default
--non-interactive, -noi  run xlifepp in non interactive mode. Used with
--build option

--no-generate, -nog prevent generation of your project. You will
do it yourself.
--version, -V print version number of XLiFE++ and its date

—--verbose-level <value>, set the verbose level. Default value is 1
-vl <value>

OPTIONS FOR BUILD IN NON INTERACTIVE MODE:

--build-type <value>, set cmake build type (Debug, Release, ...).
-bt <value>

--cxx—compiler <value>, set the C++ compiler to use.

-cxx <value>

-—-directory <dir>, set the directory where you want to build

-d <dir> your project

--generator—-name <name>, set the cmake generator.

-gn <name>

-f <filename>, copy <filename> as a main file for the user
--main-file <filename> project.

-nof, do not copy the sample main.cpp file. This is
--no-main-file the default.

--info-dir, -id set the directory where the info.txt file is
--with-omp, -omp activates OpenMP mode

--without-omp, -nomp deactivates OpenMP mode

The graphical way on MaAc OS

This way is possible to make easier the manual way and more pleasant than the command-line
way. On the website, you have a GUI application called x1ifepp-qt for MacOS, (Windows and
Linux will come soon). You can define a shortcut on it wherever you want.

12



eve XLiFE++ User Manager
[ Confiourasion VRT3
CMake
Check path for cmake executable and click on the button to define it

Choose CMake path

Jusrflocalfbin

> XLiFE++

XLIFE++ Check XLIFE++ home directory and click on the button to define it

Choose XLiFE++ home directory

L delbasi Travail[UMA/XL

Paths will be automatically stored for future uses of this application

Figure 1.3: The "Configuration” tab of xlifepp-qt application

ece XLIFE++ User Manager
Configuration [WUER Help

Project Directory.

Choose the directory you want to write your program

| Choose directory [Users/Kielbasi/Desktop/test_qt
IDE generation
A IDE generator: Unix Makefiles ]
XLiFE++ Select the compller in the list below and click the button to fix path if necessary
Compller:  g++-7 <! | Choose compiler vIwith OpeniP

Jusr/local/Cellar/gce/7.3.0_1/bin/g++-7

Build type:  Release < mainfile: None ks

Generate

Figure 1.4: The "Use” tab of xlifepp-qt application
This application is a graphical user interface to the first 3 steps of the manual way.

The graphical way on WINDOWS

1. You run the generator xlifepp_new_project.exe, that is in the bin subdirectory of the
XLIFE++ install directory. The XLIFE++ folder should be correct by you can fix it if
necessary.

2 KLifes+ setup user project - XLiFE++ 1.51-1861 - X

XLIiFE++ setup user project
- XLiFE++ has to be properly installed on your computer!
e ~YoumusthaveaC ler (32bits/B4bi 1t with the XLiFE++ package (32bits/G4bits)

YLIFEss -CMAKEhastobe installed on your computer and defined in the windaw path

XUFE++ intall folder  [C\Program Fies\difepp2 |

XLiFE++ project folder [| |

XLiFE++ project type | CodeBlocks version |- MinGW Makefiles

avaiable XLiFE++lb g+sexe 620 buid type  omp Release

load @ main file none use compier

Exit

[ view log

2. You select the folder in which you will write your rogram using XLIFE++. If it already
exists, the generator asks you to clean it or not. This window gives some information
about XLIFE++4: the compiler used to generate it, if the library supports omp and the
debug/release status. You should use a compatible compiler with this library. If the default
C++ compiler found on your computer is not compatible, you can select another one by
clicking on the use compiler folder button.
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A XLifes+ setup user project - XLiFE++ 1.51-r861

XLIFE++ setup user project
- XLIFE++ has to be property installed on your computer!
- You must have a C++ compiler (32bits/64bits) consistant with the XLiIFE++ package (32bits/64bits)

- CMAKE has to be installed on your compuer and defined inthe window path

iFE++
XLFE=+instalfolder ~[C:\Program Files'wlfepp2 |
XLiFE++ project folder [E:\essai app_sifepp E]
XLFE++ project type | CodeBlocks v version | MInGW Makefiles v |
available XFE++ib |g++.exe 620 buid type [omp Release

Generate Exit

[ view log

3. Select the type of your project. For the moment only CodeBlocks-MinGW and Makefile are
working but CODEBLOCKS is highly recommended! Select a main file from the proposed
list. This main fill will be copied in your application folder. Be care, if you choose "none”, no
main file will be copied and the generator will fail if there is no main file in your application
folder. This option is only useful if you want to keep an existing main file in your application
folder! Click on the Generate button and wait:

2 KLifes+ setup user project - XLiFE++ 1.51-1861

XLIFE++ setup user project
- XLiFE++ has to be properly installed on your computer!
- You must have & C++ compiler (32bits/B4bits) consistart with the XUFE++ package (32bits/G4bits)

iFE-++- “CMAKE has to be installed on your computer and defined in the window path

XUFE++ intall folder  [C\Program Fies\difepp2 |

XLiFE++ project folder |E:\essai‘app_slfepp |

XLiFE++ project type version |- MinGW Makefies ~]
avalable XLFE++lb |g++exc6.20 buid type  omp Release

load & main fle use compler

E:\essai\app_slfepp \XLIFE++user.cop run CodeBlacks Exit
[ view log

4. When everything is complete, you can either exit the tool or run the program that opens
the generated project (CODEBLOCKS in the example) by clicking on the run button.

1.5 Installation and usage without cmake

1.5.1 Installation process

The procedure presented above requires CMAKE for both the installation and the usage of the
libraries. Here is an alternative solution that do not use CMAKE, and is targeted for Unix-like
systems, namely LINUX and MAC OS, since it needs the execution of a shell script.

To install the libraries:
e Download the archive (release or snapshot containing the sources) from
http://uma.ensta-paristech.fr/soft /XLiFE+4+/?module=main&action=d]l

e Decompress the archive where the software is expected to be installed in the filesystem.
This can be in the user’s home or at system-wide level, in which case administrator rights
will be necessary. Let’s denote by $XLDIR the directory containing the files.

14
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e Open a terminal and type in the command:
bash $XLDIR/etc/installlibs
This will create the libraries in the $XLDIR/1ib directory.

XLIFE++ may use other libraries (UMFPACK, ARPACK, LAPACK, BLAS) or third party softwares
(GMSH, PARAVIEW), depending on their presence on the computer. The script installlibs
performs the installation in an automatic way, without any user action. This means that these
libraries or softwares are really used only if they are detected or built.

The installation requires a C++ compiler. The C++ compiler to use can be imposed by the
mean of the environment variable CPPCMP before calling the script installLibs. By default,
its name is g++, which is the GNU compiler generally used under Linux ; under MAc OS, this
will make use of the native compiler shipped with Xcode, but the GNU compiler may be used as
well.

The FORTRAN library is needed if ARPACK is used. Thus, the name of the Fortran compiler,
from which is deduced the name of the Fortran library, can also be imposed by the mean of the
environment variable FCMP. By default, its name is gfortran.

The installation process conforms to the following rules:

1. if they are not found in the filesystem, LAPACK and BLAS are not installed, neither any
third party software,

2. UMFPACK and ARPACK libraries present on the system are used first and foremost,

3. if ARPACK has not been found in the system and if a FORTRAN compiler is available,
ARPACK library is built locally,

4. if UMFPACK has not been found in the system, SUITESPARSE libraries are built locally.

Some options may be used to alter the default configuration:
-noAmo prevents XLiFE+4 to use AMOS library,
-noArp prevents XLiFE++ to use ARPACK library,
-noOmp prevents XLiFE++ to use OPENMP capabilities,
-noUnf prevents XLiFE++ to use UMFPACK (SUITESPARSE) libraries.

Thus, in case of trouble, the installation script may be relaunched with one or more of these
options. Using all the options leads to the standalone installation of XLIFE++-, which is perfectly
allowed. The complete calling sequence is then:

bash $XLDIR/etc/installlLibs [-noAmo] [-noArp] [-noOmp] [-noUmf]
Finally, the details of the installation are recorded in the file $XLDIR/installLibs.log.

1.5.2 Compilation of a program using XLIFE++
To use XLIFE++:

1. Create a new directory to gather all the source files related to the problem to be solved.

2. In this directory, create the source files. This can be done with any text editor. One of
them (only) should be a valid "XL1FE++ main file” (see section 1.7). For example, start
by copying one of the files present in $XLDIR/examples.
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3. In a terminal, change to this directory and type in the command:

$XLDIR/etc/x1make

This will compile all the C++ source files contained in the current working directory (valid
extension are standard ones .c++, .cpp, .cc, .C, .cxx) and create the corresponding
executable file, named x1ifeppexec.

4. Launch the execution of the program by typing in:
./x1lifeppexec

The files produced during the execution are created in the current directory.

g% To improve comfort, one can make a link to the script xlmake in the working directory, as
suggested in the commentary inside the script:

1n -s $XLDIR/etc/xlmake .
or add $XLDIR/etc to the PATH environment variable. In both cases, the command typed in at
step 3. above would then reduce to:

x1make

g% If OPENMP is used, it may be useful to adjust the number of threads to the problem size.
Indeed, by default all threads available are used, which may be completely counter productive
for example for a small problem size and a large number of threads. The number of threads
to use can be modified at program level, generally in the main function, or at system level, by
setting the environment variable OMP_NUM_THREADS before the execution is launched, e.g. with
a Bourne shell:

export OMP_NUM_THREADS=2 ; ./xlifeppexec
or with a C shell:

setenv OMP_NUM_THREADS 2 ; ./xlifeppexec

1.6 Installation and usage with DOCKER

This procedure allows to get a pre-installed version of the libraries which are gathered in a so-called
DOCKER container.

This first requires the installation of the DOCKER application, which can be downloaded from:
https://www.docker.com /products/overview

Once this is done:

e Download the XLIFE++ image (use sudo docker on linux system):
docker pull pnavaro/xlifepp

e (Create a workspace directory, for example:

mkdir $HOME/my-xlifepp-project

e Run the container with interactive mode and share the directory created above with the
/home/work container directory:

docker run -it --rm -v $HOME/my-xlifepp-project:/home/work pnavaro/xlifepp
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This allows the files created in the internal /home/work directory of the container to be
stored in the $HOME/my-xlifepp-project directory of the true filesystem, making them
available after Docker is stopped.

e Everything is now ready to use XLIFE++ as explained in section 1.4.5 above, for example:
xlifepp.sh
make
./exec-x86_64-1linux-g++-5-Release

The files produced during the execution are in the directory $HOME/my-xlifepp-project
shared with running DOCKER, and are then available for postprocessing.

@% The DOCKER application requires WINDOWS 10, or MAc OS 10.10 and higher. For
older OSes, you have to download DOCKER TOOLBOX instead. See https://docs.docker.com/
toolbox/toolbox_install_windows/ for WINDOWS or https://docs.docker.com/toolbox/
toolbox_install_mac/ for MAc OS.

1.7 Writing a program using XLIFE++

All the XLIFE++ library is defined in the namespace xlifepp. Then the users, if they refer
to library objects, have to add once in their programs the command using namespace xlifepp;.
Besides, they have to use the "super” header file xlife++.h only in the main. A main program
looks like, for instance:

#include 7xlife++.h”
using namespace xlifepp ;

int main ()

{

init (en); // mandatory initialization of zlife++

.

If the users have additional source files using X LIFE++ elements, they cannot include the "super”
header file xlife++.h because of global variable definitions. Instead, they will include the "super”
header file xlife++-libs.h that includes every XLIFE++ header except the one containing the
definition of global variables.

1.8 License

XLIFE++ is copyright (C) 2010-2018 by E. Lunéville and N. Kielbasiewicz and is distributed
under the terms of the GNU General Public License (GPL) (Version 3 or later, see
https://www.gnu.org/licenses/gpl-3.0.en.html). ~ This means that everyone is free to use
XLIFE++ and to redistribute it on a free basis. XLIFE+++ is not in the public domain; it is
copyrighted and there are restrictions on its distribution. You cannot integrate XLIFE++ (in
full or in parts) in any closed-source software you plan to distribute (commercially or not). If you
want to integrate parts of XLIFE++4 into a closed-source software, or want to sell a modified
closed-source version of XLIFE-++4-, you will need to obtain a different license. Please contact us
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directly for more information.

The developers do not assume any responsibility in the numerical results obtained using the
XLiIFE++ library and are not responsible of bugs.

1.9 Credits

The XLIFE++ library has been mainly developped by E. Lunéville and N. Kielbasiewicz of
POEMS lab (UMR 7231, CNRS-ENSTA ParisTech-INRIA). Some parts are inherited from
Melina++ library developped by D. Martin (IRMAR lab, Rennes University, now retired) and E.
Lunéville. Other contributors are :

Y. Lafranche (IRMAR lab), mesh tools using subdivision algorithms, wrapper to ARPACK

C. Chambeyron (POEMS lab), iterative solvers

M.H N’Guyen (POEMS lab), eigen solvers and OpenMP implementation

N. Salles (POEMS lab), boundary element methods

L. Pesudo (POEMS lab), boundary element methods and HF coupling
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24l Getting started

2.1 The variational approach

Before learning in details what XLIFE++ is able to do, let us explain the basics with an example,
the Helmholtz equation:

For a given function f(x,y), find a function u(x,y) satisfying

—Au(z,y) +u(z,y) = f(r,y) Y(r,y) €Q
ou (2.1)
%(:ﬂ,y) =0 V(z,y) € 052

To solve this problem by a finite element method, XLIFE++ is based on its variational
formulation : find u € H*(Q) such that Vv € H'(Q)

/Vu.Vvdxdy—/uvdxdy:/fvdxdy. (2.2)
Q Q Q

All the mathematical objects involved in the variational formulation are described in XLIFE++.
The following program solves the Helmholtz problem with f(z,y) = cosma cosmy and € is the
unit square.

1 #iinclude 7xlife++.h”
2 using namespace xlifepp;
3
Real cosxcosy(const Point& P, Parameters& pa = defaultParameters)

return cos(pi- * x) * cos(pi- * y);

}

10 int main(int argc, charxx argv)
11
{
12 init (_lang=fr); // mandatory initialization of zlifepp
13 Square sq(_origin=Point (0.,0.), _length=1, _nnodes=11);
14 Mesh mesh2d(sq, triangle, 1, structured);
15 Domain omega = mesh2d.domain(”Omega”) ;
16 Space Vk(omega, Pl, ”"Vk” true);
17 Unknown u(Vk, 7u”);
18 TestFunction v(u, 7v”);
19 BilinearForm auv = intg(omega, grad(u) | grad(v)) + intg(omega, u % v);
20 LinearForm fv=intg (omega, cosxcosy * Vv);
21 TermMatrix A(auv, ”a(u,v)”);
22 TermVector B(fv, "{(v)”);
23 TermVector X0(u, omega, 1., 7"X07);
22 TermVector U = cgSolve(A, B, X0, _name="U");
25 saveToFile("U”, U, vtu);
26 return 0;

27 }

4

5 {

6 Real x=P(1), y=P(2);
7

8

9
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Please notice how close to the Mathematics, XLIFE++ input language is.

2.2 How does it work ?

This first example shows how XLIFE-++ executes all the usual steps required by the Finite
Element Method. Let us walk through them one by one.

line 12 : every program using XLIFE++ begins by a call to the init function, taking up to 4
key /value arguments:

_lang enum to set the language for print and log messages. Possible values are en for
English, fr for French, de for German, or es for Spanish. Default value is en.

_verbose integer to set the verbose level. Default value is 1.

_trackingMode boolean to set if in the log file, you have a backtrace of every call to a
XLIFE++ routine. Default value is false.

_isLogged boolean to activate log. Default value is false.

Furthermore, the init function loads functionalities linked to the trace of where such
messages come from. If this function is not called, XLIFE++ cannot work !!!

init (_lang=fr); // mandatory initialization of xzlifepp

lines 13-14 : The mesh will be generated on the unit square geometry with 11 nodes per edge.
Arguments of a geometry are given with a key/value system. _origin is the bottom left
front vertex of Square. Next, we precise the mesh element type (here triangle), the mesh
element order (here 1), and an optional description. See chapter 5 for more examples of
mesh definitions.

Square sq(-origin=Point (0.,0.), _length=1, _nnodes=11);
Mesh mesh2d(sq, triangle, 1, structured);

line 15 : The main domain, named "Omega” in the mesh, is defined.

Domain omega = mesh2d.domain(”Omega”) ;

line 16 : A finite element space is generally a space of polynomial functions on elements,
triangles here only. Here sp is defined as the space of continuous functions which are
affine on each triangle 7} of the domain €2, usually named V). The dimension of such a
space is finite, so we can define a basis.

N
sp(§2, P1) = {w(:v,y) such that I(wy, ..., wy) € RN w(x,y) = Zwkgok(a:, y)}
i=1

where N is the space dimension, i.e. the number of nodes, i.e. the number of vertices here.

Currently, XLIFE++ implements the following elements : P, on segment, triangle and
tetrahedron, Q* on quadrangle and hexahedron, Oy, on prism and pyramid (see Mesh chapter
for more details).

Space Vk(omega, P1, ”"Vk”, 6 true);
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lines 17-20 : The unknown u here is an approximation of the solution of the problem. wv is
declared as test function. This comes from the variational formulation of Equation 2.1 :
multiplying both sides of equation and integrating over €2, we obtain :

—/vAudxdy—l—/vud:cdy:/vfdxdy
Q Q Q

Then, using Green’s formula, the problem is converted into finding u such that :

a(u,v) = /QVu - Vudzdy + /qud:cdy = /vad:cdy =(v) (2.3)

The 4 next lines in the program declare u and v and define a and (.

Unknown u(Vk, 7u”);

” ”

TestFunction v(u, "v”);
BilinearForm auv = intg(omega, grad(u) | grad(v)) + intg(omega, u * v);
LinearForm fv=intg(omega, cosxcosy * V);

Please notice that:

e the test function is defined from the unknown. The reason is that the test function is
dula to the unknown. Through the unknown, v is also defined on the same space.

e the right hand side needs the definition of the function f. Such function can be defined
as a classical C++ function, but with a particular prototype. In this example, f (i.e.
cosx2) is a scalar function. So it takes 2 arguments : the first one is a Point, containing
coordinates x and y. The second one is optional and contains parameters to use inside
the function. Here, the Parameters object is not used. At last, as a scalar function, it
returns a Real.

{
Real x=P(1), y=P(2);

return cos(pi- * x) % cos(pi- * y);

}

lines 21-22 : The previous definitions are a description of the variational form. Now, we have
to define the matrix and the right-hand side vector which are the algebraic representations
of the linear forms in the finite element space. This is done by the first 2 following lines.

TermMatrix A(auv, "a(u,v)”);
TermVector B(fv, "f(v)”);

)

lines 23-24 : Matrix and vector being assembled, you can now choose the solver you want.
Here, a conjugate gradient solver is used, with an initial guess constant equal to 1.

XLIFE++ offers you a various choice of direct or iterative solvers :

e LU, LDU, LL', LDL!, LDL* factorizations
e BICG, BiCGStab, CG, CGS, GMRES, QMR, Sor, SSor, solvers
e internal eigen solver

e interfaces to external packages such as UMFPACK, ARPACK
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See chapter 7 for more details.

TermVector X0(u, omega, 1., 7X07);
TermVector U = cgSolve(A, B, X0, _name="U");

line 25 : To save the solution, XL1IFE++ provides an export to Paraview format file (vtu).
saveToFile(”U”, U, vtu);

line 26 : This is the end of the program. A "main” function always ends with this line.

return 0;
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Examples

3.1 A 1D problem

Solving 1D problems is sometimes regarded to be out of interest. Anyway, most of existing FE
softwares do not handle this case. But in fact, 1D problems are of interest, often as a part of
more complex problems. Thus, XLIFE++ deals with 1D problems.

3.1.1 Dirichlet condition

As a first example, we show how to solve the very simple problem, involving Dirichlet conditions:

{—u":f in Q=101
u(0) =u(1)=0

Its variational formulation is

Findu eV = {v € LQ(Q), v € L2(9), u(O) = u(1) = 0} such that

/ '(z) dx_/f v)dr Vv eV

The following main program corresponds to solving this problem with f(z) = 1 using P1 Lagrange
element (100 elements):

#include 7xlife++.h”
using namespace xlifepp ;

Real f(const Point& P, Parameters& pa = defaultParameters)
{return —1.;}

int main(int argc, charxx argv)

{

init (_lang=en); // mandatory initialization of xzlifepp

// mesh and domains
Strings sn(”"x=0", "x=1");
Mesh meshld (Segment (_xmin=0, xmax=1, _nnodes=101, _domain name="0Omega” ,

_side_names=sn), 1, structured, "Pl-mesh”);
Domain omega = meshld.domain(”Omega”) ;
Domain sigmal. = meshld.domain(”x=0"), sigmaR = meshld.domain(”"x=1");

// space, unknows, and test functions
Space Vh(omega, P1, "Vh”, true);
Unknown u(Vh, 7u”);

TestFunction v(u, "v”);

// define problem
BilinearForm a = intg(omega, grad(u)|grad(v));
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LinearForm 1f = intg(omega, fx*v);
EssentialConditions ecs = (u|sigmal = 0) & (u]|sigmaR = 0);

// compute matriz and rhs
TermMatrix A(a, ecs, "A”);
TermVector F(1f , "F”);

// solve linear system and save solution
TermVector U=directSolve (A, F);
saveToFile(”U_1d”, U, vtu);

return 0;

}

The following figure shows a graphical representation of the solution using PARAVIEW:

Y-Axis
-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

0.0 0.2 04 0.6 0.8 1.0
X-Axis

Figure 3.1: Solution of the Laplace 1D problem on the unit segment [0, 1]

3.1.2 Robin condition

The second example shows that XLiIFE+4+ can also handle non homogeneous Neumann
conditions or Robin-Fourier conditions. This problem also involve a Dirichlet condition. Given
three real functions fqo, o and fy, the problem is:

—u" +u= fq in Q= la,b|
u(a) =0
u'(b) + a(b) u(b) = fn(b)

Its variational formulation is:

Find u € V ={v € L*(Q), v € L*(Q —O} such that
b b
/u'(x)v’(a:)d:c—i—/ u(x)v(x)dx + ab) /f x)dx + fn(b), VveV

a(b)u(b) can be interpreted as / a(y)u(y)v(y)dy and fy(b) can be interpreted as
{o}

/ fn(y) v(y)dy where v is the variable over the side domain here reduced to a point. This

allows to handle these conditions in a uniform syntactic way by defining linear forms as shown in
the previous examples.
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7
The following main program corresponds to solving this problem with «(z) = 59:2 — 8x using

13
the P10 Lagrange element over the interval ]a,b[ = |0, Z7T|: using 4 elements ; the functions
fa(x) =2sin(z) and fy(x) = cos(z) + a(x) sin(z) are chosen so that the solution is sin(z):

#include "xlife++.h”
using namespace xlifepp ;

/*
Test problem:
—u” + u = fOm  on the domain Om = [a,b]
u(a) =0
uw’(b) + alpha(b) u(b) = fN(b)

*/

Real fctEx (const Point& P, Parameters& pa = defaultParameters)
{ return sin(P[0]); }

Real fctOm (const Point& P, Parameters& pa = defaultParameters)
{ return 2 x sin(P[0]); }

Real alpha (const Point& P, Parameters& pa = defaultParameters)
{ return 3.5xP[0]«P[0] — 8xP[0]; }

Real fctfN (const Point& P, Parameters& pa = defaultParameters)
{ return cos(P[0]) + (3.5«P[0]«P[0] — 8«P[0]) = sin(P[0]); }

int main() {
init (); // mandatory initialization of zlifepp

// Mesh and domains

Strings sidenames(”"x=a”, "x=b");

Segment seg (_xmin=0., xmax=3.25%pi_, _nnodes=5, _domain name="0Omega” ,
_side_names=sidenames) ;

Mesh meshld(seg, 1, _structured);

meshld. printInfo () ;

Domain Omega = meshld.domain(”Omega”) ;

Domain xA = meshld.domain(”"x=a”);

Domain xB = meshld.domain(”x=b");

// Space and unknowns

Interpolation inter (_Lagrange, _standard, 10, _H1);
Space Vh(Omega, inter, "Vh”);

Unknown u(Vh, ”u”);

TestFunction v(u, ”v”);

// Bilinear forms

BilinearForm gugv = intg(Omega, grad(u)|grad(v)), uv = intg(Omega, u*v);
BilinearForm aluv = intg(xB, alpha*uxv);

LinearForm fOm = intg(Omega, fctOmxv), N = intg(xB, fctfN=x*v);

// Terms with essential conditions
EssentialConditions ecs = (u|xA = 0);
TermMatrix A(gugv + uv + aluv, ecs, "A”);
TermVector F(fOm + fN, ”F”);

// Solve linear system and save solution
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TermVector U = directSolve (A, F);
saveToFile(”U”, U, _matlab);

// Compare with ezxact solution

TermVector Uex(u, Omega, fctEx,”Uex”);

std :: cout << 7||U-Uex||inf = 7 << norminfty (U—Uex) << std::endl;
return 0;

}

The following figure shows a graphical representation of the solution using OCTAVE:

Domain mesh based on interpolation nodes. U_Omega, term_u

Figure 3.2: Solution of the Laplace 1D problem with Dirichelt and Robin conditions

The left figure shows the interpolation nodes which form a uniform distribution of points. This
is the default behavior and the two lines

Interpolation inter (_Lagrange, _standard, 10, _H1);
Space Vh(Omega, inter, "Vh”);

are equivalent to

Space Vh(Omega, P10, "Vh”);
Comparing the exact solution U,, with the computed one U, at the interpolation abscissae, leads
t0 [|U — Uep||oo = 4.44278 x 10710 value which is currently printed by the program. By changing
the keyword _standard for _GaussLobatto, one can toggle to the Gauss-Lobatto abscissae which
are more suitable with higher interpolation degrees. With this example, choosing these abscissae
leads to a better approximation: we then get ||U — U.y||oo = 2.55367 x 1071
3.2 Laplace Problems
We investigate here problems involving laplacian operator in a 2D bounded domain, say €2 :

~Au+au=f inQ (a=—k?for Helmholtz equation)

and various essential conditions (Dirichlet, transmission, quasi periodic, average condition).
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3.2.1 Neumann condition

First, let us consider the case of the homogeneous Neumann condition on 952, the boundary of §2:

2—220 on 0f).

The variational formulation we deal with is

findu e V ={ve L*Q), Vv e (L*())*} such that

Vu.Vv+a/uv:/fv Yo evV.
Q ) Q

The following main program corresponds to solving this problem on unity square 2 =]0, 1[x]0, 1|
with f(x) = cosmx cos my using P1 Lagrange element (20x20 elements):

#include 7xlife++.h”
using namespace xlifepp ;

Real cosx2(const Point& P, Parameters& pa = defaultParameters)
{

Real x=P (1), y=P(2);

return cos(pi_ * x) * cos(pi_ * y);

}

int main(int argc, charxx argv)

{

init (_lang=en) ;

//mesh square

Square sq(_origin=Point (0.,0.), _length=1, _nnodes=21);
Mesh mesh2d(sq, triangle, 1, structured);

Domain omega = mesh2d.domain(”Omega” ) ;

//build space and unknown

FEInterpolation Pk=interpolation (Lagrange, standard, 1, Hl);
Space Vk(omega, Pk, "Vk”, true);

Unknown u(Vk, 7u”);

TestFunction v(u, "v”);

// define wvariational formulation
BilinearForm auv = intg(omega, grad(u) | grad(v)) + intg(omega, u * v);
LinearForm fv=intg (omega, cosx2 * v);

//compute matriz and right hand side
TermMatrix A(auv, 7a(u,v)”);
TermVector B(fv, 7f(v)”);
// LLt factorize and solve
TermMatrix LD;

ldltFactorize (A, LD);

TermVector U = factSolve (LD, B);

saveToFile("ULLN” | U, vtu);
return 0;
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o |

Figure 3.3: Solution of the Laplace 2D problem with Neumann condition on the square [0, 1]?

Solving this problem with P2 Lagrange interpolation should be the same except the line defining
the space:

Space Vh(omega, P2, ”"Vh”, 6 true);

Solving this problem in a 3D domain should be the same except the line defining the mesh and

the right hand side function. For instance, on the unity cube, the mesh construction command
using GMSH tool is:

Real f(const Point& P, Parameters& pa = defaultParameters)

Real x=P (1), y=P(2), z=P(3);
return cos(pi*x) * cos(pixy) * cos(pi*z);

}

Mesh mesh (Cube(_origin=Point (0.,0.,0.), _length=1, _nnodes=10), tetrahedron,
1, _gmsh,”P1 mesh”);

sﬁﬂfi
i

i
NN i
B

i
I /Y
gvAgAA il

ik

SIXY A

Figure 3.4: Solution of the Laplace 3D problem with Neumann condition on the unit cube [0, 1]?
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3.2.2 Dirichlet condition

Let us consider now the case of non homogeneous Dirichlet condition on the boundaries z = 0
(X7)and z =1 (X7):
u=1on X" UXT.

The variational formulation is now (a = 0)
findu e V = {ve L*Q),Vv e (L*(©2))?} such that
/Vu.Vv:/fv VoeV, v=0o0nX UX"
Q Q
u=1 on X~ UXT

Its approximation by P1 Lagrange finite element is implemented in XLIFE++ as follows:

#include 7xlife++.h”
using namespace xlifepp ;

Real f(const Point& P, Parameters& pa = defaultParameters)
{return -8.;}

int main(int argc, charxx argv)

{
init (_lang=en); // mandatory initialization of zlifepp
//create mesh of square
Strings sn(7y=0",7x=1",7y=1","x=0");
Square sq(_origin=Point (0.,0.), _length=1, _nnodes=20,
_domain name="0Omega” , _side_names=sn);
Mesh mesh2d(sq, triangle, 1, structured);
Domain omega=mesh2d . domain(”Omega” ) ;
Domain sigmaM=mesh2d .domain(”x=0"), sigmaP=mesh2d.domain("x=1");
// create interpolation
Space V(omega, P1, "V”  true);
Unknown u(V, ”u”);
TestFunction v(u, "v”);
// create bilinear form, linear form and their algebraic representation
BilinearForm auv=intg (omega, grad(u)|grad(v));
LinearForm fv=intg(omega, f{x*v);
EssentialConditions ecs= (u|sigmaM = 1) & (u]|sigmaP = 1);
TermMatrix A(auv, ecs, "A”);
TermVector B(fv, ”"B”);
// solve linear system AX=B
TermVector U=directSolve (A, B);
saveToFile(”U_LD”, U, vtu);
return 0;
}
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Z-Axis
010 020 030 040 050 060 070 080 090 100

X-Axis 0

Figure 3.5: Solution of the Laplace 2D problem with Dirichlet condition on the unit square [0, 1]?
Note how easy is to take into account essential conditions. Only two lines has to be modified!

3.2.3 Periodic condition

Now we consider the Laplace problem on the unit square {2 =]0, 1[x]0, 1] equipped with Dirichlet
condition on and periodic condition:

—Au=f in 2
ur- =0 and yp+ =0
us- = up+ and Jyun- = Oyus+
and its variational formulation in V' = {v € H'(Q), wr =0 and ujz- = us+}:

find v € V such that
/Vu.Vv:/fv Yo e V.
Q Q

Its approximation by P? Lagrange finite element is implemented in XLIFE++ as follows:

#include 7xlife++.h”
using namespace xlifepp ;

Real f(const Point& P, Parameters& pa = defaultParameters)

Real x=P (1), y=P(2);;
return (4xpi_*pi_*xyx(y—1)—2)*sin (2% pi_*x);

}

Vector<Real> mapPM(const Point& P, Parameters& pa = defaultParameters)

{
Vector<Real> Q(P) ;

Q(1)—=L

return Q;

}

int main(int argc, charxx argv)
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init (_lang=en); // mandatory initialization of xzlifepp

//mesh square
Strings sn ( ?’yzo” , ”le” , ”y:l” , ”XZO”) ;
Square sq(_origin=Point (0.,0.), _length=1, _nnodes=20,
_domain name="0Omega” , _side_names=sn) ;
Mesh mesh2d(sq, triangle, 1, structured);
Domain omega=mesh2d .domain (”Omega” ) ;
Domain sigmaM=mesh2d .domain(”x=0"), sigmaP=mesh2d.domain(”x=1");
Domain gammaM=mesh2d .domain(”y=0"), gammaP=mesh2d.domain(”y=1");
defineMap (sigmaP , sigmaM, mapPM); //useful to periodic condition

// create P2 Lagrange interpolation
Space V(omega, P2, "V’  true);
Unknown u(V, 7u”);

TestFunction v(u, "v”);

//create bilinear form and linear form

BilinearForm auv=intg (omega, grad(u)|grad(v));

LinearForm fv=intg (omega, fxv);

EssentialConditions ecs = (u|gammaM = 0) & (u|gammaP = 0)
& ((u|sigmaP) — (u|sigmaM) = 0); //

EssentialConditions ecs
TermMatrix A(auv, ecs, 7A”);
TermVector B(fv, ”"B”);

// solve linear system AX=F wusing factorization
TermVector U=directSolve (A, B);
saveToFile(?U_LP”, U, vtu);

return 0;

}

Note that at corners, periodic condition and Dirichlet condition are redundant. When executing,
the following warning message is thrown

Constraints::reduceConstraints() : in essential conditions
Dirichlet condition u = 0 on y=0
Dirichlet condition u = 0 on y=1
periodic condition ulx=1 - ulx=0 = 0

2 redundant constraint row(s) detected and eliminated

Non periodic Periodic

Figure 3.6: Solution of the Laplace 2D problem with periodic condition on the unit square [0, 1]?
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3.2.4 Transmission condition

y=1
Q- Qt
»- r »t
y=0 N

We turn to the Laplace problem with transmission condition:

—Au~ = f in Q~
—Aut = f in QF
uy- =1 and up+ =1

- _ .+ - _ +
Up = U and (()Iu‘F = &CU‘F
Its variational formulation in

V={(v,v") e H(Q) x H'(Q"), V- = 0,v5,_ =0, v = vﬁi}

=
is
find (u™,u") € H'(Q7) x HH(QF),ug = 1,u‘§, =1, up = w such that
Vu Vv~ + [ Vut.Vot = / foo+ [ fot WYweV
Q- o+ Q- o+

Note that derivatives matching is taken into account in a weak sense. The implementation in
XLIFE++, using P? Lagrange finite element, looks like:

#include 7xlife++.h”
using namespace xlifepp;

Real f(const Point& P, Parameters& pa = defaultParameters)

{
return —8.;
}
int main(int argc, charxx argv)
{

init (_lang=en); // mandatory initialization of xzlifepp

//mesh domain
Strings sn(4);

sn[l] = "x=1/2—"; sn[3] = "x=07;

Rectangle rl(_xmin=0, xmax=0.5, _ymin=0, _ymax=1, _nnodes=Numbers(20,40) ,
_domain name="0Omega—", _side_names=sn);

Mesh mesh2d (rl, triangle, 1, _structured);

sn[l] = "x=1"; sn[3] = "x=1/2+"7;

Rectangle 12 (_xmin=0.5, xmax=1, _ymin=0, _ymax=1, _nnodes=Numbers(20,40) ,
_domain name="0Omega+” , _side_names=sn) ;
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Mesh mesh2d_p(r2, _triangle, 1, _structured);

mesh2d . merge (mesh2d_p) ;

Domain omegaM=mesh2d . domain(”Omega—") , omegaP=mesh2d .domain (”Omega+t” ) ;
Domain sigmaM=mesh2d .domain(”x=0"), sigmaP=mesh2d.domain(”x=1");
Domain gamma=mesh2d .domain(”x=1/2— or x=1/2+");

// create P2 interpolation

Space VM(omegaM, P2, "VM", true);
Unknown uM(VM, "u—");
TestFunction vM(uM, "v—");

Space VP(omegaP, P2, "VP”  true);
Unknown uP (VP, 7ut”);
TestFunction vP(uP, ”v+”);

//create bilinear form and linear form

BilinearForm auv=intg (omegaM, grad(uM) |grad (vM) )+intg (omegaP ,
grad (uP) |grad (vP) ) ;

LinearForm fv=intg (omegaM, f{+vM)+intg (omegaP, f{xvP);

EssentialConditions ecs= (uM|sigmaM = 1) & (uP|sigmaP = 1) & ((uM|gamma) —
(uP | gamma) = 0) ;

TermMatrix A(auv, ecs, 7A”);

TermVector B(fv, "B”);

//solve linear system AX=B wusing LU factorization
TermVector U=directSolve (A, B);
saveToFile(?U_LT”, U, vtu);

return 0;

}

Here, a tool merging mesh is used to create a two domains mesh. GMSH should be used also. The
picture below shows that the solution is continuous across the boundary I'.

Zoo0 040 020 030 050
X-Axls

Figure 3.7: Solution of the Laplace 2D problem with transmission condition on the unit square
[0, 1]2

3.2.5 Average condition

As a last example of essential condition, we consider average condition, for instance:

/u:O.
b
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Such condition is tricky to take into account in FE softwares. Generally, they do not! Because

XLIFE++ uses a powerful process to deal with essential conditions, such condition can be easily
adressed:

#include "xlife++.h”
using namespace xlifepp ;

Real f(const Point& P, Parameters& pa = defaultParameters)
{return -38.;}

int main(int argc, charxx argv)

{

init (_lang=en); // mandatory initialization of xzlifepp

//create a mesh and Domains

Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=10,
_domain name="0Omega” , _side_names=Strings(7y=0", 7"x=17, 7y=17, "x=0")),
triangle , 1, structured);

Domain omega=mesh2d .domain (”Omega” ) ;

Domain sigmaM=mesh2d .domain(”x=0"), sigmaP=mesh2d.domain(”x=1");

//create interpolation

Space V(omega, P2, "V’  true);
Unknown u(V, 7u”);
TestFunction v(u, "v”);

//create bilinear form and linear form
BilinearForm auv=intg (omega, grad(u)|grad(v));
LinearForm fv=intg (omega, fxv);
EssentialConditions ecs= (intg(sigmaM, u) = 0);
TermMatrix A(auv, ecs, "A”);

TermVector F(fv ,”B”);

//solve linear system AX=F wusing LU factorization
TermVector U=directSolve (A, F);
saveToFile("ULA”, U, vtu);

return 0;

Figure 3.8: Solution of the Laplace 2D problem with average condition on the unit square [0, 1]
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% Be care with some average conditions. For instance, when adding the "full” average

condition
/ u=0
0

the resulting reduced matrix is a full matrix. So, the problem is bigger and slower to solve!

3.3 Mixed formulation using PO and Raviart-Thomas
elements

Consider the Laplace problem with homogeneous Dirichlet condition:

—Au=f in
u=>0 on 0f)
Introducing p = Vu, it is rewritten as a mixed problem in (u, p):
—divp=f in{
p=Vu in
u=20 on 02

with the following variational formulation:

find (u,p) € L*(Q) x H(div, ) such that

—/Qdivpv:/gfv Yo € L*(Q)

/udivq+/p.q =0 Vqe H(div,Q).
Q Q
Note that the Dirichlet boundary condition is a natural condition in this formulation.

The XLIFE++ implementation of this problem using PO approximation for L?*() and an
approximation of H (div, ) using Raviart-Thomas elements of order 1 is the following:

#include 7xlife++.h”
using namespace xlifepp;

Real f(const Point& P, Parameters& pa = defaultParameters)
{ Real x=P(1), y=P(2);
return 32x(xx(1—x)4y*(1—y));}

int main(int argc, charxx argv)
{
init (_lang=en);
//mesh square
Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=21), triangle ,
1, structured);
Domain omega=mesh2d .domain (”Omega” ) ;
//create approzimation PO and RTI
Space H(omega, PO, "H”, false);
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Space V(omega, RaviartThomas, 1, "V’ true);

Unknown p(V,”p”);

TestFunction q(p,”q”); //p=grad(u)

Unknown u(H,”u”);

TestFunction v(u,”v”);

//create problem (Poisson problem)

TermMatrix A(intg(omega, p|lq) + intg(omega, uxdiv(q)) — intg(omega,
div(p)#v)) ;

TermVector b(intg(omega, fxv));

//solve and save solution

TermVector X=directSolve (A, b);

saveToFile(”"u”, X(u), vtu);

return 0;

Using Paraview with the Cell data to point data filter that moves PO data to P1 data and the
Warp by scalar filter that produces elevation, the approximated field u looks like:

Figure 3.9: Solution of the Laplace 2D problem with mixed formulation PO-RT1 on the unit
square [0, 1]?

3.4 2D Maxwell equations using Nedelec elements

XLIFE++ provides Nedelec elements (first and second family) that are H(curl) comforming.
Consider the following academic Maxwell problem:

curlcurlE — w?peE=f in Q
Exn=0 on 0f)

with the following weak form:

find E€V ={v e H(curl,), vxn =0 on 90} such that

curlEcurIV:/Ev Vv eV
0 Q

Using first family Nedelec’s element, the XLIFE++ program looks like:
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#include "xlife++.h”
using namespace xlifepp ;

Real omg=1, eps=1, mu=1, a=pi_, ome=omgk omgx mux eps;

Vector<Real> f(const Point& P, Parameters& pa = defaultParameters)
{

Real x=P (1), y=P(2);

Vector<Real> res(2);

Real c=2xaxa—ome;

res (1)=—cxcos (axx)*sin (axy);

res (2)= cx*sin(axx)xcos(a*xy);

return res;

}

Vector<Real> solex (const Point& P, Parameters& pa = defaultParameters)
{

Real x=P(1), y=P(2);

Vector<Real> res (2);

res (1)=cos (axx)xsin (axy);

res (2)= sin(a*x)xcos(axy);

return res;

}

int main(int argc, charxx argv)
{
init (_lang=en) ;
//mesh square wusing gmsh
Mesh mesh2d (Rectangle (_xmin=0, xmax=1, _ymin=0, _ymax=1, _nnodes=50,
_side_names="Gamma” ) , triangle, 1, gmsh);
Domain omega=mesh2d .domain (”Omega” ) ;
Domain gamma=mesh2d . domain ( ”Gamma” ) ;
//define space and unknown
Space V(omega, Nedelec, 1, "V7);
Unknown e (V, ”E”);
TestFunction q(e, ”q”);
//define forms, matrices and vectors
BilinearForm aev=intg (omega, curl(e)|curl(q)) — omexintg(omega, e|q);
LinearForm l=intg(omega, f|q);
EssentialConditions ecs = (ncross(e) |gamma=0);
//compute
TermMatrix A(aev, ecs, "A”);
TermVector b(l, ”"B”);
//solve
TermVector E=directSolve (A, b);
// P1 interpolation, L2 projection on HI
Space W(omega, P1, "W’);
TermVector EPl=projection(E, W, 2);
EP1.name("E”) ;
saveToFile(”"E”, EP1, vtu);
return 0;

As Nedelec finite elements approximation are not conforming in H1, the solution is not continuous
across elements (only tangent component is continuous). So to represent the solution, it is
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projected on H1 as follows:
find E; € L?(Q) such that
/ E,w= / Ew Vw e L*(Q).
Q Q

Using an H1 conforming approximation for E; leads to a continuous representation of the
projection. We show on the next figure the E, component field provided by this example.

error

9.579¢-06 0,003 0,000 0.009 \HHD\E‘H\Z\HHHDmN”M

Y-Axis
06 0.8

04

0.2

Figure 3.10: First component of the solution of the Maxwell 2D problem using Nedelec first family
elements, and nodal error

L2 error for 2D nedelec first family

L2 error

——order 1
——order 2

.
10

Figure 3.11: L? errors versus the step h for 1 and 2 order Nedelec first family approximation
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3.5 Eigenvalues and eigenvectors of Laplace operator

This exemple shows how to get eigen functions of Laplace operator equipped with homogeneous
Neumann condition:
—Au+u=>u in

Opu=20 on 0f2

and its variational formulation in V = H'(Q):

find (u, ) € V' x R such that

/Vu.Vv—l—/uv:)\/uv Yo e V.
Q Q Q
#include 7xlife++.h”

using namespace xlifepp ;

int main(int argc, charxx argv)

{
init (_lang=en); // mandatory initialization of xzlifepp
//mesh square
Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=20), triangle,
1, gmsh);

Domain omega = mesh2d.domain(”Omega”) ;

//build P2 interpolation

Space Vk(omega, P2, "Vk”, true);

Unknown u(Vk, 7u”);

TestFunction v(u, ”v”);

//build eigen system

BilinearForm auv = intg(omega, grad(u) | grad(v)) + intg(omega, u * v) |,
muv = intg(omega, u x v);

TermMatrix A(auv, "auv”), M(muv, "muv”);

//compute the 10 first smallest in magnitude

EigenElements eigs = eigenInternSolve(A, M, _nev=10, - mode=_krylovSchur ,

_which="SM") ; //internal solver

thePrintStream << eigs.values;

saveToFile(”eigs”, eigs.vectors, vtu);

return 0;

}
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ev=1

ev=10.8696 ev=10.8696

ev=20.7393 ev=40.4788 ev=40.4788

ev=>50.3487 ev=50.3487 ev=79.9599

Figure 3.12: 9 first eigen vectors of the Laplace 2D problem with P2 elements

3.6 3D Helmholtz problem using single layer potential
integral equation

XLIFE++ is also able to deal with integral equation. This example illustrates the computation
of the acoustic scattering by a sphere:

{Au +ku=0 inQ=R3/B(0,R)

U = —Uipe on S

Using single layer potential leads to the integral equation, :

/G(x, y)p(x)dr = —ujp. on S
s

where G is the Green function of the Helmhotz equation:

piklz—y]

G(z,y) = m

We deal with the variational formulation in V = Hz(S):
find p € V such that

/S/Sp(fv) G(z,y) qly) dz dy = —/Sumcq‘ VgeV.

The solution u is get from potential p from the integral representation:

u(z) = /S G, y)p(y)dy.

This example has been implemented in XLIFE++ using a PY Lagrange interpolation:
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#include "xlife++.h”
using namespace xlifepp ;

// incident plane wave
Complex uinc (const Point& p, Parameters& pa = defaultParameters)

Real kx=pa(”kx”), ky=pa(’ky”), kz=pa(’kz”);
Real kp=kxx*p(1)+ky*p(2);
return exp(i_xkp);

}

int main(int argc, charxx argv)
{
init (_lang=en); // mandatory initialization of zlifepp
numberOfThreads (2) ;
//define parameters and functions
Parameters pars;

pars << Parameter (1., ”k”); // wave number k

pars << Parameter (1., ”"kx”) << Parameter (0., "ky”) << Parameter (0., “kz”);
/) kx, ky, kz

pars << Parameter (1., ”radius”); // disk radius

Kernel G = Helmholtz2dKernel (pars) ; // load Helmholtz2D kernel

Function finc (uinc, pars); // define right hand side function

Function scatSol(scatteredFieldDiskDirichlet , pars); //ezact solution

// meshing the unit disk

Number npa=16; //nb of points by diameter of disk

Disk sp(_center=Point (0.,0.), _radius=1, _nnodes=npa, _domain name="disk”);
Mesh mS(sp, _segment, 1 ,gmsh);

Domain disk = mS.domain(”disk”);

// Lagrange PO space and unknown
Space V1(disk, P1, ”V1”, 6 false);
Unknown ul(V1,”ul”); TestFunction v1(ul, ”v1”);

// form definitions

IntegrationMethods ims(Duffy ,5, 0., Gauss_Legendre, 5, 1., Gauss_Legendre,
4, 2.,Gauss_Legendre, 3 );

BilinearForm blfO=intg(disk ,disk, ul*Gxvl, ims);

LinearForm fv0 = —intg(disk, fincxvl);

//compute matriz and right hand side and solve system
TermMatrix AO(blf0, _denseDualStorage, "A0”);
TermVector BO(fv0, ”B0”);

TermVector U) = directSolve (A0, BO);

//integral representation on xz plane (far from disk), using Pl nodes
Number npp=20, npc=8+npp/10;
Real xm=4., eps=0.0001;
Point C1(0.,—xm) ,C2(0.,xm), C3(0.,—xm);
Square
sqx (_center=Point (0.,0.) ,_length=4., nnodes=npp,_domain name="0mega” ) ;
Disk dx(_center=Point (0.,0.), _radius=1.25, _nnodes=npc);
Mesh mx0(sqx—dx, triangle, 1 ,gmsh);
Domain planx0 = mx0.domain(”Omega”) ;
Space Wx(planx0 ,P1,”Wx”  false);
Unknown wx(Wx, 7wx”);
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TermVector UOxO=integralRepresentation(wx, planx0, intg(disk ,Gxul), U0);
TermMatrix Mx0(intg (planx0 ,wxswx), "Mx0”);

//compare to exact solution

TermVector solx0 (wx, planx0, scatSol);

TermVector ec0x0=U0x0 — solx0;

theCout << ”L2 error on x=0 plane: 7 << sqrt(abs((Mx0xec0x0)|ec0x0)) <<
eol;

//export solution to file
saveToFile(”U0”, U0, vtk);
saveToFile (”U0x0”, U0x0, vtk);
return 0;

Figure 3.13: Solution of the 3D Helmholtz problem using single layer BEM on the unit sphere

3.7 2D Helmholtz problem coupling FEM and integral
representation

We want to solve the acoustic diffraction of a plane wave on the disk of radius 1, with the boundary
I:

Au+k*u=0 inR?/D

Opu=g on I' (n the outward normal)

where g = 9, (¢'**).

Let 2 be a domain that strictly surrounding the disk D and ¥ its boundary. We have to point
out that in this case, we use normals going outside the domain of computation ) but then the
normal on the obstacle (defined on T') is going inside the obstacle, that is opposite to usual case
(see Figure 3.14). Then, because of the normal inverted, the solution u may be represented by the
integral representation formula (G is the Green function related to the 2D Helmholtz equation in
free space):

Ve e X, u(zr) = —/Ff)nyG(m,y) u(y) dy—l—/FG(x,y) O, u(y) dy (3.1)
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say, because the boundary condition:

—/FanyG(fc,y) u(y) dy+/FG(x,y)g(y) dy.

n, is the outward normal (to 2 not the obstacle) on I' and n, will denote the outward normal on
Y. Now matching values and normal derivative on Y, we introduce the boundary condition:

(On, + M) = —(Br, + N / 0y, Gl y) uly) dy + (Ou, + N / Glx,y) 9(y) dy

r

that reads, because G is not singular on I" x 3

(On, + V() = — / O, 00, G, y) uly) dy — A / 0., Gz, ) uly) dy

/&LZG r,Y)g dy—l—)\/G z,y) g9(y)dy = Ra(u)(x)
Using this exact boundary condition, if /m(\) # 0) the initial problem is equivalent to :

Au+Eu=0 in Q
O =g on I’
(On, + N)u=TRy(u) onX

Its variational formulation in V = H'(Q) is:

find v € V such that Vv € V

/ﬂVu.Vv—k/uan/\/uv—i—// Y)On, On,G(x,y) v —l—/\// Y)On, G(2,y) v(x)
/gv—l—// )0, Gz, y) 5(z) +>\f/ ()G, ) ().

Considering the geometrical configuration:

Qemf,

Figure 3.14: Geometrical configuration for the FEM-Integral Representation problem. The normal
on I' is going inside the obstacle (to point outside ).

the variational formulation is implemented as follows:
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#include "xlife++.h”
using namespace xlifepp ;

Complex data_g(const Point& P, Parameters& pa = defaultParameters)
{
Real x=P (1), k=pa(’k”);
Vector<Complex> g(2,0.);
g(1) = i_xkxexp(i_*xk*x)
return dot(g,P/norm2(P)

Y

} Vi //dr(e {iks)

Complex u_inc (const Point& P, Parameters& pa = defaultParameters)

{
Real x=P (1), k=pa(7k”);
return exp(i_xkxx);

}

int main(int argc, charxx argv)

{

init (_lang=en); // mandatory initialization of xzlifepp

//parameters

Number nh = 10; // number of elements on Gamma

Real h=2xpi_/nh; // size of mesh

Real re=1.+2xh; // exterior radius

Number ne=Number(2+pi_*xre/h); // number of elements on Sigma

Real 1 = 4x*re; // length of exterior square

Number nr=Number(4x*1/h) ; // number of elements on exterior square
Real k= 4, k2=kxk; // wavenumber

Parameters pars;

pars << Parameter (k,”k”) << Parameter(k2,7k2");

Kernel H=Helmholtz2dKernel (pars) ;

Function g(data_g , pars);

Function ui(u_inc,pars);

//Mesh and domains definition

Disk dl(-center=Point(0.,0.), _radius=1, _nnodes=nh,
_side_names=Strings (4,”Gamma” ) ) ;

Disk d2(_center=Point (0.,0.), _radius=re, _nnodes=ne,
_domain name="0Omega” , _side_names=Strings(4,”Sigma”));
Square rect (_center=Point (0.,0.), _length=]1, _nnodes=nr,

_domain name="0Omega_ext”) ;
Mesh mesh(rect+(d2—d1), _triangle, 1, _gmsh);
Domain omega=mesh.domain (”Omega” ) ;
Domain sigma=mesh.domain(”Sigma”) ;
Domain gamma=mesh .domain (”Gamma” ) ;
Domain omega_ext=mesh.domain(”Omega_ext”); //for integral representation
sigma .setNormalOrientation (_outwardsDomain ,omega); //outwards normals
gamma.setNormalOrientation (_outwardsDomain ,omega) ;

//create P2 Lagrange interpolation

Space V(omega,P2,”V” true) ;

Unknown u(V,”u”); TestFunction v(u,”v”);

// create bilinear form and linear form

Complex lambda=i_xk;

BilinearForm auv =
intg (omega,grad(u) |grad(v))—k2xintg (omega ,uxv)+lambdaxintg (sigma ,uxv)
+intg (sigma ,gamma, ux(grad_y (grad_x (H) | —nx) | _ny ) *v)
+lambdaxintg (sigma ,gamma,ux(grad_y (H) | .ny ) *v) ;
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BilinearForm alv =
intg (sigma ,gamma,u*(grad_x (H) | _nx)*v)+lambdaxintg (sigma ,gamma, uxHxv) ;
TermMatrix A(auv), ALV(alv);
TermVector B(intg (gamma,gx+v) ) ;
TermVector G(u,gamma,g) ;
B+=ALVxG;
//solve linear system AU=F
TermVector U=directSolve (A,B);
saveToFile("U.vtk” U, vtk);
//integral representation on omega_ext
Space Vext(omega_ext ,P2,”Vext”  false);
Unknown uext (Vext,”uext”);
TermVector Uext =
—integralRepresentation (uext, omega_ext, intg(gamma,(grad_y (H)|_ny)=*U))
+integralRepresentation (uext, omega_ext, intg(gamma,H+G));
saveToFile(”Uext.vtk” Uext, vtk) ;
//total field
TermVector Ui(u, omega, ui), Utot=UitU;
TermVector Uiext (uext, omega_ext, ui), Utotext=Uiext+Uext;
saveToFile(”Utot.vtk” ,Utot, vtk);
saveToFile(” Utotext.vtk” , Utotext , vtk) ;
return 0;

}

In the beginning, some geometric parameters used to design crown surrounded by a square, are
given. Next the mesh is generated using gmsh mode and the geometrical domains are get from
the mesh. The normal orientations are chosen in order to have outwards normals to the crown
omega.

Then a P2 Lagrange space over the elements of the crown omega is constructed and all bilinear
and linear forms involved in variational form are defined. Then the TermMatrix and TermVector
are computed and the problem is solved using a direct method (Umfpack if it is installed, LU
factorization else), that leads to the solution U in the crown omega.

Finally, using integral representation formula 3.1, the solution is computed in the exterior domain
omega_ext. The vectors U and Uext are diffracted fields. To get total field, the incident field has
to be added to the diffracted filed. This is the final job that it is done.

The real part of the total field computed is presented on the figure 3.15.

real part
15002400

\mumhmmm
5 ©

EV‘ :
15008400

Figure 3.15: 2D Helmholtz diffraction problem using FE-IR method: real part of the total field

45



3.8 2D Helmholtz problem coupling FEM and BEM

We want to solve the acoustic propagation of a plane wave in a heterogeneous medium. In order
to do that, we distinguish a domain €2 that is heterogeneous, its boundary I' and the exterior
domain ey that is homogeneous (see Figure 3.16).

T

Q Qext

Figure 3.16: Domains for computation: €2 the heterogeneous medium, {2.; the homogeneous
exterior domain and I' = 0f).

We solve:

Au(z) + k*n*(z)u(z) =0 in R?

u(z) = —u;(z) on I
with 7(x) = 1 in Qu, and n(x) that can vary in €, and finally with u; = e¥*2.
We will use: Q = [—0.5,0.5]* and

() = {exp(—(sc% —0.25) % (42 — 0.25)/(2.  0.05)) , when max(z1,z2) < 0.5.

1 otherwise.

n
5.353e-01 0.651 0.768 0.884 1.000e+00
L L

\‘H“
Figure 3.17: n(x) in QU Qeyt.

We decompose the problem in a coupled system of two equations:

e in the FEM part, the solution solves the following equation:

Au+ kE*n*u=0
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which gives the variational formulation:

Find u € H'(Q) such that :
Jo Vu(z) - Vo(x)de — k* [ n*(z)u(x)v(z)de — [ Az)v(x)de =0, Yve H(Q) ’

with A = % is the normal trace of u on T'. 22
e in the BEM part, we solve:
{Au +k2u=0 in Qe (3.3)
U= —u; on I
The scattered field verifies:
us(x) = =SrA(z) + Kru(z), © € Qext, (3.4)

with u the total field solution of the equation and A the normal trace of v on I', Sr and Kr
are the single and double layer boundary potentials:

&mwzﬁe@wwwm

oG (z,y)
Ko@) = | S5 Y b00dy,
ro(z) - o, o(y)dy
and . giklle—yl
(%) = Tl =4l

Since us; = u — u;, and taking the limit when x goes to I', we obtain the integral equation:

(g _ KF) w(@) + SeA(x) = ui(x),z € T (3.5)

The resulting variational formulation for the BEM part is then:

Find u € HY2(T') and A € H~Y/%(T") such that :
%/Fu(ac)f(x)dx - /F ) u(y)%;:y)f(x)dydx —l—/F ) My)G(x,y)T(x)dydz (3.6)
= /Fui(x)T(x)dw,‘v’T € HY*(T).

By adding the variational formulations relatives to the two linked problems, we obtain the final
variational formulation.

Finally, the solution is obtained directly from u for the FEM part and we need to compute the
integral representation to obtain ug, the scattered field, and then to add the incident field to
obtain the total field for this problem.

The last step is to merge the FEM solution in 2 and the BEM solution in 2., to obtain a solution
on the whole domain Q U €2 to simplify the visualisation.
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Real part
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Figure 3.18: Solution of the FEM-BEM problem.

The code of this example follows:

#include 7xlife++.h”
using namespace xlifepp;
using namespace std;

// find = eta(z)
Real find (const Point & M, Parameters & pa = defaultParameters)

{

}

Real res=1.;
if (std::max(std::abs(M[0]) ,std ::abs(M[1])) <0.5)

res=std ::exp(—((M[0]*M[0] —0.25) «(M[1]«M[1] —0.25)) /(2.%0.05) ) ;
return res;

Real eta2(const Point & M, Parameters & pa = defaultParameters)

{

}

Real tmp=find (M) ;
return tmpxtmp;

Complex gl (const Point& M, Parameters& pa = defaultParameters)

}

Real k=real(pa(”k”));
Point d(1.,0.);
return exp(i_*(kxdot(M,d)));

int main(int argc, charxx argv)

{

init (_lang=en) ; // mandatory initialization of zlifepp

verboseLevel (10) ;

Real k=10.;

//meshing

Real hsize=(2xpi_/k)/15.;

Square sp(_center=Point (0.,0.), _length=1., _hsteps=hsize,
_domain name="0Omega” , _side_names="Gamma” ) ;

Mesh ml=Mesh(sp, _triangle, 1, _gmsh);

Domain omega = ml.domain(”Omega”) ;

Domain gamma = ml.domain (”Gamma” ) ;

theCout << "Mesh size = 7 << hsize << eol;

theCout << "Number of Triangles = 7 << ml.nbOfElements() << eol;
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//defining parameter and kernel

Parameters pars;

pars << Parameter(k,”k”);

Vector<Real> nv(2);

pars << Parameter(&nv,”_n”);

Kernel G=Helmholtz2dKernel (pars) ;

Function finc(gl,pars);

//defining space, unknown and test function
Space V1(omega,P1,”V1” false);

Space V0(gamma,P1,”V0” , false);

Unknown ul(V1,7ul”); TestFunction v1(ul,”vl1”);
Unknown 10 (V0,”710”); TestFunction 1t0(10,”1t0”);

theCout<<”Nb dofs BEM= ” << V0.nbDofs() << ” Nb dofs FEM= 7 << V1.nbDofs ()

<< eol;
//defining bilinear and linear form

IntegrationMethods ims(Duffy, 15, 0., _defaultRule, 12, 1., _defaultRule,

10, 2., _defaultRule, 8);

BilinearForm blf=intg(omega,grad(ul) |grad(vl))—kx«k+intg (omega,eta2*xul*vl)

— intg (gamma,10xvl) + 0.5%intg(gamma,ul*1t0)
— intg (gamma,gamma,ul*xndotgrad_y (G)*1t0 ,ims)
+ intg (gamma,gamma, 10 *Gx1t0 ,ims) ;

LinearForm 1f=intg (gamma, fincx1t0);

//computing FEM/BEM matriz and right hand side wvector

TermMatrix lhs (blf ,”1hs”);

TermVector rhs(1f);

//solving linear system wusing direct method

TermVector sol=directSolve(lhs , rhs);

// Representing the solution FEM and BEM

Square Sint (_center=Point (0.,0.), _length=1, _hsteps=hsize,
_domain name="S_int”) ;

Square Sext(_center=Point (0.,0.), _length=3, _hsteps=1.5xhsize,
_domain name="S_ext”);

Mesh mrep (Sext+Sint, _triangle, 1, _gmsh);

Domain S_ext=mrep.domain(”S_ext”), S_int=mrep.domain(”S_int”);

Domain S=merge(S_ext ,S_int ,”S”);

Space Vrep(S,P1,”Vrep” , false);

Unknown ur (Vrep,”ur”);

Function Find(find , pars);

TermVector findex (ur,S,Find);

saveToFile(”findex” ,findex ,_vtu); // Representing eta

TermVector Uint=interpolate (ur,S_int ,sol(ul)); // FEM solution (total
field)

saveToFile (”Uint” ,Uint , _vtu);

// Representing of the BEM part
IntegrationMethods imr(_GaussLegendreRule, 20, 1., _GaussLegendreRule,
2., _GaussLegendreRule ,5) ;
TermVector Uext =
— integralRepresentation(ur, S_ext, intg(gamma,Gxsol(10)  imr))
+ integralRepresentation(ur, S_ext,
intg (gamma, ndotgrad_y (G)*sol (ul) ,imr) ) ;

TermVector Uinc (ur,S_ext , finc);

saveToFile (”Uinc” ,Uinc, _vtu); // Incident field

saveToFile(”Uext” ,Uext,_vtu); // scattered field in exterior domain
TermVector Uext_t = Uext + Uinc;

saveToFile(”Uext_t” ,Uext_t,_vtu); // Total field in exterior domain
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TermVector U=merge(Uint , Uext_t); // Merged FEM and BEM solutions
saveToFile ("U” U, _vtu);

theCout << ”Program finished” << eol;

return 0;

3.9 3D Maxwell problem using EFIE

Solving diffraction of an electromagnetic plane wave on a obstacle using BEM is more intricate.
Indeed, it is a vector problem and it involves Raviart-Thomas elements. We show how XLiFE++
can deal easily with.

Let ' be the boundary of a bounded domain  of R?, we want to solve the Maxwell problem on
the exterior domain €2,:

curlE —ikH =0 in Q.

curl H +2kE =0 in Q,

Exn=0 on I

| llim ((H —H;,.) X ﬁ —(E— Emc)> =0 (Silver-Muller condition)
x|—00 Xz

where (E;,., Hy,.) is an incident field (a solution of Maxwell equation in free space), for instance
a plane wave.

The EFIE (Electric Field Integral Equation) consists in finding the potential J in the space
Hgiy(D) ={V € L*(I)*,V.n = 0,divp V € L*(I') }

such that, VYV € Hg;, (T)

k /F /F I(y) Gz, y). V() — % /F /F dive J(y) Gz, y) diveVi(z) = — /F By V

where G is the Green function related to the Helmholtz 3D problem in free space.

This equation has a unique solution, except for a discrete set of wavenumbers corresponding to
the resonance frequencies of the cavity 2.

Using the Stratton-Chu representation formula, the scattered electric field may be reconstructed
in Q.:

B(r) = Bue(r) + / V.G(x,y) dived(y) + k / Gle.y) I(w).

This problem is implemented in XLIFE++ as follows:

#include "xlife++.h”
using namespace xlifepp ;
Vector<complex_t> data_incField (const Point& P, Parameters& pars)

{

Vector<real t> incPol (3,0.); incPol(1)=1.; Point incDir (0.,0.,1.) ;
Real k = pars(7k”);
return incPol x exp(i_xk * dot(P,incDir));

}
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Vector<complex_t> uinc (const Point& P, Parameters& pars)

{
Vector<real_t> incPol (3,0.); incPol(l)=1.; Point incDir (0.,0.,1.) ;
Real k = pars(”k”);
return incPolxexp(i_xk * dot(P,incDir));

}

int main(int argc, charxx argv)

{
init (_lang=en) ;
//define parameters and functions
Real k= 1, R=1.; Parameters pars;
pars << Parameter(k, ”k”) << Parameter(R, ”"radius”);
Kernel H = Helmholtz3dKernel (pars) ; // load Helmholtz3D kernel
Function Einc(data_incField , pars); // define right hand side
Function Uex(scatteredFieldMaxwellExn ,pars);
// meshing the wunit sphere
Number npa=15; Point O(0,0,0);
Sphere sphere(_center=0,_radius=R,_nnodes=npa,_domain name="Gamma” ) ;
Mesh meshSh(sphere, triangle, 1, gmsh);
Domain Gamma = meshSh.domain ( ”Gamma” ) ;
//define FE-RT1 space and unknown
Space V_h(Gamma, RT_1, "Vh”);
Unknown U(V_h,”U”); TestFunction V(U,”V”);
//compute BEM system and solve it
IntegrationMethods

ims (_SauterSchwabIM ,4 0., _defaultRule ,5,2., _defaultRule ,3);
BilinearForm auv = kxintg (Gamma,Gamma, UxH|V,ims)
—(1./k)*intg (Gamma, Gamma, div (U)*Hxdiv (V) ,ims);
TermMatrix A(auv, "A”);
TermVector B(—intg (Gamma, Einc|V));
TermVector J = directSolve (A,B);
//get P1 representation of solution and export it to wvtu file
Space L_h(Gamma, P1, ”"Lh”);
Unknown U3(L_h,”U3”,3) ; TestFunction V3(U3,”V3”);
TermVector JPl=projection(J, L.h, 3, _L2Projector);
saveToFile(”?JP1”, JP1(U3[1]), vtu);
//integral representation on y=0 plane (excluding sphere),using Pl nodes
Number npp=30, npc=5;
Square sqgx (-center=0, _length=20.,_nnodes=npp,_domain name="0Omega” ) ;
Disk dx(-center=0, _radius=1.2xR, _nnodes=npc);
Mesh mx0(sqx—dx, triangle, 1,gmsh);
mx0.rotate3d (1.,0.,0.,pi_/2);
Domain py0) = mx0.domain (”Omega” ) ;
Space Vy0(py0,P1,”Vy0” false);
Unknown W(Vy0,”W” |3) ;
IntegrationMethods im(_defaultRule ,10,1.,_defaultRule, 5);
TermVector Uext=
(1./k)*integralRepresentation (W, py0, intg(Gamma,grad_x (H)x*div(U) ,im), J)
+ kxintegralRepresentation (W, py0, intg(Gamma,H+«U, im),6 J);

saveToFile(”Uext”, Uext, vtu);
//build exact solution , export to wvtu file and compute error
TermVector Uexa (W, py0, Uex);
saveToFile (”Uexa”, Uexa, vtu);
TermMatrix M(intg (py0 ,W[W) ) ;
TermVector E=Uext—Uexa;
theCout<<”L2 error = "<<sqrt(real (M«E|E))<<eol;
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return 0; |

} |

In order to build an approximated space of Hg;y(I") we use the Raviart-Thomas element of order
1.

As the integrals involved in bilinear form are singular, we use here the Sauter-Schwab method to
compute them when two triangles are adjacent, a quadrature method of order 5 if the two triangles
are close (0 < d(T'1,T2) < 2h) and a quadrature method of order 3 when the two triangles are
far (d(T1,72) >= 2h).

Note that the unknowns in RT approximation are the normal fluxes on the edge of the
triangulation. In order to plot the potential J, we have to move to a P1 representation, say
J. This can be done using a L2 projection from Hg;, (T") to L*(T):

/3|V:/J|V vV e L3(D)
r r

This is what is done by the XL1FE++ function projection.
We obtain the following potential:

Real part of J

Figure 3.19: 3D Maxwell problem on the unit sphere, using EFIE, potential

On the following figures, we show the approximated electric field and the exact electric field. The
component F, is not shown because it is zero.

Real part of Ex

computed exact

Q)

Figure 3.20: 3D Maxwell problem on the unit sphere, using EFIE, x component
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Real part of Ez

computed

exact

©

Figure 3.21: 3D Maxwell problem on the unit sphere, using EFIE, y component

3.10 Elasticity problem
The elasticity problem illustrates how to use vector unknown in XLIFE~++:

{ —div(oc(u) —w?u="f inQ
o(u)n =0 on 0f)

For homogeneous isotropic material :

o(u) = Mdiv(u)l + 2ue(u) €;5(u) = du;.

The variational formulation in V' = (H'(2))3 is:

find u € V such that

A /Q c(u) : £(¥) + 24 /Q div(u) div(¥) — o /Q W — /Q £v WweV

This is implemented as follows:

#include 7xlife++.h”
using namespace xlifepp;

//data function

Vector<Real> f(const Point& P, Parameters& pa = defaultParameters)
{ Vector<Real> F(2,0.); F(2)=-0.005; return F;}

int main(int argc, charsx argv)
{

init (_lang=en); // mandatory initialization of zlifepp

//mesh rectangle
Rectangle rect(_center=Point (0.,0.), _xlength=20, _ylength=2,
_nnodes=Numbers(50,5) , _domain name="0mega” ,
_side_names=Strings(””,””,””  ”"Gamma” ) ) ;
Mesh mesh2d(rect , triangle, 1, gmsh);
Domain omega=mesh2d .domain (”Omega”) , Gamma=mesh2d.domain(”Gamma”) ;
// create Pl Lagrange interpolation
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Space V(omega, P1, "V7);:

Unknown u(V, "u”, 2); TestFunction v(u, "v”);

// create bilinear form and linear form

Real lambda=112.134, mu=83.53, omg2=0, rho=7.86;

BilinearForm auv = lambdaxintg (omega, epsilon(u) % epsilon(v))
+ 2xmuxintg (omega, div(u)*xdiv(v)) — omg2xintg (omega,u|v);

LinearForm fv=intg (omega, f{|v);

EssentialConditions ecs= (u|Gamma=0);

TermMatrix A(auv, ecs,”A”);

TermVector B(fv, ”"B”);

//solve linear system AX=B wusing direct method

TermVector U=directSolve (A, B);

thePrintStream<<U;

saveToFile(”U”, U, vtu);

//create the deformation of the mesh
for (number_t i=0;i<mesh2d.nbOfNodes() ;i++)
mesh2d.nodes[i] += U.evaluate(mesh2d.nodes[i]) .value<std :: vector <Real>

>0
mesh2d . saveToFile(”Ud” ,msh) ;

return 0;

Figure 3.22: Displacement and modulus of the solution of the elasticity 2D problem

3.11 Solving wave equation

So far, only the harmonic problems were considered. Time problem may also be solved using
XLiFE++. But there is no specific tools dedicated to. Users have to implement the time loop
related to the finite difference time scheme they choose.

As an example, consider the wave equation:

2
a—tz—czAu:f in Q x]0,7T]
0 in 00 x 10, 7]
on 9u

u(z,0) = E(x,()) =0 inQ

Using classical leap-frog scheme with time discretization t" = nAt, leads to (u" approximates
u(z, t™)):
"t = 2u™ — un T+ (At Aut + (A2 in Q, Vi > 1

8au =0 in 00, Vn > 1
n
wW=u'=0 in Q

or, in variational form, Yo € V = H'(Q):

o4



/ U_Q/uv_/ o= (@0 [ Vo (A [ o a1

wW=u'"=0in Q

When approximating space V' by a finite dimension space V}, with basis (w;);=1 ,, the variational
formulation is reinterpreted in terms of matrices and vectors as follows:

Ut =20" — U™ =M™ ((cAt)’KU" — (At)*F") Vn>1
U=U'"=0in

MijZ/wiwj, Kz’j:/Vwi.ij, (F”)i:/f"wi,
Q Q Q

The XLIFE++ implementation of this scheme on the unity square when using P1 Lagrange
interpolation looks like (f(x,t) = h(t)g(z)):

#include "xlife++.h”
using namespace xlifepp ;

where

Real g(const Point& P, Parameters& pa = defaultParameters)
{
Real d=P.distance(Point(0.5,0.5));
Real R= 0.02; //source radius
Real amp= 1./(pi_*R«R);//source amplitude (constant power)
if (d<=0.02) return amp; else return O0.;

}

Real h(const Real& t)

{
Real a=10000, t0=0.04 ; //gaussian slope and center
return exp(—ax*(t—t0)*(t—t0));

}

int main ()
{
init (_lang=en) ;
//create a mesh and domain omega
Square sq(_origin=Point (0.,0.), _length=1, _nnodes=70);
Mesh mesh2d(sq, triangle , structured) ;
Domain omega=mesh2d .domain (”Omega” ) ;
//create interpolation
Space V(omega, P1, "V’ true);
Unknown u(V, 7u”);
TestFunction v(u, ”v”);
// define FE terms
TermMatrix A(intg(omega, grad(u)|grad(v)),”A”), M(intg(omega, uxv), "M’);
TermVector G(intg (omega, gxv), "G”);
TermMatrix L; ldltFactorize (M,L);
// leap—frog scheme
Real c¢c=1, dt=0.004, dt2=dt*dt, cdt2=cxcxdt2;
Number nbt=200;

1,
(7

TermVectors U(nbt) ; //to store solution at t=ndt
TermVector zeros(u, omega, 0.); U(l)=zeros; U(2)=zeros;
Real t=dt;

for (Number n=2; n<nbt; n++, t+=dt)

{
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U(n+1)=2.#U(n)-U(n—1)—factSolve (L, cdt2 x(AxU(n) )—dt2*h(t)*G); |

} |
saveToFile(”U”, U, vtu); |
return 0; |
|

}

Note the very simple syntax taken into account the leap-frog scheme. The Figure 3.23 represents
the solution at different instants for a constant source localized in disk with center (0.5,0.5),
radius R = 0.02 and time excitation that is a Gaussian function. For chosen parameter dt = 0.04,
the leap-frog scheme is stable (it satisfies the CFL condition) but dispersion effects obviously
appear.

1=0.48s 1=0.64s

Figure 3.23: Solution of the wave equation at different instants for a constant source localized in
disk with center (0.5, 0.5)
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XLIFE++ written in C++

This chapter is devoted to the basics of C++ language required to use XLIFE++. It is adressed
to people who does not know C++.

4.1 Instruction sequence

All C++ instructions (ending by semicolon) are defined in block delimited by braces:
{

instruction ;
instruction ;

}
Instruction block may be nested in other one:

{

instruction

{

instruction ;
instruction ;

}
.

and are naturally involved in tests, loops, ... and functions.

A function is defined by its name, a list of input argument types, an output argument type and
an instruction sequence in an instruction block:

argout name_of_function (arginl, argin2, ...)

{

instruction ;
instruction ;

return something

}

The main program is a particular function returning an error code:

int main ()

{

return 0; //no error

}
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4.2 Variables

In C++, any variable has to be declared, say defined by specifying its type. The fundamental
types are :

e integer number : int (Int type in XLIFE++), unsigned int (Number type in XLIFE++)
and short unsigned int (Dimen type in XLIFE++)

e real number : float for single precision (32bits) or double (64bits) for double precision
(Real type in XLIFE++)

e boolean : bool that takes true (1) or false (0) as value
e character : char containing one of the standard ASCII character

All other types are derived types (pointer, reference) or classes (Complex, String for instance).

All variable names must begin with a letter of the alphabet. Do not begin by underscore
(_) because it is used by XLiIFE++. After the first initial letter, variable names can also
contain letters and numbers. No spaces or special characters, however, are allowed. Upper-case
characters are distinct from lower-case characters.

A variable may be declared any where. When they are declared before the beginning of the
main, they are available anywhere in the file where they are declared.

@ All variables declared in an instruction block are deleted at the end of the block.

4.3 Basic operations

The C++ provides a lot of operators. The main ones are :

e = assignment

e +, —, x _ /: usual algebric operators

e +=, -=_ *=_ /= : operation on left variable

e ++, ——: to increment by 1 (+=1) and decrement by 1 (-=1)
e == |= < > <= >= | : comparaison operators and negation
e &&, || : logical and, or

e <<, >>: to insert in a stream (read, write)

All these operators may work on object of a class if they have been defined for this class. See
documentation of a class to know what operators it supports.

The operators +=, -=, *=, /= may be useful when they act on large structure because they,
generally, do not modify their representation and avoid copy.
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4.4 if, switch, for and while

The syntax of test is the following:

if (predicate)

{
}

else if (predicate2)

else if and else blocks are optional and you can have as many else if blocks as you want.
predicate is a boolean or an expression returning a boolean (true or false):

;f ((x==3 && y<=2) || (! a>b))

}

For multiple choice, use the switch instruction:
switch (1)

{

case 0:

{
break;
}

case 1:

{
break;
}

default

{

}
}

The switch variable has to be of enumeration type (integer or explicit enumeration).

The syntax of the for loop is the following:

for( initialization; end_test; incrementing sequence)

{
.

The simplest loop is:
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for( int i=0; i< n; i++)

{
.

An other example with no initializer and two incrementing values:

int i=1, j=10;
for (; i< n & j>0; i++, j—)
{

.

A for loop may be replaced by a while loop:

int 1=0;
while (i<n)

{

1++;

}

4.5 In/out operations

The simplest way to print something on screen is to used the predefined output stream cout with
operator <<:

Real x=2.25;

Number i=3;

String msg=" Xlife++ :7;

cout << msg << 7 x=" << x << 7 i=" << i << eol;

eol is the XLIFE++ end of line. You can insert in output stream any object of a class as the
operator << is defined for this class. Almost all XLIFE-++ classes offer this feature.

To read information from keyboard, you have to use the predefined input stream cin with operator
>>:

Real x;
Number i=3;
cin >> i >> x;

The program waits for an input of a real value, then for an an input of integer value.

To print on a file, the method is the same except that you have to define an output stream on a
file :

ofstream out;

out.open(”’myfile”);

Real x=2.25;

Number i=3;

String msg=" Xlife4++ :7;

out << msg << 7 x=" << x << 7 i=" << i << eol;
out.close () ;
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To read from a file :

ifstream in;
in.open(”"myfile”);
Real x;

Number i=3;

in > 1 >> x;
in.close ();

The file has to be compliant with data to read. The default separators are white space and
carriage return (end of line).

To read and write on file in a same time, use fstream.

g% All stream stuff id defined in the C++ standard template library (STL). To use it, write at
the beginning of your c++ files :

#include <iostream>
#include <fstream>

using namespace std;

4.6 Using standard functions

The STL library provides some fundamental functions such as abs, sqrt, power, exp, sin, ...
To use it, you have to include the c¢math header file :

#include <cmath>
using namespace std;

double pi=4xatan(1);
double y=sqrt(x);

4.7 Use of classes

The C++ allows to define new types of variable embedding complex structure : say class. A
class may handle some data (member) and functions (member functions). A variable of a class
is called an object.

In XLIFE++, you will have only to use it, not to define new one. The main questions are : how
to create an object of a class, how to access to its members and how to apply operations on it.
To illustrate concepts, we will use the very simple Complex class:

class Complex
{
public:
float x, y;
Complex(float a=0, float b=0) : x(a), y(b){}
float abs() {return sqrt(xxx+tyx*y);
Complex& operator+=(const Complex& c)
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{x+t=c.x;y+=c.y;return xthis;}

};...

Classes have special functions, called constructors, to create object. They have the name of the
class and are invoked at the declaration of the object:

int main ()

{
Complex z1; //default constructor
Complex z2(1,0); //explicit constructor
Complex z4(z2); //copy constructor
Complex z5=z3; //use copy constructor

Complex z4=Complex(0,1);
¥

Copy constructor and operator = are always defined. When operator = is used in a declaration,
the copy constructor is invoked. The last instruction uses the explicit constructor and the copy
constructor. In practice, compiler are optimized to avoid copy.

To address a member or a member function, you have to use the operator point (.) :

int main()

{
Complex z(0,1);
float r=z.x;
float i=z.y;
float a=z.abs();

}

and to use operators, use it as usual:
int main ()
Complex z1(0,1), z2(1,0);

z1+=2z2;
}

Most of XLIFE++ user’s classes have been developed to be close to natural usage.

4.8 Understanding memory usage

In scientific computing, the computer memory is often asked intensively. So its usage has to be
well managed:

e avoid copy of large structures (mainly TermMatrix)

e clear large object (generally it exists a clear function). You do not have to delete objects,
they are automatically destroyed at the end of the blocks where they have been declared !

e when it is possible, use +=, -=, *=, /= operators instead of +, -, *, / operators which
induce some copies

e in large linear combination of TermMatrix, do not use partial combinations which also
induce unnecessary copies and more computation time
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4.9 Main user’s classes of XLIFE++

For sake of simplicity, the developers choose to limit the number of user’s classes and to restrict
the use of template paradigm. Up to now the only template objects are Vector and Matrix to
deal with real or complex vectors/matrices. The name of every XLIFE++ class begins with a
capital letter.

XLIFE++ provides some utility classes (see user documentation for details) :

String to deal with character string

Strings to deal with vector of character strings

Number to deal with unsigned (positive) integers

Numbers to deal with vector of unsigned (positive) integers

Real to deal with floats, whatever the precision.

Reals to deal with vector of floats, whatever the precision.

Complex to deal with complexes

Vector<T> to deal with numerical vectors (T is a real/complex scalar or real/complex Vector)

Matrix<T> to deal with numerical matrices (T is a real/complex scalar or real/complex Matrix)

RealVector, RealVectors, RealMatrix, RealMatrices are aliases of previous real vectors and
matrices

Complexes, ComplexVector, ComplexVectors, ComplexMatrix, ComplexMatrices are aliases
of previous complex vectors and matrices

Point to deal with Point in 1D, 2D, 3D

Parameter structure to deal with named parameter of type Real, Complex, Integer, String

Parameters a list of parameters

Function generalized function handling a c++ function and a list of parameters

Kernel generalized kernel managing a Function (the kernel) and some additional data
(singularity type, singularity order, ...)

TensorKernel a special form of kernel useful to DtN map

XLIFE++ also provides the main user’s modelling classes :

Geometry to describe geometric objects (segment, rectangle, ellipse, ball, cylinder, ...). Each
geometry has its own modelling class (Segment, Rectangle, El1lipse, Ball, Cylinder, ...)

Mesh mesh structure containing nodes, geometric elements, ...

Domain alias of geometric domains describing part of the mesh, in particular boundaries, and
Domains to deal with vectors of Domain’s

Space class handles discrete spaces (FE space or spectral space) and Spaces some vectors of
Space’s

Unknown, TestFunction abstract elements of space and Unknowns, TestFunctions to handle
vector of Unknown’s and TestFunction’s

LinearForm symbolic representation of a linear form

BiLinearForm symbolic representation of a bilinear form

EssentialCondition symbolic representation of an essential condition on a geometric domain

EssentialConditions list of essential conditions

TermVector algebraic representation of a linear form or element of space as vector

TermVectors list of TermVector’s

TermMatrix algebraic representation of a bilinear form

EigenElements list of eigen pairs (eigen value, eigen vector)
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Mesh definition

The geometry library collects all the general classes and functionalities about geometries, meshes,
geometrical domains and geometrical elements.

In order to handle a finite element mesh, XLIFE++ provides the class Mesh. Thus, the user must
first of all create an object of this type, which can be done mainly in two ways:

e or using XLIFE++ internal (simple) meshing tools.

The internal tools are designed to provide the user with a mesh in a straightforward way. They
only deal with simple geometries. Complicated geometries need to use a specific software that
stores the geometrical description of the mesh into a file.

In this section we will see:

1. How to define geometries, canonical ones and more complicated ones: section 5.1

2. How to apply transformations on geometries (rotations, translations, ... ): section 5.2
3. How to extrude geometries (by translation or rotation): section 5.3

4. How to define a mesh from a geometry: section 5.4

5. How to transform a mesh: section 5.8

6. How to define a mesh from a file: section 5.7

7. How to use geometrical domains: section 5.9

5.1 Defining geometries

To define a geometry object, you will use a constructor:

Pyramid pyr(keyl = vall, key2 = val2, ...);
There is a lot of available parameters (or keys) for each geometry object. You can give them in
any order. Some keys are parts of a group of keys. When you use a group of keys, you have to
set every key of the group. For instance, in the following example, to define a triangle, you have

to give the three vertices of the triangles with the keys _v1, -v2, _v3. You must not forget one
of them.

Triangle tri(_vl = Point(0.,0.), _-v2 = Point(1.,0.), _v3 = Point (0.,1.),
oo ) 8

There are 3 kind of parameters (plus 1 single parameter) :

e First, you have parameters dedicated to geometry definition. This part is different for each
geometry and will be explained in following subsections.
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Secondly you have 2 parameters dedicated to mesh parameters such as the number of nodes
on each edge of the geometry (always greater than 2) or the local mesh step on each vertex
of the geometry (fitted to the gmsh mesh generator). For this 2 kinds of arguments, you will
have the choice to give a value per edge (or vertex), or a smaller number of values according
to properties of symmetry of the geometry, or a common value for each edge (or vertex).
To set the number of nodes on each edge, you will have to use the _nnodes key. To set the
local mesh step on each vertex, you will have to use the _hsteps key. These parameters are
optional and only one of them is to be used.

Triangle tri(_vl = Point(0.,0.), _-v2 = Point(1.,0.), _v3 = Point (0.,1.),

_nnodes = Numbers(11,15,11));

What is the difference between _nnodes and _hsteps ? It is as in the GMSH documentation.

_nnodes When you use this parameter, you set the number of nodes of a regular mesh on
an edge. As a result, the mesh step is constant on the edge. Using this parameter, you
can refine a mesh near an edge.

_hsteps When you use this parameter, you set the value of the mesh step near a vertex.
If the mesh step is the same for both vertices of the edge, then this is a regular mesh
(equivalent to define the number of nodes in this case). If the mesh step is different on
vertices of an edge, it varies progressively to fit the expected value on vertices. Using
this parameter, you can refine a mesh near a vertex.

Thirdly you have parameters dedicated to definition of geometrical domains. These keys
are all optional :

_domain name is used to set the name of the main domain of the geometry. The main
domain depends on the type of mesh (if you mesh a cube with triangles, the main
domain will be the whole border, whereas with tetrahedra, it is the cube itself).

_side_names is used to set the names of every side domain. You can give a vector of strings
(Strings object) or a single String if it is the same name for every side domain.

Default values are empty strings. When a domain has an empty name, it is not built. For
some geometries (cylinders and cones), there is an additional parameter.

At last you have _type, for geometries fitted to the subdivision mesh generator (See
subsection 5.4.2 for details).

Let’s summarize information about these keys:

] key \ authorized types \ examples ‘
_domain_name | String or const char* _domain_name="Omega”
_hsteps single real value, std::vector of real | _hsteps=0.5,

values or Reals _hsteps=Reals(0.5, 0.2)
_nnodes single  (unsigned) integer  value, | _nnodes=11,
std::vector of integer values, Number or | _hsteps=Numbers(11, 22)
Numbers
_side_names single string, std::vector of string, | _side_names="Gamma”,
String or Strings _side_names=Strings("Gaml”,
"Gam?2”, "Gam2”)
_type single (unsigned) integer value, or | _type=1
Number
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In the following, we will see how to define each canonical geometries, before showing how to define
more complicated ones.

5.1.1 Segments

A segment is just a straight line between 2 points.

(%)

SNy

The general case is to give points through parameters _—v1 and _v2, but when 1D, you can give
directly the real coordinate.

Segment sl (_vl=Point (0.,
_domain name="0mega” ) ;

Segment s2 (_vl=Point (0.,0.), _v2=Point (0.,1.), _hsteps=0.1,
_domain_name="0Omega” ) ;

Segment s3 (_vl=Point (0.), _v2=Point(1.), _hsteps=Reals(0.1,0.2),
_domain_name="0mega” ) ;

Segment s4(_v1=0., -v2=1., _nnodes=11, _domain name="0Omega”) ;

0.,0.), _v2=Point(0.,1.,—1.), _nnodes=11,

In previous examples s3 and s4 are identical. A better comprehensive way for s4 is to use
parameters _xmin and _xmax instead of _v1l and _v2.

Segment s4 (_xmin=0., xmax=1., _nnodes=11, _domain name="Omega” ) ;

In previous examples, you can notice that _nnodes take only a single integer value and _hsteps
can take one real value or a vector of 2 real values (Reals object).

One of the combination _xmin and _xmax or _v1 and _v2 is needed.

After these arguments, you can give names of main domain and side domains as explained in
preamble of this section.

Examples.

// segment [—2,5] with 50 points when meshing

Segment sl (_xmin=-2, xmax=5, _nnodes=50);

// segment linking A(1,2,3) and B(—2,5,0) with 20 points when meshing and
domain is “Omegal”

Point a(1.,2.,3.);

Point b(—2.,5.,0.)

Segment s2(_vl=a, _v2=b, _nnodes=20, _domain name="Omegal”) ;

// segment [0,1] with 20 points when meshing and side domains are “Gammal”
and "Gamma2”

Segment s3 (_xmin=0., xmax=1., _nnodes=20,
_side_names=Strings (”Gammal” ,”Gamma2” ) ) ;

// segment [0,1] with 10 points when meshing and domain is ”"Omega” and side
domains are “Gammal” and “Gamma2”

Segment s4 (_xmin=0., xmax=1., _nnodes=10, _domain name="0Omega” ,
_side_names=Strings (”Gammal” ,”Gamma2” ) ) ;

// segment [0,1] with 10 points when meshing and domain is “Omega” and side
domain is “Gamma”

Segment s4 (_xmin=0., xmax=1., nnodes=10, _domain name="0Omega” ,
_side_names="Gamma” ) ;
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You can reverse the orientation of a segment by using one of the following:

Segment sl (_xmin=-2, xmax=5, _nnodes=50);
sl.reverse(); // sl is modified
Segment s2="sl; // sl is not modified

% When defining composite or loop geometries, you shall not use the reverse method, but
only the ~ operator

Let’s summarize information about geometrical keys for segments:

’ key(s) ‘ authorized types ‘ examples
_vl, _v2 single integer or real value, or Point _v1=Point(0.),
_v2=Point(0.,0.),
_v1=Point(0.,0.,0.), -v2=0.
_xmin, xmax | single integer or real value xmin=1, xmax=-2.5

5.1.2 Elliptic and circular arcs
Elliptic arcs

To define an elliptic arc, you need 4 points : the center of the ellipse, the apogee of the ellipse
and the bounds of the arc.

(%)
7 8Ne

[ Ie]

[ Jet

There is a parameter for each of them : _center, _apogee, _—v1 and _v2. These parameters take
2D or 3D points. When omitted, the apogee point is defined as the first bound of the arc. An
elliptic arc must be smaller than a half-ellipse, to be defined correctly.

_nnodes take only one single value and _hsteps can take one real value or a vector of 2 real values
(Reals object). After these arguments, you can give names of main domain and side domains as
explained in preamble of this section.

Example.
Point ¢(0.,0.,0.);
Point a(2.,0.,0 ) ;
Point pl (0 L 10);
Point p2(-1.,2.,0.)

// whole side domain will be “Gamma”
EllArc el(_center=c, _apogee=a, _vl=pl, _v2=p2, _nnodes=20,
_domain_name="0Omega” , _side_names="Gamma” ) ;

You can reverse the orientation of an elliptic arc by using one of the following:
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EllArc el(_center=c, _apogee=a, _vl=pl, _v2=p2, _nnodes=20,
_domain_name="0Omega” , _side_names="Gamma” ) ;

el.reverse(); // el is modified

EllArc e2="el; // el is not modified

% When defining composite or loop geometries, you shall not use the reverse method, but
only the ~ operator

Let’s summarize information about geometrical keys on elliptic arcs:

’ key(s) \ authorized types \ examples

_apogee, Point _center=Point(0.,0.),
_center, _vl, _apogee=Point(0.,0.,0.)
_v2

%@ Elliptic arcs cannot be defined if the angular sector is greater than 7. This is a GMSH

restriction !

Circular arcs

To define a circular arc, you need 3 points : the center of the circle and the bounds of the arc.
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There is a parameter for each of them : _center, _v1 and _v2. These parameters take 2D or 3D
points. A circular arc must be smaller than a half-circle, to be defined correctly.

_nnodes take only one single value and _hsteps can take one real value or a vector of 2 real values
(Reals object). After these arguments, you can give names of main domain and side domains as
explained in preamble of this section.

Example.
CircArc cl(_center=Point (0.,0.), _vl=Point(1.,0.), _v2=Point(0.,1.),
_nnodes=30, _domain name="0Omega” ) ;
You can reverse the orientation of a circular arc by using one of the following:

CircArc cl(_center=Point (0.,0.), _vl=Point(1.,0.), _v2=Point(0.,1.),
_nnodes=30, _domain name="0Omega”) ;

cl.reverse(); // ¢l is modified

CircArc c2="cl; // ¢l is not modified
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% When defining composite or loop geometries, you shall not use the reverse method, but
only the ~ operator

Let’s summarize information about geometrical keys on circular arcs:

key(s) authorized types examples
_center, _vl, | Point _v2=Point(0.,0.),
_v2 _center=Point(0.,0.,0.)

%@ Circular arcs cannot be defined if the angular sector is greater than 7. This is a GMSH

restriction !

5.1.3 Polygons and polygon-likes
Polygons
A polygon is defined by its ordered list of vertices.
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To do so, you will use the parameter _vertices.

_nnodes can take one single value or a vector of values (Numbers object) and _hsteps can take
one real value or a vector of real values (Reals object). The vector sizes are the number of vertices
(same as the number of edges for a polygon). After these arguments, you can give names of main
domain and side domains as explained in preamble of this section.

Example.
std :: vector<Point> p(5) ;
p[0]=Point (0.,0.) ;
p[l]=Point (8.,0.) ;
p[2]=Point (9. ,4.) ;
p[3]=Point (5. ,2.) ;

p[4]=Point (1. ,4.);
Polygon polyl(_vertices=p, _nnodes=Numbers(15, 10, 8, 8, 10),
_domain name="0Omega” , _side_names="Sigma”) ;

Let’s summarize information about geometrical keys on polygons:

key \ authorized types \ examples ‘

_vertices vector of Point (std::vector<Point> wvp; ...)
_vertices=vp
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Triangles

To define a triangle, you give the 3 vertices.
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There is a parameter for each of them: _v1, v2 and _v3. These parameters take 2D or 3D points.
_nnodes can take one single value or a vector of 3 values (Numbers object) and _hsteps can take
one real value or a vector of 3 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.

Example.
Point a(-1.,
Point b(1.,—
Point ¢(2.,3.,1.);
Triangle t1(_vl=a, _v2=b, _v3=c, _nnodes=Numbers(10,15,20),
_domain name="0Omega” ; _side_names="Gamma” ) ;

Let’s summarize information about geometrical keys on triangles:

| key(s) | authorized types | examples
_vl, v2, _v3 Point _v1=Point(0.,0.),
_v2=Point(0.,0.,0.)

Quadrangles

To define a quadrangle, you give the 4 vertices.

(]

There is a parameter for each of them: _v1, v2, _v3 and _v4. These parameters take 2D or 3D
points.

_nnodes can take one single value or a vector of 4 values (Numbers object) and _hsteps can take
one real value or a vector of 4 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.

Example.
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Quadrangle ql(_v1=Point (0.,0.), _v2=Point(2.,0.), _v3=Point(2.,1.),
_v4=Point (0. ,1.) , _nnodes=Numbers(20, 10, 20, 10), _domain name="Omega” ,
_side_names="Gamma” ) ;

Let’s summarize information about geometrical keys on quadrangles:

’ key(s) \ authorized types \ examples
_vl, _v2, _v3, | Point _v1=Point(0.,0.),
_v4 _v4=Point(0.,0.,0.)
Parallelograms

To define a parallelogram, you give 3 vertices. If you refer to the following figure, p3 is unnecessary.
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There is a parameter for each of them: _v1, _v2, and _v4. These parameters take 2D or 3D
points.

_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can
take one real value or a vector of 4 real values (Reals object). After these arguments, you can
give names of main domain and side domains as explained in preamble of this section.

Examples.

Parallelogram pl(_v1=Point(0.,0.), _v2=Point(2.,0.), _v4=Point(0.,1.) ,
_nnodes=Numbers (20, 10, 20, 10), _domain name="Omega” ,
_side_names="Gamma” ) ;

Parallelogram p2(_-v1=Point (0.,0.), _v2=Point(2.,0.), _v4=Point (0.,1.),
_nnodes=Numbers(20, 10), _domain name="Omega”, _side_names="Gamma”) ;

Both parallelograms of previous examples are identical. This explains the ability to give 2 values
for _nnodes.
Let’s summarize information about geometrical keys on paralellograms:

’ key(s) \ authorized types \ examples
_vl, v2, v4 Point _v1=Point(0.,0.),
_v2=Point(0.,0.,0.)

Rectangles

To define a rectangle, you give 3 vertices, as for parallelograms.
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There is a parameter for each of them: _v1, v2, and _v4, as for Parallelogram. These
parameters take 2D or 3D points.

For rectangles in plane z=0, where sides are parallel to x-axis and y-axis, you can define the
rectangle by its center (¢ in the figure) and its lengths or p; (recalled origin in this case) and
its lengths. You may use _center, xlength and _ylength or _origin, xlength and _ylength
to do so. _origin and _center take 2D or 3D points. _xlength and _ylength take one single
positive value.

There is another possibility : defining the rectangle by its bounds : parameters _xmin, _xmax,
_ymin and _ymax. These parameters take one single value.

_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can
take one real value or a vector of 4 real values (Reals object). After these arguments, you can
give names of main domain and side domains as explained in preamble of this section.

Examples.

Rectangle rl(_v1=Point (0.,0.), _v2=Point(2.,0.), _v4=Point(0.,1.),
_nnodes=Numbers (20, 10), _domain name="Omega” ,
_side_names=Strings (”Gammal”, ”"Gamma2”, "Gammal”, ”Gamma2”));

Rectangle r2(_center=Point (1.,0.5), _xlength=2., _ylength=1.,
_nnodes=Numbers(20, 10), _domain name="0Omega” ,
_side_names=Strings (”Gammal” , "Gamma2” , "Gammal” , "Gamma2”)) ;

Rectangle r3(_origin=Point (0.,0.), _xlength=2., _ylength=1.,
_nnodes=Numbers (20, 10), _domain name="Omega” ,

_side_names=Strings (”?Gammal” , "Gamma2”, "Gammal” , ”"Gamma2”));
Rectangle r3(_xmin=0., xmax=2., _ymin=0., _ymax=1., _nnodes=Numbers(20,
10) , _domain name="0Omega”, _side_names=Strings (”’Gammal”, ”Gamma2”

"Gammal” , ”Gamma2”) ) ;

This is 4 definitions of the same Rectangle object.
Let’s summarize information about geometrical keys on rectangles:

| key(s) | authorized types | examples
_center, Point _origin=Point(0.,0.),
_origin _center=Point(0.,0.,0.)
vl, v2, _v4 Point _v1=Point(0.,0.),

_v4=Point(0.,0.,0.)

_xlength, single unsigned integer or real positive | _xlength=1, _ylength=2.5
_ylength value
_xmin, _xmax, | single integer or real value xmin=1, _ymax=-2.5
_ymin, _ymax
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Squares

To define a square, you give 3 vertices, as for rectangles and parallelograms.
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There is a parameter for each of them: _v1, _v2, and _v4, as for Parallelogram and Rectangle.
These parameters take 2D or 3D points.
For squares in plane z=0, where sides are parallel to x-axis and y-axis, you can define the square
by its center (c in the figure) and its length or p; (recalled origin in this case) and its length. You
may use _center and _length or _origin and _length to do so. _origin and _center take 2D or
3D points. _length takes one single positive value.
_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can
take one real value or a vector of 4 real values (Reals object). After these arguments, you can
give names of main domain and side domains as explained in preamble of this section.

Examples.

Square sl1(_v1=Point (0.,1.), _v2=Point(1.,1.), _v4=Point(0.,2.),

_nnodes=Numbers(20, 10), _domain name="0Omega” ,

_side_names=Strings (”?Gammal” , ”"Gamma2”, "Gammal”, ”"Gamma2”));

Square s2(_center=Point (0.5,1.5), _length=1., _nnodes=Numbers(20, 10),
_domain_ name="0Omega” , _side_names=Strings (”Gammal” , "Gamma2” , ”"Gammal” ,
"Gamma2” ) ) ;

Square s3(_origin=Point (0.,1.), _length=1., _nnodes=Numbers(20, 10),
_domain name="0Omega” , _side_names=Strings (”Gammal”, ”Gamma2”, “Gammal”
"Gamma2” ) ) ;

This is 3 definitions of the same Square object.
Let’s summarize information about geometrical keys on squares:

’ key(s) ‘ authorized types ‘ examples
_center, Point _origin=Point(0.,0.),
_origin _center=Point(0.,0.,0.)
vl, v2, _v4 Point _v2=Point(0.,0.),
_v4=Point(0.,0.,0.)
_length single unsigned integer or real positive | _length=1, length=2.5
value
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5.1.4 Ellipses and disks
Ellipses

To define an elliptic surface, you have to precise the plane where it is and the axis parameters. To
define the plane, you just have to give the center point (parameter _center) and 2 other points,
in order to have 3 unaligned points. These points are supposed to be both apogees of the ellipse
(parameters _v1 and _v2), namely ¢, p; and p2 in the following figure:
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These parameters take 2D or 3D points.

When apogees are along x-axis and y-axis respectively, you can give semi-axes lengths by using
xlength and _ylength.

_nnodes can take one single value or a vector of 4 values (Numbers object), one for each quarter
of ellipse. _hsteps can take one real value or a vector of 4 real values (Reals object). After these
arguments, you can give names of main domain and side domains as explained in preamble of
this section.

Examples.

Ellipse el(_center=Point (0.,0.), _vl=Point(2.,0.), _v2=Point(0.,1.),
_nnodes=Numbers(5, 10, 5, 10), _domain name="Omega”

_side_names=Strings ("Gamma5” , "Gammal0” , "Gamma5” , ”Gammal(0”)) ;
Ellipse e2(_center=Point (0.,0.,0.), _vl=Point(1.,0.,1.),
_v2=Point (0.,1.,1.), _nnodes=40, _domain_name="0Omega” ,

_side_names="Gamma” ) ;
Ellipse e3(_center=Point(0.,0., _xlength=2, _ylength=3.5, _nnodes=40,
_domain name="0Omega” , _side_names="Gamma” ;

Lets’ summarize information about geometrical keys on ellipses:

| key(s) | authorized types | examples
_center, _vl, | Point _center=Point(0.,0.),
_v2 _v2=Point(0.,0.,0.)
_xlength, single unsigned integer or real positive | _xlength=1, _ylength=2.5
_ylength value

Disks

To define an disk, you have to precise the plane where it is and the radius parameters. To define
the plane, you just have to give the center point and 2 other points, in order to have 3 unaligned
points. These points are supposed to be doing a right angle with the center of the disk (as if they
were apogees of an ellipse).
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To do so, you will use parameters _center, _v1 and _v2, as for an ellipse. These parameters take
2D or 3D points.

Furthermore, you can define disk sectors with two additionnal parameters: _anglel and _angle2.
Values of angles are given in degree and between 0 and 360.

_nnodes can take one single value or a vector of 4 values (Numbers object), one for each quarter
of ellipse. _hsteps can take one real value or a vector of 4 real values (Reals object). After these
arguments, you can give names of main domain and side domains as explained in preamble of
this section.

Examples.

Disk dl(_center=Point (0.,0.), _vl=Point(1.,0.), _v2=Point (0.,1.),
_nnodes=Numbers(5, 10, 5, 10), _domain name="Omega”

_side_names=Strings (”?Gamma5” , ”Gammal0”, "Gamma5”, "Gammal0”));

Disk d2(_center=Point (0.,0.,0.), _vl=Point(1.,0.,1.), _v2=Point(0.,1.,1.),
_nnodes=40, _domain name="Omega” , _side_names="Gamma”) ;

Disk d3(_center=Point (0.,0.), _radius=2.5, _nnodes=40, _domain name="0Omega” ,

_side_names="Gamma” ) ;

@ The Disk object has another name: Circle

Let’s summarize information about geometrical keys on disks:

’ key \ authorized types \ examples
_center, _v1, | Point _center=Point(0.,0.),
_v2 _v1=Point(0.,0.,0.)
_radius, single unsigned integer or real positive | _radius=1, _angle1=247.5
_anglel, value
_angle2
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5.1.5 Polyhedra and polyhedron-likes
Polyhedra

A polyhedron is defined by its faces. The list of faces is a vector of polygons (See subsection 5.1.3
for details).

To do so, you will use the parameter _faces. The only other parameter you may use is
_domain_name, to set the name of the polyhedral main domain. Everything else is defined
by the faces.

Example.

std :: vector<Point> v(5), v2(4);

v[0]=Point (0.,0.,0.); v[l]=Point(2.,0.,0.); v
v[3]=Point (1.,4.,0.); v[4]=Point(—-1.,2.,0.);

Polygon pgl(_vertices=v, _nnodes="Gammal”) ;

v[0]=Point (0. ,0.,1.); v[1]=Point(2.,0.,1.); v[2]=Point(3.,1.,1.);
v[3]=Point (1. ,4.,1.); v[4]=Point(—-1.,2.,1.);

Polygon pg2(_vertices=v, _nnodes="Gamma2”) ;

v2[0]=Point (0.,0.,0.); v2[1l]=Point (2.,0.,0.); v2[2]=Point(2.,0.,1.);
vs2[3]=Point (0.,0.,1.);

Polygon pg3(_vertices=v2, _nnodes="Sigma”);

v2[0]=Point (2. ,0.,0.); v2[1]=Point(3.,1.,0.); v2[2]=Point (3.
v2[3]=Point (2.,0., 1.);

Polygon pgd(_vertices=v2, _nnodes="Sigma”);

v2[0]=Point (3. ,1.,0.); v2[1l]=Point(1.,4.,0.); v2[2]=Point (1.,4.,1.);
v2[3]=Point (3.,1., 1.);

Polygon pgh(_vertices=v2, _nnodes="Sigma”);

v2[0]=Point (1.,4.,0.); v2[l]=Point(—1.,2.,0.); v2[2]=Point(—1.,2.,1.);
v2[3]=Point (1.,4., 1.);

Polygon pg6(_vertices=v2, _nnodes="Sigma”)

v2[0]=Point (—-1.,2.,0.); v2[1l]=Point (0.,0.,
v2[3]=Point (—-1.,2., 1.);

Polygon pg7(_vertices=v2, _nnodes="Sigma”);

std :: vector<Polygon> faces (7);

faces [0]=pgl; faces|[l]=pg2; faces[2]=pg3d; faces[3]=pgd; faces[4]=pgh;
faces [b]=pgb; faces|[6]=pgT;

Polyhedron polyl (_faces=faces , _domain name="Omega”) ;

0.); v2[2]=Point (0.,0.,1.);

Let’s summarize information about geometrical keys on polyhedra:

’ key \ authorized types \ examples ‘
_faces vector of Polygon (std::vector<Polygon> vp; ...)
_faces=vp
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Tetrahedra

To define a tetrahedron, you give the 4 vertices.
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There is a parameter for each of them: _v1, _v2, _v3 and _v4. These parameters take 3D points.
_nnodes can take one single value or a vector of 6 values (Numbers object) and _hsteps can take
one real value or a vector of 4 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.

Example.

Point a(1.,0.,0.), b(0.,1.,0.), ¢(0.,0.,1.), d(0.,0.,0.);
Tetrahedron tl(_vl=a, _v2=b, _v3=c, _v4=d, _nnodes=10, _domain name="Omega” ,
_side_names="Gamma” ) ;

Let’s summarize information about geometrical keys on tetrahedra:

’ key(s) \ authorized types \ examples
_vl, _v2, _v3, | Point _v1=Point(0.,0.,0.)
_v4

Hexahedra

To define a hexahedron, you just have to give the 8 vertices, defined as in the following figure.
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There is a parameter for each of them: _v1, _v2, _v3, _v4, _v5, _v6, _v7 and _v8. These
parameters take points or a single value (in this case, it is like a 1D point). _nnodes can take
one single value or a vector of 12 values (Numbers object) and _hsteps can take one real value
or a vector of 8 real values (Reals object). After these arguments, you can give names of main
domain and side domains as explained in preamble of this section.

Examples.

Point a(0.,0.,0.), b(4.,0.,0.), c¢(4.,2.,0.), d(0.,2.,0.);

Point aa(0.,0.,1.), bb(4.,0.,1.), cc(4.,2.,1.), dd(0.,2.,1.);

Hexahedron hl(_vl=a, _v2=b, _v3=c, _v4=d, _vb=aa, _v6=bb, _v7=cc, _v8=dd,
_nnodes=Numbers (40, 20, 40, 20, 40, 20, 40, 20, 10, 10, 10, 10),
_domain_name="0mega” ) ;

Let’s summarize information about geometrical keys on hexahedra:

’ key(s) \ authorized types \ examples
_vl, _v2, _v3, | Point _v4=Point(0.,0.,0.)
_v4, _v3, _vG6,
V7, _v8

Parallelepipeds

To define a parallelepiped, you just have to give 4 vertices (namely p;, pa, ps and ps), defined as
in the following figure :
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There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or
a single value (in this case, it is like a 1D point). _nnodes can take one single value or a vector of
3 or 12 values (Numbers object) and _hsteps can take one real value or a vector of 8 real values
(Reals object). After these arguments, you can give names of main domain and side domains as
explained in preamble of this section.

Examples.
Point a(0.,0.,0.), b(4.,0.,0.), c¢(4.,2.,0.), d(0.,2.,0.);
Point aa(0.,0.,1.), bb(4.,0.,1.), cc(4.,2.,1.), dd(0.,2.,1.);
Parallelepiped pl(_vl=a, _v2=b, _v4=d, _v5=aa, _nnodes=Numbers(40, 20, 40,
20, 40, 20, 40, 20, 10, 10, 10, 10), _-domain name="Omega” ) ;
Parallelepiped p2(-vl=a, _v2=b, _v4=d, _vb=aa, _nnodes=Numbers(40, 20, 10),
_domain name="0Omega” ) ;

Both parallelepipeds of previous examples are identical. This explains the ability to give 3 values
for _nnodes.
Let’s summarize information about geometrical keys on parallelepipeds:

| key(s) | authorized types | examples
_vl, _v2, _v4, | Point _v5=Point(0.,0.,0.)
_v5

Cuboids

To define a cuboid, you give 4 vertices, as for parallelepipeds.
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There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or
a single value (in this case, it is like a 1D point). For cuboids where faces are parallel to planes
x=0, y=0 and z=0, you can define the cuboid by its center (¢ in the figure) and its lengths or
p1 (recalled origin in this case) and its lengths. You may use _center, _xlength, _ylength and
_zlength or _origin, xlength, _ylength and _zlength to do so. _origin and _center take
points or a single value (in this case, it is like a 1D point). _xlength, _ylength and _zlength
take one single positive value. There is another possibility : defining the rectangle by its bounds
: parameters _xmin, _xmax, _ymin, _ymax, _zmin and _zmax. These parameters take one
single value.

_nnodes can take one single value or a vector of 3 or 12 values (Numbers object) and _hsteps
can take one real value or a vector of 8 real values (Reals object). After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

Examples.
Cuboid cl1(-v1=Point (0.,0.,0.), _v2=Point(2.,0.,0.), _v4=Point(0.,3.,0.),
_v5=Point (0.,0.,4.), _nnodes=40, _domain_name="0Omega”) ;

Cuboid c¢2(_origin=Point (0.,0.,0.), _xlength=2., _ylength=3., _zlength=4,
_nnodes=40, _domain name="0Omega”) ;

Cuboid c¢3(_center=Point (1.,1.5.,2.) , xlength=2., _ylength=3., _zlength=4,
_nnodes=40, _domain name="0Omega” ) ;

Cuboid ¢4 (.xmin=0, xmax=2, _ymin=0, _ymax=3, _zmin=0, _zmax=4, _nnodes=40,
_domain name="0mega” ) ;

This is 4 definitions of the same Cuboid object.
Let’s summarize information about geometrical keys on cuboids:
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] key(s)

authorized types

examples

_center, Point _center=Point(0.,0.,0.)
_origin

_vl, _v2, _v4, | Point _v1=Point(0.,0.,0.)

_vbH

_xlength, single unsigned integer or real positive | xlength=1, _zlength=2.5
_ylength, value

_zlength

_xmin, _xmax, | single integer or real value _xmin=1, _zmin=-2.5
_ymin, _ymax,

_zmin, _zmax

Cubes

To define a cube, you give 4 vertices, as for parallelepipeds and cuboids.

There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or
a single value (in this case, it is like a 1D point). For cuboids where faces are parallel to planes
x=0, y=0 and z=0, you can define the cuboid by its center (c in the figure) and its lengths or p;
(recalled origin in this case) and its lengths. You may use _center and _length or _origin and
_length to do so. _origin and _center take points or a single value (in this case, it is like a 1D
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point). _length take one single positive value.

At last, you can give an additional argument: the number of octants to deal with (parameter

_nboctants). Let us explain this with the following figure:
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Considering the center of the cube, and the associated trihedron, symbolized by black dashed
arrows, the cube can be splitted into 8 cubic parts, corresponding to one octant. Octants having
a numbering convention, When giving the number of octants he asked, for instance 5, the user
wants to build intersection of the cube with octants 1 to 5. This is a way to define the Fichera
Cube (7 octants) or the L-shape (3 or 6 octants). The default value is 8, so that the whole cube
is considered.

_nnodes can take one single value or a vector of 3 or 12 values (Numbers object) and _hsteps
can take one real value or a vector of 8 real values (Reals object). After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

Examples.

Cube cl(-v1=Point (0.,0.,0.), —V2=Point (4.,0.,0.), _v4=Point (0.,4.,0.),
_v5=Point (0.,0.,4.), _nnodes=40, _domain name="0Omega”) ;

Cube c¢2(_origin=Point (0.,0.,0.), _length=2., nnodes=40,
_domain_name="0mega” ) ;

Cube c3(_center=Point(1.,1.,1.),_length=2., _nnodes=40,
_domain_name="0mega” ) ;

This is 3 definitions of the same Cube object.
Let’s summarize information about geometrical keys on cubes:

| key(s) | authorized types | examples

_center, Point _center=Point(0.,0.,0.)

_origin

_vl, _v2, _v4, | Point _v1=Point(0.,0.,0.)

_vd

_length single unsigned integer or real positive | _length=1, _length=2.5
value

_nboctants single unsigned integer value between 1 | _nboctants=3
and 8

5.1.6 Ellipsoids and balls
Ellipsoids

To define an ellipsoidal volume, you do the same way as for an ellipse or a disk (See section 5.1.4
or section 5.1.4), namely using 4 points ¢, p1, ps, ps, defined as in the following figure:
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There is a parameter for each of them: _center, _—v1, _v2, and _v6. These parameters take points
or a single value (in this case, it is like a 1D point). For ellipsoidal volumes where main axes are
parallel to x-axis, y-axis and z-axis, you can define the ellipsoid with the center and 3 axis lengths.
For this purpose, use _xlength, _ylength and _zlength, taking one single positive value.
_nnodes can take one single value or a vector of 3 or 12 values (Numbers object), one for each
quarter of ellipse. _hsteps can take one real value or a vector of 6 real values (Reals object).
After these arguments, you can give names of main domain and side domains as explained in
preamble of this section.

Examples.

Ellipsoid el (_center=Point (0.,0.,0.), _vl=Point(3.,0.,0.),
_v2=Point (0.,2.,0.), _v6=Point(0.,0.,1.), _nnodes=Numbers(35, 30, 25),
_domain name="0Omegal”, _side_names="Gamma” ) ;

Ellipsoid e2(_center=Point (0.,0.,0.), _vl=Point(3.,0.,0.),
_v2=Point (0.,2.,0.), _v6=Point (0.,0.,1.), _nnodes=Numbers(35, 35, 35, 35,
30, 30, 30, 30, 25, 25, 25, 25), _domain name="Omegal” ,
_side_names="Gamma” ) ;

Ellipsoid e3(_center=Point (0.,0.,0.), _xlength=6, _ylength=4, _zlength=2,
_nnodes=Numbers(35, 30, 25), _domain name="0Omegal”, _side_names="Gamma”);

This is 3 definitions of the same E11ipsoid object. The difference between e; and e, explains the
ability to give 3 values for _nnodes.
Let’s summarize information about geometrical keys on ellipsoids:

’ key(s) \ authorized types \ examples ‘
_center, _vl, | Point _center=Point(0.,0.,0.)
_v2, _v6
_xlength, single unsigned integer or real positive | xlength=1, _zlength=2.5
_ylength, value
_zlength

Balls

To define a ball, you do the same way as for an ellipsoid (See section 5.1.6), namely using 4 points
¢, p1, P2, ps, defined as in the following figure:
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There is a parameter for each of them: _center, _—v1, _v2, and _v6. These parameters take points
or a single value (in this case, it is like a 1D point). For balls where main axes are parallel to
x-axis, y-axis and z-axis, you can define the ellipsoid with the center and the radius. For this
purpose, use _radius, taking one single positive value.

_nnodes can take one single value or a vector of 3 or 12 values (Numbers object), one for each
quarter of ellipse. _hsteps can take one real value or a vector of 6 real values (Reals object).
After these arguments, you can give names of main domain and side domains as explained in
preamble of this section.

At last, you can give an additional argument: the number of octants to deal with (parameter
_nboctants). See section 5.1.5 for details.

Examples.

Ball bl(_center=Point(0.,0.,0.), _vl=Point(3.,0.,0.), _v2=Point(0.,3.,0.),
_v6=Point (0.,0.,3.), _nnodes=Numbers(35, 30, 25), _domain name="0Omegal” ,
_side_names="Gamma” ) ;

Ball b2(_center=Point (0.,0.,0.), _vl=Point(3.,0.,0.), _v2=Point(0.,3.,0.),
_v6=Point (0.,0.,3.), _nnodes=Numbers(35, 35, 35, 35, 30, 30, 30, 30, 25,

25, 25, 25), _domain name="Omegal”, _side_names="Gamma” ) ;
Ball b3(_center=Point (0.,0.,0.), _radius=3, _nnodes=Numbers(35, 30, 25),
_domain_name="0Omegal” , _side_names="Gamma” ) ;

This is 3 definitions of the same Ball object. The difference between b; and b, explains the ability
to give 3 values for _nnodes.

@ The Ball object has another name: Sphere

Let’s summarize information about geometrical keys on balls:

| key(s) | authorized types | examples
_center, _vl, | Point _center=Point(0.,0.,0.)
_v2, _v6
_radius single unsigned integer or real positive | _radius=1, _radius=2.5
value
_nboctants single unsigned integer value between 0 | _nboctants=3
and 8
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5.1.7 Trunks and trunk-likes
Trunks

A trunk is a generalized truncated cone. To define a trunk, you need to give a surface, namely a
polygonal surface (Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, or Square), or
a elliptical surface (E1lipse or Disk). To define the other surface, you just need to give a point
of this surface (origin), and the scale factor according to the first surface.

For a trunk with polygonal basis, origin is the equivalent of the first vertex of the surface you
give, as you can see on the following figure of a trunk with triangular basis. The triangle being
defined by its vertices py, ps and ps, origin is the equivalent of p;:

U3 SNy

SNy

SN3

To do so, you will use parameter _basis to define the basis, parameter _origin to define origin,
and parameter _scale to define the scale factor.

_basis takes any surface object : Polygon, Triangle, Quadrangle, Parallelogram, Rectangle,
Square, Ellipse or Disk. _origin takes a point or a single value (in this case, it is like a 1D
point). _scale takes one single positive value.

For a trunk with elliptical basis, origin is the center of the second basis, as you can see on the
following figure of a trunk with elliptical basis.
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85



To do so, you will use parameters _centerl, _v1l, _v2, _center2 and _scale to define such a
trunk. _centerl, _v1, v2 and _center2 take a point or a single value (in this case, it is like a
1D point). _centerl, vl and _v2 are used as for a E11lipse or Disk object (see section 5.1.4 or
section 5.1.4 for details). _center2 is used in this case instead of _origin, as it is the center of
the second basis.

_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3
times the number of edges of the basis. _hsteps can take one real value or a vector of p real
values (Reals object), where p is the number of points defining the trunk. After these arguments,
you can give names of main domain and side domains as explained in preamble of this section.

Examples.

Trunk tl(_basis=Triangle(_vl=Point(0.,0.,0.), _v2=Point (3.,0.,0.),
_v3=Point (0.,2.,0.)), _origin=Point (0.,2.,1.), _scale=0.5,
_nnodes=Numbers(10, 10, 10, 5, 5, 5, 20, 20, 20), _domain name="Omega” ,
_side_names=Strings (”Gamma” , "Gamma”, ”Sigma”, ”Sigma”, ”Sigma”));

Trunk t2(_basis=Triangle(_vl=Point(0.,0.,0.), _v2=Point (3.,0.,0.),
_v3=Point (0.,2.,0.)), _origin=Point(0.,2.,1.), _scale=0.5,
_nnodes=Numbers(10, 5, 20), _domain name="Omega” ,

_side_names=Strings ("Gamma” , "Gamma” , ”Sigma”, ”Sigma”, ”Sigma”));

This is 2 definitions of the same Trunk object, explaining the ability to give 3 values for _nnodes,
instead of 9.
Let’s summarize information about geometrical keys on trunks:

’ key(s) ‘ authorized types ‘ examples
_basis Polygon, Triangle, Quadrangle, | _basis=Triangle(...)
Parallelogram, Rectangle, Square,
Ellipse, Disk
_origin Point _origin=Point(0.,0.,0.)
_scale single unsigned integer or real positive | _scale=2, _scale=0.5
value
_centerl, Point _center1=Point(0.,0.,0.)
_center2, _vl,
_v2
Cylinders

A cylinder is a truncated cone whose apex is at infinite distance. So it is the geometry defined
by the extrusion of a surface by translation.

86



SNy STy

To do so, you have to use parameters _basis and _direction. _basis, as for trunks, take any
surface object: Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, Square, Ellipse
or Disk. _direction takes a vector of real numbers (Point or Reals objects) or a single value (in
this case, it is like a direction parallel to x-axis).

As for a trunk, a cylinder with elliptical basis can be defined by another way, using parameters
_centerl, _vl, _v2 and _center2, taking a point or a single value (in this case, it is like a 1D
point). _centerl, vl and _v2 are used as for a El1lipse or Disk object (see section 5.1.4 or
section 5.1.4 for details). _center2 is used in this case instead of _direction, as it is easier to
give the center of the second basis, instead of the direction vector.

_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3
times the number of edges of the basis. _hsteps can take one real value or a vector of p real
values (Reals object), where p is the number of points defining the trunk. After these arguments,
you can give names of main domain and side domains as explained in preamble of this section.

Examples.

Cylinder cl(_basis=Disk(_center=Point (0.,0.,0.), _vl=Point(2.,0.,0.),
_v2=Point (0.,2.,0.)), _direction=Point (0.,2.,1.), _nnodes=Numbers(10, 10,
10, 10, 5, 5, 5, 5, 20, 20, 20, 20), _domain name="Omega” ,
_side_names=Strings (”Gamma” , "Gamma”, ”Sigma”, ”Sigma”, ”Sigma”,
7Sigma”) ) ;

Cylinder c2(_basis=Disk(_center=Point (0.,0.,0.), _vl=Point(2.,0.,0.),
_v2=Point (0.,2.,0.)), _direction=Point (0.,2.,1.), _scale=0.5,
_nnodes=Numbers(10, 5, 20), _domain name="0Omega” ,
_side_names=Strings ("Gamma” , "Gamma”, ”Sigma”, ”Sigma”, ”Sigma”,
"Sigma”) ) ;

Cylinder c3(_centerl=Point(0.,0.,0.), _vl=Point(2.,0.,0.),

_v2=Point (0.,2.,0.)), _center2=Point (0.,2.,1.), _scale=0.5,
_nnodes=Numbers(10, 5, 20), _domain name="Omega” ,
_side_names=Strings ("Gamma” , "Gamma”, ”Sigma”, ”Sigma”, ”Sigma”,
7Sigma”) ) ;

This is 3 definitions of the same Cylinder object, explaining the ability to give 3 values for
_nnodes, instead of 12.
Let’s summarize information about geometrical keys on cylinders:
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] key(s) \ authorized types \ examples
_basis Polygon, Triangle, Quadrangle, | _basis=Triangle(...)
Parallelogram, Rectangle, Square,
Ellipse, Disk
_direction std::vector of real values, Reals or | _direction=Reals(0.,0.,1.),
Point _direction=Point(0.,0.,1.)
_centerl, Point _center1=Point(0.,0.,0.)
_center2, _vl,
_v2
Prisms

A prism is by definition a cylinder whose basis is a polygonal surface (Polygon, Triangle,
Quadrangle, Parallelogram, Rectangle, or Square).
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As for cylinder, you will use parameters _basis and _direction. _basis, as for trunks, take
any polygonal object: Polygon, Triangle, Quadrangle, Parallelogram, Rectangle or Square.
_direction takes a vector of real numbers (Point or Reals objects) or a single value (in this case,
it is like a direction parallel to x-axis).

Often a prism refers to a cylinder with triangular basis (as the finite element cell). So you can
also define a prism from 3 points (for triangular basis), using parameters _v1l, _-v2, _v3 instead
of _basis, taking a point or a single value (in this case, it is like a 1D point).

_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3
times the number of edges of the basis. _hsteps can take one real value or a vector of p real
values (Reals object), where p is the number of points defining the trunk. After these arguments,
you can give names of main domain and side domains as explained in preamble of this section.

Examples.

Prism pl(_basis=Triangle(_vl=Point (0.,0.,0.), _v2=Point(2.,0.,0.),
_v3=Point (0.,1.,0.)), _direction=Reals(0.,2.,1.), _nnodes=Numbers(10, 10,
10, 5, 5, 5, 20, 20, 20), _domain name="Omega” ,
_side_names=Strings ("Gamma” , "Gamma”, ”Sigma”, ”Sigma”, ”Sigma”));
Prism p2(_basis=Triangle(_vl=Point (0.,0.,0.), _v2=Point (2.,0.,0.),
_v3=Point (0.,1.,0.)), _direction=Reals(0.,2.,1.), _nnodes=Numbers(10, 5,
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20) , _domain name="Omega” , _side_names=Strings (”’Gamma”, ”Gamma”, ”Sigma”
"Sigma” , ”Sigma”));

Prism p3(-vl=Point (0.,0.,0.), _v2=Point(2.,0.,0.), _v3=Point(0.,1.,0.),
_direction=Reals (0.,2.,1.), _nnodes=Numbers(10, 5, 20),
_domain name="0Omega” , _side_names=Strings (”’Gamma”, ”Gamma”, ”Sigma”,
”Sigma”, ”Sigma”));

This is 3 definitions of the same Prism object, explaining the ability to give 3 values for _nnodes,
instead of 9.
Let’s summarize information about geometrical keys on prisms:

’ key(s) \ authorized types \ examples ‘
_basis Polygon, Triangle, Quadrangle, | _basis=Triangle(...)
Parallelogram, Rectangle, Square
_direction std::vector of real values, Reals or | _direction=Reals(0.,0.,1.),
Point _direction=Point(0.,0.,1.)
_vl, v2, v3 Point _v2=Point(0.,0.,0.)
Cones

A cone is defined by a surface and an apex.
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To do so, you will use parameters _basis and _apex. _basis, as for trunks, take any surface
object: Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, Square, E11ipse or Disk.
_apex takes a point or a single value (in this case, it is like a 1D point).

As for trunks and cylinders, you can also define directly a cone with elliptical basis, with
parameters _centerl, v1, v2 (and _apex). These parameters take a point or a single value (in
this case, it is like a 1D point).

_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice
the number of edges of the basis. _hsteps can take one real value or a vector of p real values
(Reals object), where p is the number of points defining the trunk. After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

Examples.
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Cone cl(_basis=Disk(_center=Point (0.,0.,0.), _vl=Point(2.,0.,0.),
_v2=Point (0.,2.,0.)), _apex=Point (0..,0.,1.), _nnodes=Numbers(20, 20, 20,
20, 10, 10, 10, 10), _domain name="Omega”, _side_names="Gamma”);

Cone c2(_basis=Disk(_center=Point (0.,0.,0.), _vl=Point(2.,0.,0.),
_v2=Point (0.,2.,0.)), _apex=Point(0..,0.,1.), _nnodes=Numbers(20, 10),
_domain name="0Omega” , _side_names="Gamma” ) ;

Cone c¢3(_centerl=Point (0.,0.,0.), _vl=Point(2.,0.,0.), _v2=Point(0.,2.,0.),
_apex=Point (0..,0.,1.), _nnodes=Numbers(20, 10), _domain name="Omega” ,
_side_names="Gamma” ) ;

This is 3 definitions of the same Cone object, explaining the ability to give 2 values for _nnodes,
instead of 8.

b
b2

@% Actually, this geometry cannot be meshed. Please use Pyramid for cones with
polygonal basis, or RevCone for revolution cones.

Let’s summarize information about geometrical keys on cones:

’ key(s) \ authorized types examples
_apex, Point _apex=Point(0.,0.,0.)
_centerl,
_vl, _-v2
_basis Polygon, Triangle, Quadrangle, | _basis=Triangle(...)
Parallelogram, Rectangle, Square,
Ellipse, Disk

Pyramids

A pyramid is a cone with a polygonal basis (Polygon, Triangle, Quadrangle, Parallelogram,
Rectangle, or Square).
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As for cones, you will use parameters _basis and _apex. _basis takes any polygonal object:
Polygon, Triangle, Quadrangle, Parallelogram, Rectangle or Square. _apex takes a point or
a single value (in this case, it is like a 1D point).
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Often a pyramid refers to a cone with quadrangular basis (as the finite element cell). So you can
also define a pyramid from 4 points (for quadrangular basis), using parameters _v1, _v2, _v3,
_v4 instead of _basis, taking a point or a single value (in this case, it is like a 1D point).
_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice
the number of edges of the basis. _hsteps can take one real value or a vector of p real values
(Reals object), where p is the number of points defining the trunk. After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

Examples.

Pyramid pl(_basis=Quadrangle(_v1=Point (0.,0.,0.), _v2=Point(2.,0.,0.),
_v3=Point (1.,1.,0.), _v4=Point(—-1.,2.,0.)), _apex=Point (0.,0.,1.),
_nnodes=Numbers(20, 20, 20, 20, 10, 10, 10, 10), _domain name="Omega” ,
_side_names="Gamma” ) ;

Pyramid p2(_basis=Quadrangle(_v1=Point (0.,0.,0.), _v2=Point(2.,0.,0.),
_v3=Point (1.,1.,0.), _v4=Point(—-1.,2.,0.)), _apex=Point (0.,0.,1.),
_nnodes=Numbers (20, 10), _domain name="Omega”, _side_names="Gamma”) ;

Pyramid p3(-v1=Point (0.,0.,0.), _v2=Point(2.,0.,0.), _v3=Point(1.,1.,0.),
_v4=Point(—1.,2.,0.), _apex=Point(0.,0.,1.), _nnodes=Numbers(20, 10),
_domain_ name="0Omega” , _side_names="Gamma” ) ;

This is 3 definitions of the same Pyramid object, explaining the ability to give 2 values for
_nnodes, instead of 8.
Let’s summarize information about geometrical keys on pyramids:

’ key(s) \ authorized types \ examples ‘
_apex, _vl, | Point _apex=Point(0.,0.,0.)
v2, v3, _v4
_basis Polygon, Triangle, Quadrangle, | _basis=Triangle(...)
Parallelogram, Rectangle, Square

Revolution trunks

A revolution trunk is a right trunk with circular basis.
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So, to define a revolution trunk, you just need to give centers and radiuses of bases, using dedicated
parameters _centerl, _center2, taking a point or a single value (in this case, it is a 1D point),
and _radiusl and _radius2, taking one single positive value.

RevTrunk offers you more geometry abilities. Indeed, you can decide to add extensions at ends of
the revolution trunk. Extensions can be : none, flat, ellipsoid, or cone. To define an extension, you
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just have to give its shape (type GeometricEndShape, values : _gesNone, _gesFlat, _gesEllipsoid
or _gesCone) and its height (called distance, as it is the distance of the apex/apogee from the
corresponding basis of the trunk). Default values are flat with no height. Please also note that
any extension means 4 additional edges and 4 additional side domains.

To do so, you will use parameters _end1_shape and _end2_shape, taking a GeometricEndShape,
and _end1_distance and _end2_distance, taking one single positive value.

_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3
times the number of edges of the basis. _hsteps can take one real value or a vector of p real
values (Reals object), where p is the number of points defining the trunk. After these arguments,
you can give names of main domain and side domains as explained in preamble of this section.
You also have an additional parameter, _nbsubdomains, enabling you to slice the main trunk
(without its extensions) in as many domains as you want.

Let’s summarize information about geometrical keys on revolution trunks:

’ key(s) \ authorized types \ examples
_centerl, Point _center2=Point(0.,0.,0.)
_center2
_radiusl, single unsigned integer or real positive | _radiusl=1, _radius2=2.5
_radius2 value
_end1_shape, enum GeometricEndShape _end1_shape=gesNone,
_end2_shape _end2_shape=gesFlat,

_end2_shape=gesCone,
_end1_shape=gesEllipsoid,
_end2_shape=gesSphere
_end1_distance,| single unsigned integer or real positive | _end1_distance=1,
_end2_distance | value _end2_distance=2.5
_nbsubdomains| single unsigned integer value _nbsubdomains=2

Revolution cylinders

A revolution cylinder is a revolution trunk where both radiuses are equal. So, we need centers of
both bases, and the radius.
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To do so, you just have to give centers and radius of bases, using dedicated parameters _centerl,
_center2, taking a point or a single value (in this case, it is a 1D point), and _radius, taking one
single positive value.

As RevTrunk, RevCylinder offers you the ability to add extensions at ends of the revolution
cylinder. See section 5.1.7 for how to define these extensions. To do so, you will use
parameters _end1_shape and _end2_shape, taking a GeometricEndShape, and _end1_distance
and _end2_distance, taking one single positive value.

_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3
times the number of edges of the basis. _hsteps can take one real value or a vector of p real values
(Reals object), where p is the number of points defining the cylinder. After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

You also have an additional parameter, _nbsubdomains, enabling you to slice the main cylinder
(without its extensions) in as many domains as you want.

Examples.

RevCylinder rl(\centerl=Point (0.,0.,0.), _center2=Point(5.,0.,0.),
_radius=1, _nnodes=Numbers(10, 10, 10, 10, 10, 10, 10, 10, 10, 50, 50,
50, 50), _domain name="Omega”, _side_names=Strings (”Gamma” , ”"Gamma” ,
"Sigma” , ”Sigma”, ”Sigma”, ”Sigma”));

RevCylinder r2(\centerl=Point (0.,0.,0.), _center2=Point(5.,0.,0.),
_radius=1, _nnodes=Numbers(10, 10, 50), _domain name="Omega” ,
_side_names=Strings (’Gamma” , "Gamma’, ”Sigma”, ”Sigma”, ”Sigma”,
”Sigma”));

Let’s summarize information about geometrical keys on revolution cylinders:
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] key(s) authorized types \ examples
_centerl, Point _center1=Point(0.,0.,0.)
_center2
_radius single unsigned integer or real positive | _radius=1, _radius=2.5
value
_end1_shape, enum GeometricEndShape _end1_shape=gesNone,
_end2_shape _end2_shape=gesFlat,

_end1_shape=gesCone,
_end2_shape=gesEllipsoid,
_end1_shape=gesSphere
_end1_distance,| single unsigned integer or real positive | _end1_distance=1,
_end2_distance | value _end2_distance=2.5
_nbsubdomains| single unsigned integer value _nbsubdomains=2

Revolution cones

A revolution cone is a revolution trunk where second radius is equal to 0.
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To define a revolution cone, you need to give a center, a radius, and an apex, through parameters
_center, _radius ans _apex. _center and _apex take a point or a single value (in this case, it
is like a 1D point), whereas _radius takes a single positive value.

As RevTrunk, RevCone offers you more the ability to add an extension to the basis of a revolution
cone. See section 5.1.7 for how to define this extension. To do so, you will use parameters
_end_shape, taking a GeometricEndShape, and _end_distance, taking one single positive value.
_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice
the number of edges of the basis. _hsteps can take one real value or a vector of p real values
(Reals object), where p is the number of points defining the cone. After these arguments, you
can give names of main domain and side domains as explained in preamble of this section.

You also have an additional parameter, _nbsubdomains, enabling you to slice the main cone
(without its extension) in as many domains as you want.

Let’s summarize information about geometrical keys on revolution cones:
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] key(s) authorized types \ examples
_apex, _center | Point _apex=Point(0.,0.,0.)
_radius single unsigned integer or real positive | _radius=1, _radius=2.5
value
_end_shape enum GeometricEndShape _end_shape=gesNone,

_end_shape=gesFlat,
_end_shape=gesCone,
_end_shape=gesEllipsoid,
_end_shape=gesSphere
_end_distance | single unsigned integer or real positive | _end_distance=1,

value _end_distance=2.5
_nbsubdomains| single unsigned integer value _nbsubdomains=2

5.1.8 Definition of a geometry from its boundary

A loop geometry is a geometry defined by its boundaries. For example, instead of defining a
triangle, you will define here the surface inside the closed boundary composed of 3 segments.
With XLIFE+4 geometry engine, you can define 2D or 3D geometries, thanks to the following
routines:

Geometry planeSurfaceFrom (const Geometry& boundary, String domName =
String ()) ;
Geometry ruledSurfaceFrom (const Geometry& boundary, String domName =

String());
Geometry volumeFrom (const Geometry& boundary, String domName = String());

The first argument must be a "composite” geometry defined from curve boundaries (2D case) or
surface boundaries (3D case) such that the result is closed.
Let’s see an example using segments and circular arcs to define a mesh on a rectangle with rounded
corners :
Point a(—1.5,—4.); Point b(1.5,—4.); Point c¢(2.,—3.5); Point d(2.,3.5);
Point e(1.5,4.); Point f(—-1.5,4.); Point g(—2.,3.5); Point h(—-2.,-3.5
Segment sl (_-vl=a, _v2=b, _nnodes=21, _domain name="AB");
CircArc cl(_center=Point(3.5,0.5), _vl=b, _v2=c, _nnodes=5,
_domain name="BC”) ;
Segment s2(_vl=c, _v2=d, _nnodes=11, _domain name="CD”);
CircArc c2(_center=Point (3.5,1.5), _vl=d, _v2=e, _nnodes=5,
_domain_name="DE” ) ;
Segment s3(_vl=e, _v2=f, _nnodes=21, _domain name="EF”);
CircArc c3(_center=Point(0.5,1.5), _vl=f, _v2=g, _nnodes=5,
_domain name="FG”) ;
Segment s4 (_vl=g, _v2=h, _nnodes=11, _domain name="GH”);
CircArc c4(_center=Point (0.5,0.5), _vl=h, _v2=a, _nnodes=5,
_domain_name="HA” ) ;
Geometry g=planeSurfaceFrom (sl+cl+s2+c2+s34+c3+sd+c4 ,”Omega”) ;

The surfaceFrom routine is devoted to define surfaces from their boundaries. Segments and
circular arcs must be defined with the same orientation (clockwise or counter-clockwise).

With such definitions of segments s1, s2, s3 and s4 and circular arcs cl, ¢2, ¢3 and ¢4, in previous
example, the following definitions are right :

Geometry g=planeSurfaceFrom (s2+c2+s3+c3+s4+cd+sl+cl, "Omega”) ;
Geometry g=planeSurfaceFrom (sl+s2+s3+s4+cl+c2+c3+c4, "Omega” ) ;
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The order of components here, and also the first component, has no meaning, but they all are
oriented in the same way.

c1 C S2 d Co
b e
S1 S3
a f
C C
4 ] 13 S4 g 3

Figure 5.1: Rectangular geometry with rounded corners, defined with the surfaceFrom routine

We tell you that it is also possible for 3D case. Here is an example of a geometry basically
composed of a cube and a pyramid sharing one face:
Point a(0,0,0); Point b(2,0,0); Point ¢(2,2,0); Point d(0,2,0);

Point ¢(0,0,2); Point f(2,0,2); Point g(2,2,2); Point h(0,2,2)
Point i(4,1,1);

Square sl(_vl=a, _v2=b, _v4=e, _nnodes=11, _domain name="S1");
Square s2(_vl=d, _v2=c, _v4=h, _nnodes=11, _domain name="S52");
Square s3(_vl=a, _v2=b, _v4=d, _nnodes=11, _domain name="S3");
Square s4(-vl=e, _v2=f, _v4=h, _nnodes=11, _domain name="54");
Square s5(_vl=a, _v2=d, _v4=e, _nnodes=11, _domain name="S5");
Triangle t1(_vl=b, _v2=c, _v3=i, _nnodes=11, _domain name="T1");
Triangle t2(_vl=c, _v2=g, _v3=i, _nnodes=11, _domain name="T2");
Triangle t3(_vl=g, _v2=f, _v4=i, _nnodes=11, _domain name="T3");
Triangle t4(_vl=f, _v2=b, _v4=i, _nnodes=11, _domain name="T4");

Geometry vf=volumeFrom (s1+s2+s3+s4+s5+t14+t24+t3);

Figure 5.2: 3D geometry defined with the volumeFrom routine

@ 3D loop geometries can be defined by a mix of 2D loop geometries and 2D canonical
geometries.

%@ Although C++ authorizes it, do not write loop geometries as follows

volumeFrom(Rectangle(a,b,d,11,11,”’R1")+...);.  You have to define the rectangle r; instead, as in
the previous example.
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5.1.9 Combining geometries

A composite geometry is a geometry defined from a list of canonical or loop geometries. It is for
example the right way to define holes in your mesh, or to define multi-domains geometries.
How to define composite geometries 7 It’s easy, you just have to use the operators + and -.
Let’s see a first example :

Rectangle r(_xmin=-3, xmax=3, _ymin=-—2, _ymax=2, _nnodes=Numbers(33,22)

_domain name="0mega” ) ;

Ellipse e(_center=Point(0,0), _xlength=1, _ylength=0.5, _nnodes=11);

Geometry gm=r—e;

Geometry gp=r+e;
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Figure 5.3: Composite geometry of an ellipse inside a rectangle

In both cases, the ellipse is geometrically inside the rectangle. This hole will be meshed if you
used the operator +, and not meshed if you use the operator -. Both operators can detect if a
geometry is inside another geometry, in most of the cases.

g% If you forgot to give a domain name for the right hand side of the operator +, it will not be
stored, so that you still will have a hole.

These operators work with any geometries as far as geometrical inclusion is easy enough to detect.
Using operators + and - to define composite geometries is not restricted to 2 components. You
can define composite geometries with any number of components, and some of them can be loop
geometries :

Ellipse el(_center=Point (0.,0.), _vl=Point(4,0.), _v2=Point(0.,5.),
_nnodes=12, _domain name="0megal” ) ;

Point a(—1.5,—4.); Point b(1.5,—4.); Point c(2.,—3.5); Point d(2.,3.5);

Point e(1.5,4.); Point f(—-1.5,4.); Point g(—2.,3.5); Point h(—-2.,-3.5);

Segment sl (_vl=a, _v2=b, _nnodes=21, _domain name="AB");

CircArc cl(_center=Point(3.5,0.5), _vl=b, _v2=c, _nnodes=5,
—_domain_name="BC”) ;

Segment s2(_vl=c, _v2=d, _nnodes=11, _domain name="CD”);

CircArc c2(_center=Point(3.5,1.5), _vl=d, _v2=e, _nnodes=5,
—_domain name="DE” ) ;

Segment s3(_vl=e, _v2=f, _nnodes=21, _domain name="EF”);

CircArc c3(_center=Point (0.5,1.5), _vl=f, _v2=g, _nnodes=5,
_domain_name="FG”) ;

Segment s4 (_vl=g, _v2=h, _nnodes=11, _domain name="GH”);

CircArc c4(_center=Point(0.5,0.5), _vl=h, _v2=a, _nnodes=5,
_domain_name="HA” ) ;

Geometry sfl=(surfaceFrom (sl+cl+s2+c2+s3+c3+sd+c4,”Omega2”) ;

Ellipse e2(_center=Point(1.,2.), _vl=Point(1.5,2.), _v2=Point(1.,3.),
_nnodes=12, _domain name="0mega3” ) ;
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Ellipse e3(_center=Point (0.,0.), _vl=Point(0.5,0.), _v2=Point(0.,1.),
_nnodes=12, _domain name="0megad” ) ;

Rectangle r2(_xmin=5., xmax=6., _ymin=0., _ymax=1., _nnodes=6,
_domain_name="0megab” ) ;

Segment s5(_vl=Point(5.3,0.5), _v2=Point(5.7,0.5), _nnodes=5);

CircArc c5(_center=Point(5.5,0.5), _vl=Point(5.7,0.5), _v2=Point (5.5,0.7),
_nnodes=5);

CircArc c6(_center=Point(5.5,0.5), _vl=Point (5.5,0.7), _v2=Point(5.3,0.5),
_nnodes=5);

Geometry sf2=surfaceFrom (s5+c5+c6,”Omegat”) ;

Geometry gmulti=(el+sfl)—(e2+e3)+r2—sf2;

Figure 5.4: Composite geometry with multiple components and inclusions between components

% When at least 2 components share several vertices, several edges and/or several surfaces,
everything works fine, shared geometrical entities are not duplicated.

Figure 5.5: Composite geometry with edges shared by components.

As far as composite geometries are concerned, XLIFE++ detects inclusions between canonical
components. It is not always the case if components are loop geometries. Let’s take the previous
example, but this time, we want to mesh every domain.

Geometry gmulti2=(el+sfl)+(e2+e3)+r2+sf2;
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Figure 5.6: Composite geometry with multiple components and inclusions between components.
Some inclusions are not detected correctly.

You can see that both holes of the rounded rectangle are not taken into account, whereas the
half disk is correctly managed. Indeed, XLIFE-++ can in most of the cases determine if a loop
geometry is inside a canonical geometry but it can’t determine if a canonical geometry is inside
a loop geometry.

How to solve this problem ? By forcing it with the unary + operator, and rewriting the composite
expression if necessary, as in the following :

Geometry gmulti3=el+(sfl+(+(e2+e3))+r2+sf2;

Figure 5.7: Composite geometry with multiple components and inclusions between components.
Some inclusions are forced.

When you write (sfl+(+(e2+e3)), you tell explicitely that the right operand +(e2+-e3) is forced be
inside the left operand (sfl).

%@ When at least two components intersect and the intersection has same dimension (2
surfaces whose intersection is a surface, for instance), the resulting mesh will not be generated
properly. In this case, you must reconsider how to define your geometry.
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Figure 5.8: Partial inclusion is forbidden

5.2 Transformations on geometries

XLIFE++ allows you to apply geometrical transformations on Mesh, Geometry and Geometry
children objects. The main type is Transformation. It can be a canonical transformation or a
composition of transformations.

5.2.1 Canonical transformations

In the following, we will consider straight lines and planes.
A straight line is fully defined by a point and a direction. The latter is a vector of components
(2 or 3). This is a reason why we will write a straight line as follows : (Q, J)

A plane is fully defined by a point and a normal vector. This is a reason why we will write a
plane as follows : [, 7i]

Translations

Point B is the image of point A by a translation of vector # if and only if
AL =i

A translation can be defined by a STL vector (size 2 or 3) or its components :

Vector<Real> u;
Real ux, uy, uz;
Translation t1(u), t2(ux, uy), t3(ux, uy, uz);

@ u can be omitted. If so, its default value is the 3d zero vector. uy and uz can be omitted
too. If so, their default value is 0.

@ As the Vector class inherits from std: :vector you can use it in place of Vector because
all prototypes are based on std: :vector.
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2d rotations

Point B is the image of point A by the 2d rotation of center €2 and of angle ¢ if and only if

OB — [ s ¢ —sinf ai
sinf cos0
A 2d rotation is defined by a point and an angle (in radians) :

Point c;
Real angle;
Rotation2d r(c, angle);

@ angle can be omitted. If so, its default value is 0 and ¢ can be omitted too. If so, its default
value is the 3d zero point.

3d rotations
Point B is the image of point A by the 3d rotation of axis (Q, cf) and of angle # (in radians) if
and only if

OB = cosf QA + (1 —cos?) QA - 71+ sind i A QA (Rodrigues’ rotation formulae)

-

where 71 = (the unitary direction).

The directio

=

can be defined by a STL vector or by its components :

=

Point c;

Vector<Real> d;

Real dx, dy, dz;

Real angle;

Rotation3d rl(c, d, angle), r2(c, dx, dy, dz, angle);

@ In the first syntax, angle can be omitted. If so, its default value is 0. and d can also be
omitted. If so, its default value is the 3d zero vector.
In the second syntax, dz can be omitted too. If so, its default value is 0. .

Homotheties

Point B is the image of point A by the homothety of center €2 and of factor & if and only if

OB =k QA

Point c;
Real factor;
Homothety h(c, factor);

g% factor can be omitted. If so, its default value is 0. and c can also be omitted. If so, its
default value is the 3d zero vector.

101



Point reflections
Point B is the image of point A by the point reflection of center €2 if and only if
—
OB = QA

It is an homothety of factor -1 and same center.

Point c;
PointReflection h(c);

@ c can also be omitted. If so, its default value is the 3d zero vector.

2d reflections

Point B is the image of point A by the 2d reflection of axis (Q, cf) if and only if

1@ = Qﬁ where H is the orthogonal projection of A on (Q, Cf)

Point c;
Vector<Real> d;
Real dx, dy;

Reflection2d rl(c, d), r2(c, dx, dy);

@ In the first syntax, d can be omitted. If so, its default value is the 2d zero vector and c can
be omitted. If so, its default value is the 2d zero point.

3d reflections

Point B is the image of point A by the 2d reflection of plane [2, 7] if and only if

1@ = Qﬁ where H is the orthogonal projection of A on [€2,7i]

Point c;

Vector<Real> n;

Real nx, ny, nz;

Reflection3d rl(c, n), r2(c, nx, ny, nz);

@ In the first syntax, n can be omitted. If so, its default value is the 3d zero vector and c can
be omitted. If so, its default value is the 3d zero point.

5.2.2 Composition of transformations

To define a composition of transformations, you can use the operator * between canonical
transformations, an is the following example :

Rotation2d rl(Point (0.,0.), 120.);

Reflection2d r2(Point(1.,—-1.), 1.,2.5, —3.);

Translation t1(—-1.,4.);

Homothety h (Point(—-1.,0.), —3.2);

Transformation t = rlxh*xr2xtl;

Composition * has to be understood as usual composition operator o : t(P)=r1(h(r2(t1(P)))).
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5.2.3 Applying transformations
How to apply a transformation ?

In this paragraph, we will look at the Cube object, but you have same functions for any canonical
or composite Geometry.

If you want to apply a transformation and modify the input object, you can use one of the
following functions :

//! apply a geometlrical transformation on a Cube

Cube& Cube:: transform (const Transformation& t);

//! apply a translation on a Cube

Cube& Cube:: translate(std:: vector<Real> u = std :: vector<Real >(3,0.));

Cube& Cube:: translate (Real ux, Real uy = 0., Real uz = 0.);

//! apply a rotation 2d on a Cube

Cube& Cube::rotate2d (const Point& ¢ = Point (0.,0.), Real angle = 0.);

//! apply a rotation 3d on a Cube

Cube& Cube::rotate3d (const Point& ¢ = Point (0.,0.,0.), std::vector<Real> u =
std :: vector<Real >(3,0.), Real angle = 0.);

Cube& Cube::rotate3d (Real ux, Real uy, Real angle);

Cube& Cube::rotate3d(Real ux, Real uy, Real uz, Real angle);

Cube& Cube::rotate3d(const Point& ¢, Real ux, Real uy, Real angle);

Cube& Cube::rotate3d (const Point& ¢, Real ux, Real uy, Real uz, Real angle);

//! apply a homothety on a Cube

Cube& Cube:: homothetize (const Point& ¢ = Point (0.,0.,0.), Real factor = 1.);

Cube& Cube:: homothetize (Real factor);

//! apply a point reflection on a Cube

Cube& Cube:: pointReflect (const Point& ¢ = Point (0.,0.,0.));

//! apply a reflection2d on a Cube

Cube& Cube:: reflect2d (const Point& ¢ = Point (0.,0.), std:: vector<Real> u =
std :: vector<Real >(2,0.));

Cube& Cube:: reflect2d (const Point& ¢, Real ux, Real uy = 0.);

//! apply a reflection3d on a Cube

Cube& Cube:: reflect3d (const Point& ¢ = Point (0.,0.,0.), std::vector<Real> u
= std:: vector<Real>(3,0.));

Cube& Cube:: reflect3d (const Point& ¢, Real ux, Real uy, Real uz = 0.);

For instance,

Cube c;
c.translate (0.,0.,1.);

If you want now to create a new Cube by applying a transformation on a Cube, you should use
one of the following functions instead :

//! apply a geometrical transformation on a Cube (external)
Cube transform (const Cube& m, const Transformation& t);
//! apply a translation on a Cube (external)
Cube translate(const Cube& m, std::vector<Real> u = std:: vector<Real>(3,0.));
Cube translate(const Cube& m, Real ux, Real uy = 0., Real uz = 0.);
//! apply a rotation 2d on a Cube (external)
Cube rotate2d(const Cube& m, const Point& ¢ = Point (0.,0.), Real angle = 0.);
//! apply a rotation 3d on a Cube (external)
Cube rotate3d(const Cube& m, const Point& ¢ = Point (0.,0.,0.),
std :: vector<Real> u = std:: vector<Real>(3,0.), Real angle = 0.);
Cube rotate3d(const Cube& m, Real ux, Real uy, Real angle);
Cube rotate3d (const Cube&z m, Real ux, Real uy, Real uz, Real angle);
Cube rotate3d (const Cube& m, const Point& ¢, Real ux, Real uy, Real angle);
Cube rotate3d (const Cube& m, const Point& c, Real ux, Real uy, Real uz, Real
angle) ;
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//! apply a homothety on a Cube (external)

Cube homothetize (const Cube& m, const Point& ¢ = Point (0.,0.,0.), Real
factor = 1.);

Cube homothetize (const Cube& m, Real factor);

//! apply a point reflection on a Cube (external)

Cube pointReflect (const Cube& m, const Point& ¢ = Point (0.,0.,0.));

//! apply a reflection2d on a Cube (external)

Cube reflect2d (const Cube& m, const Point& ¢ = Point (0.,0.),
std :: vector<Real> u = std :: vector<Real>(2,0.));

Cube reflect2d (const Cube& m, const Point& ¢, Real ux, Real uy = 0.);

//! apply a reflectiond3d on a Cube (external)

Cube reflect3d (const Cube& m, const Point& ¢ = Point (0.,0.,0.),
std :: vector<Real> u = std :: vector<Real>(3,0.));

Cube reflect3d (const Cube& m, const Point& c, Real ux, Real uy, Real uz =
0.);

For instance,

Cube cl;
Cube c2=translate(cl,0.,0.,1.);

@ Of course, you can not apply a 2d rotation or a 2d reflection for geometries defined by 3d
points !

What does a transformation really do ?

Applying a transformation on an object means computing the image of each point defining the
object. But it can also change names.

When you create a new object by applying a transformation on a object, names are modified.
Indeed, the transformation add a suffix ”"_prime”. It concerns geometry names and sidenames.

g% When you transform a Geometry, it also apply the transformation on the underlying bounding
box.

5.3 Extrusion of geometries

This is another way to define geometries : by extrusion of geometries of lesser dimension. Extruded
geometries can be surfaces or volumes, defined by a geometry (the section of the extruded
geometry) and a geometrical transformation. This feature can be used to generate meshes with the
GMSH interface with some restrictions about the transformation : only translations or rotations
are authorized. There is also another parameter : the number of layers. Let’s see the following
figures :
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Figure 5.9: On the left, extrusion of a disk by a translation, with 3 layers. On the right, extrusion
of a circular arc by rotation, with 4 layers

X

5.3.1 How to apply an extrusion ?

XLIFE++ offers 4 variants of the same function to define a Geometry by extrusion, enabling to
give the domain name to the extruded geometry and to its sides. Sides numbering is as follows :
first, the geometry used as section of the extrusion, second, the other section, and next the lateral
surfaces generated by the extrusion.

Geometry extrude (const Geometry& g, const Transformation& t, Number layers);

Geometry extrude (const Geometry& g, const Transformation& t, Number layers ,
String domName) ;

Geometry extrude (const Geometry& g, const Transformation& t, Number layers ,
Strings sidenames);

Geometry extrude(const Geometry& g, const Transformation& t, Number layers ,
String domName, Strings sidenames):;

The Geometry given to the extrude function can be :

e a canonical one (1D or 2D). Here, a CircArc.

Point b(1.5,—-4.,0.);

Point c(2.,—-3.5,0.);

CircArc g(_center=Point(1.5,—-3.5,0.), _vl=b, _v2=c, _nnodes=5,
_domain name="BC”) ;

Geometry e2d=extrude(g, Translation (0.,0.,4.), 5, "Omega”);
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Figure 5.10: Extrusion of a circular arc by translation, with 5 layers

e A loop geometry (1D or 2D). Here, a rounded rectangle defines as in Figure 5.33

105



Point a(—-1.5,—4.,0.); Point b(1.5,—4.,0.); Point c¢(2.,—-3.5,0.); Point
d(2.,3.5,0.);

Point e(1.5,4.,0.); Point f(—-1.5,4.,0.); Point g(—2.,3.5,0.); Point
h(-2.,-3.5,0.);

Segment sl (_vl=a, _v2=b, _nnodes=21, _domain name="AB");

CircArc cl(_center=Point (3.5,0.5,0.), _vl=b, _v2=c, _nnodes=5,
_domain name="BC”) ;

Segment s2(_-vl=c, _v2=d, _nnodes=11, _domain name="CD”);

CircArc c2(_center=Point(3.5,1.5,0.), _vl=d, _v2=e, _nnodes=5,
—_domain name="DE”) ;

Segment s3(_vl=e, _v2=f, _nnodes=21, _domain name="EF”);

CircArc c¢3(_center=Point (0.5,1.5,0.), _vl=f, _v2=g, _nnodes=5,
_domain_name="FG”) ;

Segment s4 (_vl=g, _v2=h, _nnodes=11, _domain name="GH”);

CircArc c4(_center=Point (0.5,0.5,0.), _vl=h, _v2=a, _nnodes=5,
_domain name="HA") ;

Geometry g=planeSurfaceFrom (sl+4cl+s2+c2+s3+c3+sd+cd,”Omega”) ;

Geometry e3d=extrude(g, Translation(0.,0.,4.), 10, ”"Omega”);

Figure 5.11: Extrusion of a rounded rectangle (loop geometry) by a rotation, with 10 layers

e Every composite geometry composed exclusively of a geometry and its holes (1D or 2D).
That is to say only operator- or operator-= is used to define the geometry

Ellipse el(_-center=Point(0.,0.,0.), _vl=Point(4,0.,0.), _v2=Point(0.,5.,0.),
_nnodes=12, _domain name="0megal” ,
_side_names=Strings (”Gamma_1” ,”Gamma_2” | ”Gamma_3” ,”Gamma_4”) ) ;
Ellipse e2(_center=Point(1.,2.,0.), _vl=Point(1.5,2.,0.),
_v2=Point (1.,3.,0.), _nnodes=12, _domain_name="0mega3” ,
_side_names=Strings (”Gamma_9” ,” Gamma_10" ,”Gamma_11" ,”Gamma_12") ) ;
Geometry e3d2=extrude(el—e2, Rotation3d(Point(5.,0.,0.), 0., 5., 0.,
pi-/2.), 10, 7Omega”, "Gamma”) ;
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Figure 5.12: Extrusion of an ellipse with an elliptic hole by rotation, with 10 layers

5.3.2 How to define names of lateral domains of an extrusion ?

Instead of giving the same name to every lateral surface of an extrusion, you can give a name for
each of them, but what about sides numbering ?
First example, let’s take the extrusion of a CircArc:
Point b(1.5,—-4.,0.);
Point c¢(2.,—-3.5,0.);
CircArc g(-center=Point(1.5,—-3.5,0.), _vl=bl, _v2=cl, _nnodes=5,
—_domain_name="BC”) ;
Geometry e2d=extrude(g, Translation(0.,0.,4.), 5, "Omega”, Strings(”Gammal” ,
"Gamma2” ) ;

In Figure 5.10, point b is the front below left corner and point c¢ is the front top right corner. As
g is defined from b to ¢, the first lateral side, corresponding to domain Gammal, will be the edge
below. If you had defined g from ¢ to b, Gammal would have correspond to the edge above.
Second example, let’s take the extrusion of an ellipse with an elliptic hole:
Ellipse el (_center=Point (0.,0.,0.), _vl=Point(4,0.,0.), _v2=Point(0.,5.,0.),
_nnodes=12, _domain name="0megal” ) ;
Ellipse e2(_center=Point(1.,2.,0.), _vl=Point(1.5,2.,0.),
_v2=Point (1.,3.,0.), _nnodes=12, _domain name="0Omega3”) ;
Geometry e3d3=extrude(el—e2, Rotation3d(Point(5.,0.,0.), 0., 5., 0.,
pi_/2.), 10, "Omega”, Strings(”Gammal” , "Gamma2” , "Gamma3” , ”Gammad”
"Gamma5” ; "Gamma6” , "Gamma7” , "Gamma8”)) ;

This time lateral surfaces are ordered as follows:

e Lateral surfaces from the outer ellipse are ordered the same way as borders of the ellipse

e Lateral surfaces from the inner ellipse (and every hole in general) are ordered in the reverse
order of borders of the ellipse

%ﬂ% Contrary to GMSH, you can extrude a geometry by rotation of angle greater than m,
by splitting extrusion in 2 half extrusions when angle is not 27 or in 4 quarter extrusions when
angle is 2m. As a result, the number of lateral surfaces is multiplicated by 2 or 4.

5.3.3 Example: definition of a conesphere

To define geometries based on cones, you always have to use extrusions. It is the case for the
conesphere:
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Real rb=1., hc=3.;
Real hs=rbx*rb/hc;
Real rs=sqrt(rbxrb + hsxhs);

Point origin (0.,0.,0.), apex(0.,0.,hc), pl(rb,0.,0.), p2(0.,0.,—hs—rs);

Segment sl (_vl=pl, _v2=apex, _hsteps=0.05);

Segment s2 (_vl=apex,_v2=origin, _hsteps=0.05);

Segment s3(_vl=origin, _v2=p2, _hsteps=0.05);

CircArc cl(_center=Point(0.,0.,—cssphereheight),_vl=p2,_v2=pl, _hsteps=0.05);

Disk d1(_center=0.5%xpl, _v1=0.5xpl4+Point(0.2xrb,0.,0.),
_v2=0.5%pl4+Point (0.,0.,0.2+xrb), _domain name="Sigma”, _hsteps=0.05);

Geometry base=planeSurfaceFrom (s2+s3+cl+sl, "Gamma’) ;
Geometry g=extrude (base,

Rotation3d (Point (0. ,0.,0.) ,0.,0.,1.,2.%pi_),”Omegal”, Strings(”’Gammal” ,
"Gamma2” ; "Gamma3” , "Gammad” ; "Gamma5” , "Gamma6” , "Gamma7” , "Gamma8”)) ;
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Done reading ‘/Users/kielbasi/Documents/TravaillUMA/XLIFE++tests/test_conesphere/xifepp_script.msh’

Figure 5.13: Mesh of a conesphere

5.4 Defining a mesh from a geometry

XLIFE++ owns some constructors that allow to create meshes based on simple geometries in
one, two or three dimensions. The constructors to use are defined as follows:

//! constructor from 1D geometries
Mesh (const Geometry& g, Number order = 1, MeshGenerator mg =
_defaultGenerator , const String& name = 77);

//! constructor from 2D or 3D geometries

Mesh (const Geometry& g, ShapeType sh, Number order = 1, MeshGenerator mg =
_defaultGenerator , const String& name = 77);

The arguments are:
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g is the geometrical object to be meshed (such as Segment, Quadrangle, Hexahedron, ..., all of
them being declared in the file geometries.hpp),

sh is the shape of the mesh elements (_segment, _triangle, _quadrangle, _tetrahedron,
_hexahedron),

order is the interpolation order of the mesh elements ; it depends on the way the mesh is
generated (see below),

mg defines the way the object is computed:

_structured : a structured mesh can be built for canonical geometries only (Segment,
Parallelogram, Rectangle, Square, Parallelepiped, Cuboid and Cube); the order

of the mesh is necessarily one,

_subdiv : a unstructured mesh can be built using the so-called subdivision basic algorithm
for the following geometries : Cube, Ball, RevTrunk, RevCone, RevCylinder, Disk and
Set0fElems; the order can be any integer k > 0,

_gmsh : for more complicated geometries, with a nested call of the GMSH software; the
order depends on the chosen shape (refer to GMSH documentation).

name defines the mesh name.

Examples.

// Pl structured mesh of segment [0,1] with 10 nodes. Domain is Omega

Mesh mlD(Segment (_xmin=0., xmax=1., _nnodes=10, _domain name="Omega”), 1,
_structured);

// P1 unstructured mesh of disk of center (0,0,1) and radius 2.5 with 40
nodes. Domain is Omega and side domain is Gamma

Mesh m2D(Disk (_center=Point (0.,0.,1.), _radius=2.5, _nnodes=40,
_domain name="0Omega” _side_names="Gamma”) , _triangle, 1, _subdiv);

// Q2 unstructured mesh (using gmsh) of cube [0,2]x[0,1]x[0,4] with 20 nodes
on z edges, 10 nodes on y edges and 40 nodes on z edges

Mesh m3D(Cube(_v1=Point (0.,0.,0.), _v2=Point(2.,0.,0.), _v4=Point (0.,1.,0.),
_v5=Point (0.,0.,4.), _nnodes=Numbers(20,10,40), _domain name="Omega”) ,
_hexahedron, 2, _gmsh);

This is described in more detail in next paragraph.

Moreover, it is possible to subdivide an existing mesh of order 1: a new mesh is created using the
subdivision algorithm mentionned above. The corresponding constructor is defined as follows:

//! constructor from a mesh to be subdivided
Mesh (const Mesh& msh, Number nbsubdiv, Number order = 1);

The arguments are:

msh is the input mesh object, i.e. the given mesh to be subdivided ; it should consist of triangles,
quadrangles, tetrahedra or hexahedra ;

nbsubdiv is the number of subdivisions to be performed ;

order is the order of the final mesh ; its default value is 1.
Example.
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Mesh ml(”mesh.msh”, "My Mesh” , msh) ;
Mesh subml (ml,2) ;

This builds a mesh subm1 which is obtained by subdividing twice the mesh m1, itself read from
the file “mesh.msh”.

Once a mesh is created, it is possible to get information about what it is made of using the function
printInfo, which displays on the terminal general information about the mesh: characteristic data,
domains, etc.:

Mesh ml(”mesh.msh”, "My Mesh” , msh) ;
ml. printInfo () ;

@ If you want to mesh a 2D geometry with segment elements, only borders will be meshed.
The same goes for 3D geometries mesh with triangles or quadrangles.

5.4.1 Structured internal meshing tools: structured generator

When the structured mesh generator is chosen (mg = _structured), one can create a mesh
of order 1:

e of a segment,
e of a parallelogram with triangles or quadrangles,
e of a parallelepiped with hexahedra, prisms or pyramids.

One has to declare an object of type Geometry, more precisely of one of its derived type
Segment, Parallelogram, Rectangle, Square, Parallelepiped, Cuboid or Cube using one of
these constructors, that allow in particular to specifiy the mesh refinement by setting the number
of points (nodes) on each edge, including the two endpoints.

Example 1.
Strings sn(2);
sn[0] = ”Sigma_1";
Mesh mesh1dP1 (Segment (_xmin=0, xmax=1, nnodes=11, _side_names=sn), 1,
_structured , "P1 mesh of [0,1], step=0.1");

This builds a mesh of the interval [0,1] with 10 subintervals. The boundary domain Sigma_1,
corresponding to the lower bound 0 of the interval, will be created ; the other one will not be
created since it has no name. The second argument is the mesh order ; in the case of a structured
mesh, the only possible value is 1.

It can be noticed that the segment may have been defined by two points in the plane or in the
space as well.

Example 2.
Strings sn(4);
sn[0] = "Gamma_1”; sn[2] = "Gamma 2”;
Mesh mesh2dP1(Rectangle (_xmin=0, xmax=1, _ymin=1, _ymax=3,

_nnodes=Numbers(3, 5
mesh of [0,1]x[1,3]”

_side_names=sn), _triangle, 1, _structured, "Pl

)
);
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This builds a mesh of the rectangle [0, 1] x [1, 3] with triangles. The interval [0, 1] is subdivided
into 2 subintervals; the interval [1,3] is subdivided into 4 subintervals. Only the two domains
Gamma_1 and Gamma_2 will be created. For a rectangle [a, b] X [c, d], the correspondence of the
sidenames is the following:

sideNames|0] is [a, b] X ¢, sideNames|[1] is b x [c, d],

sideNames|2] is [a, b] x d, sideNames|[3] is a X [c, d].

Example 3.
Strings sn(4);
sn[0] = ”Sigma_1”; sn[l] = ”"Sigma_27;
Mesh mesh2dQ1 (Rectangle (_xmin=1, xmax=2, _ymin=1, _ymax=3,

_nnodes=Numbers(3, 5

), _side_names=sn), _quadrangle, 1, _structured, "Ql
mesh of [1,2]x[1,3]7);

This builds a mesh of the rectangle [1, 2] x [1, 3] with quadrangles. Only the two domains Sigma._1
and Sigma_2 will be created. See example 2 for other commentaries.

Example 4.

Strings sn( 7z=17, 7z=5”7, 7y=17, 7y=3", "x=0", "x=1");

Mesh mesh3dQ1(Cuboid (_xmin=0, xmax=1, _ymin=1, _ymax=3, _zmin=1, _zmax=5,
_nnodes=Numbers(3, 5, 9), _side_names=sn), _hexahedron, 1, _structured,
"Ql mesh of [0,1]x[1,3]x[1,5]");

This builds a mesh of the parallelepiped [0, 1] x [1, 3] x [1, 5] with hexahedra. The interval [0, 1] is
subdivided into 2 subintervals ; the interval [1, 3] is subdivided into 4 subintervals ; the interval
[1,5] is subdivided into 8 subintervals. The 6 boundary domains will be created with their
corresponding names. For a parallelepiped [a, b] X [¢, d| X [e, f], the correspondence of the sidenames
is the following:

sideNames|0] is [a, b] X [c,d] X e, sideNames[1] is [a,b] X [c,d] X f,

sideNames|2] is [a, b] X ¢ X [e, f], sideNames[3] is [a,b] X d X [e, f],

sideNames[4] is a X [¢,d] X [e, f], sideNames[5] is b X [c,d] X [e, f].

5.4.2 Unstructured internal meshing tools: subdivision generator

When the subdivision algorithm is chosen (mg = _subdiv), one can create a mesh of any order
based on the following volumetric geometries:

e the sphere meshed by tetrahedra,

e the cube meshed by tetrahedra or hexahedra,

e the cone or truncated cone, which may be a cylinder, meshed by tetrahedra or hexahedra.
The following surface geometries are also handled:

e the boundary of the sphere meshed by triangles,

the boundary of the cube meshed by quadrangles,

the boundary of the cone or truncated cone meshed by triangles or quadrangles,

the disk meshed by triangles or quadrangles,

mesh built from an initial set of triangles or quadrangles in 2D or 3D.
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The principle is to start from an initial mesh, a kind of “seed” mesh, consisting of a set of
elements, and build the mesh by subdividing each of them by cutting each edge in the middle
until a prescribed so-called “subdivision level” is reached. A subdivision level equal to 0 gives a
mesh reduced to the initial mesh. A triangle and a quadrangle is subdivided into 4 pieces ; a
tetrahedron and a hexahedron is subdivided into 8 pieces. Thus, at each subdivision, the number
of elements of the mesh is multiplied by 4 for a surface mesh, by 8 for a volumetric one, and the
characteristic dimension of the elements is halved.

One has to declare an object of type Geometry, more precisely of type Sphere, Ball, Cube,
RevTrunk, RevCone, RevCylinder, Disk or SetOfElems using one of the available constructors,

e.g.

SetOfElems (const std :: vector<Point>& pts, const
std :: vector<std :: vector <number_t> >& elems, const
std :: vector<std :: vector <number_t> >& bounds, const ShapeType esh, const
number_t nbsubdiv=1);

Mesh of a ball (or sphere) with tetrahedra

The seed of the mesh consists of a unique tetrahedron inside each octant of the cartesian axes.
We can choose the number of octants to be taken into account, from 1 to 8, to mesh different
portions of the sphere. The figure 5.14 shows this in the case of a subdivision level equal to 2.
Each figure corresponds to the result of the following code, using the unit sphere and nboctants
varying from 1 to 8:

order = 1, nbpts=5, meshType = 1;

Ball sph(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,
_nnodes=nbpts, _type=meshType);

Mesh m(sph, _tetrahedron , order, _subdiv);

@ The class Sphere could have been used instead of Ball, leading to the same result.

Each color corresponds to a different boundary domain. The default value of the argument
meshType is 1; setting it to 0 leads to a so-called flat mesh, where the points created during the
algorithm are not projected onto the sphere, thus keeping the shape of the initial mesh. We can
see the effect of this choice on figure 5.15.
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Figure 5.14: Volumic meshes of the different portions of the ball according to the number of
octants.
3 3 3 3
3 3 3 3

Figure 5.15: Volumic meshes of the different portions of the “flat ball” according to the number
of octants.

If we specifically want the mesh inside the whole sphere, it can be usefull to start from an
icosahedron because of its geometric properties, which lead to a more isotropic mesh than the one
based on the 8 octants of the space. On the other hand, there will be no interface planes defined.
In order to activate this option, the argument nboctants should simply be set to 0. The following
code gives the figure 5.16, which shows both the round and flat results of the algorithm:
nboctants = 0, nbpts=5; meshType = 1;
Ball sph(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,
_nnodes=nbpts, _type=meshType);
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order = 1;
Mesh m(sph, _tetrahedron, order, _subdiv);

meshType = 0;

Ball sph2(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,
_nnodes=nbpts, _type=meshType);

Mesh m2(sph2, _tetrahedron , order, _subdiv);

Figure 5.16: Volumic meshes starting from an icosahedron.

Mesh of a cube with tetrahedra or hexahedra

The selection of the octants is also used in the case of the cube as shown on the figure 5.17, which
is the result of the following code, with no subdivision and nboctants varying from 1 to 8:

order = 1, nbpts=2;

Cube cube(_center=Point (0.,0.,0.), _length=2., _nboctants=nboctants,
_nnodes=nbpts ) ;

Mesh m(cube, _hexahedron, order, _subdiv);

Notice that the edge length of the total cube is 2, so that the cube in the first octant is the
so-called unit cube. Apart the choice of the mesh element (tetrahedron or hexahedron), the main
interest of this case is the easy creation of a L-shape domain (3 octants) and the Fichera corner
(7 octants), classical benchmark problem in the analysis of corner and edge singularities. It is
shown on figure 5.17 in an unsual position; in order to put the missing cube in the first octant,
one must apply a rotation, which is done by the following code:

order = 1, nboctants=7, nbpts=2;

Cube cube(_center=Point (0.,0.,0.), _length=2., _nboctants=nboctants,
_nnodes=nbpts); cube.rotate3d(Point(0.,0.,0.), 1.,0.,0., pi);

Mesh m(cube, _hexahedron, order, _subdiv);

The two additional arguments define the rotation of angle 180 degrees around the first axis (X-
axis); the result is shown on figure 5.17, at the last position (bottom right). If necessary, one can
specify one or two more rotations in the form (angle, naxis). The angle is to be given in degrees
and naxis defines the rotation axis: it is the number of the absolute axis, thus 1, 2 or 3.
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Figure 5.17: Volumic meshes of the different portions of the cube according to the number of

octants.

Mesh of a cylinder with tetrahedra or hexahedra

The subdivision algorithm can handle the case of a cylinder of revolution, whose axis is defined by
two points P1 and P2, and delimited by the two planes containing the two points and orthogonal
to the axis. As an example, we consider the “unit” cylinder of radius 1 and height 1. The following
code produces the first two meshes shown on figure 5.18:

radius=1.;

nbpts=3;

Point P1(0.,0.,0.), P2(0.,0.,1.);

RevCylinder cyll (_center1l=P1, _center2=P2, _radius=radius, _nnodes=nbpts);
order=1;

Mesh mT(cyl, _tetrahedron , order, _subdiv);

Mesh mH( cyl, _hexahedron, order, _subdiv);
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Figure 5.18: Volumic meshes of the “unit” cylinder with tetrahedra and hexahedra.

Obviously, this is a poor approximation of the cylinder. To get a more accurate description,
the user can then increase the number of elements (greater value of nbsubdiv) or increase the
approximation order (or both).

In the case of a tetrahedron mesh, each end-plane may be covered by a “hat”, that is to say a
solid whose shape may be a cone or an ellipsoid. The last drawing of figure 5.18 shows such
a configuration, with an ellipsoid on the side of P1 (keyword _gesEllipsoid) whose apex is at
radius/2 from the basis of the cylinder, and a cone on the side of P2 (keyword _gesCone) whose
apex is at radius from the other basis of the cylinder. It is obtained by the following code:

radius=1.;

nbpts=5;

RevCylinder cyl2e(_centerl=Point (0.,0.,0.), _center2=Point(0.,0.,1.),
_radius=radius, _endl_shape=_gesEllipsoid, _endl_distance=radius/2,
_end2_shape=_gesCone, _end2_distance=radius, _nnodes=nbpts);

order=1;

Mesh P1VolMeshTetCylE(cyl2e, _tetrahedron, order, _subdiv);

Two other keywords exist: _gesNone and _gesFlat. They have an equivalent meaning in the case
of a solid body. They are the default value and indicate that no “hat” should be added at the
corresponding end.

Mesh of a cone or a truncated cone with tetrahedra or hexahedra

A truncated cone of revolution is defined by an axis, given by two points P1 and P2, delimited
by the two planes containing the two points and orthogonal to the axis. The two circular sections
are defined by two radii. The following code produces the first two meshes shown on figure 5.19:

nbpts=5;
radiusl=0., radius2=1.;
Point P1(—-1.,-1.,0.), P2(0.,0.,2.);

RevCone cone(_center=P2, _radius=radius2, _apex=P1l, _nnodes=nbpts);

order=1;

Mesh mT(cone, _tetrahedron, order, _subdiv);

radiusl =0.5;

RevTrunk cone2(_centerl=P1, _radiusl=radiusl, _center2=P2, _radius2=radius2,

_nnodes=nbpts) ;
Mesh mH(cone2, _hexahedron, order, _subdiv);
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The number of slices is 0, which means that a suitable default value is automatically computed
from the length of the axis and the radii. The first object is a "true” cone since one radius is O ;
it can be meshed exactly with tetrahedra. Using hexahedra for this geometry is not advised since
the elements will be degenerated at the apex of the cone. Moreover, the radius cannot be 0, it
should be at least 1.e-15, leading to a "near true” cone, but with highly degenerated hexahedra
close to the apex. Hexahedra are more suitable to build a trucated cone ; an example is shown
on the middle drawing of the figure 5.19.

Figure 5.19: Volumic meshes of the cone and truncated cone with tetrahedra and hexahedra.

The following code produces the last mesh shown on figure 5.19:

nbpts=5;

radiusl1=0.6, radius2=1.;

RevTrunk conel (_centerl=Point(—1.,—1.,0.), _radiusl=radiusl,
_center2=Point (0.,0.,2.), _radius2=radius2, _endl_shape=_gesCone,
_end1l_distance=1.5, _end2_Shape=_gesEllipsoid , _end2_distance=0.7,
_nnodes=nbpts) ;

order=1;

Mesh mTE(conel , _tetrahedron, order, _subdiv);

In the same way as for the cylinder, the truncated cone can be “covered” with a solid. This is
only available for a mesh made of tetrahedra. We show a cone and an ellipsoid put at each end
of a truncated cone, respectively on the side of P1 and on the side of P2.

Mesh of a sphere with triangles

The same logic described previously for a mesh of tetrahedra apply here for a mesh of triangles.
The following code leads to meshes of the boundary of the unit sphere, and the result is shown
on figure 5.20:

order = 1, nbpts=5;

Ball sph(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,

_nnodes=nbpts) ;
Mesh m(sph, _triangle, order, _subdiv);
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Figure 5.20: Surfacic meshes of the different portions of the boundary of the sphere according to
the number of octants.

Again, if the argument meshType is set to 0, we get the “flat” version of the meshes, i.e. the
meshes obtained from the subdivision of the nboctants initial triangles (see figure 5.21).

Figure 5.21: Surfacic meshes of the different portions of the “flat sphere” according to the number
of octants.

If we specifically want the mesh of the whole sphere, it can be usefull to start from an icosahedron
because of its geometric properties, which lead to a more isotropic mesh than the one based on
the 8 octants of the space. On the other hand, there will be no interface planes defined.
In order to activate this option, the argument nboctants should simply be set to 0. The following
code gives the figure 5.22, which shows both the round and flat results of the algorithm:

nboctants = 0, nbpts=5; meshType = 1;
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Ball sph(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,
_nnodes=nbpts, _type=meshType);

order = 1;

Mesh m(sph, _triangle, order, _subdiv);

meshType = 0;

Ball sph2(_center=Point (0.,0.,0.), _radius=1., _nboctants=nboctants,
_nnodes=nbpts, _type=meshType);

Mesh m2(sph2, _triangle, order, _subdiv);

Figure 5.22: Surfacic meshes starting from an icosahedron.

Mesh of a cube with quadrangles

We can obtain the mesh of the surface of a cube, or part of it, with quadrangles, by using the
same logic described just above for the sphere. Consider the following code:

order = 1, nbpts=2;

Cube cube(_center=Point (0.,0.,0.), _length=2., _nboctants=nboctants,

_nnodes=nbpts) ;
Mesh m(cube, _quadrangle, order, _subdiv);

Letting nboctants vary from 1 to 8, then 0, lead to the objects shown on figure 5.23 below.
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Figure 5.23: Surfacic meshes of the different portions of the cube according to the number of
octants.

The last object (nboctants = 0) is the simplest mesh of a cube made of 6 quadrangles (squares
here). By subdividing it once, we get the previous yellow object (nboctants = 8) made of 24
quadrangles.

Mesh of a cone or a truncated cone with triangles

We can build a mesh of the surface of a truncated cone with triangles. The following code produces
the first two drawings of the figure 5.24:

radius=1.;

nbslices=1, nbpts=3;

Point P1(0.,0.,0.), P2(0.,0.,1.);

RevCylinder cyll (_centerl=P1, _center2=P2, _radius=radius, _nnodes=nbpts);
order=1;

Mesh mT(cyl, _triangle, order, _subdiv, fname);

nbpts=5;

RevCylinder cylE (_centerl=P1, _center2=P2, _radius=radius,
_end1l_shape=_gesFlat , _endl_distance=0., _end2_shape=_gesNone,
_end2_distance=0., _nnodes=nbpts);

Mesh mTE(cylE, _triangle, order, _subdiv);
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Figure 5.24: Surfacic meshes of a cylinder.

nbpts=5;

radiusl=0.5, radius2=1.;

Point P1(—-1.,-1.,0.), P2(0.,0.,2.);

RevTrunk cone3(_centerl=P1, _radiusl=radiusl, _center2=P2, _radius2=radius2,
_endl_shape=_gesNone, _endl_distance=0., _end2_shape=_gesFlat ,
_end2_distance=0., _nnodes=nbpts) ;

order=1;

Mesh mT(cone3, _triangle, order, _subdiv);

RevTrunk conel (_centerl=P1l, _radiusl=radiusl, _center2=P2, _radius2=radius2,
_endl_shape=_gesCone, _endl_distance=1.5, _end2_shape=_gesEllipsoid ,
_end2_distance=0.7, _nnodes=nbpts);

Mesh mTE(conel , _triangle, order, _subdiv);
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Figure 5.25: Surfacic meshes of a truncated cone.

Mesh of a cone or a truncated cone with quadrangles

We can build a mesh of the surface of a truncated cone with quadrangles. The following code

produces the first two drawings of the figure 5.26:
nbpts=5;
radius1=0.5, radius2=1.;

Point P1(—-1.,-1.,0.), P2(0.,0.,2.);
RevTrunk cone2(_centerl=P1l, _radiusl=radiusl, _center2=P2, _radius2=radius2,

_nnodes=nbpts) ;
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order=1;
Mesh mQ(cone2, _quadrangle, order, _subdiv);

RevTrunk cone3(_centerl=Pl, _radiusl=radiusl, _center2=P2, _radius2=radius2,
_end1l_shape=_gesNone, _endl_distance=0., _end2_shape=_gesFlat ,
_end2_distance=0., _nnodes=nbpts);

Mesh mQF(cone3, _quadrangle, order, _subdiv, "mQF”);

mQF. printInfo () ;

The left truncated cone is opened at both ends (this is the default) ; thus it has two boundaries
shown in green (bottom) and orange (top). The object cone2 is the same as the one used previously
to make the mesh of hexahedra (see figure 5.19).

The second drawing shows the same object bearing a “lid” on its top (on the side of P2). Indeed,
such a truncated cone may be closed at one or both ends by a plane “lid”. This is obtained by
specifying the geometric end shape to be used at each end: _gesNone means that the cone is left
opened, which is the default behaviour, and _gesFlat means that a plane “lid” is requested. The
objet proposed in this example has thus one boundary at its other end (on the side of P1), shown
as an orange line.

In both cases, the requested number of slices is 0 ; thus, the algorithm decided to create two slices
displayed in magenta and yellow. The result of the instruction mQF .printInfo(); is the following :

Mesh’mQF’ (cone - Quadrangle mesh)
space dimension : 3, element dimension : 2
Geometry of shape type revolution volume based on cone of dimension 3,
BoundingBox [-1.45412,0.908248]x[-1.45412,0.908248]x[-0.288675,2.57735], names of variable : x, y, z
number of elements : 208, number of vertices : 217, number of nodes : 217, number of domains : 5
domain number O: Omega (whole domain)
domain number 1: Sigma_1 (End subdomain on the side of end point 2)
domain number 2: Sigma_2 (Slice 1)
domain number 3: Sigma_3 (Slice 2)
domain number 4: Kappa_1 (Boundary: End curve on the side of end point 1)

Figure 5.26: Surfacic meshes of a cone and a cylinder.

The last drawing shows the surfacic mesh of a cylinder, since it is a particular kind of cone. The
cylinder is the same as the one shown on figure 5.18. The code that produces this mesh is:

radius=1.;

nbpts=3;

Point P1(0.,0.,0.), P2(0.,0.,1.);

RevCylinder cyl(_center1=P1, _center2=P2, _radius=radius, _nnodes=nbpts);
order=1;

Mesh mQCyl(cyl, _quadrangle, order, _subdiv);
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The cylinder is opened at both ends and thus has two boundaries shown as a green line and an
orange line.

Mesh of a disk or a part of a disk

We can build the mesh of a disk or a portion of a disk, with triangles or quadrangles. Using the
following code, we get the result shown on figure 5.27.

radius =2.;

nbpts=5, order=1;

Disk pdisk(_center=Point (0.,1.), _radius=radius, _anglel=10.,
_angle2=300., _nnodes=nbpts);

Mesh meshTriDisk (pdisk, _triangle, order, _subdiv);

Mesh meshQuaDisk ( pdisk , _quadrangle, order, _subdiv);

Figure 5.27: Meshes of a portion of disk with triangles and quadrangles.

Mesh from a set of triangles or quadrangles

This possibility is designed to build a mesh starting from an elementary set of elements. Generally,
this initial mesh is build “manually”. This gives a flexible mean to create a mesh which cannot be
obtained with another constructor, but without having to resort to the help of a more complicated
solution (like an external mesh generator in particular).

Such meshes can be made in 2D or in 3D with triangles or quadrangles. Figure 5.28 shows two
examples, in 3D with triangles, in 2D with quadrangles on a domain with a hole.

-

Figure 5.28: Meshes from initial set of triangles and quadrangles.

The program that produces it looks like the following:
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order = 1, nbsubdiv = 1;

SetOfElems sot (tpts, telems, tbounds, _triangle, nbsubdiv);
Mesh mT(sot , _triangle, order, _subdiv);

SetOfElems soq(qpts, qgelems, gbounds, _quadrangle, nbsubdiv);
Mesh mQ(soq, _quadrangle, order, _subdiv);

The mesh of triangle is based on an initial set of 2 triangles {1,2,3} and {1,4,2}, stored in the
vector elems. The 4 points are Point(0.,0.,0.), Point(1.,0.,0.), Point(0.,1.,0.3), Point(0.,-1.,0.3)
stored in the vector tpts. Four boundaries are defined. A boundary is simply defined by the list
of point numbers lying on it, in any order. Thus, here, the four boundaries are {1,4}, {4,2}, {2,3}
and {1,3}; they are stored in the vector tbounds. The same apply for the set of quadrangles.

5.4.3 Meshing tool with nested call to GMSH: gmsh generator

Using the GMSH interface to define meshes allows you to define more canonical geometries than
both previous generators :

e segments, ellipses, circles, elliptic or circular arcs as 1D geometries

e quadrangles, rectangles, squares, disks, elliptical surfaces, spheres, ellipsoids, triangles as
2D geometries with either triangular or quadrangular mesh elements.

e hexahedron, parallelepipeds, cubes, balls, tetrahedron, cylinders, prisms, pyramids as 3D
geometries with either tetrahedral or hexahedral mesh elements.

When you use it, 2 files will be generated in your directory :

xlifepp_script.geo This is the input file of GMSH. To simplify its write, we developed a macro
file includes in this one. If you look at this file, you will find a very elegant way to define
meshes with GMSH.

xlifepp_script.msh This is the real mesh file, generated by a system call to GMSH from the .geo
file. This file is loaded by XLiFE++.

Next to this, you can define 2 types of complicated geometries : the so-called "composite” and
"loop” geometries.

If you want to define a geometry that XLIFE++ can not directly handle, you can use GMSH
directly.

Examples of composite and loop geometries

Please see subsection 5.1.9 for definition of composite geometries and the use of operators +
and -, and see subsection 5.1.8 for definition of loop geometries and the use of surfaceFrom and
volumeFrom routines.
Let’s see a first example of an ellipse inside a rectangle :

Rectangle r(_xmin=-3, xmax=3, _ymin=-2, _ymax=2, _nnodes=Numbers(33,22)

_domain name="0Omega” ) ;

Ellipse e(-center=Point(0,0), _xlength=1, _ylength=0.5, _nnodes=11);

Mesh ml(r—e, _triangle , 1, _gmsh);

Mesh m2(r+e, _triangle , 1, _gmsh);
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Figure 5.29: GMSH view of m1 and m2

The following example shows how it works in 3D with a parallelepiped hole inside an ellipsoid :

Ellipsoid edl(_center=Point (0.,0.,0.), _vl=Point(3.,0.,0.),
_v2=Point (0.,2.,0.), _v3=Point(0.,0.,1.), _nnodes=16);

Parallelepiped pal(_-vl=Point(—-0.5,—0.5,—0.5), _v2=Point(0.5,—0.5,—-0.5),
_v4=Point(—-0.5,0.5,-0.5), _v5=Point(—0.5,—-0.5,0.5), _nnodes=3);

Mesh mesh3dP1Composite (edl—pal, _tetrahedron ,1,_gmsh);

]
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Figure 5.30: GMSH view of a 3d composite geometry (ellipsoid - parallelepiped)
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Figure 5.31: GMsH view of the hole of a 3d composite geometry (ellipsoid - parallelepiped)

Let’s see now an example with more than 2 components:

Strings sn(”Gamma_1”, ?Gamma_2”, ”Gamma_3”, "Gamma4”);

Ellipse el(_center=Point (0.,0.), _vl=Point(4,0.), _v2=Point(0.,5.),
_nnodes=12, _domain name="0Omegal” , _side_names=sn) ;

sn[0]="Gamma 5”; sn[l]="Gamma 6”; sn[2]="Gamma 7”; sn[3]="Gamma38”;

Rectangle rl(_xmin=-2., xmax=2., _ymin=—4., _ymax=4., _nnodes=11,
_domain name="0Omega2” , _side_names=sn);

sn[0]="Gamma 9”; sn[l]="Gamma_10”; sn[2]="Gamma 11”; sn[3]="Gamma 12" ;

Ellipse e2(_center=Point(1.,2.), _vl=Point(1.5,2.), _v2=Point(1.,3.),
_nnodes=12, _side_names=sn);
sn [0]="Gamma_13”; sn[l]="Gamma 14”; sn[2]="Gamma_15"; sn[3]="Gamma 16" ;
Ellipse e3(_center=Point(0.,0.,0.), _vl=Point(0.5,0.,0.),
_v2=Point (0.,1.,0.), _nnodes=12, _side_names=sn);

sn [0]="Gamma_17”; sn[l]="Gamma 18”; sn[2]="Gamma_19”; sn[3]="Gamma 20" ;

Rectangle r2(_xmin=5., xmax=6., _ymin=0., _ymax=1., _nnodes=6,
_domain_ name="0Omega3” , _side_names=sn);

sn[0]="Gamma 21"; sn[l]="Gamma 22”; sn[2]="Gamma _23”; sn[3]="Gamma 24" ;

Disk d1(_center=Point(5.5,0.5,0.), _vl=Point(5.7,0.5,0.),

_v2=Point (5.5,0.7,0.), _nnodes=12, _side_names=sn);
Mesh mesh2dP1Composite ((el+rl)—(e2+e3)+r2—dl, _triangle ,1,_gmsh);
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Figure 5.32: GMSH view of complex 2d composite geometry

Let’s take an example using segments and circle arcs to define a mesh on a rectangle with rounded
corners :
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Point a(—1.5,—4.); Point b(1.5,—4.); Point c¢(2.,—-3.5); Point d(2.,3.5);
Point e(1.5,4.); Point f(—-1.5,4.); Point g(—2.,3.5); Point h(—-2.,-3.5
Segment sl (_-vl=a, _v2=b, _nnodes=21, _domain name="AB");
CircArc cl(_center=Point(3.5,0.5), _vl=b, _v2=c, _nnodes=5,
_domain name="BC”) ;
Segment s2(_vl=c, _v2=d, _nnodes=11, _domain name="CD”);
CircArc c2(_center=Point (3.5,1.5), _vl=d, _v2=e, _nnodes=5,
_domain_name="DE” ) ;
Segment s3(_vl=e, _v2=f, _nnodes=21, _domain name="EF”);
CircArc c3(_center=Point(0.5,1.5), _vl=f, _v2=g, _nnodes=5,
_domain name="FG”) ;
Segment s4 (_vl=g, _v2=h, nnodes=11, _domain name="GH”);
CircArc c4(_center=Point (0.5,0.5), _vl=h, _v2=a, _nnodes=5,
_domain name="HA”) ;
Mesh mesh2dP1Loop ( planeSurfaceFrom (sl+cl+s2+c2+s3+c3+s4+c4), _triangle, 1,
_gmsh) ;
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Figure 5.33: GMSH view of rectangular geometry with rounded corners, defined with the
surfaceFrom routine

You can define composite geometries using loop geometries. Let’s take the complex 2d composite
example in which we will replace the first rectangle by a rounded rectangle and the disk by a half
disk, bith defined by the surfaceFrom routine.

Ellipse el(-center=Point (0.,0.), _vl=Point(4,0.), _v2=Point(0.,5.),
_nnodes=12, _domain name="0megal” ) ;

Point a(—1.5,—4.); Point b(1.5,—4.); Point ¢(2.,—3.5); Point d(2.,3.5);

Point e(1.5,4.); Point f(—-1.5,4.); Point g(—2.,3.5); Point h(—-2.,-3.5);

Segment sl (_vl=a, _v2=b, nnodes=21, _domain name="AB");

CircArc cl(_center=Point (3.5,0.5), _vl=b, _v2=c, _nnodes=5,
—_domain_name="BC”) ;

Segment s2(_vl=c, _v2=d, _nnodes=11, _domain name="CD”);

CircArc c2(-center=Point(3.5,1.5), _vl=d, _v2=e, _nnodes=5,
_domain_name="DE” ) ;

Segment s3(_vl=e, _v2=f, _nnodes=21, _domain name="EF”);

CircArc c3(-center=Point (0.5,1.5), _vl=f, _v2=g, _nnodes=5,
—_domain_name="FG”) ;

Segment s4 (_vl=g, _v2=h, _nnodes=11, _domain name="GH”);

CircArc c4(_center=Point (0.5,0.5), _vl=h, _v2=a, _nnodes=5,
_domain name="HA” ) ;

Geometry sfl=(surfaceFrom (sl+cl4+s2+c2+s3+c3+sd+cd,”Omega2”) ;
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Ellipse e2(_center=Point(1.,2.), _vl=Point(1.5,2.), _v2=Point(1.,3.),
_nnodes=12, _domain name="0mega3” ) ;

Ellipse e3(-center=Point (0.,0.), _vl=Point(0.5,0.), _v2=Point(0.,1.),
_nnodes=12, _domain name="0mega4d” ) ;

Rectangle r2(_xmin=5., xmax=6., _ymin=0., _ymax=1., _nnodes=6,
_domain_name="0megab” ) ;

Segment s5(_vl=Point (5.3,0.5), _v2=Point(5.7,0.5), _nnodes=5);

CircArc c¢5(-center=Point (5.5,0.5), _vl=Point(5.7,0.5), _v2=Point (5.5,0.7),
_nnodes=5);

CircArc c6(_center=Point (5.5,0.5), _vl=Point (5.5,0.7), _v2=Point(5.3,0.5),
_nnodes=5);

Geometry sf2=planeSurfaceFrom (s5+c5+c6 ,”Omega6”) ;

Mesh mesh2dP1Compositel ((el+sfl)—(e2+e3)+r2—sf2 , triangle ,1,_gmsh);
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Figure 5.34: GMSH view of mesh2dP1Compositel

Finally, let’s see now an example of complex composite geometry with use of forcing inclusion.
Components are defines in example above:

Mesh mesh2dP1Composite3 (el+(sfl+(+(e2+e3))+r2+sf2 , _triangle ,1,_gmsh);
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Figure 5.35: GMSH view of mesh2dP1Composite3

Structured mesh with GMSH generator

GMsH allows to generate structured and unstructured meshes. Even if XLIFE+4 offers a
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structured mesh generator, it may be useful to have it with the GMSH generator. To do so,
you have an additional argument whose value is structuredMesh
Mesh m(Rectangle (_.xmin=0., xmax=2., _ymin=0., _ymax=4., _nnodes=11,

_side_names=Strings (”Gamma_1”, "Gamma 2”, "Gamma3”, "Gamma4”)),
_triangle, 1, _gmsh, _structuredMesh);

5.5 Extrude a mesh

As an alternative to mesh an extruded geometry, it is possible to extrude a 1D or a 2D mesh
using the following mesh constructor:
Mesh(const Mesh& ms, const Point& O, const Point& D , number_t nbl,

number_t namingDomain=0, number_t namingSection=0, number_ t namingSide=0,
const string_t& meshName="");

where OD defines the direction of extrusion and nbl the number of layers of same width (regular
extrusion). More precisely, any point M of the section mesh is extruded in nbl points :

My=M+0+kxOD.

When a 1D section, extruded mesh is made with quadrangles. When a 2D triangular mesh
section, extruded mesh is made with prisms and when a 2D quadrangular mesh section, extruded
mesh is made with hexahedra.

The boundary domains created by the extrusion process come from the boundary domains of the
original section. This process is controlled by the 3 parameters namingDomain, namingSection,
namingSide taking one of of the values 0, 1 or 2, with the following rules:

e 0 : domains are not created
e 1 : one extruded domain is created for any domain of the original section
e 2 : for each layer, one extruded domain is created for any domain of the original section

Be cautious, the side domains of extruded domain are created from side domains of the
given section. Thus, if the given section has no side domains, the extruded domains will have no
side domains! The naming convention is the following:

e Domains and side domains keep their name with the extension ”_e” or "_el”, ”_e2”, ..., "_en”

e Section domains have the name of original domains with the extension ”_0”,....”_n”

e When namingDomain=0, the full domain is always created and named "Omega”.

The following figure illustrates the naming rules of domains.
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Figure 5.36: Mesh extrusion, domains naming

For instance, to mesh a tubular domain using the mesh extrusion of a crown:

Disk dext(_-center=Point (0.,0.), _radius=1.,_nnodes=20, _domain name="Omega” ,
_side_names="Sigma” ) ;
Disk dint (_-center=Point (0.,0.), _radius=0.5,_ nnodes=10,_side_names="Gamma”) ;

Mesh crown (dext—dint , _triangle ,1,_gmsh);
Mesh tube (crown ,Point (0,0,0) ,Point(0,0,1) ,10,1,1,1);

Sigma_e

Gamma_e \

Omega 0

Figure 5.37: Tube prismatic mesh from extrusion of a crown mesh

5.6 Split mesh element

Sometimes it may be useful to split elements into elements of an other type, for instance to
produce mesh of pyramids that are not provided by standard meshing softwares.To do this, a
general constructor is offered :
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Mesh(const Mesh& mesh, ShapeType sh, const string t name="");

where sh is the desired shape type.
Up to now, only one splitting process is available: hexahedron of order 1 into six pyramids of
order 1 :

Mesh meshQ1 (Cuboid (. xmin=0, xmax=1, _ymin=1, _ymax=3, _zmin=1, _zmax=5,
_nnodes=Numbers(3, 5, 9), _side_names=sidenames), _hexahedron, 1,
_structured , "Ql mesh of [0,1]x[1,3]x[1,5]”);

Mesh meshPyramid (meshQ1, _pyramid ,”Pyl mesh of [0,1]x[1,3]x[1,5]");

The Mesh object passed to the splitting constructor may be any hexahedral mesh. Note that an
hexahedron is split into the six pyramids based on the hexahedron faces and the centroid of the
hexahedron as tip.

5.7 Loading a mesh from a file

XLIFE++ allows you to read various mesh file formats. The constructor to use is defined as
follows:

//! constructor from a file
Mesh (const String& filename , const String& meshname, IOFormat mft, Number
nodesDim ) ;

The arguments are:

filename is the name of the mesh file,
meshname is the name of the mesh, for log purpose, Default value is empty string.
mft defines the mesh format. It can take four values as we can see on the examples hereafter.

nodesDim defines minimal number of coordinates of each vertex. Default is 0 for automatic
behavior. Normally, you should not have to use this argument.

// loading o VIK mesh file

Mesh ml(”mesh.vtk”, "My Mesh M1” | vtk);
// loading a VIU mesh file

Mesh m2(”mesh.vtu”, "My Mesh M2”, vtu);
// loading a GMSH mesh file

Mesh m3(”mesh.msh”, "My Mesh M3”, msh);
// loading a GMSH script file

Mesh m4(”mesh.geo”, "My Mesh M4” | geo);
// loading a MELINA mesh file

Mesh m5(”mesh.mel” ; "My Mesh M5”, mel);
// loading a PLY mesh file

Mesh m6(”mesh. ply”, "My Mesh M6”, ply);

which create six Mesh objects called m1, m2, m3, m4, m5 and m6.

e To have more information about the VI'K and VTU file formats, please go to http://www.
paraview.org

e The MELINA file format is the input format of the MELINA finite element library, ancestor
of XLIFE++. For more information, please go to http://anum-maths.univ-rennesl.fr/
melina/danielmartin/melina/
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e To have more information on the PLY file format, please go to http://paulbourke.net/
dataformats/ply.

e To have more information about GMSH, please go to http://geuz.org/gmsh/. You will
have everything you need about the msh format and about the geo scripts.

@ If you load a geo file, XLIFE++ will call GMSH to create the corresponding msh file, which
is then read. Consequently, GMSH needs to be installed on your computer and the executable
file, called gmsh, should be found through your PATH environment variable. If GMSH is installed
after XLIFE++, XLIFE++ needs to be reinstalled.

5.8 Transformations on meshes

Geometrical transformations on meshes work as on geometries. Please see section 5.2 for definition
and use of transformations routines.

Then, if you want to apply a transformation and modify the input object, you can use one of the
following functions :

//! apply a geometrical transformation on a Mesh

Mesh& Mesh:: transform (const Transformationd& t);

//! apply a translation on a Mesh

Mesh& Mesh:: translate (std :: vector<Real> u = std :: vector<Real>(3,0.));

Mesh& Mesh:: translate (Real ux, Real uy = 0., Real uz = 0.);

//! apply a rotation 2d on a Mesh

Mesh& Mesh:: rotate2d (const Point& ¢ = Point (0.,0.), Real angle = 0.);

//! apply a rotation 3d on a Mesh

Mesh& Mesh:: rotate3d (const Point& ¢ = Point (0.,0.,0.), std::vector<Real> u =
std :: vector<Real >(3,0.), Real angle = 0.);

Mesh& Mesh::rotate3d (Real ux, Real uy, Real angle);

Mesh& Mesh::rotate3d (Real ux, Real uy, Real uz, Real angle);

Mesh& Mesh:: rotate3d (const Point& ¢, Real ux, Real uy, Real angle);

Mesh& Mesh:: rotate3d (const Point& ¢, Real ux, Real uy, Real uz, Real angle);

//! apply a homothety on a Mesh

Mesh& Mesh:: homothetize (const Point& ¢ = Point (0.,0.,0.), Real factor = 1.);

Mesh& Mesh:: homothetize (Real factor);

//! apply a point reflection on a Mesh

Mesh& Mesh:: pointReflect (const Point& ¢ = Point (0.,0.,0.));

//! apply a reflection2d on a Mesh

Mesh& Mesh:: reflect2d (const Point& ¢ = Point (0.,0.), std::vector<Real> u =
std :: vector<Real >(2,0.));

Mesh& Mesh:: reflect2d (const Point& ¢, Real ux, Real uy = 0.);

//! apply a reflectiond3d on a Mesh

Mesh& Mesh:: reflect3d (const Point& ¢ = Point (0.,0.,0.), std::vector<Real> u
= std:: vector<Real>(3,0.));

Mesh& Mesh:: reflect3d (const Point& ¢, Real ux, Real uy, Real uz = 0.);

For instance:

Mesh m;
m. translate (0.,0.,1.);

However, if you want now to create a new Mesh by applying a transformation on a Mesh, you
should use one of the following functions instead :
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//! apply a geometrical transformation on a Mesh (external)

Mesh transform (const Mesh& m, const Transformation& t);

//! apply a translation on a Mesh (external)

Mesh translate (const Mesh& m, std::vector<Real> u = std:: vector<Real>(3,0.));

Mesh translate (const Mesh& m, Real ux, Real uy = 0., Real uz = 0.);

//! apply a rotation 2d on a Mesh (external)

Mesh rotate2d (const Mesh& m, const Point& ¢ = Point(0.,0.), Real angle = 0.);

//! apply a rotation 3d on a Mesh (external)

Mesh rotate3d(const Mesh& m, const Point& ¢ = Point (0.,0.,0.)
std :: vector<Real> u = std:: vector<Real>(3,0.), Real angle = 0.);

Mesh rotate3d (const Mesh& m, Real ux, Real uy, Real angle);

Mesh rotate3d (const Mesh& m, Real ux, Real uy, Real uz, Real angle);

Mesh rotate3d (const Mesh& m, const Point& ¢, Real ux, Real uy, Real angle);

Mesh rotate3d (const Mesh& m, const Point& ¢, Real ux, Real uy, Real uz, Real
angle) ;

//! apply a homothety on a Mesh (external)

Mesh homothetize (const Mesh& m, const Point& ¢ = Point (0.,0.,0.), Real
factor = 1.);

Mesh homothetize (const Mesh& m, Real factor);

//! apply a point reflection on a Mesh (external)

Mesh pointReflect (const Mesh& m, const Point& ¢ = Point (0.,0.,0.));

//! apply a reflection2d on a Mesh (external)

Mesh reflect2d (const Mesh& m, const Point& ¢ = Point(0.,0.),
std :: vector<Real> u = std :: vector<Real>(2,0.));

Mesh reflect2d (const Mesh& m, const Point& c¢, Real ux, Real uy = 0.);

//! apply a reflection3d on a Mesh (external)

Mesh reflect3d (const Mesh& m, const Point& ¢ = Point (0.,0.,0.),
std :: vector<Real> u = std :: vector<Real>(3,0.));

Mesh reflect3d (const Mesh& m, const Point& ¢, Real ux, Real uy, Real uz =
0.);

For instance:

Mesh ml;
Mesh m2=translate (ml, 0.,0.,1.);

Applying a transformation on a Mesh object means applying the transformation on the underlying
Geometry object and adding the suffix ”_prime” to the mesh name and the domain names.

5.9 Using geometrical domain

Related to mesh, the geometric domains are fundamental objects because they are the support of
integrals involved in variational problem. These domains are defined by mesh tools, using names
and sidenames in definition of geometries or given as physical domain in 'geo’ file.

5.9.1 Retrieving domains

In order to be used in program, the domains have to be ‘retrieved” as Domain object from mesh :

Strings sn(7y=0", 7y=17, 7x=0", "x=1");

Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=20,
_side_names=sn),_triangle ,1,_structured);

Domain omega=mesh2d . domain (”Omega”) ;

Domain sigmaM=mesh2d . domain (”x=0") ;

Domain sigmaP=mesh2d .domain(”x=1") ;

Domain gammaM=mesh2d .domain(”y=0") ;
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Domain gammaP=mesh2d .domain("y=1");

By default, "Omega" is the string name of the main domain of mesh.

It is possible to rename a domain of a mesh:

Strings sn(””, 77, "x=07, "x=1/2-");

Mesh mesh2d (Rectangle (_origin=Point (0.,0.), _xlength=0.5, _ylength=1,
_nnodes=Numbers(20,40) , _side_names=sn),_triangle ,1,_structured);

mesh2d . renameDomain ( ”Omega” , ”Omega—") ;

sn[2] = "x=1/24+"; sn[3] = "x=17";

Mesh mesh2d_p (Rectangle(_origin=Point (0.5,0.), _xlength=0.5, _ylength=1,
_nnodes=Numbers(20,40) , _side_names=sn), _triangle ,1,_structured);

mesh2d_p .renameDomain ( "Omega” ,”Omega+” ) ;
mesh2d . merge (mesh2d_p) ;

Domain omegaM=mesh2d . domain (”Omega—") ;
Domain omegaP=mesh2d .domain (”Omega+” ) ;
Domain sigmaM=mesh2d . domain (”x=0") ;
Domain sigmaP=mesh2d .domain(”x=1") ;
Domain gamma=mesh2d .domain(”"x=1/2— or x=1/2+");

b2

In this exemple, the unit square is split in two domains QF and = using the merge and
renameDomain functions. Note that the merging process of meshes concatenates 'same’ domain
in a new one named "namel or name2”.

5.9.2 Dealing with normals of a domain

Normal vectors may be required in many variationnal forms, in particular when using BEM like
methods. In (bi)linear forms, they appears with symbolic names _n, _nx ,_ny that corresponds
to real normal vectors. The question is which normal vectors are selected by XLIFE++.

Note that the normal vectors of a domain, say I', are computed only if the domain is a manifold, say
a surface/curve domain in a 3d/2d space. If they are required, they are automatically computed
with the following default rules:

e if ¥ is a boundary (or a part of) of a unique domain €2, the selected normals are the outwards
vectors to ()

e if ¥ is a boundary between two domains (an interface), the selected normals are the towards
infinite vectors

e if > is not a boundary, say an immersed manifold, the selected normals are the towards
infinite vectors

Manifold : towards infinite normal Boundary : outwards €2 normal Interface : towards infinite normal
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@ When the boundary or the manifold is not closed, the normal orientations are consistent but
the selected orientation is not predictable.

The user can modify the normal orientation by using the member function of Domain class:
setNormalOrientation(OrientationType, [Domain]) where OrientationType has one of the
following values:

_undefOrientationType // default rules are applied
_towardsInfinite , _outwardsInfinite // for any side domain
_towardsDomain , _outwardsDomain // for any boundary or interface

To change the normal orientation of a side domain Sigma, write for instance

Sigma .setNormalOrientation (_towardsInfinite); //towards infinite normals
Sigma .setNormalOrientation (_outwardsDomain); //outwards normals,

//UNSAFE for an interface!
Sigma.setNormalOrientation (_outwardsDomain ,Omega) ; //outwards normals to Omega

For visualization purpose, the normal vectors can be exported to a vtk/vtu file using:

Sigma.saveNormalsToFile (”n_Sigma” , _vtu) ;

They can be also collected in a TermVector object:

Space V1(Omega,P1,”V1”); Unknown ul(V1,”ul” 3);
TermVector Ns = normalsOn (Sigma,ul);

The normals are computed by L2 projection on the space W related to the Unknown used. More
precisely, the normals n in space W are get by solving the problem:

/n|t:/n0|t Vte W
o s

where ng is the normal to the element faces. If (w;) denotes the basis of W and N the vector
representing the normal in W basis (n = > i wj;), the following linear system is solved:

AN = B, WithA:/wi|w]~ and Bi:/n0|wi
b D)

The unknown may be an explicit vector unknown or a scalar unknown if the space is a space
of vectors. In the case of a PO unknown, the normals are normals on element faces with no
projection. In the case of Pk Lagrange unknown, the normals are some interpolated normals on
Lagrange dofs.

5.9.3 Map of domains

Some processes require a geometric map between two domains. For instance, to deal with periodic
condition related to two side domains:

U|E+ = U|E—

the elimination process uses the geometric map F ¥t — Y~. The simple way to define such
map is the following:
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Reals mapPM(const Point& P, Parameters& pa = defaultParameters)

{

Point Q(P);
Q1) —=1;
return Q;

}
defineMap (sigmaP , sigmaM, mapPM) ;
Note that the mapPm function returns a Vector<Real> which is more general than a Point.

Respect this prototype !

It is currently not possible to define two different maps for a pair of domains.

5.9.4 Assign properties to domains

In some problems, physical properties may be different from a domain to other one. This may be
managed by differentiating integrals in variational formulation :

| m@uty o+ [ paleyuta) o)

Ql Q2

But it may be too intricate if there are a lot of domains or integrals. So there is an alternative
method consisting in defining a unique function p and deal with a unique integral:

/Q p(@)u(x) vlz)

and assign id to domains that are subdomains :

Real rho(const Point&P, Parameters& pars=defaultParameters)
{

Number mat=materialldFromParameters(pars) ;

if (mat==1) return

else return

}

Domain omega=mesh2d .domain (”omega”) ; //whole domain
Domain omegal=mesh2d.domain(”omega_1"); //subdomain
Domain omega2=mesh2d .domain(”omega_2”); //subdomain

omegal . setMaterialld (1) ;
omega?2.setMaterialld (2) ;

5.9.5 Cracking a domain

Theoretically, GMSH allows you to crack domains (1D cracks in 2D meshes, 1D or 2D cracks in
3D meshes). Cracks can be opened or not. A crack is opened when some boundary nodes of the
domain to crack are duplicated as the other nodes, else it will be a closed crack.

To notify that the segment has to be cracked, you just call the crack routine on it. This is a
general routine defining both opened and closed cracks through 2 additional optional arguments.
Default behavior is closed cracks. You can call the routine closedCrack (only the geometry in
argument) to define a closed crack. You can call the routine openCrack (the geometry and a
domain name) to define an opened crack. Inthis case, the domain name is the boundary domain

136



of the geometry you want to crack that will be opened. Let’s see following examples to understand
this.
There are two ways to define a geometry with a crack inside it: the direct one and the indirect
one.

Defining cracks directly

This way is the way you should always do to define a crack. A crack is a geometry inside a
geometry of bigger dimension. So the geometry to be cracked must be defined as a meshed "hole”
inside the container geometry.

Point x1(0,0,0), x2(1,0,0), x3(1,1,0), x4(0,1,0),
x5(0.2,0.2,0), x6(0.8,0.8,0), x7(0.2,0,0),

x8(0.8,1,0);
Rectangle rrect8(_vl=xl, _v2=x2, _v4=x4,
_domain name="0Omega” , _side_names="Gamma” ) ;
Segment scrack (_vl=x5, _v2=x6, _nnodes=3,
_domain name="Crack”, _side_names="Sigma”);

openCrack (scrack ,”Sigma”) ;
Mesh m(rrect8+scrack, _triangle, 1, _gmsh);

Here, it is an opened crack. A side name is given to both ends of the segment. This name will be
given to the routine openCrack to tell which ends are to be opened. Here, it is both.

Defining cracks indirectly

This way is called indirect, compared to the previous one, insofar as you have to link the geometry
you want to crack to the boundaries of the parent geometry and define surfaces from their
boundaries:

Point x1(0,0,0), x2(1,0,0), x3(1,1,0), x4(0,1,0),
x5(0.2,0.2,0), x6(0.8,0.8,0), x7(0.2,0,0),
x8(0.8,1,0);

Segment sl (_vl=xl, _v2=x7, _domain name="Gamma”) ;

b2

_vl=x2, _v2=x7, _domain name="Gamma
_v1l=x3, _v2=x2, _domain_name="Gamma

1
(
Segment s2 (
E,v1:><87 _v2=x3, _domain name="Gamma
(
(
(

1
2
Segment s3
Segment s4

)
b2

)
)
)5
77);
77)
)

Segment s5(_v1l=x8, _v2=x4, _domain name="Gamma
Segment s6(_vl=x4, _v2=x1l, _domain name="Gamma
Segment s7(_v1=x7, _v2=x5);
Segment s8(_vl=x5, _v2=x6, _nnodes=3,

_domain name="Crack”) ;
Segment s9 (_vl=x6, _v2=x8);
crack(s8);
Geometry

sfl=surfaceFrom (s7+s8+s9+s5+s6+sl,”Omegal”) ;
Geometry

sf2=surfaceFrom ( s74+s8+s9+s4+s3+s2 , "Omega2” ) ;
Mesh m(sfl+sf2, _triangle, 1, _gmsh);

b
7

b
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Here, it is a closed crack.

@ In this example, surfaces have different domain names. You can also give the same domain
name

Which way is better ?

direct way indirect way
1D crack in 2D mesh 100% safe 100% safe
2D crack in 3D mesh | not 100% safe | 100% safe
1D crack in 3D mesh | to be tested | to be tested

@ GMSH team is currently working on improving their crack engine to be 100% whatever the
case.

A look at the mesh file

Let’s see the resulting mesh file for the indirect example above:

$MeshFormat

2.2 0 8

$EndMeshFormat

$PhysicalNames

4

1 1 ”Crack”

1 2 7Gamma”

2 3 7"Omegal”

2 4 7Omega2”

$EndPhysicalNames

$Nodes

18

102020 |
2 0.8 0.8 0 |
3 0.4999999999991927 0.4999999999991927 0

4 0.8 10

5010

6 000

7 0.2 00

8110

9100

10 0.4999999999991927 0.4999999999991927 0
11 0.4000000000000001 0.8999999999999999 0
12 0.09999999999935429 0.5999999999998384 0
13 0.6188775510203053 0.8489795918366316 0
14 0.1178571428570276 0.1714285714285426 0
15 0.5999999999991926 0.1 O

16 0.8999999999993543 0.3999999999998387 0
17 0.3811224489791758 0.1510204081631623 0

18 0.8821428571427419 0.8285714285713998 0
$EndNodes

Bounds of the cracked domain are not duplicated (nodes 1 and 2), whereas the middle node of
the cracked domain is duplicated (nodes 3 and 10)
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$Elements

36

1121213
212123 2
3122445

412 2556
5122667

612 28 48
7122989

812 2 10 9 7

91 21 11 1 10

10 1 2 1 11 10 2

11 2 2 3 7 2 13 3
12 2 23 71 3 12
13 22 37 3 11 12
14 2 2 3 7 3 13 11
15 2 237 2 4 13
16 2 2 3 7 7 1 14
17 2 2 3 7 7 14 6
18 2 23 75 12 11
19 2 2 3 71 12 14
202 2 37 4 5 11
21 2 2 3 7 4 11 13
22 2 23 75 6 12
23 2 2 3 7 6 14 12
24 2 2 4 11 1 10 17
25 2 2 4 11 2 16 10
26 2 2 4 11 10 16 15
27 2 2 4 11 10 15 17
28 2 2 4 11 7 1 17
29 2 2 4 11 2 4 18
30 2 2 4 11 4 8 18
31 2 2 4 11 9 15 16
32 2 2 4 11 7 15 9
33 2 2 4 11 7 17 15
34 2 2 4 11 2 18 16
35 2 2 4 11 8 9 16
36 2 2 4 11 8 16 18
$EndElements

Segments are also duplicated. If you're familiar with the msh file format, by reading elements
11 and 24 for instance, we can deduce that domain "Omegal” has geometrical reference 7 and
domain "Omega2” has geometrical reference 11. These references will be used with the cracked
domain name to name sides of the crack, namely "Crack_7" and "Crack_11".

5.10 A full example with periodic cavities

You want to mesh a rectangular domain, but on the bottom side of the rectangle, you want to

have periodic cavities with the following pattern:
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Figure 5.38: Definition of the cavity and the mesh you want

First, you have to define the first cavity, according to the previous figure:

// Definition of the cavity

Real 11=0.06, 12=0.04, 13=0.08, h1=0.05, h2=0.1, s=0.01;
Point po(1.,0.);
Point pa=po+Point
Point pb=pa+Point
Point pc=pb+Point 0.);
Point pd=pc+Point (0. h2)

(1 1’ )5
(0.
((
Point pe=pd+Point (2.x12+13 ,0.) ;
(0.
(=
(0.
(11

)

Point pf=pe+Point(0.,—h2);
Point pg=pf+Point 12 ,0.)
Point ph=pg+Point —hl)
Point pi=ph+Point ,0.) 5

Segment sl (_vl=po, _v2=pa, _hsteps=s), (_vl=pa, _v2=pb,
s3(_vl=pb, _v2=pc, _hsteps=s), s4(_vl=pc, _v2=pd,
s5(_vl=pd, _v2=pe, _hsteps=s), (-vl=pe, _v2=pf,

(-vl=pf, _v2=pg, _hsteps=s) (-vl=pg, _v2=ph,
(_vl=ph, _v2=pi, _hsteps=s)

b

Geometry cavity=sl+s2+s3+s4+s5+s6+s57+58+59;

When done, you can define the other cavities as results of translations

// Definition of the cavities

Real cL=2.x11+13; // cavity length

Number nbcav=10; // number of cawvities

Geometry cavities=cavity;

for (Number n=1;n<nbcav; n++) { cavitiest=translate(cavity
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_hsteps=s
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_hsteps=s

9

b

)
)
)
)

b

of the first cavity

,nxcL,0.); }



Finally, we define borders of the main domain, and mesh the resulting Geometry defined with
surfaceFrom.

// full geometry
Real sb=0.05;

Point pl1(0.,0.), p2(2.+nbcavkcL,0.), p3(2.+nbcavxcL,1.), p4(0.,1.);
Segment s0(_vl=pl, _v2=po, _hsteps=Reals(sb,s)),
s10 (_v1l=Point(1l.4+nbcavxcL,0.), _v2=p2, _hsteps=Reals(s,sb)),
s11(_vl=p2, _v2=p3, _hsteps=sb, _domain name="SigmaP”)
s12(_v1=p3, _v2=p4, _hsteps=sb),
s13(_vl=p4, _v2=pl, _hsteps=sb, _domain name="SigmaM”);

Geometry borders=sO+cavities+sl10+sl14+s12+4s13;

//create mesh
Mesh mesh2d (surfaceFrom (borders ,”Omega”), triangle , 1, _gmsh);
Domain omega=mesh2d .domain(”Omega”) ;
Domain sigmaP=mesh2d .domain(”SigmaP”) ;
Domain sigmaM=mesh2d . domain ( ”SigmaM”) ;
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E Defining the problem

6.1 Domains, spaces, unknowns and test functions

XLIFE++ allows you to solve PDE with the finite elements method, and the spectral elements
method. Both methods approximate all functions w as follows :

Given a basis of n functions ¢;(z,y, z) and w; = (w, ¢;), then w(z,y, z) ~ Zwi vi(z,y, 2).
i=0

The basis functions define the so-called approximation space :

Vi = {w,such as w = Zwi goi(x,y,z)} )

=0
We will now see how to define spaces, dealing with finite element spaces and spectral spaces.
XLIFE++ is built so that just one object is concerned. Note that XLIFE+4++4 does not
declare essential conditions in space whereas mathematics requires it!

6.1.1 Domains and finite element spaces

With the finite element method, the basis function ¢; is constructed from the elements having ¢
as a degree of freedom (dof). It is a shape function.
What do we need to define a finite element space 7

e a geometrical definition of the domain where the problem is to be solved,

e a finite element interpolation, such as P, k € N for instance.

The geometrical definition of the domain consists in a mesh, which is a set of geometrical elements
(such as triangles, hexahedra, prisms, etc) whose union describes the domain. Inside the program,
this description is handled through an object of type Mesh. The definition of such an object is
the very first step of the resolution process to the problem.

The different ways XLIFE++ provides to define a Mesh are detailed in chapter 5. In order to
prepare the second step, namely the construction of the finite element space, we have to declare
variables to handle the main domain and eventually the subdomains needed by the problem. This
can be seen as an extraction from the mesh of the right information. This is done by means of
strings which are the names of the subdomains. Consequently, the user has to know in advance
the names of the subdomains.

When the mesh comes from a file, the names of the domains are generally written inside the file.
In the case of a GMSH mesh file, a default name is automatically generated by XLIFE++ for
each domain whose name is not specified in the file.

When the mesh is built by an internal meshing tool provided by XLiFE++, the name of the
main domain is always “Omega”. Moreover, if the mesh is built by a structured generator, the
boundary names have to be given by the user, in a specific order defined in the documentation of
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the constructor. But if the mesh is built by a subdivision generator, the names of the subdomains
are also automatically generated. So, in any case, the best way for the user to make sure he uses
the right names is to run the short following program, which is in fact the minimum mandatory
program for XLIFE++ usage:

#include 7xlife++.h”
using namespace xlifepp ;

int main() {
init (); // initialisation

Number order=1;
Mesh m(Ball (), _tetrahedron, order, _subdiv, 7test”); // for example

m. printInfo (); // prints mesh information on the terminal

¥
The output is:

Mesh’test’ (Ball - Tetrahedron mesh over 8 octants)
space dimension : 3, element dimension : 3
Geometry ball (center = (0,0,0), radius = 1) of shape type ball of dimension 3, BoundingBox [-1,1]x[-1,1]x[-1,1],
MinimalBox [(-1, -1, -1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1)], names of variable : x, y, z
number of elements : 8, number of vertices : 7, number of nodes : 7, number of domains : 5
domain number O: Omega (Interior of the domain)
domain number 1: Sigma_1 (Boundary: The sphere centered at vertex 4)
domain number 2: Sigma_2 (Interface: YZ plane)
domain number 3: Sigma_3 (Interface: XZ plane)
domain number 4: Sigma_4 (Interface: XY plane)

Now, we can declare the handle variables that will be used just afterwards:

Domain omega = m.domain(”Omega”) ;
Domain gamma = m.domain(”Sigma_17);

The definition of a finite element space is done by using one the constructors:

Space(const GeomDomain&, PolynomType, const String&, bool opt = true)
Space(const GeomDomain, , QolynomType, const String&, bool opt = true);
Space (const GeomDomain&, FeFaceType , const Stringé&, bool opt = true);
Space (const GeomDomain&, FeEdgeType , const Stringé&, bool opt = true)

i

)

The first argument g corresponds to the handle variables (omega, gamma) just defined whose
type, Domain, is an alias for GeomDomain&.
The second argument is the type of the elements in the space, to be chosen in the following list :

e PO, P1, P2 ..., P10 for standard Lagrange element on segment, triangle or tetrahedron
e Q0, Q1, Q2 ..., Q10 for standard Lagrange element on quadrangle or hexahedron

e NF1_1,NF1.2, ..., NF1.5 for Raviart-Thomas element on triangle or Nedelec Face first
family element on tetrahedron. It is also possible to use RT_k instead of NF1_k!

e NE1_1,NE1_2, ..., NE1_5 for Nedelec edge first family element on tetrahedron. It is also
possible to use N_k instead of NE1_k!

@ The second family edge or face elements are not yet available on triangle and tetrahedron.
Edge or face elements on quadrangle and hexahedron are not yet available.
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The last argument can be used to deactivate numbering optimization (reduction of the band
width of the matrix) if its value is false.

Here are some examples of FE space construction :

//2D examples

Mesh mesh2d (Rectangle (_xmin=0, xmax=1, ymin=0, ymax=1, nnodes=10) ,
_triangle ,1,_gmsh);

Domain omega=mesh2d .domain (”Omega” ) ;

//Lagrange Finite Element spaces

Space V1(omega,P1,”P1” true); //with numbering optimisation

Space V2(omega,P2,”P2” false); //no numbering optimisation

Space V3(omega,interpolation(_Lagrange,_standard ,20,H1),”P207);

FEInterpolation interp=interpolation(_Lagrange,_standard ,20,H1);

Space V4(omega,interp ,”P20”);

//Hdiv Finite Element spaces

Space Wl(omega ,RT_1,”RT1"”);

Space W3(omega,interpolation (_RaviartThomas ,_standard ,3 ,Hdiv),”RT3”);

//Hrot Finite Element spaces

Space Rl(omega,N_1,”"Nedl”);

Space R2(omega,N_2,”"Ned2”);

Space R4(omega,interpolation(_Nedelec, _firstFamily ,4,Hrot),”Ned4”);

//3D examples

Mesh mesh3d (Cube(_origin=Point (0.,0.,0.), _length=1.,_nnodes=n)
_tetrahedron ,1,_gmsh);

Domain omega=mesh3d .domain (”Omega”) ;

Space V1(omega,Pl,”P1” true);

Space V3(omega,interpolation(_Lagrange,_standard ,3 ,H1),”P3”);

Space Wl(omega ,NF1_1,”Hdiv_Ned1”);

Space R2(omega,NE1_2,”Hrot_Ned2”) ;

Note that it is possible to use some shortcuts in Space construction:

Space V0(omega,Lagrange ,0,”V0"); // PO Lagrange, L2 conforming

Space V3(omega,Lagrange ,3,7V3”); // P8 Lagrange, H1 conforming

Space Rl(omega,Raviart_Thomas,1,”RT1”); // Hdiv conforming

Space R2(omega, Nedelec_face ,2,”NF1”); // Hdiv conforming

Space Nl1(omega, Nedelec_edge ,1,”"NE1”); // Hcurl conforming

Space CR(omega, CrouzeixRaviart ,1,”CR”); // Other non conforming (degree 1 on

triangle or tetrahedron)

When dealing with problem with vector unknown where each component is approximated in the
same space (for instance P1 x P1 x P1 for the displacement field in elasticity problem), you have
to build a 'vector’ unknown on a ’scalar’ space; see the Unknown section.

Some subspaces or trace spaces are automatically created by XLIFE++. For instance, when an
integral on a boundary (X) is involved in a bilinear or linear form, the trace space Vis, = {vjs, v €
V'} is created. This subspace can be get using the following command:

Space& Vs=V|Sigma;
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6.1.2 Spectral spaces

Spectral spaces are spaces defined from basis functions defined on a mesh domain. Contrary to
finite element basis function given by a local definition on elements, the spectral basis functions
are given as global functions either by their analytic forms or by a set of interpolated functions
(say vectors related to an other space).

Analytic spectral space

The following declaration instanciate spectral space from analytic basis functions:

Space(const GeomDomain& g, Function f, Number n, Dimen d, const String&
name) ;

Space(const GeomDomain& g, Function f, Number n, Dimen d);
Space (const GeomDomain& g, Function f, Number n, const String& name);

Let us see an example :

Real sin_n (const Point& P, Parameters& pa = defaultParameters)

Real h = pa(”h”); // get the parameter h (user definition )
Real n = pa(”basis index”); // get the index of function to compute
return sqrt (2. / h) % sin(n x pi * P.x() / h); // computation
}
int main (int argc, charxx argv)
{
Mesh m(...) ;
Domain omega=m.domain(”Omega”) ;
Parameters ps (1., ”"h”);
Number n=10;
Space sp(omega, Function(sin_n, ”sin_n”, ps), n, ”sinus basis”);
}

To define a spectral basis, you need to define a function of space coordinates with at least one
parameter : the basis index. To do so, you have to define a standard C++ function, taking a
Point and a Parameters. The first one contains the space coordinates. The second one contains
all parameters needed to define the function. The return type of such function is Real. In the
example, you can notice how to define and use the parameter "h”.

Once you have defined your C++ function, you have to pass it to the list of arguments of the
Space constructor. To do so, you have to use the Function object, taking the name of the
function, a string, and the Parameters object.

Interpolated spectral space

An interpolated spectral space is defined from a set of interpolated functions, say vectors of an
other space (TermVectors, see Terms chapter). The following example shows how it works:

int main (int argc, charxx argv)

{
Mesh m(...) ;
Domain omega=m.domain(”Omega”) ;
Space V(omega,P1,”V” true); //create FE space
Unknown u(”u”,V); //create FE unknown
Real h=1;
Parameters params(h,”h”);
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Function sinBasis(sin_n , params);

TermVectors sinlnt (N); //interpolated functions
for (Number n=0; n<N; n++)
{

sinBasis . parameter(”basis index”)=n;
sinInt (n+1)=TermVector (u, omega, sinBasis, "c¢”’+tostring(n));

}

Space S(sinInt, 7V interpolated sin(n#pixy)”);

The Unknown object is described in the next section.

Advance usage

It is possible to manipulate spectral basis by instanciate such objects :

SpectralBasisFun sbFun(omega, sinBasis, N, 1);
SpectralBasisInt sblnt(sinlnt);

Thus it is possible to evaluate basis functions at a point :

Real r;

Point P(1.,0.);
sbFun. function (n
sbInt . function (n

Por);
,Por);

Be cautious, the type of returned argument r has to be consistent with the type of basis functions.

6.1.3 Unknowns and test functions

Once you have defined the space, the next step is to define unknowns and test functions on this

space.

Unknown(Space& sp, const String& name, Dimen d=1);
TestFunction (Space& sp, const String& name, Dimen d=1);

According to the problem, you may want to define scalar or vector unknowns or test functions.

The third argument is dedicated to this.

In case of a multiple unknowns problem, the order of unknowns may be sensitive. By default,

they are sorted by the construction order, using the rank property of unknown:

Unknown u(V, "u”, 2);
Unknown p(V, "p”);
TestFunction v(”v” ,u);

TestFunction q(”q”,p);

cout<<u.rank ()<<” "<<v.rank ()<<” "<<p.rank ()<<” "<<q.rank();

b2 )

This exemple gives 1 3 2 4.

It is possible to assign the rank of an unknown at the construction:

Unknown u(V, ”u”, 2, 2); //rank 2

Unknown p(V, "p”, 1, 1); //rank 1

TestFunction v(u, ”v”, 4); //rank 4

TestFunction q(p, ”q”, 3); //rank 3

cout<<u.rank ()<<” "<<v.rank ()<<” "<<p.rank ()<<” "<<q.rank();
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Be cautious, rank has to be unique! It is not mandatory that ranks follow.

The setRanks function may be used to change the ranks of a collection of unknowns:

setRanks(u,1,p,2,v,11,q,12);

6.1.4 Dealing with collections

When there is a lot of domains, spaces, unknowns it may be more friendly to work with indexed
collection. This is the purpose of the classes Domains, Interpolations, Spaces , Unknowns and
TestFunctions. As an example, suppose you want to deal with 4 domains:

Strings sn(”Gammal” ,”Gamma2” ,”Gamma3” ,”Gammad” ) ;

Mesh mesh2d (Rectangle (_xmin=0, xmax=0.5,_ ymin=0, ymax=1, nnodes=Numbers(3,6) ,
_domain name="0Omega” ,_side_names=sn) ,_triangle ,1,_structured);

//get the mesh domains in a Domains object

Domains doms(4) ;

for (Number i=1;i<=4;i++) doms(i)=mesh2d.domain(i—1);

//create one space by domain (say Pl1)

Spaces Vs(4);

for (Number i=1;i<=4;i++) Vs(i)=Space(doms(i),_-Pl,”V_"+tostring(i));

//create unknowns

Unknowns us (4) ;

for (Number i=1;i<=4;i4++) us(i)=Unknowns(Vs(i), ’u’+tostring(i));

//create TestFnctions

TestFunctions vs=dualOf(us);

Other syntaxes are available:

Unknown ul (V1,7ul”), u2(V2,7u2”), u3(V3,”u3”);
Unknowns usl (ul,u2,u3);

Unknowns us2; us2<<ul<<u2<<us3;

Unknowns usi={ul,u2,u3}; //only in C++2011

6.2 Forms

Given a PDE, you have to write a variational formulation. As a result, you have an equality
between 2 forms : a bilinear form on the unknown u and the tests function v, generally called a,
and a linear form on the test function v, generally called [. Both are defined as linear combination
of single or double integrals on operators on unknowns and, in the bilinear case, test functions,
and an integration method or a quadrature rule.

BilinearForm intg(const GeomDomain& dom, const OperatorOnUnknowns& opus,
QuadRule qr= _defaultRule , Number qro=0);

BilinearForm intg(const GeomDomain& domx, const GeomDomaind& domy, const
OperatorOnUnknowns& opus, QuadRule qr = _defaultRule, Number qro =0);

BilinearForm intg(const GeomDomain& domx, const GeomDomain& domy, const
KernelOperatorOnUnknowns& kopus, QuadRule qr = _defaultRule, Number qro =
0);

LinearForm intg(const GeomDomain& dom, const OperatorOnUnknown& opu,
QuadRule qr = _defaultRule , Number qro = 0);

LinearForm intg(const GeomDomain& dom, const Unknown& u, QuadRule qr =
_defaultRule , Number qro = 0);
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LinearForm intg(const GeomDomain& domx, const GeomDomaind domy, const
OperatorOnUnknown& opu, QuadRule qr = _defaultRule , Number qro = 0);

LinearForm intg(const GeomDomain& domx, const GeomDomain& domy, const
Unknown& u, QuadRule qr = _defaultRule , Number qro = 0);

In simple case, symmetry property of a bilinear form may be deduced from its definition. In some
cases, the analysis being to intricate, the symmetry property is not deduced. It is the reason
why it is possible to enforce this property in the definition of bilinear form by specifying as last
argument one of the symmetry keywords:

_noSymmetry, _symmetric, _skewSymmetric, _selfAdjoint, _skewAdjoint

For instance, if A is a symmetric matrix :

BilinearForm b = intg(S,u|v); //implicit symmetry
BilinearForm b = intg(S,(A%u) |v,_symmetric); //explicit symmetry

g% Keep in mind that v and v represent shape functions of the space which are real functions!.
Thus, there is no reason to conjugate test functions.

6.2.1 Operators on unknowns

XLIFE+4 management of operators on unknowns is as close as possible to the mathematical
description, few operators are overloaded and a lot of possibilities are offered, For instance:

mathematical expression | XLIFE++ translation comment

V(u) grad(u) u unknown

V(u)-V(v) grad(u)|grad(v) u unknown, v test function
(AxV(u))-V(v) (A*grad(u))|grad(v) u unknown, v test function, A a matrix
(F(x)*V(u))- V() (F*grad(u))|grad(conj(v)) | u unknown, v test function, F a function
u(x)*G(x,y)*v(y) u*G*v u unknown, v test function, G a kernel

Defining functions needs C++ functions with specific prototypes :

OUT f1 (const Point& P, Parameters& pa = defaultParameters); // scalar form
Vector<OUT> {2 (const Vector<Point>& Ps, Parameters& pa = defaultParameters);
// wector form

The return type OUT can be one of the following : Real, Complex, Vector<Real>,
Vector<Complex>, Matrix<Real> or Matrix<Complex>.
You can use the function directly in your integral, or define Function object such as

Function F(fl, “name”, params) ;

You can optionally give a name to the Function object and a Parameters object when needed.
Defining kernels needs also C++ functions with specific prototypes

OUT f1 (const Point& P, const Point & MParameters& pa = defaultParameters);
// scalar form

Vector<OUT> {2 (const Vector<Point>& Ps, const Vector<Point>& Ms, Parameters&
pa = defaultParameters); // wvector form

You can use the function directly in your integral, or define Kernel object such as

Kernel F(fl, ”name”, params);
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You can optionally give a name to the Kernel object and a Parameters object when needed.
The complete list of operators is in the following, where u is either a scalar or vector unknown,
x, v and z are the cartesian coordinates and n is the normal):

mathematical built in functions unknown
identity id(u) or u scalar or vector
O dO(u) or dt(u) scalar or vector
Ox d1(u) or dx(u) scalar or vector
Oy d2(u) or dy(u) scalar or vector
0 d3(u) or dz(u) scalar or vector
\Y grad(u) or nabla(u) scalar or vector
div div(u) vector
curl curl(u) or rot(u) vector
V. (surfacic) gradS(u) or nablaS(u) scalar or vector
div; (surfacic) divs(u) vector
curl, (surfacic) curlS(u) or rotS(u) vector
Vabe = (a0z, b0y, c0,) | gradG(u,a,b,c) or nablaG(u,a,b,c) | scalar or vector
V abe- divG(u,a,b,c) vector
V ape X curlG(u,a,b,c) or rotS(u,a,b,c) vector

mathematical built in functions unknown

£ epsilon(u) vector

Eiabe epsilonG(u,i,a,b,c) vector

ER epsilonR(u) = (611,611,622,633,632,631,621) vector

voigtToM voigtToM(u)= [ul u6 ub; u6 u2 u4; ub ud u3] | vector

nax nx(u) or _n*u scalar

n. ndot(u) or _n.u vector

nx ncross(u) or _n"u vector

n X nx ncrossncross(u) or .n"_n’u vector

n.V ndotgrad(u) or _n.grad(u) scalar

nxV ncrossgrad(u) or _n"grad(u) scalar

n div ndiv(u) or -n*div(u) vector

n x curl ncrosscurl(u) or _n"curl(u) vector

[ ] (jump across) | jump(u) scalar or vector

{ } (mean across) | mean(u) scalar or vector

6.2.2 Operators on kernel

Similar to operator on unknowns, XLIFE++ allows to apply some operators on kernel (say
k(x,y)). The complete list of operators is the following :
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mathematical | built in functions unknown
identity id(k) or k scalar or vector
Va grad_x(k) or nabla_x(k) scalar or vector
Vy grad_y(k) or nabla_y(k) scalar or vector
div, div_x(k) vector

div, div_y(k) vector

curl, curl_x(k) or rot_x(k) vector

curly curl_y(k) or rot_y(k) vector

Nk ntimes_x(k) or _nx*k scalar

Ty ok ntimes_y(k) or _ny*k scalar

Ng. ndot_x(k) or _nx.k vector

Ny. ndot_y(k) or _ny.k vector

Ng X ncross_x(k) or _nx"k vector

Ty X ncross_y(k) or _nyk vector

Ng X (Mg X) ncrossncross_x(k) or _nx"(_nx"k) | vector

Ny X (1yx) ncrossncross_y(k) or _ny”(_ny“k) | vector
mathematical | built in functions unknown
Ng.Va ndotgrad_x(k) or _nx.grad_x(k) scalar
ny.Vy ndotgrad_y(k) or _ny.grad_y(k) scalar

nydivy ndiv_x(k) or _nx*div_x(k) vector
nydiv, ndiv_y(k) or _ny*div_y(k) vector

ng X curly ncrosscurl_x(u) or _nx"curl_x(k) | vector
N Ty % nxdotny_times(k) or (_nx|-ny)*k scalar or vector
(Ng X ny). nxcrossny_dot(k) or (_nx"_ny)lk vector

(ny X ng). nycrossnx_dot(k) or (_ny"_nx)lk vector

(ng X ny)x nxcrossny_cross(k) or (_nx"_ny)” k | vector

(ny X ng)x nycrossnx_cross(k) or (_ny"_nx)" k | vector

In operators, the normal vectors
vectors related to the domain involved in integrals where operators appear. See the section 5.9.2
to know how normal vectors are oriented.

n, _nx, _ny are symbolic ones.

@ When one of the argument is a complex, the "inner product” means a hermitian product.

and for 3D we use

6.2.3 Kernels available

There are currently some kernels available in XLIFE++ for 2D and 3D problems: Laplace and
Helmholtz Green functions, and Mazxwell Green tensor in 3D:

e The Laplace kernel used for 2D problems is

1
Laae,y) = —5-log (o = )

1

L - -
3d(x7y) 47T||$—y||

e The Helmholtz Green function for 2D problems used is

[
Haa(k; 2, y) = Hg” (kllz = 1),
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with Hél) then Hankel function. Finally, for 3D problems we use

gikllz—yl
Hzq(k; 2, y) = PPk

e The harmonic Maxwell Green tensor for 3D problems is defined as:

1
Msq(k;z,y) = Haq(k; z,y) I + ?HGSS(HM(/?; z,Y)).

Examples of declaration of these kernels follow:

Kernel GLap2D=Laplace2dKernel () ;

Kernel GLap3D=Laplace3dKernel () ;

Parameters pars(k,”k”); // We provide the wavenumber k wusing a Parameters
Kernel GHelm2D=Helmholtz2dKernel (pars) ;

Kernel GHelm3D=Helmholtz3dKernel (k) ;

6.2.4 Interpolated function in operator

Interpolated functions are function defined from finite element approximation :

where w; are some finite element shape functions and f; are some real/complex scalar/vector
coefficients. With Lagrange FE, f; = f(x;) where z; is the node related to the shape function w;.
In XLiFE++ lib, such function may be represented by a TermVector object that handles both
a FE space, thus the shape functions, and the coefficients in an array of values. By specifying a
TermVector object in an operator construction, an interpolated function will be handled.

Mesh
m(Square(_origin=Point (0. ,0.) ,_length=1.,_nnodes=5,_domain_name="0Omega”) ,
_triangle ,1,_structured);
Domain omega=m.domain (”Omega” ) ;
Space V(omega,P1,”V”); TUnknown uh(V,”u”);
TermVector x1(u,omega,_x1,”x1"); // interpolated function
LinearForm ll=intg (omega,xlxu);
LinearForm 12=intg (omega,(x1"3)x*u);

Such approach may be very useful for non linear problem when non linear terms are taken into
account at a previous step in a iterative scheme.

@ For the moment, the way that X LIF E+4 processes, consists in transforming the TermVector
object in a Function object that performs the computation of the sum outside of any context :
first locate the finite element that contains the point x, then evaluate using local interpolation.
As the localization algorithm has a log complexity, computation of the interpolated function at
a point is not so time expansive but it is not optimal, in particular when computing integral.
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6.2.5 Additional operation in operator
Transpose and conjugate

Some quantities (function or kernel) involved in a bilinear form may have to be transposed or
conjugated. XLIFE++ provides 3 operators to do it :

e tran to transpose an expression
e conj to conjugate an expression
e adj to conjugate and transpose an expression

Obviously, transposition has only meaning for functions or kernels returning a matrix! In
XLIFE++, the shape functions related to a FE space are real scalar/vector functions, so
transpose or conjugate an unknown has no interest and, by the way, is not allowed!

Extension

Some problems require to deal with the extension of a function/kernel, say f or k, from a boundary
(say I') to its parent domain (say ). XLIFE++ provides a particular extension process that
extends function/kernel from the boundary I' to its neighborhood, that is the set of elements that
have at least one vertex located onto I', say I'.,;. More precisely, the extension formula is:

Er(f)(z) = Z J(M;)w;(x)

where M, are some mesh vertices and w; the one order Lagrange shape functions related to the
vertex M;. Such extension vanishes outside I'..;.

Define an extension is very easy. You have to specify the boundary domain to be extended, if not
unique, the domain where you want to do the extension and the variable if you want to extend a
kernel :

Extension Eg(Gamma) ; //extend from Gamma to elements in its neighborhood
Extension Eg(Gamma, _y) ; //extend from Gamma for wvariable vy

Extension Eg(Gamma,Omega) ; //extend from Gamma to Omega

Extension Eg(Gamma,Omega, _x); //extend from Gamma to Omega for variable x

The set of elements in the neighborhood of I' can be explicitely constructed by using the
extendedDomain member function of Domain :

Domain Gamma_ext=Gamma. extendDomain () ; //elements having a side on Gamma
Domain Gamma_ext=Gamma. extendDomain (true); //elements having a vertex on Gamma

Finally, to use extension in bilinear form, write for instance

Extension Eg(Gamma, Omega) ;

BilinearForm a=intg (Omega,uxEg(f)x*v); //extension of a function
Eg.var=_y;
BilinearForm a=intg (Gamma,Omega,uxEg(k)xv); //extension of a kernel along vy
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@ The computation are automatically restricted to elements of the extended domain, so you
do not have to restrict yourself.
Be cautious, when applying an extension to an object involving kernel derivatives; for instance

Ep o[dy(k) Z dy (k) (M, y) wi()
Er . [dx(k Z dx(k)(M;,y) wi(z) + Z k(M;,y) dz(w;)(x).

Summary of main operator syntaxes
In the following

e val represents any constant value, that is a real or a complex value, a real or a complex
vector or a a real or a complex matrix,

e fun represents a Function object or an explicit C++ function

e opfun represents an OperatorOnFunction object, say difop(Function); only few differential
operators are available

e ker represents a Kernel object or an explicit C++ function

e opker represents an OperatorOnKernel object, say difop(Kernel); only few differential
operators are available

e tv represents a TermVector object

e aop represents an algebraic operator, one of * | = 9

[val/fun/opfun/tv aop] [difop] (Unknown) [aop val/fun/opfun/tv] | -> opu
opu [aop opul -> opus
opu aop ker/opker [aop opu] -> kopus

6.2.6 Integration method

When defining a linear or a bilinear form, the user may specify the integration method or a list
of integration methods to use. Currently the following objects are available:

e (uadratureIM : quadrature methods based on quadrature points and weights, see
quadrature rule in the next section

e IntegrationMethods: specific methods to integrate singular kernel in bilinear form, see
details in the next section

To use it in a computation, specify an integration object in the definition of the form:

QuadratureIM quadIM ( Gauss_Legendre ,2) ; //standard quadrature method
BilinearForm blf=intg(omega,uv,quadlM);
BilinearForm blf=intg(omega,uv, Gauss_Legendre ,2) ; //shortcut syntaz

//for singular integrals

IntegrationMethods ims(Sauter_Schwab ,3,0.,Gauss_Legendre ,3) ;
BilinearForm blf=intg (sigma ,sigma ,uxGxv, ims) ;
IntegrationMethods imr(Gauss_Legendre ,3) ;

LinearForm 1f=intg(sigma ,G*u,imr) U);

Note that integration method is attached to the integral definition. So you can mix different
integration methods in a bilinear form :
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BilinearForm blf = intg(omega,grad(u)|grad(v),Gauss_Lobatto,1)
+ intg(omega,uxv, Gauss_Legendre ,2) ;

Using mixed integration methods is generally slower than using the same integration method!

@ It is not mandatory to specify an integration method in form; a default one is chosen according
to the order of unknown interpolations, the order of differential operators involved and the fact
that there are functions in operator on unknowns. For FE form, we use the minimal quadrature
rule for shapes involved in domain wich integrates exactly the polynoms of order

k = (deg(u) — order(dif(u))) x [deg(u)] * [(deg(v) — order(dif(v))) * [deg(v)]]

where deg(u) (resp. deg(v)) is the degree of polynoms used by wu-interpolation (resp. v-
interpolation), order(dif(u)) (resp. order(dif(v))) is the order of differential operator applied
to u (resp. v). [] means an optional coefficient.

The table of best rules is given in the developer’s documentation.

Quadrature rules

To perform computation of integrals over reference elements, XLIFE++ provides a lot of
quadrature formulae of the form :

[RELED IV

i=1,q

where (7;);=1 4 are quadrature points belonging to reference element E and (w;)i=1,4 are quadrature
weights.

Up to now, there exist quadrature formulae for unit segment |0, 1[, for unit triangle, for unit
quadrangle (square), for unit tetrahedron, for unit hexahedron (cube), for unit prism and for unit
pyramid. The following tables gives the list of quadrature rule available :

General rules

Gauss-Legendre | Gauss-Lobatto | Grundmann-Muller | symmetrical Gauss
segment any odd degree | any odd degree
quadrangle | any odd degree | any odd degree odd degree up to 21
triangle any odd degree any odd degree degree up to 10
hexahedron | any odd degree | any odd degree odd degree up to 11
tetrahedron | any odd degree any odd degree degree up to 10
prism degree up to 10
pyramid any odd degree | any odd degree degree up to 10

Particular rules

nodal miscellaneous

segment P1 to P4
quadrangle | Q1 to Q4

triangle P1 to P3 Hammer-Stroud 1 to 6
hexahedron | Q1 to Q4
tetrahedron | P1, P3 Stroud 1 to 5

prism P1 centroid 1, tensor product 1,3,5
pyramid P1 centroid 1, Stroud 7

154




The developer documentation gives more details on quadrature rules and indicates what best
rules (in terms of number of quadrature points) are selected when only shape and degree are
specified. Generally for low degree (d < 3) a specific rule is selected, for intermediate degree
(4 < d < 10) a symmetrical Gauss rule is selected and for high degree a quadrature rule working
at any degree (Gauss-Legendre or Grundman-Muller) is chosen.

How to choose the quadrature rule ?

By using intg with a specific pair of arguments:

e QuadRule qr, to give the quadrature rule formulae (possible values are Gauss_Legendre,
Gauss_Lobatto, nodalQuadrature, miscQuadrature, Grundmann_Moller or
symmetrical_Gauss),

e Number qro, to give the quadrature rule degree:

BilinearForm a=intg (Omega,u*v, Gauss_Legendre ,4) ;

When no rule and degree are given, the degree is determined by looking the degree of polynomials
involved in the (bi)linearform taking into account derivative operators and the existence of an
additional user function. For instance, the following bilinear form in P* finite element space

/quv

will ask for a quadrature rule of degree d = 3k while the following bilinear form

/ Vu.Vou
Q

will ask for a quadrature rule of degree d = 2(k — 1).
Once the degree d is determined, XLIFE++ chooses the best quadrature rule available for
degree d and element shapes involved in the mesh domain.

@ The user choice is always a priority even his choice leads to under integration. In doubt, let
XLiFE++ work for youl

Integration methods for integral equation or integral representation

Integral equation involves singular kernels. To deal with the singularity in integrals, some
particular methods are proposed to users. LenoirSallesxx classes compute in an analytic
way integrals involving 2D or 3D Laplace kernel but with low order finite elements (PO or P1)
whereas there are methods for any finite element order but specific problem dimension such as
SauterSchwabIM for 3D problems and DuffyIM for 2D problems. Currently, only log(r) in 2D
and r~! in 3D singularities are adressed.

e SauterSchwabIM! class adresses computation of integral

/F/EK(az,y)dxdy

L Integral over a product of geometric elements with singularity using Sauter-Schwab technique, Stefan A. Sauter,
Christoph Schwab, "Boundary Element Methods”, Springer, 2010
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where I' and ¥ are 2D domains (in 3D) (partition of triangles) and K(x,y) a kernel having
possibly a singularity of type 1/||x — y||. This technique is well adapted for most of second order
PDE in 3D. It uses Gauss-Legendre quadrature on segment. When creating such method, you
may specify the quadrature order on segment:

SauterSchwabIM ssIM (5) ;

The default order is 3. Sauter-Schwab method works for any finite element on triangle.

@ The Sauter-Schwab method consist in transforming the integral over a triangle pair to some
integrals over the unity cube of R* and then computing each integral using a 4 tensor product
of standard quadrature formula on segment. As a consequence, the number of points where the
kernel is evaluated grows as a power 4 of the number of quadrature points used on segments. So
increasing the order of quadrature on segment may be very time expansive.

e DuffyIM? class adresses computation of integral

//K:z:ydxdy

where I' and ¥ are 1D domains (in 2D) (partition of segments) and K(z,y) a kernel having
possibly a singularity of type log(||x — y||). This technique is well adapted for most of second
order PDE in 2D. It uses Gauss-Legendre quadrature on segment.

When creating such method, you may specify the quadrature order on segment:

DuffyIM dufIM (5) ;

The default order is 6. Duffy method works for any finite element on segment.

e LenoirSalles2dIM and LenoirSalles3dIM 3 classes adress computation of integral

[ [ pte) K atu) de dy
// ) On, K (2, y) q(y) dz dy

where I' and ¥ 2D domains in 3D (partition of triangles) or 1D domains in 2D (partition of
segments), K (x,y) the Laplace kernel and p, g are either piecewise constant functions or piecewise
linear functions. It deals only the case of elements sharing at least one vertex. So for elements
that are not close you a standard quadrature has to be used. These classes do not manage any
parameter:

LenoirSalles3dIM 1s2 () ;
LenoirSalles2dIM 1s3 () ;

or

e LenoirSalles2dIR and LenoirSalles3dIR classes address computation of integral

- / K(2,) aly) dy

2 Integral over a product of segments with singularity using the Duffy transformation

3 Integral over a product of geometric elements with singularity using Lenoir-Salles analytic technique, Marc
Lenoir, Nicolas Salles, Evaluation of 3-D Singular and Nearly Singular Integrals in Galerkin BEM for Thin Layers,
SIAM Journal on Scientific Computing, vol. 36, pp. 3057-3078, 2012
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i(z) = / 00, K (2,) aly) dy

where I' is either a 2D domain in 3D (partition of triangles) or a 1D domain in 2D (partition of
segments), K (z,y) the Laplace kernel and ¢ is a either piecewise constant function or piecewise
linear function. These classes do not manage any parameter:

LenoirSalles3dIR 1s2 () ;
LenoirSalles2dIR 1s3 () ;

Define several integration methods

Computing integral with kernel is a costly business because of the kernel singularity. But in fact,
this singularity is effective only in particular situations : when two elements share at least one
vertex in BEM computation or when the point is to close to an element in IR computation. This
is the reason why XLIFE++ provides a way to choose different integration methods regarding a
geometric criteria : the relative distance between the centroids of elements :

I = Gl

dr(E;, E;) = max(diam(E;), diam(Ej;))

or the relative distance between a point and the centroid of element:

_ Nz =G|

E)=——711——.
dr(z, E:) diam(E;)

The IntegrationMethods class collect integration methods with two additional informations:
e the bound value b telling the integration method is applied when dr <b

e the part of the function concerned by the integration method, one of
_allFunction, _regularPart, _singularPart, the default value is _allFunction.

There is a lot of way to define an IntegrationMethods object. Here are given some classical
forms:

IntegrationMethods imsl (Sauter_Schwab ,3,0.,defaultQuadrature ,5) ;
IntegrationMethods ims2 (Duffy ,5,0., Gauss_Legendre ,10,1.,
Gauss_Legendre ,5,2. ,
Gauss_Legendre ,3) ;
IntegrationMethods ims3(Lenoir_Salles_3d , Gauss_Legendre ,5) ;
IntegrationMethods imsh(LenoirSalles2dIR () ,_singularPart ,theRealMax,
QuadratureIM (_GaussLegendreRule ,4) , _regularPart ,theRealMax) ;

For instance, the definition of ims2 corresponds to the following choice:

Duffy Gauss-Legendre Gauss-Legendre Gauss-Legendre
order 5 order 10 order 5 order 3 )
. I I . relative
I 1 T v .
distance
0 1 2

@ Be care when defining an IntegrationMethods object. In particular, check that all the cases
are handled.
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6.3 Essential conditions

Essential conditions are conditions that appear in spaces involved in variational problem. The
most common one is the Dirichlet condition on a boundary : v =0 on I' (homogeneous) or u = g
on I' (non homogeneous). But there are others : transmission condition on a boundary, periodic
condition between two boundaries, null average on a domain, ... XLIFE++ provides a symbolic
description of such conditions based on operator’s stuff already described.

The general syntax of an essential condition is the following
(al ® opl(ul) )|D1 +/- (a2 ® op2(u2) )|D2 = f
where

e al, a2 are some constants

e ® is any algebraic operator (*, |, % , ~)
e opl, op2 are some operators on unknown
e ul, u2 are some unknowns

e D1, D2 are some domains

e fis a constant or a function

Some classic scalar expressions are :

uD=0 homogeneous Dirichlet condition
uD =f non homogeneous Dirichlet condition
ul|D-u2|D =0 homogeneous transmission condition
u/D1-u|D2 =10 homogeneous periodic condition
u|D1 - g *u|D2 = 0 | quasi periodic condition (g function)

Obviously, syntax supports more than conditions that the program can really deal with !

@ As the operator priority rules are the C++ rules, omitted parenthesis may induce some
hazardous compilation errors. In doubt, use parenthesis.

To declare essential condition, users have to instanciate EssentialConditions object, which
handles a set of conditions:

Strings sn(”y=0", "y=17, 7"x=0", "x=17);

Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=10,
_side_names=sn), _triangle, 1, _structured);

Domain omega=mesh2d .domain(”Omega”) ;

Domain sigmaM=mesh2d .domain (”x=0") ;

Domain sigmaP=mesh2d .domain(”"x=1");

Space V(omega,P1,”V” true);

Unknown u(V, ”u”);

EssentialConditions ecs = (u|sigmaM = 1);
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or using a function:

Real un(const Point& P, Parameters& pa = defaultParameters)

{

return 1.;

}

EssentialConditions ecs = (u|sigmaM = un);

To concatenate conditions, use the operator & :

EssentialConditions ecs = (u|sigmaM = 1) & (u|sigmaP = 1)

)

It is possible to mix conditions. Here is a case with two unknowns related by a transmission
condition:

Domain sigmaM=mesh2d .domain (”x=0") ;

Domain sigmaP=mesh2d .domain(”"x=1");

Domain gamma=mesh2d .domain(”"x=1/2— or x=1/2+7);
Space VM(omegaM ,P2,"VM” | true) ;

Unknown uM(VM, “u—");

Space VP(omegaP P2, "VP”  true);

Unknown uP (VP, 7ut”);
EssentialConditions ecs = (uM|sigmaM = 1) & (uP|sigmaP = 1)
& ((uM|gamma) — (uP|gamma) = 0);

To deal with periodic condition, the map related to the two domains involved is required:

Vector<Real> mapPM(const Point& P, Parameters& pa = defaultParameters)

{

Point Q(P);
Q(1)—=1;
return Q;

}

Domain omega=mesh2d .domain (”Omega” ) ;
Domain sigmaM=mesh2d .domain (” ;
Domain sigmaP=mesh2d .domain (”
Domain gammaM=mesh2d . domain (
Domain gammaP=mesh2d . domain (
Space V(omega,P,”V” true);
Unknown u(V,”u”);

defineMap (sigmaP , sigmaM, mapPM) ;
EssentialConditions ecs = (u|gammaM = 0) & (u|gammaP = 0)
& ((ul|sigmaP) — (u|sigmaM) = 0);

@ XLiIFE++ uses a very powerful process to deal with essential condition: all constraints are
merged in a unique linear constraints system which is reduced using a QR algorithm. This process
is able to detect redundant or conflicting constraints. When some are redundant, they are deleted.
When some are in conflict, they are also deleted but the right hand side related components
are averaged. For instance, this occurs when two Dirichlet conditions are not compatible at
the intersection of two boundaries. In both cases a warning message is handled. It is the
responsability of user to check possible conflict.
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% Contrary to the mathematical point of view, in XLIFE++ the essential conditions are
NOT attached to spaces but to algebraic representation of bilinear forms (see next section). This
choice avoid to define multiple spaces.
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FAl Solving the problem

Now, from the previous symbolic representation, we go to the algebraic representation of the
problem, that is to say the representation of the problem in terms of matrices and vectors.

7.1 Algebraic representation

The algebraic representation consists in representation in terms of vectors and matrices of linear
and bilinear forms, say :
Li = Z(TZ) and Aij = &(’UJj,Ti)

where (w;) =1, and (7;);=1m are respectively the basis of finite space V' (unknown space) and W
(test function space).
XLiFE++ provides two fundamental classes to deal with such vectors and matrices:

e TermVector class which handles vector and space stuff (linear form, unknowns, dof
numbering, ...)

e TermMatrix class which handles matrix and spaces stuff (bilinear form, unknowns, dof
numbering, ...)

These two classes support either single unknown or multiple unknowns representation. Multiple
unknowns vector or matrix are represented by single unknown blocks:

L’Ul Avl u1 A’Ul u2
L= L, and A= | Apu Avyus

where uq, us stands for unknowns and v, vy stands for test functions.

@ Unknowns correspond to matrix columns and test functions to matrix rows!

The algebraic representation of a linear form or a bilinear form is simply done by specifying forms
in TermVector or TermMatrix:

Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1,

_nnodes=20),_triangle ,1,_structured);

Domain omega=mesh2d .domain (”Omega” ) ;

Space V(omega,P1,”V” true);

Unknown u(V,”u”);

TestFunction v(u,”’v”);

LinearForm fv=intg (omega, f*v);
TermVector F(fv, ”F”);

BilinearForm auv=intg (omega,grad(u)|grad(v));
TermMatrix A(auv,”A”);
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Naming them using a string is more convenient for printing purpose.
For multiple unknowns forms, the syntax is the same:

Domain omegal=mesh2d .domain(”Omegal”); Domain omega2=mesh2d .domain(”Omega2”) ;

Space V1(omegal ,P1,”V” true); Space V2(omega2,P1,”V” true);
Unknown ul (V1,”ul”); Unknown u2(V2,”7u2”);
TestFunction v1(ul,”v1”); TestFunction v2(u2,”’v2”);

LinearForm fv = intg(omegal, fxvl) + intg(omega2, fxv2);
TermVector F(fv 6 "F”);

BilinearForm
auv=intg (omegal ,grad(ul) |grad(vl))+intg (omega2,grad(u2) |grad(v2));
TermMatrix A(auv,”A”);

As mentioned before, essential conditions are not attached, neither to space nor to bilinear form,

but directly to TermMatrix. You have to specify them when you construct a TermMatrix from
bilinear form:

BilinearForm auv=intg (omega,grad(u) |grad(v))

u

EssentialConditions ecs= (u|sigmaM = 1) & (
TermMatrix A(auv, ecs, "A”);

| sigmaP = 1);

@ Essential conditions are never attached to a TermVector! When solving a system
involving essential conditions, the TermVector representing the right hand side of the system is
automatically corrected to take into account essential conditions effects.

When defined, TermVector and TermMatrix are automatically computed, except if the option
_notCompute is set in definition of TermMatrix or TermVector.

@ The computation algorithms find the minimal representation of matrices. It means that the
size of matrix is equal to the number of unknown dofs (and test function dofs) involved in the
computation. For instance, a mass matrix on a boundary involve only dofs supported by the
boundary.

@ The value type of matrix (real or complex) is managed by TermMatrix and TermVector.
The user has not to deal with that, except in an advanced usage.

Definition of TermMatrix or TermVector supports some optional arguments to be inserted in any
order before the optional name argument :

TermMatrix(bf,[ecs_ul,[ecs_v],[option],[option], ..., [name])
where bf is the bilinear form, ecs_u and ecs_v possible essential conditions, and option any of
e _compute, notCompute : to manage the automatic computation of the TermMatrix

e _assembled, _unassembled : to manage the automatic assembling of the matrix; not
assembled implies not computed
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e _nonSymmetricMatrix, _symmetricMatrix, _selfAdjointMatrix, _skewSymmetricMatrix,
_skewAdjointMatrix : to enforce symetry property when bilinear form has such symetry
and XLIFE++ has not detected it.

e _csRowStorage, _csColStorage, _csDualStorage, _csSymStorage, _denseRowStorage,
_denseColStorage, _denseDualStorage, _skylineSymStorage, _skylineDualStorage : to
enforce the storage if the default one chosen by XLIFE++ is not well suited

¢ pseudoReductionMethod, _realReductionMethod, _penalizationReductionMethod : to
indicate the method to deal with essential condition.

g% Up to now, only pseudo reduction method is available.

If necessary, it is possible to change the diagonal coefficient (by default 1) of the pseudo eliminated
block matrix by invoking the ReductionMethod object:

BilinearForm auv=intg (omega,grad(u) |grad(v));
EssentialConditions ecs= (u|sigmaM = 0);
TermMatrix A(auv, ecs,ReductionMethod (_pseudoReduction ,10.), "A”);

If you choose to declare the TermMatrix with the _notCompute option, its computation may be
done later using the compute command:

BilinearForm auv=intg (omega,grad(u)|grad(v)));
TermMatrix A(auv,_notCompute,”A”);

compute(A) ;

TermMatrix and TermVector manages some additional parameters and a lot of facilities are
provided. Let us go to details.

7.1.1 TermVector in details

TermVector represents either a linear form on discrete space or any element of space as vector of
components on the space basis.

It has a default constructor and one from linear form with options:

TermVector (name) ;
TermVector (LinearForm, optl, opt2, opt3, name);

optl, opt2, opt3, name are optional arguments:

Reals f(const Point& P, Parameters& pa = defaultParameters)
{return Reals(2,-1.);}

Strings sn(4, 77);

Mesh mesh2d (Square(_origin=Point (0.,0.), _length=1, _nnodes=4,
_side_names=sn) ,
_triangle ,1,_structured);
Domain omega=mesh2d .domain (”Omega” ) ;
Space V(omega,Pl,”V” true);
Unknown u(V,”u”,2); TestFunction v(u,”’v”);
LinearForm fv=intg (omega,f|v);
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TermVector B(fv 6 "B”);

In the previous example, the TermVector B is derived from a linear form defined on a vector test
function.

The constructors of TermVector from linear forms compute automatically the algebraic
representation except if the option _notCompute is specified. In that case, the TermVector object
may be computed later using the compute function:

Reals f(const Point& P, Parameters& pa = defaultParameters)
{return Reals(2,-1.);}

Strings sn(4, 77);

Mesh mesh2d (Square(_origin=Point (0.,0.) , _length=1, _nnodes=4,
_side_names=sn) , _triangle ,1,_structured);

Domain omega=mesh2d .domain (”Omega” ) ;

Space V(omega,Pl,”V” true);

Unknown u(V,”u”,2);

TestFunction v(u,”v”);

LinearForm fv=intg (omega,f|v);

TermVector B(fv ,_notCompute,”B”); //do not compute B

compute(B); //now compute B

@ If a TermVector object is already computed, the compute function does not re-compute it!
If you want to re-compute it, you have to change its computation status :

B.computed ()=false ;

A TermVector may be constructed from values of a function f on a geometric domain. It is
available only for FE Lagrange unknown: the vector is built with components f(M;) for any node
M; in the domain:

TermVector (Unknown, GeomDomain, T, String name)

The T argument may be a function (C++ function,Function object or SymbolicFunction object)
or a constant value:

Reals f(const Point& P, Parameters& pa = defaultParameters)

{return P;}

Space V(omega,P1,”V” true);

Unknown u(V,”u”,2); // wector unknown
TermVector B(u, omega, f, "B”); // from C++ function
Unknown v (V,”v”); // scalar unknown
TermVector F(v, omega, x_1%x_2,”F”); // from SymbolicFunction
TermVector G(v, omega, 1.,7G”); // from constant

There are also a copy constructor and a constructor assigning a constant value from an other
TermVector:

TermVector (TermVector, name) ;
template <typename T> TermVector(TermVector, T, name);
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TermVector can be constructed from one or two TermVector by applying a C++ function or a
symbolic function. C++ function has to be of the following forms:

Real fun(const Real& x1);

Real fun(const Real& x1, const Real& x2);

Complex fun(const Complex& x1);

Complex fun(const Complex& x1, const Complex& x2);

For instance, to build a new TermVector that is the squared of an other one:

Real fsq(const Real& x1){return xlx*xl;}

TermVector F(intg(omega,uxv));
TermVector F2(F, fsq); // from C++ function
TermVector F2(F,x_1"2); // from symbolic function

Finally, by wusing algebric operators + - * / ~ and standard mathematical function
abs, real, imag, complex, sqrt, squared, sin, cos, tan, sinh, cosh, tanh, exp,
log, loglO, ... on TermVector’s, new TermVector may also be constructed:

TermVector F(intg(omega,uxv));
TermVector G = sqrt (F)+abs(F);

@ It is possible to mix single unknown scalar TermVector and single unknown vector
TermVector in some operations but only one single unknown vector TermVector is allowed.
In that case, the result is a single unknown vector TermVector where the operation has been
performed on each component of the input single unknown vector TermVector. For instance if
X is a single unknown scalar TermVector and Y a single unknown vector TermVector, you can

do

TermVector Z= XxXxY;

but not

TermVector Z= XxYx*Y;

When many TermVector’s are involved, they have to be of the same size!

Concatenate some scalar TermVector’s into a one vector TermVector is also possible by using the
following construction process:

Space V(omega, P1,7V”); //P1 Lagrange space

Unknown u(V,”V”?); //scalar unknown

TermVector V1(u,omega,1.); //a scalar TermVector (1,1,...)

TermVector V2(u,omega,2.); //an other scalar TermVector (2,2,...)

Unknown u2(V,”V” 2); //vector unknown
TermVector W(u2,V1,V2); //vector TermVector ([1,2],[1,2],...)

This process works only for single unknown TermVector.

In case of a multiple unknowns vector, a unknown block may be extracted as follows:
Space V(omega,P1,”V” true), H(omega,P0,”V” true);
Unkrlow.rl u(V7 77u77 ’2) , p(W, )7p”);
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LinearForm fv=intg (omega,f|u)+intg(omega,p);
TermVector B(fv);
TermVector B_.u=B(u); //exztract u part

Unknown is used as index and the returned TermVector is a copy of the extracted block.
It is possible to do algebraic operations (+=, -=, *=, /=, +, -, *, /) on TermVector:

Space V(omega,P1,”V” true);
Unknown u(V,”u”);

LinearForm fvo=intg (omega, fxu);
LinearForm fsv=intg (sigma ,gxu);
TermVector Bo(fvo,”Bo”);
TermVector Bs(fvs,”Bs”);
TermVector B=2xBo+3*Bs;

@ If TermVector’s have not been computed, the operations have no effect!

g% In order to be more efficient, the linear combination of TermVector’s is delayed up to the
assign (=) operation or a constructor operation. It means that some expression may not be
evaluated and produce warning/error message related to LcTerm class.

TermVector W=U+V; // Ok
cout<<UHV; // NOT EVALUATED

Besides, it is possible to convert TermVector:

Space V(omega,Pl,”V” true);
Unknown u(V,”u”);

LinearForm fv=intg (omega, fxu);
TermVector B(fv,”B”);

B.toAbs () ;
B.toReal () ;
B.toImag() ;
B.toComplex () ;

Be cautious, once it is converted it is not possible to go back.

In some circumstances, it may be useful to restrict a TermVector to a smaller domain. Use the
member function onDomain or the operator |:

Space V(omega,P1,”V”); Unknown u(V,”u”);

TermVector B(u,omega,x_1); // TermVector on omega
TermVector Bg = B.onDomain(gamma); // TermVector on gamma, boundary of omega
TermVector Bg = B|gamma; // same

The merging of two TermVector living on different domains of a same mesh is also available:

TermVector Bl(u,omegal , x_1); // TermVector on omegal
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TermVector B2(u,omega2,x_1); // TermVector on omega2
TermVector B=merge(B1,B2) ; // merging

@ On dofs shared by the two domains, the merged value is those of the first domain. This

behaviour is different from the addition of two TermVector living on different domains where

the value of shared dofs is the addition of the values.

Inner/hermitian product and standard norms are provided:

Complex innerProduct(TermVector, TermVector) ;
Complex hermitianProduct (TermVector, TermVector) ;
Complex operator | (TermVector, TermVector) ;

Real norm(TermVector, Number 1=2);
Real norml(TermVector) ;

Real norm2(TermVector) ;

Real norminfty (TermVector) ;

Notice that inner and hermitian product return always a complex even if vectors are real!

Some general informations may be retrieved, using the following member functions:

TV.valueType () // wvalue type (_real or _complex)
TV.size () // size counted in scalar

TV.nbDofs () // size counted in dofs

TV.nbDofs(u) // number of dofs related to unknown u

Some member functions give useful access to part of a TermVector object:

TermVector U=TV(u) ; // access to u part as a TermVector

Reals V; TV.asVector(V); // reinterpret TermVector as a raw Vector

TermVector W=I'V.onDomain (Sigma); // restrict to domain Sigma

WATV| Sigma ; // restrict to domain Sigma (same as
OnDomain )

Value val=TV.getValue(u, n); // access to n—th component of unknown u
(n>=1)

TV.setValue(u,n,3.) ; // set walue of n—th component of unknown u

TV.setValue (Sigma ,0.) ; // set to 0 the wvalues on Sigma

Value val=IV.evaluate(u, P); // evaluate at point P

Real v;

TV(P,v) ; // evaluate at point P

TV(u,P,v) ; // evaluate at point P, specifying unknown

Finally, a TermVector may be printed or saved into a file:

LinearForm fv=intg (omega, fxu);
TermVector B(fv,”B”);

cout<<”’vector B "<<B;
B.print(cout);
saveToFile(” file .dat” B, _vtk);

In this example, B is saved to a file in vtk format (format of paraview software). Other available

formats are _vtu (paraview xml format) and _raw (only values are saved);
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Summary of main TermVector operations

A function marked ¢ means that its usage is restricted to single unknown TermVector.

e Constructors

TermVector (LinearForm, [EssentialCondition], [option], [option], ... [name])

-> TermVector

TermVector (Unknown, Domain, value, [name])¢

-> TermVector

TermVector (Unknown, Domain, Function, [name])

-> TermVector

TermVector (Unknown, Domain, SymbolicFunction, [name])<

-> TermVector

TermVector (Unknown, Domain, VariableName, [name])¢

-> TermVector

TermVector (TermVector, value, [name])o

-> TermVector

TermVector(TermVector, [TermVector], Function, [name])¢

-> TermVector

TermVector(TermVector, [TermVector], SymbolicFunction, [name])¢

-> TermVector

TermVector (Unknown,TermVector, [TermVector], [name])o

-> TermVector

e Accessors

TermVector.name () -> String
TermVector.valueType () -> ValueType
TermVector.size() counted in scalar -> Number
TermVector.nbdofs() counted in dofs | -> Number
TermVector.number0fUnknowns () -> Number

TermVector.asRealVector() ¢ -> RealVector

TermVector.asComplexVector() oU | -> ComplexVector

-> Dof

TermVector.Dof (Unknown, number)

TermVector (Unknown) -> TermVector

e Modifiers

TermVector.compute ()

TermVector.toAbs()/ toReal()/ toImag()/ toComplex()

-> TermVector

TermVector.setUnknown (Unknown) ¢

e Operations

[scalar] [*]TermVector [+-] [scalar] [*] TermVector. ..

-> TermVector

TermVector*TermVector component product ¢

-> TermVector

TermVector/TermVector component division ¢

-> TermVector

TermVector”™p component exponent ¢

-> TermVector

abs/real/imag (TermVector)

-> TermVector

sqrt/squared (TermVector) ¢

-> TermVector

sin/cos/tan/sinh/cosh/tanh (TermVector) ¢

-> TermVector

asin/acos/atan/asinh/acosh/atanh (TermVector) ¢

-> TermVector

exp/log/logl0 (TermVector) ¢

-> TermVector

norm/norml/norm2/norminfty (TermVector)

-> Real

innerProduct/hermitianProduct (TermVector,TermVector)

-> Complex

TermVector | TermVector

-> Complex

e Value management
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TermVector.getValue (Unknown, number)

-> Value

TermVector.setValue (Unknown, number, val)

TermVector.setValue (number, val) ¢

TermVector.setValue (Unknown, Domain, T)

TermVector.setValue(Domain, T) ¢

TermVector.setValue (Unknown, Domain, Function)

TermVector.setValue(Domain, Function) ¢

TermVector.setValue (Unknown, Domain, TermVector)

TermVector.setValue (Domain, TermVector) ¢

TermVector.evaluate (Unknown, Point)

-> Value

TermVector.evaluate(Point) ¢

-> Value

TermVector (Unknown, Point, T)

->T

TermVector(Point, T) ¢

->T

e Domain operations

TermVector .mapTo (GeomDomain, Unknown, [errOutDom]

-> TermVector

merge (TermVector, TermVector)

-> TermVector

TermVector |Domain

-> TermVector

normalsOn(GeomDomain, Unknown)

-> TermVector

setColor (GeomDomain, TermVector, ColoringRule)

e Output

ostream << TermVector

TermVector.print ([ostream])

saveToFile(FileName, TermVector, [termVector], [IOFormat], [withDomains])

plot(TermVector, [IOFormat])

7.1.2 TermMatrix in details

TermMatrix is the algebraic representation of a bilinear form, say a matrix. It supports different
types of storage and possibly, has to take into account essential conditions. So there are different

constructors of TermMatrix from bilinear forms:

//no essential condition

TermMatrix ( BilinearForm, optl, opt2, opt3, name);

//same essential condition on unknown and test function

TermMatrix (BilinearForm, EssentialConditions, optl, opt2, opt3, name);
J/diffrenet essential conditions on unknown and test function
TermMatrix (BilinearForm, EssentialConditions, EssentialConditions, optl,

opt2, opt3, name);

optl, opt2, opt3 are any options picked in the list

e _compute, notCompute, _assembled, _unassembled

e _nonSymmetricMatrix, _symmetricMatrix, _selfAdjointMatrix, _skewSymmetricMatrix,

_skewAdjointMatrix

e _csRowStorage, _csColStorage, _csDualStorage,

_csSymStorage, _denseRowStorage,

_denseColStorage, _denseDualStorage, _skylineSymStorage, _skylineDualStorage

e _pseudoReductionMethod, _realReductionMethod, _penalizationReductionMethod
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and name is an optional string used for printing purpose.

Some examples of TermMatrix construction:

Strings sidenames ("y=0",7y=1","x=0","x=1") ;

Square sq(-origin=Point (0.,0.), _length=1, _nnodes=20,
_side_names=sidenames) ;

Mesh mesh2d(sq, _triangle, 1, _structured);

Domain omega=mesh2d .domain(”Omega”) , gamma=mesh2d.domain(”x=0") ;

Space V(omega, P1, "V”  true);

Unknown u(V,”u”); TestFunction v(u, "v”);

BilinearForm auv=intg (omega, grad(u)|grad(v)), muv=intg (omega, u*v);

TermMatrix A(auv); //simplest constructor
EssentialConditions ecs= (u|gamma = 0);

TermMatrix AO(auv,ecs,”A0”); //with ess. condition and naming
TermMatrix M(muv, —notCompute) ; //defined but not computed

The computation algorithm chooses the well adapted matrix storage, generally compressed sparse
storage or dense storage, taking into account symetry property of the matrix. Using option, the
storage method may be imposed at construction :

BilinearForm auv=intg (omega,grad(u) |grad(v));
TermMatrix A(auv, ecs, _skylineSymStorage, "A”);

The available matrix storage are:
e the compressed sparse storage _cs, generally the best one in terms of memory size
e the skyline storage _skyline, required by direct solvers
e the dense storage _dense

Each of these storages have different internal storages (say access) : _row, _col, _dual, _sym.

@ The storage may be changed after computation by using the setStorage function. Be
cautious, some storage conversions may be time expansive.

It is also possible to construct void matrix, copy of matrix, diagonal matrix from TermVector or
standard vector and matrix of the form G(M;, P;) where G is a kernel and M; and P; belongs to
some geometrical domains:
TermMatrix (name) ;
TermMatrix (TermMatrix, name) ;
TermMatrix (TermVector, name);
(
(

TermMatrix (Unknown, Domain, Vector<T>, name) ;
TermMatrix (Unknown, Domain, Unknown, Domain, OperatorOnKernel, name) ;

In case of multiple unknowns bilinear form, block matrix may be extracted using unknowns as
index:

BilinearForm

auv=intg (omegal ,grad(ul) |grad(vl))+intg (omega2,grad(u2) |grad(v2));
TermMatrix A(auv) ;
TermMatrix All=A(ul,vl);
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The TermMatrix result is a copy of the extracted block!

The users can print the matrix and its storage, and save it to file in dense (_dense) or coordinate
format (_coo). The coordinate format (i,j,val) is well adapted to export sparse matrix to Matlab.

BilinearForm
auv=intg (omegal ,grad(ul) |grad(vl))+intg (omega2,grad(u2) |grad(v2));
TermMatrix A(auv,”A”);

verboseLevel (30) ;

A.print (out) ;

out<<A;

A.viewStorage (out ) ;
A.saveToFile(”matA.dat”,_coo);

As matrices are memory consuming, it is possible at any time to deallocate the memory allocated
by a matrix:
BilinearForm auv=intg (omega,grad(u)|grad(v));

BilinearForm muv=intg (omega ,uxv) ;
TermMatrix A(auv,”A”), M(muv,M”);

clear (AM);

Only memory used to store matrix values is deallocated. It means that clear has no effect on a
matrix that has not be computed !

TermMatrixs may be combined using standard algebraic operators (+=, -=, x=, /=, +,
s X, /)

BilinearForm kuv=intg (omega,grad(u) |grad(v)),
muv=intg (omega ,u*v)
mguv=intg (sigma ,uxv) ;
TermMatrix K(kuv,”A”) ,
M(muv, "M” )
Mg(mguv, "Mg”) ;
Mx=3;
K+=2M;
TermMatrix A=K—3+MiMg;

The sum (resp. the difference) of TermMatrixs involves a complex algorithm : sum is done
by unknown blocks (nothing is done with a void block) and for each block, the common dofs
numbering is searched, then the sum is performed. This process may induce the construction
of a new matrix storage. When combining more than two matrices, it is better to write the
summation in one step rather than in several steps.

Summing TermMatrixs is equivalent to sum bilinear forms in a new one and compute it :

BilinearForm auv=kuv—3+*muv+mguv ;
TermMatrix A(auv,”A”);

Regarding memory consuming and time performance, this method is better.

Product of TermMatrix and TermVector are provided using the * operator:

TermMatrix A(auv,”A”);
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TermVector L(luv,”L”);
TermVector AL=AxL;

Matrix and vector must have compatible unknowns but some may be omitted (void blocks are
ignored).

% When test function is used to construct matrix and vector, this compatibility rule in
product TermMatrix X TermVector implies that the matrix column unknowns should be the
same as vector unknowns. This rule may be too boring. It is the reason why a permissive
behaviour is allowed : TermVector unknowns may be the dual unknowns of test functions, in
other words the matrix row unknowns. It requires that test functions are declared as dual of
unknowns !

To conclude this section we give the example of the Helmholtz problem in waveguide using
Dirichlet to Neuman map as transparent boundary condition. This exemple illustrates multiple
uses of algebraic operators on TermMatrix .

//define spectral space to deal with DIN
Number N=10;
Space Sp(sigmaP, Function(cosny ,params), N, ”cos(nxpixy)”);
Unknown phiP (Sp, ”phiP”);
Complexes lambda (N) ;
for (Number n=0; n<N; n++) lambda [n]=sqrt (Complex(kxk-—n*nxpispi/(h*h)));
//define TermMatriz with no DtN
BilinearForm auv=intg (omega,grad(u)|grad(v)) — kxkxintg(omega,u*v);
TermMatrix A(auv,_csDualStorage, "A”);
//contruct DN TermMatriz using matriz product
BilinearForm euv=intg (sigmaP ,phiPx*v)
fuv=intg (sigmaP ,uxphiP) ;
TermMatrix E(euv,”E”), F(fuv,”’F”);
TermMatrix L(phiP, sigmaP, lambda,”L”); //diagonal matriz
TermMatrix ELF=ExLxF;
TermMatrix A2=A—ix*ELF;

This DtN approach using product of matrices was the MELINA approach. In XLIFE++ it is
better to use TensorKernel approach :

Number N=10;
Space Sp(sigmaP, Function(cosny ,params), N, 7cos(nxpixy)”);
Unknown phiP (Sp, ”phiP”);
Complexes lambda (N) ;
for (Number n=0; n<N; n++) lambda[n]=sqrt (Complex(kxk—n*nxpi*pi/(h*h)));
TensorKernel tkp(phiP ,lambda);
BilinearForm auv = intg(omega,grad(u) |grad(v)) — kxkxintg(omega,uxv)
— ixintg (sigmaP ,sigmaP ,uxtkp=v);
TermMatrix A(auv, "A”);

Advanced usage

When computing eigen values of a TermMatrix whith essential conditions that have been reduced
using the pseudo reduction method, you may be annoyed by spurious eigen values corresponding
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to the residual diagonal block. These eigen values may be shifted by modifying the diagonal
coefficient ot this residual block:

EssentialConditions ecs = (u|sigma=0);
TermMatrix A(auv,ecs , ReductionMethod (_pseudoReduction ,100.) "A”); //shift by
100

7.1.3 HDMatrix

In the context of integral equation, HMatrix method consists in using a hierarchical representation
(tree) of the BEM matrix, each tree node being either a real submatrix (leaf) or a virtual submatrix
adressing up to four nodes :

A1 | A1

A12 |

|
Ar1.21| A11,22 ‘ Ao ‘ ‘ Asgo ‘
|

li [ | | | | | | |
. A22,12 ‘All,llHA11,12"A11,21HA11,22‘ ‘A22|,11Hz422,12HA22,21HA22,22‘
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Figure 7.1: Hierarchical matrix

Then some sub-matrices may be "compressed” to save memory and time computation. The
matrix may be not squared and therefore the sub-matrices too.

The hierarchical structure of Hmatrix is based on clusters of row indices or column indices (in FE
context, clusters of dofs supported by mesh domains):

* °
°
o °
°
° ¢ e
°
° ° °
°
°
° ® )
°
L] [ J ®
Cluster of points Clustering of triangles using centroids
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When building the tree structure of the HMatrix by a recursive division algorithm that travels
the row and column clusters, some a priori geometrical rules are used to know if a sub-matrix
will be compressed later, say admissible sub-matrix. When a sub-matrix is admissible, it is not
divided. Up to now only the following boxes rule is available :

Admissibility rule

A sub-matrix is admissible if the bounding box B, of the row cluster node and the bounding box
B, of the column cluster node satisfy:

diam(B,) < 2ndist(B,, B.).
Default value of 7 is 1.

If a sub-matrix is admissible then it can be compressed using several methods. All the methods
proposed try to get a low rank approximation of the original sub-matrix of the form:

UbDv*

where U is a m X r matrix, V is a n X r matrix and D is a r X r diagonal matrix. The rank of
a such matrix is at most r. So it is a low rank representation of a m x n matrix if r is small
compared to m, n.

The Singular Value Decomposition (SVD) gives an exact "approximation” of a m x n matrix. So,
from the Eckart—Young—Mirsky theorem, approximate matrix of low rank can be produced by
keeping a small number of the largest singular values. Because, this approach requires a full SVD
computation that is expansive, alternative methods are based on random SVD which consists
in capturing the matrix range using only few gaussian random vectors and doing a SVD on a
smaller matrix. Nevertheless, these approximate SVD methods still require the full computation
of the matrix, so adaptative cross approximation (ACA) methods computing only some rows and
columns of the matrix are faster but less robust.

The figure 7.2 shows an example of structure of a BEM HMatrix (2500 x 2500) computed by
XLIFEA++:
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Figure 7.2: HMatrix with a sphere cluster, non admissible blocks are in red
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How to involve HMatrix computation ?

By default, XLIFE++ build BEM matrix in dense storage. To involve HMatrix storage (and
computation) XLIFE+4+ uses a special integration method in the bilinearform describing the
BEM term : the HMatrixIM object that can be handled as follows

HMatrixIM him (clmeth , minrow, mincol, hmapp, rank, im);

or

HMatrixIM him (clmeth , minrow, mincol, hmapp, eps, im);

where

clmeth: the clustering method, one of _regularBisection, _boundingBoxBisection,
_cardinalityBisection, _uniformKdtree, _nonuniformKdtree

minrow, mincol : the minimum size of sub-matrix, more precisely a sub-matrix is divided
if it is not admissible and if its number of rows/columns is greater than minrow/mincol

hmapp: the approximate matrix methods, one of _noHMApproximation, _svdCompression,
_rsvdCompression, _r3svdCompression, _acaFull, _acaPartial, _acaPlus

rank: the desired rank of approximate matrix
eps: the desired precision of approximated matrix

im: an integration method for double integral

The figure 7.3 illustrates the difference between clustering bisection methods with a disk mesh of
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points and at most 10 points by box; different colors correspond to different tree node levels.
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Figure 7.3: clustering of a disk mesh using regular (left), bounding box (middle), cardinality
(right) bisection methods.

and the figure 7.4 shows the cluster get when using the kdtree (quadtree in 2D) methods with at
most 5 nodes by box.
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Figure 7.4: clustering of a disk mesh using kdtree methods - _uniformKdtree (left) and
_nonuniformKdtree(right).

When specifying _noHMApproximation all the sub-matrices (admissible and not admissible) are
computed and not compressed. There is no real advantage, except that the assembly appears
to be faster than the standard assembly in dense matrix, in particular when multi-threading is
enable.

_svdCompression corresponds to some truncated svd either a rank truncature when rank is
given or a eps truncature (keep all singular values greater than eps).

_rsvdCompression uses random svd methods that are faster than full svd methods. As svd
methods, user can choose either a rank truncature or a eps truncature. _r3svdCompression is a
more sophisticated random svd that does only eps truncature; do not choose_r3svdCompression
with a rank parameter!

_acaFull, _acaPartial, _acaPlus are adaptative cross approximation methods that use some
rows and columns of the matrix to build a low rank matrix. _acaFull method requires all
the row and the columns of the matrix, so it gives good approximates but it is not of a great
interest compared to the random svd methods. _acaPartial and _acaPlus (an improvement of
_acaPartial ) are more interesting because they use only several rows and columns of matrix,
saving time computation of BEM coefficients. But they are less robust!

The following XLIFE++ gives some examples of how to compute BEM HMatrix:

//mesh sphere and define domain, space, unknown

Mesh meshd (Sphere(_center=Point (0. ,0.,0.) ,_radius=1.,_nnodes=9,
_domain_name="0Omega” ), _triangle ,1,_subdiv);

Domain omega=meshd . domain(”Omega”) ;

Space W(omega ,P0,”V” false);

Unknown u(W,”u”); TestFunction v(u,”v”);

//define kKernel, integration method and HMatriz parameters

Kernel G=Laplace3dKernel () ;

SauterSchwabIM ssim (5,5 ,4,3,2.,4.);

HMatrixIM him( _cardinalityBisection , 20, 20,_acaplus ,0.00001,ssim);

//compute single layer matriz

BilinearForm alf=intg(omega,omega,uxGl«v, him);

TermMatrix A(alf ,”A”);

//compute double double layer matrix

BilinearForm blf=intg (omega,omega,uxndotgrad_y (G)+*v,him)—0.5%xintg (omega ,u*v) ;

TermMatrix B(blf, ”"B”);

Note that when adding a sparse FE matrix and a HMatrix, the result is a HMatrix. This is
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only possible if integrals are supported by the same domain. Indeed, FE matrix addresses non
admissible blocks of the HMatrix. Be care when combining some matrices.

@ HMatrix integration method (HMatrixIM) is only available for double integral (BEM). Do
not use with a single integral bilinearform!

% When building HMatrixIM object passing clustering parameters, the row and column
clusters will be computed when computing HMatrix, and referenced by your HMatrixIM object.
As the row and column clusters are not re-computed if they have been built, do not re-use your
HMatrixIM object in a bilinear form having an other domain support than this you have first
involved. If you want re-use it on a different domain, call the clear method that frees the row
and column cluster:

HMatrixIM him (_cardinalityBisection , 20, 20,_acaplus,0.00001,ssim);
BilinearForm alf=intg(omega,omega,uxGl+v, him);

TermMatrix A(alf ,”A”); //row and column clusters are built

him . clear () ; //deallocates row and column clusters

%ﬂ% HMatrix does not work yet for problems with vector unknown!

The figure 7.5 and 7.6 give an idea of the efficiency of the aca+ and r3svd methods compared to
the computations done with a dense matrix.
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Figure 7.5: assembly time for different HMatrix approximate methods

We note that the assembly computation time with Hmatrix and no approximation is better
than the computation time get with dense matrix. Is due to a better parallelization of HMatrix
assembly. The ACA+ methods is significantly faster than the other methods!
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Figure 7.6: matrix/vector product time for different HMatrix approximate methods

@ HMatrix supports the matrix/vector product so it may be used with iterative methods but
it is not supported by direct linear solvers !

7.1.4 Projector

Sometimes, it may be useful to project an element of one FE space, say V' to an other FE space,
say W. XLIFE++ deals with projection based on a bilinear form, say a(.,.), defined on both
projection spaces. The projection w € W of v € V' is the solution of

a(w,w) = a(v,w) Yo € W.

Let (w;)i=1,, a basis of W and (v;);=1,m a basis of V', the above problem is equivalent to the matrix
problem:

AW =BV

where A;; = a(w;, w;), B;; = a(vj, w;), v = Zi:l,m Viv; and w = Zi:m W; w;. The bilinear form
should be symmetric and positive on the space W in order to the matrix A be invertible. The
most simple example is the L? projection related to the bilinear form:

a(w,w):/wwdﬁ.
Q

Projection operations are related to the Projector class. Let us see how to construct such
Projector object :

Mesh mesh2d (Rectangle (_xmin=0, xmax=1, ymin=0, ymax=1, nnodes=6,
_side_names="Gamma” ), _triangle ,1,_structured);

Domain omega=mesh2d .domain(”Omega”), gamma = mesh2d.domain(”Gamma”) ;

// create some spaces

Space Vl1(omega, P1,”V1” false); Unknown ul (V1,”ul”); TestFunction

vl(ul,”v1”);
Space V2(omega,_P2,7V2” false); Unknown u2(V2,”7u2”);
Space Nl(omega, N1_1,”N1” false); Unknown nl(N1,”’nl1”); //Nedelec FE
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// create some L2 projectors
Projector P2toP1(V2,V1, _L2Projector ,”P2toP1”);
Projector N1toP1(N1,1,V1,2,_L2Projector ,”N1toP1”);

Note the particular construction of the N1 to V1 x V1 projector. Because the space V1 x V1
does not exist, you have to give the size of the vector unknowns (1 for N1, 2 for P1) related to
spaces.

The projector types available are _L2Projector, _H1Projector, _H1OProjector associated
respectively to the L?, H' and H} inner product. Be cautious, H' and H} projectors are not
consistent with some FE spaces (e.g. P0)! It is also possible to use your own bilinear form :

BilinearForm myblf=intg (gamma,ul*vl)+intg (omega,ulxvl);
Projector P1toP2(V1,V2, myblf,”P1ltoP2”);

It may happen that you want restrict your projection to a subdomain:
Projector P2toPl_Gamma(V2,V2,gamma, _L2Projector ,”P2toP1_Gamma”) ;
When a Projector is constructed, the matrix A and B are computed and the matrix A is
factorized. So you can compute the projection of some TermVector’s:
TermVector B2(u2,omega, {x2,”B2”); // fz2 wuser function
TermVector Bl=P2toP1(B2,ul);
By specifying the unknown ul as second argument, the result B1 will have ul as unknown. It is

also possible to omit the unknown argument or to pass the TermVector result as argument:

TermVector B1=P2toP1(B2);
TermVector Blb;
P2toP1(B2,Blb) ;

When no unknown is given, XLIFE++ will choose the first unknown that has been defined on
result space.

You can also compute some standard projections without managing in a explicit way a Projector
object:

TermVector Bl=projection(B2,V1);

In that case the Projector object is constructed in the back and kept in memory.

@ You can only project a single unknown TermVector. If your TermVector has multiple
unknowns, extract the part related to the unknown of interest before projection.

Sometimes, it may be interesting to build the matrix A~! B:

TermMatrix P21 = P2toP1.asTermMatrix(u2,ul,”P21”);

To save memory, the original matrices A and B are destroyed. Be careful, the matrix A='B is a
dense matrix (column dense storage), so it may waste a lot of memory.

Finally, as almost objects of XLIFE-++, you can print a Projector
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P2toP1.print (cout);
cout<<P2toP1;

7.2 Linear Solvers

After a problem is well-defined in the form of Term: TermMatrix and Vector, it can be easily
solved with a direct solver or with an iterative solver. XLIFE++ provides a wide set of linear
equation solvers. The following section explains some simple steps to make use of these solvers.

7.2.1 Direct solvers

Because direct solvers involve some complicated algorithms to solve very large linear systems
through LDLt or LU factorization, a prerequisite to call them is to have TermMatrix factorized.
It can be done like below:

TermMatrix LD; // Create a new TermMatriz to store factorized result
ldltFactorize (A, LD); // LDLt—Factorize the TermMatriz

Then the linear system is solved with a very simple code
TermVector X = factSolve (LD, B);

The TermVector U is returned as a solution of the solver. Or a TermMatrix can be factorized
into LU before being solved

TermMatrix LD; // Create a new TermMatriz to store factorized result
luFactorize (A, LD); // LU-Factorize the TermMatrix
TermVector X = factSolve (LD, B);

Factorisation and solving may be called in one time:
TermVector X = luSolve (LD, B);
The available factorisations and direct solvers are
e LDLt factorisation and solver (for symmetric matrix): functions 1d1tFactorize, 1d1tSolve

e LDLstar factorisation and solver (for self-adjoint matrix): functions ldtstarFactorize,
ldlstarSolve

e LU factorisation and solver (for any matrix): functions luFactorize, luSolve

e umfpack factorisation and solver (for any matrix) if umfpack is installed and configured:
umfpackFactorize, umfpackSolve

e gauss elimination with pivoting for matrix stored in dense format: gaussSolve
e Schur method on 2x2 TermMatrix : schurSolve

e lapack solver for matrix stored in dense format if lapack is installed and configured:
lapackSolve

e magma solver for matrix stored in dense format if magma lib is available: magmaSolve
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LDLt, LDLstar and LU move matrix to skyline storage and may fail even if the matrix is
invertible (no pivoting strategy)! Umfpack is most powerful because it works with compressed
sparse storage and has pivoting strategy.

Be sure of symmetry property of your matrix before calling LDLt or LDLstar methods. If you are
not, call generic direct solver directSolve which performs tests before calling the well adapted
method:

TermMatrix Af; // create a new TermMatriz to store factorized result
factorize (A, Af); // factorize the TermMatriz
TermVector X = factSolve (Af, B); //solve factorized linear system

TermVector X = directSolve (A, B); //same in one call
The behaviour ofdirectSolve is the following:
o if matrix is dense : use lapack solver if available else use XLIFE-++ gauss solver

e if matrix is sparse (compressed or skyline) use umfpack if available else use XLIFE++
factorization method

Note that direct solver may induce storage conversion so the TermMatrix storage may be modified.
if you want not, specify true as last argument of solver functions:

TermVector X = directSolve (A, B, true); //keep original matriz

The right hand side is never modified.

@ umfpack solver is always faster than XLiFE++ solvers but lapack solver may be slower than
the XLIFE++4 gauss solver if non optimized lapack-blas libraries are used.

Most of solvers support multiple right hand sides given as a TermVectors or a
std: :vector<TermVector>:

TermVectors Bs;

TermVectors Xs = directSolve (A, Bs);

The factSolve and directSolve functions can also be used with a TermMatrix right hand side,
say B. Thus they produce a TermMatrix which is A~!B. Even both the matrices A and B are
sparse matrix, the matrix A~'B is not sparse. It is stored using a column dense storage.

TermMatrix invM1M2=directSolve (M1,M2, _keep);
TermMatrix Id (M1, _idMatrix ,”1d”);

TermMatrix invMl=directSolve (M1,1Id, _keep);
TermMatrix invMl=inverse (Ml) ;

Note that inverse(M1) is strictly equivalent to directSolve(M1,Id, _keep) ;.

% Up to now, the usage of factSolve, directSolve functions with a TermMatrix as right
hand side and inverse() is restricted to single unknown TermMatrix.
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7.2.2 Iterative solvers

Unlike direct solvers, the iterative ones are delivered with very simple interface. In contrast
to direct solvers, iterative methods approach the solution gradually, rather than in one large
computational step. Up to now, there are several built-in iterative solvers of XLIFE-++:

e Conjugate Gradient (CG, CGS, BiCG, BiCGStab)
e Generalized Minimal RESidual (GMRes)
e Quasi Minimal Residual (QMR)

These methods can be called with a preconditioner (SOR and SSOR excepted)

How to define a preconditioner ?

To define a preconditionner, use the class PreconditionerTerm:

TermMatrix A;
real_t omega;
PreconditionerTerm precond (A, _ssorPrec, omega);

The PreconditionerTerm constructor takes 3 arguments:
e the matrix used to build the precondition matrix.
e the type of preconditioner. possible values are:

_luPrec the precondition matrix will be a LU precondition of the input matrix given
_1d1tPrec the precondition matrix will be a LDLt precondition of the input matrix given

_ldlstarPrec the precondition matrix will be a LDL* precondition of the input matrix
given

_ssorPrec the precondition matrix will be a SSOR precondition of the input matrix given

_diagPrec the precondition matrix will be a diagonal precondition of the input matrix
given

_embeddedPrec the precondition matrix will be the input matrix given, with no transform
Its default value is _embeddedPrec

e the relaxation parameter when SSOR precondition. It is optional, and its default value is
1.0

How to call an iterative solver 7

To invoke an iterative solver and make use of it, the easiest way is to call external functions:
TermVector U = iterativeSolve (A, B, _solver=_cg); // Solve with default
initial guest X0=0

The available solvers (through their keys to the _solver parameter) are: _bicg, _bicgstab, _cg, _cgs,
_gmres and _qmr.
There are shortcuts specific to each solver:

TermVector U = cgSolve(A, B);
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The available functions are bicgSolve, bicgStabSolve, cgSolve, cgsSolve, gmresSolve,
gmrSolve.They all call the general function iterativeSolve. All these functions take parameters
in the following orders:

1. the matrix A (TermMatrix)

2. the right hand side B (TermVector)

3. optionally the initial guess X0 (TermVector)

4. optionally the preconditioner P (PreconditionerTerm)

5. optionally one or more keyvalue parameters, among the following:

_solver Only for routine iterativeSolve. This parameter is not optional.

_tolerance tolerance of the iterative solver. Default value is le-6

_maxIt Maximum number of iterations. Default value is ten times the number of unknowns
_verbose verbose level. Default value is 0.

_name the name of the TermVector solution computes by the routines. Default value is
77U77‘
_krylovDim Only for routine gmresSolve, the krylov dimension.

An advanced use of solvers would be to instantiate an iterative solver object and call it using
operator ():

CgSolver mySolver; // Define an iterative solver object
TermVector U = mySolver (A,B,X0); // Solve the system with initial guess X0

For objects BicgSolver, BicgStabSolver, CgSolver, CgsSolver, QmrSolver, parameters of
the constructor are respectively the tolerance (default value is le-6), the maximum number
of iterations (default value is 10000) and the verbose level (default value is 0). For object
GmresSolver, parameters of the constructor are respectively the krylov dimension (default value
is 20), the tolerance (default value is le-6), the maximum number of iterations (default value is
10000) and the verbose level (default value is 0).

CgSolver mySolver (1.e—04, 20);
TermVector U = mySolver (A,B,X0); // Solve the linear problem

In the code above with double precision, the tolerance is made looser than default, for a faster
solution with a convergence error being 10~%. Nevertheless, the solver will cease after 20 iterations
even if the solution has not been converged. It is a big disadvantage of the iterative solvers: they do
not always “just work”. Different problems do require different iterative solver settings, depending
on the nature of the governing equation being solved. However, the advantage of the iterative
solvers is their memory usage, which is significantly less than a direct solver for the same sized
problems. Look at the example “Helmholtz problem with CG solver” to know more how to write
code with iterative solvers.
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7.3 Eigen solvers

XLIFE++ currently provides a built-in solver which targets Hermitian and non-Hermitian
eigenvalue problems, standard or generalized, and a wrapper to the well known external library
ARPACK via its companion package ARPACK++. The internal solver is provided in case ARPACK
is not available (see ??7) ; as far as possible, the latter should be preferred.

In the following, we will denote the problems using the generic form:

o Ax = Az, for a standard eigenvalue problem,

e Ax = \Bu, for a generalized eigenvalue problem.

The couple (A, x) is called an eigen pair, that consists of an eigenvalue A and the corresponding
eigenvector x. The nature of the problem to be solved is determined by the matrix A: real or
complex, symmetric or not, etc.

Both solvers can be used in a rather uniform way, although some parameters may be specific
to one package or the other. The calling sequence requires a few mandatory arguments ; some
optional ones are provided by the user in the form “_key = value”.

In the following, we describe some features common to both solvers, targeting in particular the
result object. Then the parameters governing the computation are described for the built-in
solver, followed by those related to ARPACK, including a special help paragraph that is worth to
be mentioned right now. At last, two special sections are devoted to post-computation information
retrieving and an advanced usage of ARPACK.

7.3.1 How to call an eigen solver ?

Given two suitable TermMatrix objects A and B, corresponding to the mathematical operators
A and B above, a few eigen elements can be computed as the result of one of the generic calling
sequence:

EigenElements ees = eigenSolve(A); // standard eigenvalue problem
EigenElements eeg = eigenSolve(A, B); // generalized eigenvalue problem

In this example, 10 (the default number) eigen pairs are computed from the unique knowledge of
the mandatory arguments A, or A and B ; the other parameters are left to their default values.
The function eigenSolve automatically selects ARPACK if it is available, or the internal solver
otherwise.

Remark.

The user may choose himself by adding the argument _solver=_intern or _solver=_arpack.

If they are present, the other parameters, given in the form “_key = value”, are checked and
passed to the specific solver. Moreover, when ARPACK is used, some of them may be modified to
benefit from experience feedback. Also, ARPACK requires the RHS matrix B to be hermitian to
ensure the convergence of the computation. When this does not seem to be the case, the original
generalized problem is automatically transformed into a standard problem. Whenever such a
decision is made or a parameter is modified, an information message is printed on the terminal
and in the main print file of XLIFE-++.

The user has always direct access and full control over the parameters (which are never modified in
this case) by using the specific functions: the function eigenInternSolve provides a direct access
to the built-in solver, while arpackSolve uses ARPACK. With these functions, the statements in
the previous example would become:
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// specific call to internal engine

EigenElements ecesi = eigenInternSolve(A); // standard eigenvalue problem
EigenElements eegi = eigenInternSolve(A, B); // generalized eigenvalue
problem

// specific call to Arpack engine

EigenElements eesa = arpackSolve(A); // standard eigenvalue problem
EigenElements eega = arpackSolve(A, B); // generalized eigenvalue
problem

7.3.2 Results

All these functions store their result in an EigenElements object that holds two containers:
e values, containing the list of the found eigenvalues,
e vectors, containing the list of the corresponding eigenvectors.

The eigenvectors are always computed together with the eigenvalues. Both containers have the
same size which can be obtained with the member function numberO0fEigenValues(). The list
values is in fact a vector of complex numbers (even if the problem is real symmetric), and vectors
is a vector of TermVector objects. Given an EigenElements object eeg, these containers can be
used directly by eeg.values and eeg.vectors with the standard C++ syntax ; alternatively,
some member functions are available to extract the eigen pairs using their number, starting at 1.
Their names are simply value and vector. For example, the following code prints the computed
eigenvalues stored in eeg, the real part and the imaginary part being separated with a white space
if they are complex:
if (eeg.isReal()) {// eigenvalues and eigenvectors are real
for (int i=1; i <= eeg.numberOfEigenValues(); i++) {
cout << eeg.value(i).real() << endl;
¥

}

else { // eigenvalues or eigenvectors may not be real
for (int i=1; i <= eeg.numberOfEigenValues(); i++) {
cout << eeg.value(i).real() << 7 7 << eeg.value(i).imag() << endl;
}

}

The type of the eigenvalues depend on the problem. It can be retrieved by the member function
isReal (), as shown above, which returns true if the problem is real symmetric, false otherwise.

The eigenvalues are always returned as complex numbers, even if the problem is real symmetric
in which case the imaginary parts are set to 0. The eigenvectors are real if the problem is real
symmetric, complex otherwise.

By default, the eigenvalues are sorted by increasing module ; the eigen pairs are internally stored
according to this order. There are several sorting possibilities which can be specified by the _sort
key (see below).

The eigenvectors can be easily used in the following of the program, since they are available as
TermVector objects. They can also be saved individually into a file using one of the output
format, in order to be plotted afterwards. The statement:

saveToFile(”V1”, eeg.vector (1), _vtk);
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creates the file V1_0Omega . vtk, whose name is build from the prefix given by the user and the name
of the domain where the solution is computed ; the suffix is automatically appended according to
the output format (here .vtk).

Moreover, an EigenElements object can be saved in multiple files in a single statement:

saveToFile("EV”, eeg, _vtk);

The names of all the created files will begin with the same prefix given as first argument (here EV).
The eigenvalues will be written in the file EV_eigenvalues and the i’ eigenvector will be written
in the file EV_i_DomainName.ext, where DomainName will be replaced with the domain name and
the extension depend on the chosen format (here .vtk). The eigenvalues are printed in the file
EV_eigenvalues from the first one to the last one according to the chosen sorting criterion ; the
eigenvectors are printed in files whose numbers follow the same order.

7.3.3 Calling sequence

Let’s recall that the functions eigenSolve, eigenInternSolve and arpackSolve have two main
calling sequences according to the kind of problem to define. The arguments can be:

e A, keyl=valuel, ... _keyN=valueN, in the case of a standard eigenvalue problem,
e A, B, _keyl=valuel, ... _keyN=valuelN, in the case of a generalized eigenvalue problem.

The arguments A and B are TermMatrix objects. The others (key, value) pairs are not mandatory.
They are used to specify some particular settings. They can be given in any order and their list
is given in the corresponding sections below.

Optional parameters for the built-in eigen solver in details

The built-in eigen solver accepts the following keys:
_nev (integer) number of eigen elements to be computed. The default value is 10.

_which (string) specifies which part of the spectrum is to be scanned. The default value is “LM”,
for largest magnitude. The other possible value is “SM”, for smallest magnitude.

_sigma (real or complex) shift value o used in the spectral transformation in order to scan a
portion of the spectrum around o.

_mode (enumeration) Two computational modes are implemented:

e the block Krylov-Schur method, based on Krylov decomposition with Rayleigh quotient
ably reduced to Schur form, and suitable for hermitian and non hermitian eigenvalue
problems. To call it, use the value _krylovSchur. This is the default.

e the block Davidson method, suited only for hermitian problems and sometimes faster
than the block Krylov-Schur algorithm. To call it, use the value _davidson.

_tolerance (real) precision of the computation. The default value is 1e-6.
_maxIt (integer) maximum number of iterations. The default value is 10000.

_verbose (integer) verbosity level. The default value is 0.
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_sort (enumeration) sort criterion. The default value is _incr_module, which means “by
increasing module”. One can also sort by increasing real part (_incr_realpart) and by
increasing imaginary part (_incr_imagpart) ; conversely, one can sort by decreasing order
by selecting one of _decr_module, _decr_realpart or _decr_imagpart.

Examples:

The following call computes the 20 eigenvalues of largest magnitude (and the corresponding
eigenvectors) of a generalized eigenvalue problem using the block Davidson method:

Number nev = 20;
EigenElements ee = eigenInternSolve (A, B, _nev=nev, _which="LM"
-mode=_davidson);

The following call computes nev eigenvalues around the complex shift value 2.5 4+ ¢ (and the
corresponding eigenvectors) of a generalized eigenvalue problem using the block Krylov-Schur
method:

Complex sig = (2.5, 1.);
EigenElements ee = eigenInternSolve(A, B, _nev=nev, _sigma=sig);

Optional parameters for ARPACK solver in details

The ARPACK solver accepts the following keys:
_nev (integer) number of eigen elements to be computed. The default value is 10.

_which (string) specifies which part of the spectrum is to be scanned. The default value is "LM”,
for largest magnitude. The possible values are:

Value Description

BE | eigenvalues from both ends of the spectrum

LA | eigenvalues with largest algebraic value

SA | eigenvalues with smallest algebraic value

LM | eigenvalues with largest magnitude

SM | eigenvalues with smallest magnitude

LR | eigenvalues with largest real part

SR | eigenvalues with smallest real part

LI eigenvalues with largest imaginary part

SI eigenvalues with smallest imaginary part

For symmetric problems, _which must set to be one of LA, SA, LM, SM or BE. For real
nonsymmetric and complex problems, the alternatives are LM, SM, LR, SR, LI and SI.

_sigma (real or complex) shift value o used in the spectral transformation in order to scan a
portion of the spectrum around o.
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_mode (enumeration) when a shift is specified, some additional computational modes are
available. In order to activate one of them, one of the following keywords should be specified:

e _buckling or _cayley for the Buckling mode or the Cayley mode, for a generalized
real symmetric problem,

e _cshiftRe or _cshiftIm for the complex shift invert mode, for a generalized real
nonsymmetric problem.

_tolerance (real) precision of the computation. The default value is set by ARPACK to the
machine epsilon.

_maxIt (integer) maximum number of iterations. The default value is computed by ARPACK.

_ncv (integer) number of Arnoldi vectors to be computed. It must be less than the dimension of
the problem. The default value is computed by ARPACK.

_convToStd parameter specified to force the conversion of a generalized problem into a standard
one. This key does not take any value: it is present or absent (any assigned value is ignored).

_forceNonSym parameter specified to force to use a nonsymmetric computational mode
although the problem is symmetric. This key does not take any value: it is present or
absent (any assigned value is ignored).

_verbose (integer) verbosity level. The possible values are 0 or 1, and the default value is 0,
which means no output trace.

_sort (enumeration) sort criterion. The default value is _incr_module, which means “by
increasing module”. One can also sort by increasing real part (_incr_realpart) and by
increasing imaginary part (_incr_imagpart) ; conversely, one can sort by decreasing order
by selecting one of _decr_module, _decr_realpart or _decr_imagpart.

For a better understanding of all those parameters, one should know that ARPACK classifies
the eigenvalue problems first as standard or generalized problems, and second according to the
matrix A which can be real symmetric, real nonsymmetric or complex. This makes six categories
that all own at least two main computational modes called “regular” and “shift and invert”. The
“regular” mode is automatically selected if no shift is given. Some additional particular shifted
computational modes exist for generalized problems ; this is summarized in the following table:
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Kind of problem Computational mode Relevant parameters
Standard, real symmetric, | Regular _which
nonsymmetric or complex | Shift and invert _sigma
Regular _which
Generalized Shift and invert _sigma
real symmetric Buckling _sigma, _mode=_buckling
Cayley _sigma, _mode=_cayley
Regular _which
Generalized Real shift and invert _sigma
real nonsymmetric Complex shift and invert (Re) | _sigma, _mode=_cshiftRe
Complex shift and invert (Im) | _sigma, _mode=_cshiftIm
Generalized Regular _which
complex Shift and invert _sigma

@ Hypotheses. For a generalized eigenvalue problem:

— if A is real, the matrix B is required to be real symmetric positive semi-definite, except in
regular mode where it should be real symmetric positive definite. In bukling mode, the real
symmetric matrix A is required to be positive semi-definite while B is only required to be real
symmetric indefinite;

—if A is complex, the matrix B is required to be hermitian positive semi-definite, except in regular
mode where it should be positive definite. Notice that B may still be real and symmetric.

It should be noticed that the parameters _nev, _tolerance, _maxIt, _ncv and _verbose can be
used in any case. On the contrary, _-which and _sigma are mutually exclusive ; the latter takes
precedence over the former. Moreover, _mode indicates a particular shifted computational mode,
and as such is ignored if it is used without _sigma.

For generalized problems, the shifted modes require the computation of (A — ocB)™ 'z (see the
table in the section Advanced usage of ARPACK below). When A is real nonsymmetric and o is
complex, (A—oB) ™! is complex, but the internal computation steps of the algorithm are performed
in real arithmetic (the vector x is real). This saves memory requirements and computation time.
This is the reason why the user should specify which part of the operator (A — ocB)~!, real or
imaginary, must be taken into account. Both strategies lead to comparable results (see ARPACK’s
documentation). The parameter _mode should be set to _cshiftRe to select R((A — o B)™!); it
should be set to _cshiftIm to select S((A — ch)*l), and in this case obviously, the imaginary
part of ¢ should not be nul.

The parameter _convToStd can be used to convert the generalized problem Az = A B x into the
standard one B~! Az = \x. This feature increases the number of computational modes available.
This is done internally with the help of a so-called user-class in a way described in the section
Advanced usage of ARPACK below.
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@ When the function eigenSolve is called to solve a generalized problem, tests are performed
to check the hypotheses given above. Thus, if it happens that they do not seem to be fulfilled,
the conversion into a standard problem is automatically done and an information message is
printed.

In the same spirit, _forceNonSym is a switch useful to allow the computational modes of the
real nonsymmetric case to be used for a real symmetric problem ; indeed, it may happen that
the symmetric algorithms fail, and using the nonsymmetric algorithms can be helpful to obtain a
solution. As a last resort, we can also use the complex algorithms, but the entries of the matrix
A should be first converted to complex (to achieve that, see the second example in the section
Advanced usage of ARPACK below).

Example:

The following call computes the 20 eigenvalues of smallest magnitude (and the corresponding
eigenvectors) of a standard eigenvalue problem using the regular mode, with a prescribed
tolerance:

Number nev = 20;
EigenElements ee = arpackSolve(A, _nev=nev, _which="SM” 6 _tolerance=1.e—12);

& Some hints about the parameters.

The convergence of the algorithms highly depends on the data. The ideal situation is when there
is no multiplicity and the eigenvalues are well separated, which is rarely the case in practice. Here
are some hints to help convergence to occur.

In regular mode, ARPACK is better used to search for eigenvalues of largest magnitude (this is
why “LM” is the default value of the parameter _which). Thus, as far as possible, the problem
should be written to use this mode. It may happen that the eigenvalues of smallest magnitude
are hard to compute ; in this case, try using the shifted mode which is generally very powerful.

If there is multiplicity or the eigenvalues are clustered, consider decreasing or on the contrary
increasing the number of requested eigenvalues.

The number of iterations is by default computed by ARPACK and is generally large enough ; if
convergence is not attained, the tolerance (_tolerance) or the number of Armoldi vectors (_ncv)
should be modified in priority. By default, ARPACK sets the tolerance parameter to the machine
epsilon which insures the computation to be performed with the highest possible precision. This
represents the relative precision on the computed eigenvalues. It sometimes happens that this
stopping criterion is unattainable and the tolerance value should be increased. On the other hand,
a too loose value may lead the algorithm to miss some eigenvalues.

The last parameter that can be tuned is the number of Arnoldi vectors computed by the algorithm
at each iteration. This parameter can greatly influence the convergence of the algorithm. It must
be greater than the number of wanted eigenvalues nev and less than the problem dimension
n. By default, ARPACK sets it to min(2*nev + 1, n-1). Increasing this value may facilitate
the convergence ; on the other hand, this increases the computational time and the memory
consumption.

Retrieving post-computation informations

After a computation with ARPACK, one can inquire about informations related to this last
computation. The simplest way to get these informations is to call the function

string t arEigInfos();
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which gathers the main informations into a string and returns it. This string can then be printed
out.

To do that, arEigInfos calls external functions whose names are the names of the true
ARPACK++ function names prefixed with ar (the true ARPACK++ functions are member
functions that should be used in conjunction with an ARPACK object ; these ones are external
functions that can be directly used alone). The available functions are the following:

bool arParametersDefined () ;
which returns true if all internal variables were correctly defined, false otherwise.
int arConvergedEigenvalues () ;

which returns the number of eigenvalues found. This is the same value as the one provided by
the member function number0OfEigenValues () already seen in the Results section above.

int arGetMaxit () ;
which returns the maximum number of Arnoldi update iterations allowed.
int arGetMode () ;

which returns the computational mode used as described in the following table:

’ Value \ Mode ‘
1 regular mode (standard problems)
2 regular inverse mode (generalized problems)
3 shift and invert mode. For real nonsymmetric generalized problems, this

option can also mean that a complex shift is being used but, in this case
the operator is R((A —oB)™")

4 buckling mode (real symmetric generalized problems) or shift and invert
mode with complex shift and the operator is S((A — 0B)™!) (real
nonsymmetric generalized problems)

5 Cayley mode (real symmetric generalized problems)

std :: string arGetModeStr () ;

which returns a user friendly string describing the computational mode used. This function
does not exist in ARPACK and has been written in complement to the previous one which
gives a rather raw information.

int arGetlter () ;

which returns the number of Arnoldi update iterations actually taken by ARPACK to solve
the eigenvalue problem.

int arGetN ()
which returns the dimension of the eigenvalue problem.
int arGetNcv () ;
which returns the number of Arnoldi vectors generated at each iteration.

int arGetNev () ;
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which returns the number of required eigenvalues. The number of eigenvalues actually
found, however, is given by the function arConvergedEigenvalues.

std :: complex<double> arGetShift () ;

which returns the shift o used to define the spectral transformation. This one is a slightly
modified version of the original ARPACK’s one in that it returns a complex value ; so if the
problem is real symmetric, only the real part is relevant. If the problem is being solved in
regular mode, this function will return 0.0. To avoid any confusion in this case, the user
should call the function arGetMode before this one.

double arGetShiftImag() ;

which returns the imaginary part of the shift when the shift and invert mode is being used
to solve a real nonsymmetric problem. This value is also returned as the imaginary part of
the previous function.

double arGetTol() ;

which returns the stopping tolerance used to find the eigenvalues. It corresponds to the
relative accuracy of the computed eigenvalues.

std:: string arGetWhich() ;

which returns the part of the spectrum the user is seeking for. The returned string is one
of those used in conjunction with the parameter _-which above.

& A full example.

The following program computes the smallest eigenvalues of the Laplace operator on a segment
with Neumann conditions. The approximation is made with the finite element method using a
single element, the segment [0, 7|, with an interpolation degree k = 60. The quadrature rule has
degree 2k + 1. The expected eigenvalues are the square of the integers, i.e. 0, 1, 4, 9, 16, 25, 36,
49, etc. After the call to arpackSolve, informations about the computation done are retrieved
and printed, as long as the converged eigenvalues and the corresponding eigenvectors.

#include 7xlife++.h”
using namespace xlifepp;

int main() {
using std::cout;
using std::endl;
init (); // mandatory initialization of XLiFE++

cout << 7 Eigenvalues of the 1D Laplace operator with Neumann
conditions\n";
cout << 7

int nbint=1; // number of intervalls
int dk=60; // interpolation degree
cout << "Interpolation degree = 7 << dk << endl;

// mesh : segment [0, pi]
Mesh zeroPi(Segment(_xmin=0, xmax=pi_, _nnodes=nbint+1), 1);
Domain omega = zeroPi.domain(”Omega”) ;
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Interpolation& interp=interpolation(Lagrange, GaussLobatto, dk, Hl);
Space Vk(omega, interp, "Vk”7);
Unknown u(Vk, 7u”);

” »

TestFunction v(u, "v”);

int qrodeg = 2xdk+1;
BilinearForm muv = intg(omega, u * v, defaultQuadrature ,qrodeg),
auv = intg(omega, grad(u) | grad(v),
defaultQuadrature , qrodeg) ;
// Compute the Stiffness and Mass matrices
TermMatrix S(auv,”auv”), M(muv, "muv”) ;

// The eigenvalue problem writes S © =1 Mz

// Compute the nev first eigenvalues with smallest magnitude with Arpack
int nev = §;

EigenElements areigs = arpackSolve(S,M, _nev=nev, _which="SM");

cout << arEigInfos () ;

cout.precision (17);

cout << "Eigenvalues :”7 << endl;

int nconv = areigs.numberOfEigenValues|() ;

for (int i = 0; i < nconv; i++) { cout << areigs.value(i+1).real () <<
endl; }

saveToFile(”Sy”, areigs , matlab);

The output produced by this program is the following:

Eigenvalues of the 1D Laplace operator with Neumann conditions

Interpolation degree = 60
computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
computing FE term intg_Omega u * v, using 1 threads : done

Number of eigenvalues (requested / converged): 8 / 8
Computational mode: regular inverse mode (generalized problem)
Part of the spectrum requested: SM

Problem size = 61, Tolerance = 1.11022e-16

Nb_iter / Nb_iter_Max = 443 / 800, Number of Arnoldi vectors = 17
Eigenvalues :

1.6569854567517169e-10

0.99999999999869593

4.0000000000087512

9.0000000000560245

16.000000000016872

25.000000000006708

36.000000000077279

48.999999999728566

Moreover, the last statement produces nine files ; their names are Sy_eigenvalues, which contains
the eigenvalues, and Sy_i_Omega.m with i equal to 1, 2...8, which contain the components of

the eigenvectors, one eigenvector per file. They are shown on the following figure:
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Figure 7.7: First eigenvectors of Laplace operator on a segment with Neumann conditions.

7.3.4 Advanced usage of ARPACK

The way the function arpackSolve is to be used, as presented so far, is sufficient if the operator
A can be expressed as a linear combination of TermMatrix objects, or more frequently as a unique
TermMatrix object built from a combination of bilinear forms. However, when the definition of
the operator involves other algebraic operations, like the computation of the inverse of a matrix
for example, the above process cannot be used.

Indeed, it requires the creation of a specific object containing the sequence of operations needed to
define the operator. In other words, the user has to write a class describing the way the operator
can be computed.

Remark.
This strategy is used internally in XLIFE++ when the function eigenSolve is called to transform
a generalized problem into a standard one when the matriz B is not hermaitian.

In the following, we give some general guidelines, followed by additional technical features shown
on a first example ; two other examples complete the description of the practical implementation.
In order to benefit from the following paragraphs, the user should know some fundamentals of
the C++ programming language.

& General guidelines.

194



In order to get rid of the technicalities of ARPACK++ and to help to the creation of the user
class, a general frame has been prepared that involves the creation of an intermediate placeholder
object whose type is ArpackProb, designed to hold the characteristics of the true ARPACK object
internally created. The definition of the user class should be made in coherence with the ARPACK
computational mode chosen, hold in the ArpackProb object. To summarize this, the user has to:

1. create a so-called user class to define the operators of the problem (this requires some
programming work),

2. use it to create an ArpackProb intermediate object (this is straightforward),
3. call arpackSolve with this object as unique argument.

ARPACK++’s usage made here imposes the user class to define some matrix-vector products
related to the computational mode chosen. The required products are described in the
documentation of ARPACK++ and are summarized in the following table. The name of the
member functions, Mult0Px, MultBx and MultAx, are the generic names used in the documentation
of ARPACK++. They have been kept here to make things easier and should be left unchanged in
our context:

Kind of problem Computational Matrix-vector Member
mode products fcts to use
Regular Yy« Ax MultOPx
Standard all Shift and invert y+— (A—cld) 'z MultOPx
Regular y+ B 1Az 2+ Ax | MultOPx
y<+ Bz MultBx
Shift and invert ye (A—oB) e MultOPx
real y<« Bz MultBx
symmetric | Buckling ye (A-ob) e MultOPx
Yy« Azx MultBx
y+ (A—oB) 'z MultOPx
Cayley Yy Ax MultAx
y< Bz MultBx
Regular y+ B 1Az MultOPx
y< Bz MultBx
Generalized Real shift and y+ (A—oB) 'z MultOPx
invert y<+ Bz MultBx
real Complex shift and | ¥ < R(A—0oB) Hx MultOPx
nonsymmetric invert (real part) y<+ Ax MultAx
y< Bz MultBx
Complex shift and y e S((A-oB)a MultOPx
invert (imag part) yAw MultAx
y<+ Bz MultBx
Regular y+ B 1Az MultOPx
complex i (B;lx BT ﬁuﬁg};
. . — —0ob) T u X
Shift and invert ??j « Ba MultBx

In order to help to the definition of the user class, we have found convenient to create it
as a derived class of ARStdFrame<real_t>, ARStdFrame<complex_t>, ARGenFrame<real_t> or
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ARGenFrame<complex_t>, depending on the nature of the problem, standard or generalized, and
its type, real or complex. As their name suggests, these classes are frames prepared to facilitate the
definition of the matrix-vector product(s) required by the computational mode chosen. They are
abstract classes that declare the matrix-vector products Mult0Px, MultBx and MultAx as virtual
functions that the user must provide. They have a unique constructor whose prototype is:

template<class K> ARStdFrame(const TermMatrix& charMat ) ;
template<class K> ARGenFrame(const TermMatrix& charMat) ;

The unique argument is a so-called characteristic matrix that allows to retrieve informations
about the context of the problem such as its dimension and the associated unknowns. In practice,
it is one of the matrices involved in the definition of the operator A. Those two classes derive
themselves from the class ARInterfaceFrame that provides, in addition, the member function

int GetN();

which returns the dimension of the problem to be solved.

We will now show how all this takes place and give further details on an example.

& User class example 1.

We consider again the problem of the Laplace operator on a segment with Neumann conditions
(see the previous section). This problem is written and solved there as a generalized eigenvalue
problem Sz = AM x. Now, assume we want to write this problem as a standard eigenvalue
problem M~' Sz = Az, which is correct since the mass matrix M is invertible. We are facing
to the operator A = M~1S that cannot be handled in the framework presented in the previous
sections. Thus, we write a special class StdNonSym whose definition is the following:

class StdNonSym: public ARStdFrame<real t> {
public:

//! constructor

StdNonSym (TermMatrix& S, TermMatrix& M) ;

//! destructor
“StdNonSym () { delete fact_p; }

//! matriz—vector product required : y <— inv(M)xS % x
void MultOPx (real_ t *x, real_ t xy);

private:
//! pointers to internal data objects
const LargeMatrix<real t> xmatS_p, xmatM_p;
//! pointer to temporary factorized matriz M
LargeMatrix<real_t >x fact_p;

;s // end of Class StdNonSym

This class contains three member functions: a constructor (with two arguments which are the two
matrices needed to define the problem), the destructor and the matrix-vector product required,
whose name is MultOPx, as mentionned in the previous table.

Since we plan to use the regular computational mode, the function MultOPx should compute the
result y of M~ Sz for a given z. This is done in two steps: first compute z = S x, second solve
M y = z using a Cholesky factorization of M which is symmetric positive definite. The function
Mult0OPx may be called many times during the computation, so the Cholesky factorization of M
has to computed once and stored. This is done in the constructor through the initialization of
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the pointer fact_p, along with the initialization of the two other pointers matS_p and matM_p
(see below).

The destructor’s unique role is to free the memory allocated to store the Cholesky factorization.
Let’s now describe the constructor and the matrix-vector product in more details. The
implementation is the following:

/x!
Assumptions (not checked) :
S real
M real symmetric positive definite
*
/

StdNonSym : : StdNonSym ( TermMatrix& S, TermMatrix& M)
: ARStdFrame(S), matS_p(&S.matrixData()—>getLargeMatrix<real_t >()),
matM_p(&M. matrixData ()—>getLargeMatrix<real t >()) {

fact_p = newSkyline(matM_p) ;
ldltFactorize (xfact_p);

//! Matriz—vector product y <— inv(M)*S * «

void StdNonSym::MultOPx (real t #x, real t xy) {
array2Vector (x, 1x);
std :: vector<real t> Sx(GetN());
multMatrixVector (xmatS_p, Ilx, Sx);

// Solve linear system. Matlab equivalent: ly = matM_p \ Sz;
(fact_p—>1dltSolve) (Sx, ly); // store the solution into ly
vector2Array (ly , y);

}

Since StdNonSym derives from ARStdFrame, the ARStdFrame constructor is first called, passing
S as the characteristic matrix, and the pointers matS_p and matM_p are initialized. They hold
the addresses of the low level LargeMatrix objects containing the effective real data values. The
reason is that the algebraic operations are attached to the LargeMatrix class with the adequate
storage type. Then the Cholesky factorization of M is computed in two steps: first record
in the pointer fact_p the result of newSkyline, i.e. the address of a copy of the matrix M
stored in skyline storage type, second call the function 1d1tFactorize to compute the Cholesky
factorization.

The prototype of the function Mult0Px is imposed by ARPACK. Each of the two arguments is the
address of a C-style array. But the algebraic operations provided by XLIFE++ require operands
whose type are std: :vector. Thus, the data values should be copied in and out using the two
utilitary functions array2Vector and vector2Array. The two vectors 1x and 1y are local buffers
with the right size prepared for this purpose ; they are members of ARInterfaceFrame and are
ready to use. Thus, the input array x is first copied into the local vector 1x, then the matrix-vector
product Sx is computed by the function multMatrixVector and stored into the local vector Sx.
Then comes the resolution of the linear system M y = Sx by the function 1d1tSolve which uses
the precomputed Cholesky factorization through the pointer fact_p. At last, the result is copied
from the local vector 1y into the output array y.

The following action is to use this user class to create an ArpackProb intermediate object which
will set the computational mode to be used by ARPACK. For this purpose, five constructors are
available. In their list of arguments, usrcl denotes the user class, which bears the the kind of
problem to be solved, standard or generalized, and nev is the number of desired eigenvalues:

e Constructors for regular mode (for standard or generalized eigenvalue problems)
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The argument which defines the part of the spectrum to be scanned. The possible values
are described in a previous section (see optional parameter _which).

1. real case
ArpackProb(const ARInterfaceFrame<Real>& usrcl, int nev, const charx which,

bool sym = true);

The last argument sym specifies by default to use the algorithm designed for a
symmetric operator ; if it takes the value false, then the algorithm designed for a
nonsymmetric operator will be used.

2. complex case

ArpackProb(const ARInterfaceFrame<Complex>& usrcl, int nev, const charx
which) ;

e Constructors for shifted computational mode (for standard or generalized problems)

1. e real symmetric case:
— for standard problems: shift and invert mode (default)
— for generalized problems: shift and invert mode (default), buckling and Cayley mode
e real nonsymmetric case:

— for standard or generalized problems: (real) shift and invert mode

ArpackProb(const ARInterfaceFrame<Real>& usrcl, int nev, bool sym, double
sigma, char cMode = 'S’);

As above, the argument sym tells if the algorithm designed for the symmetric case
(true) or nonsymmetric case (false) should be used. The argument sigma is the
value of the shift (real number here). The buckling and Cayley modes can be selected
by giving the argument cMode the character value 'B” or ’C’ respectively.

Note: for standard eigenvalue problems, this last argument (computational mode
cMode) is irrelevant and thus has not to be specified.

2. real nonsymmetric case, for generalized problems only: complex shift and invert mode

ArpackProb(const ARInterfaceFrame<Real>& usrcl, int nev, double sigmaR,
double sigmal, char cMode = 'R’);

The shift is given by both its real part, sigmaR, and its imaginary part, sigmal. The
argument cMode should be set to 'R’ to select R((A — o B)™"); it should be set to '
to select S((A — oB)™!) (for more explanations, see the description of the parameter
—mode in the previous section).
3. complex case, for standard or generalized problems: shift and invert mode
ArpackProb(const ARInterfaceFrame<Complex>& usrcl, int nev, double sigmaR,
double sigmal = 0.0);

The shift is given by both its real part, sigmaR, and its imaginary part, sigmal.

In order to terminate this illustration, the last thing to do is to call the solver. Technically, we
can reuse the program shown at the end of the previous section and called A full example. and
do the following;:
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1. copy the declaration of the user class StdNonSym, followed by its implementation as given
above, just before the main function,

2. replace the call to arpackSolve:

EigenElements areigs = arpackSolve(S,M, _nev=nev, _which="SM");

by the three lines:

StdNonSym usrcl (S,M) ;

ArpackProb Arpb(usrcl ,nev,”SM” ,false); // false means "use the
nonsymmetric algorithm ”

EigenElements areigs = arpackSolve(Arpb);

The first line creates an object called usrcl by calling the constructor of the user class to
which the stiffness and mass matrices are passed. Then, the intermediate object Arpb is
created using the first constructor in the list just above. This completely defines the ARPACK
problem: the user class derives from ARStdFrame<real_t>, so it is a real standard problem ;
the eigenvalues of smallest magnitude are requested and the nonsymmetric algorithm is
chosen. Indeed, the operator A = M~'S is not symmetric, so we should select the
corresponding computational mode (this justifies the name given to the user class).

3. print the eigenvalues as complex numbers by removing the call to real() in the last line of
the program:

for (int i = 0; i < nconv; i++) { cout << areigs.value(i+1) << endl; }

The output produced by this new program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
computing FE term intg_Omega u * v, using 1 threads : done

Number of eigenvalues (requested / converged): 8 / 8
Computational mode: regular mode (standard problem)
Part of the spectrum requested: SM

Problem size = 61, Tolerance = 1.11022e-16

Nb_iter / Nb_iter_Max = 266 / 800, Number of Arnoldi vectors = 17
Eigenvalues :

(-3.9936942641816131e-12,0)

(0.99999999998896483,0)

(3.9999999999884972,0)

(8.9999999999974278,0)

(15.999999999996687,0)

(25.000000000000899,0)

(35.999999999997002,0)

(63.999999992827938,0)

We can observe that the last eigenvalue is close to 64 instead of 49 which has been missed.
Inserting the line

Arpb.ChangeTol (1.e—15);

between the declaration of Arpb and the call to arpackSolve sets a slightly relaxed value of the
tolerance that suffices to obtain the expected result:
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Interpolation degree = 60
computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
computing FE term intg_Omega u * v, using 1 threads : done

Number of eigenvalues (requested / converged): 8 / 8
Computational mode: regular mode (standard problem)
Part of the spectrum requested: SM

Problem size = 61, Tolerance = le-15

Nb_iter / Nb_iter_Max = 252 / 800, Number of Arnoldi vectors = 17
Eigenvalues :

(-3.9815928332131989e-12,0)

(0.99999999998896794,0)

(3.9999999999885101,0)

(8.9999999999974225,0)

(15.999999999996653,0)

(25.000000000000909,0)

(35.999999999996525,0)

(48.999999999971514,0)

& Other tuning functions

This gives the opportunity to mention that the parameters governing the computation can be set
using exactly the same function names as the ones defined in ARPACK++. Besides the function
ChangeTol just seen, we can use the following functions:

e ChangeMaxit(int) to change the maximum number of iterations,
e ChangeNcv(int) to change the number of Arnoldi vectors to be computed.
e Trace() to activate the output of statistics related to the computation.

For more information, see the description of the parameters _maxIt, _ncv and _verbose in the
previous section.

& User class example 2.

As a second example, we can use the complex algorithm to solve the same problem. The operator
A = M~'S should be complex ; for this, we choose to convert the matrix S to complex. The
corresponding user class StdComp is a slight modification of the class StdNonSym:

class StdComp: public ARStdFrame<complex_ t> {
public:

//! constructor

StdComp (TermMatrix& S, TermMatrix& M) ;

//! destructor
“StdComp () { delete fact_p; }

//! matriz—vector product required : y <— inv(M)xS x x
void MultOPx (complex t *x, complex_ t xy);

private:
//! pointers to internal data objects
const LargeMatrix<complex_t> xmatS_p;
const LargeMatrix<real t> sxmatM_p;
//! pointer to temporary factorized matrixz M
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LargeMatrix<real _t >x fact_p;

}; // end of Class StdComp

The modifications concern the type of S and the operands x and y changed to complex. The
implementation is thus quite similar to the StdNonSym one:
Jx !
Assumptions (not checked) :
S complex
M real symmetric positive definite
*/
StdComp : : StdComp (TermMatrix& S, TermMatrix& M)
: ARStdFrame(S), matS_p(&S.matrixData()—>getLargeMatrix<complex t>()),
matM_p(&M. matrixData ()—>getLargeMatrix<real t >()) {

fact_p = newSkyline(matM_p) ;
ldltFactorize (xfact_p);

//! Matriz—vector product y <— inv(M)xS * x

void StdComp :: MultOPx (complex t #x, complex t xy) {
array2Vector (x, 1x);
std :: vector<complex_t> Sx(GetN () ) ;
multMatrixVector (+matS_p, lx, Sx);

// Solve linear system. Matlab equivalent: ly = matM_p \ Sz;
(fact_p—>1dltSolve) (Sx, ly); // store the solution into ly
vector2Array(ly, y);

}

One can just mention the initialization of the pointer matS_p to the complex data values. The
factorization of M is unchanged and it should be noticed that here the Cholesky solver handles
complex data.
The final step consists in modifying the initial program (A full example. above) by inserting the
declaration and the implementation of the user class StdComp as given above before the main
function, and replace the call to arpackSolve by the three lines:

TermMatrix Sc¢ = toComplex(S) ;

StdComp usrel (Sc,M) ;
ArpackProb Arpb(usrcl ,nev,”SM”);

The first statement converts the matrix S to the complex one Sc. Then the object corresponding
to the user class usrcl is created from the complex stiffness matrix and the real mass matrix.
The intermediate object Arpb is created using the second constructor in the list given above. This
completely defines the ARPACK problem: the user class derives from ARStdFrame<complex_t>,
so it is a complex standard problem ; the eigenvalues of smallest magnitude are requested. All
the other parameters are the default ones.

The output produced by this last program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
computing FE term intg_Omega u * v, using 1 threads : done

Number of eigenvalues (requested / converged): 8 / 8
Computational mode: regular mode (standard problem)
Part of the spectrum requested: SM

Problem size = 61, Tolerance = 1.11022e-16
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Nb_iter / Nb_iter_Max = 235 / 800, Number of Arnoldi vectors = 17
Eigenvalues :

(1.6895427007126359e-10,-5.3921458890663075e-11)
(1.0000000000208538,-1.1338949016552641e-13)
(4.0000000000304183,7.7808203477527148e-12)
(9.0000000000377973,1.1273274779629001e-11)
(16.000000000012292,2.7943890983902115e-11)
(24.999999999985345,1.3070479010254708e-11)
(36.00000000008869,-3.2309836334379703e-11)
(49.000000000591157,-2.8194647537903334e-10)

& User class example 3.

At last, we can create a user class defining a generalized problem, what we were starting from and
thus redoing in fact what is already done internally when the first calling sequence of the function
arpackSolve presented in the previous section is used. The corresponding user class GenSym is
the following:

class GenSym: public ARGenFrame<real t> {
public:

//! constructor

GenSym (TermMatrix& S, TermMatrix& M) ;

//! destructor
"GenSym () { delete fact_p; }

//! matriz—vector products required : y <— inv(M)xS x x and ¥ <— S * x
void MultOPx (real_t xx, real t xy);

//! matriz—vector product y <— M %
void MultBx (real_t *xx, real_t xy);

private:
//! pointers to internal data objects
const LargeMatrix<real t> xmatS_p, xmatM_p;
//! pointer to temporary factorized matriz M
LargeMatrix<real_t >x fact_p;

;s // end of Class GenSym

Take notice that this class derives from ARGenFrame and in accordance with ARPACK’s
requirements for a real symmetric generalized problem (see the table above), this class provides
the two matrix-vector products Mult0OPx and MultBx. The implementation is very similar to the
StdNonSym’s one:
/x!
Assumptions (not checked) :

S real symmetric
M real symmetric positive definite
*/
GenSym : : GenSym (TermMatrix& S, TermMatrix& M)
: ARGenFrame(S), matS_p(&S.matrixData()—>getLargeMatrix<real_t >()),
matM_p(&M. matrixData ()—>getLargeMatrix<real_t >()) {

fact_p = newSkyline(matM_ p) ;
ldltFactorize (xfact_p);

}
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/! Matriz—vector products y <— inv(M)*xS x z and z <— S %
void GenSym::MultOPx (real t sx, real t xy) {
array2Vector (x, 1x);
std :: vector<real t> Sx(GetN());
multMatrixVector (*+matS_p, lx, Sx);
vector2Array (Sx, x);
// Solve linear system. Matlab equivalent: ly = matM_p \ Sz;
(fact_p—1dltSolve) (Sx, ly); // store the solution into ly
vector2Array(ly, y);

//! Matriz—vector product y <— M x x

void GenSym:: MultBx (real t xx, real t xy) {
array2Vector (x, Ix);
multMatrixVector (xmatM_p, 1x, ly);
vector2Array(ly, y);

}

The constructor’s code is nearly identical to the one of StdNonSym. The function MultOPx
computes the same product M1 S ; it additionally stores Sz in x which is here both an input and

an output argument as required by ARPACK. The function MultBx simply computes the product
M.

Again, the initial program (A full ezample. above) can be modified by inserting the declaration
and the implementation of the user class GenSym before the main function and replace the call to
arpackSolve by:

GenSym usrcl (S,M) ;

ArpackProb Arpb(usrcl ,nev,”SM”);
EigenElements areigs = arpackSolve(Arpb);

The first line creates an object called usrcl by calling the constructor of the user class to which
the stiffness and mass matrices are passed. Then, the intermediate object Arpb is created using
the first of the constructors of the class ArpackProb given above. This completely defines the
ARPACK problem: the user class derives from ARGenFrame<real_t>, so it is a real generalized
problem ; the eigenvalues of smallest magnitude are requested and the symmetric algorithm is
chosen (since this is the default).

The output produced by this new program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
computing FE term intg_Omega u * v, using 1 threads : done

Number of eigenvalues (requested / converged): 8 / 8
Computational mode: regular inverse mode (generalized problem)
Part of the spectrum requested: SM

Problem size = 61, Tolerance = 1.11022e-16

Nb_iter / Nb_iter_Max = 443 / 800, Number of Arnoldi vectors = 17
Eigenvalues :

1.6569854567517169e-10

0.99999999999869593

4.0000000000087512

9.0000000000560245

16.000000000016872

25.000000000006708

36.000000000077279
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48.999999999728566
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E Post processing and outputs

Once problem is solved, some particular tools may be applied to solution, for instance integral
representation, export to files for graphic visualisation, ... This chapter is devoted to various post
processing of solutions provided by XLIFE++.

8.1 Integral representation

In the context of integral equation, the solution of IE is a potential on the boundary (I"). This
potential is not easy to interpret, so the final step of a BEM is often the reconstruction of the
field outside I'. For instance, the Helmholtz diffraction Dirichlet problem may be solved using a
single layer potential ¢ = [0,1)|I" and the diffracted field outside the boundary I' is given by

u(z) = / G, y) aly) dy.

XLIFE++ adresses the general form of integral representation :
u(z) = /Opk(G(fc, y)) @ opu(q(y)) dy.
r

where opk is an operator on kernel, opu an operator on unknown and ® one of the operation x, |,
A or %. The previous exemple corresponds to opk = id, opu = id and ® = x. To deal with such
integral representation, the user has to define a linear form from intg constructor:

LinearForm ri=intg(Gamma, G*q); //default integration method
LinearForm ri=intg (Gamma, Gxq, Gauss_Legendre ,3);//specifying quadrature rule

IntegrationMethods ims(Gauss_Legendre,10, 1., Gauss_Legendre, 3);
LinearForm ri=intg(Gamma, Gxq, ims); //specifying 2 quadrature rules

In these expressions, Gamma is a Domain object, G a Kernel object and q an Unknown object.
Singular integration method is required if you intend to evaluate the integral representation at
points close to the boundary I'.

The linear form may be a linear combination of intg :

IntegrationMethods ims(Gauss_Legendre ,10, 1., Gauss_Legendre, 3);
LinearForm ri=intg(Gamma, Gxq, ims) + intg(Gamma, (grad_x(G)|_nx)xq, ims)

There are several methods to compute the integral representation.

8.1.1 Direct method

To effectively compute integral representation you have to specify the vector representing the
numerical potential, a TermVector object (say Q) and the points where to evaluate it. There are
many way to give points :
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e compute at one point x :

LinearForm ri=intg(Gamma, Gxq, Gauss_Legendre,3);
Complex val;

Point x(0,0,2);

integralRepresentation (x,ri ,Q, val);

e compute at an explicit list of points :

LinearForm ri=intg (Gamma, Gxq, Gauss_Legendre ,3) ;
Vector<Point> xs(10) ;

xs(1)= Point(0,0,2);

Vector<Complex> val (10);
integralRepresentation (xs,ri ,Q,val);

e compute at an implicit list of points of a Domain object (say omega) :

LinearForm ri=intg (Gamma, Gxq, Gauss_Legendre,3);

Vector<Point> xs;

Vector<Complex> val;

integralRepresentation (omega, ri, Q, val, xs); //val and zs are filled by
function

e compute at an implicit list of node points of an interpolation on a Domain :

LinearForm ri=intg(Gamma, Gxq, Gauss_Legendre,3);
TermVector U=integralRepresentation(u, omega, ri, Q); //u unknown on a
Lagrange space

% In the previous syntaxes the type of output val has to be consistent with data. For
instance, val is of complex type if G or Q) is of complex type. The last syntax is more robust
because the type is determined by the function. Besides, this syntax returns a TermVector that
may be straight exported to a file for visualization.

Note that, integral representations may return a vector of vectors but not a vector of matrices.
For instance, if yo want to compute the gradient of the integral representation (scalar), write :

Vector<Vector<Complex> > gsl;
integralRepresentation (xs, intg(Gamma,grad x(K)*u,ims), dnU, gsl);

or

Unknown us(V,”us”,2); //vector unknown !
TermVector gSL=integralRepresentation (us,omega,intg(Gamma, grad_x (K)xu,ims),
dnU) ;

In this last form, attach to your TermVector a vector unknown with the dimension of the result.

8.1.2 Matrix method

There exists an other way to deal with integral representations. It consists in computing the
matrix

R, — / opk(G (x:, ) ® opu(r;(y)) dy.

Special functions will produce such matrices embedded in a TermMatrix object:
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TermMatrix integralRepresentation (const Unknown&, const GeomDomain&,
const LinearFormé&);
TermMatrix integralRepresentation (const GeomDomain&, const LinearForm&);
TermMatrix integralRepresentation(const std:: vector<Point>&,
const LinearFormé&);

When no domain is explicitly passed, one shadow PointsDomain object will be created from the
list of points given. When no unknown is explicitly passed, one (minimal) space and related
shadow unknown will be created to represent the row unknown.

The following example (2D diffraction problem) shows how to use this method of integral
representation:

Number nmesh=25;
Disk disk_int (_center=Point (0.,0.,0.) ,_radius=1.,

_nnodes=nmesh ,_side_names="Gamma” ) ;
Disk disk_ext (_center=Point (0.,0.,0.),_radius=2., nnodes=2+nmesh

_domain name="0Omega” ,_side_names="Sigma” ) ;
Mesh mesh(disk_ext—disk_int , _triangle, 1, _gmsh);
Domain Gamma = mesh.domain (”Gamma”) , Sigma = mesh.domain(”Sigma”) ,

Omega—mesh . domain ( ”Omega” ) ;

// define spaces, unknown and testfunction
Space VO0(Gamma,P0,”V0”,false); Unknown u0(V0,”’u0”); TestFunction v0(u0,”v0”);
Space V1(Omega,P1,”V1” false); Unknown u(V1,”u”);
//define Kernel and integration method
Kernel H=Helmholtz3dKernel (k) ;
IntegrationMethods ims(Duffy ,8 0., Gauss_Legendre ,6,2.,Gauss_Legendre ,3) ;
//define forms
LinearForm 1f = intg(Gamma,gxv0); //rhs linear form
BilinearForm aSL=intg (Gamma,Gamma, u0«Hxv0 ,ims); //single layer bininear form
LinearForm ISL (intg (Gamma,Hxu0, Gauss_Legendre ,6)); //intg. rep. linear form
//build system and solve it
TermVector rhs(1f);
TermMatrix ASL(aSL) ;
TermVector uSL = gmresSolve (ASL, rhs, _tolerance=1.0e—6, _maxIt=>500);
//intg rep on Omega producing a TermMatriz
TermMatrix R=integralRepresentation (u,Omega, lSL) ;
TermVector U=RxuSL;

This method is a little more time expansive than computing directly the integral representation.
Thus, if there are a lot of integral representations to do with different data, it may be of interest.
Obviously, it is memory consuming.

8.1.3 Kernel interpolation method

When points z are far from boundary I', an alternate method consists in computing IR by
interpolation method. Let (2 the domain where IR is evaluated and Vi, a Lagrange finite element
space of interpolation defined on €. Denote (w;); the basis functions associated to Vi, space. Let
Wr a Lagrange finite element space defined on I' and (7;); the basis functions associated to it.
Interpolated the kernel at nodes z; € 2 and y; € I', IR is approximated by

)~ [ 373 Glon)uio) 5 (0) o) dy
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If ¢ has the following decomposition ¢(y) = >, qxox(y) we have :

) = 30303 Glamualas [ 5ol dydo

that reads in vector form (U = (u(x;):), @ = (qx)k) :
U=G+«M=xQ

with G the matrix (G(z;,y;)):;; and M the mass matrix :

Mjk = /Tj Of.
T

This exemple shows how it is done with XLIFE++:

Space Vq(Omega,P0); Unknown q(Vq,”q”);
computation of Q ...

Space Vo(Omega,P1,); Unknown u(Vo,”u”);
Space Vg(Gamma,P1l); Unknown v(Vg,”v”);
TermMatrix Gi(u, Omega, v, Gamma, G, "Gi”)
TermMatrix M(intg (Gamma,q*v),”M”); compute
TermVector U=Gix*(Mx+Q) ;

s //G(xi, y])
M) ;

Because kernel is interpolated, the mesh of 2 does not be too coarse. Vg may be chosen equal to
Vq. This method is generally faster than previous ones because computation of the mass matrix
is a fast process but interpolation method fails at points x; too close to the boundary Gamma.

8.2 Output functions

8.2.1 Print objects

Most of the objects appearing in the user main program may be printed in a simple way to the
screen or into a file, using the output operator <<.

BilinearForm a=intg(omega, u*v);

TermMatrix A(a,”’ ’A”);

compute (A) ;

TermVector Un(omega,u,l,”’U”);

TermVector X=AxUn;

theCout << "Axun = 7 << X << eol; //print to screen and to the file

print.txt
thePrintStream << "Asxun=" << X << eol; //print to the file print.tzt

thePrintStream is a XLIFE++ predefined object allowing to print into the file print.txt
created in the current directory. theCout is a XLIFE++4 object allowing to print both to the
screen and file print. txt.

The verbosity of printing is only controled by the global parameter theVerboseLevel that can
take value from 0 to the largest integer. To modify its value, use the verboseLevel(...) function:

verbosLevel (10) ;

verbosLevel (0) ;
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When the verbose level is set to 0, nothing is printed except the errors and warnings.

g% In multithreading environment, it may appear other print files (printxx.txt) coprresponding
to outputs of each thread.

In order to print into a specific file, first create an ofstream object, then print to it:

std :: ofstream out(”?myfile.dat”); // out is an ofstream object associated
// with the file myfile. dat

out << "Axun=" << X << eol; // print into this file

out . close () ;

8.2.2 Export TermMatrix and TermVector

We want to exploit easily the data contained in the objects produced during the computation.
The objects concerned are mainly TermVector objects since TermVector is the type of nearly
all the computation results of interest to the user. This may also concern TermMatrix objects if
further postprocessing is envisaged.

As mentionned just above, printing objects using the << operator may produce big files containing
a lot of informations, generally used to control the different steps of the computation. But we
often need to handle the data values outside of XLIFE++, either in a raw format or in a specific
one corresponding to some particular software.

The saveToFile commands have been designed for that purpose. They exist in two main forms:

e member function : Object.saveToFile("FileName", options);
e external function : saveToFile("FileName", Object, options);

They behave slightly differently according to the kind of object they act on. Details follow:
1. TermMatrix object:

BilinearForm a=intg(omega, u*v);

TermMatrix A(a,”’A”); compute(A);

A.saveToFile(”A.dat”,_dense); // dense format

A.saveToFile(”A.co0”, _coo, true); // coordinate format
saveToFile(A,”As.co0”,_coo, true); // works also (external function form)

Only two formats are available :
e dense format (_dense option) : all the matrix coefficients are written, line by line,

e coordinate format (_coo option), which corresponds to the MATLAB/OCTAVE sparse format:
only non zero matrix coefficients are written in the form ¢ j a;;.

When the last argument is set to true (false by default), structure informations are added to the
file name. In the previous exemple, the file name looks like As(30_30_coo_real_scalar) .coo.

2. TermVector object:

TermVector Ul, U2;

computation of Ul and U2
Ul.saveToFile(”Ul.dat”); // raw format only
Ul.saveToFile(”Ul.dat”, true); // raw format, structure added to name
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With the member function form, the only available output format is raw. To select another
format, the external function form should be used:

saveToFile(”Ul.dat” ,Ul, _raw, true);// idem previous via external function

saveToFile(”U.dat”, Ul, U2, _raw)
saveToFile("U.vtk”, Ul, U2, _vtk); // idem, export in vtk format
saveToFile(”"U.vtu”, Ul, U2, _vtu); // idem, ezport in wvtu format
saveToFile(”U.msh”, Ul, U2, _msh); // idem, export in msh format
saveToFile("U.m”, Ul, U2, _matlab); // idem, export in Matlab/Octave format
saveToFile(”U.dat”, Ul, U2, _xyzv); // idem, export nodes and values

i // two TermVectors in the same file

Except the raw format which outputs only data values, all formats embed mesh informations.
The corresponding files are intended to be read by visualization softwares:

e otk and vtu formats are compatible with PARAVIEW,

e msh format is compatible with GMSH,

e matlab format is compatible with MATLAB and OCTAVE,

e zyzv format produces ascii files with z y z v1 v2 ... on each line.

Remark 1: Because of the geometrical informations involved, different TermVectors which are
exported using one of those formats must be defined on the same space in order to be compared.

Remark 2: A mesh can also be exported in vtk, msh or mel format using a command bearing the
same name, saveToFile. This can be useful for conversion from one format to another, or for
visualization purpose.

Mesh demo = ...;

demo. printInfo (); // prints general information about the mesh to the screen
demo.saveToFile(”demo.vtk”, _vtk, true); // export the mesh in vtk format
demo.saveToFile(”demo.msh”, _msh); // export the mesh in msh format
demo.saveToFile(”demo.mel” ; _mel); // export the mesh in melina format

// Idem with the external function form:
saveToFile(”demo.vtk”, demo, _vtk, true);
saveToFile(”demo.msh”, demo, _msh);
saveToFile(”demo.mel”, demo, _mel);

The last argument is optional ; ist default value is false. For the vtk and the msh formats, if this
argument is true, a individual file is created for each subdomain or boundary subdomain. In this
case, each filename contains the name of the corresponding subdomain.

8.3 Graphical exploitation

By itself, XLIFE++ is a finite element library and as such does not own any graphical possibilities.
At present, three main softwares are targeted through the ouput formats mentionned in the
previous section.

From a practical point of view, in order to obtain a graphical representation of the computation
result, one has to process the output file produced by the saveToFile command by the
corresponding software. A minimal knowledge is required in order to use GMSH and PARAVIEW.
We invite the user to refer to the documentation of these softwares. Most of the computation
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results shown is this documentation are produced by PARAVIEW and most of the meshes are
displayed using GMSH.

The MATLAB/OCTAVE format is intended to be (easily) used as follows. We assume we have
a .m script file, say eigs_1_Omega.m, containing the first vector computed and related to the
domain Omega (maybe an eigenvector or the solution to a linear system, stored as a TermVector
object in both cases). One has to launch MATLAB or OCTAVE, eventually change to the directory
containing the .m file and type in eigs_1_Omega at the prompt (the execution of the script can
also be achieved using the menus if the GUI is available). We thus automatically get several
figures, one showing the mesh based on the interpolation nodes, and one for each component of

each unknown. The user is then free to make further computations using the data present in
memory (see below) or modify the attributes of the figures.

The curves gathered on the figure 7.7 are obtained via this procedure. The corresponding mesh
is shown on figure 8.1.

Domain mesh based on interpolation nodes.
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Figure 8.1: Computational domain: [0, 7.

Another example with a 2D geometry is shown on figure 8.2.

Domain mesh based on interpolation nodes.

eigs_2_Omega, eigvec_u, lambda_2 = 0.0891
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Figure 8.2: A 2D example.

The script is not interactive except for volumic data: the visualization is made by slicing the 3D
domain with a plane and the user is invited to choose the cutting plane defined by a point and
a vector normal to the plane, shown by a red thick line on the mesh figure. The position of the

211



cutting plane is updated on this figure as its definition changes and the corresponding slices are
displayed in other figures.
Let’s show what the command window looks like in such a case, here with OCTAVE:

GNU Octave, version 4.0.3
Copyright (C) 2016 John W. Eaton and others.
This is free software; see the source code for copying conditions.

>> what
M-files in directory /tmp/demo/xlifepp:

eigs_1_Omega.m
>>
>> eigs_1_Omega
The intersection plane is defined by the point P and the orthogonal vector V.

Current value of P = 12.566 12.566 12.566
Current value of V=1 -1 0

1 : change P

2 : change V

0 : quit

Your choice (other value = no change) : 3

Current value of P = 12.566 12.566 12.566
Current value of V=1 -1 0

1 : change P

2 : change V

0 : quit

Your choice (other value = no change) : 0
Tuning suggestions:

figure(N)

subplot(2,2,k)

rotate3dd, grid, box

view(2), view(3), view([Nx Ny Nz])
shading faceted

axis equal, axis normal

set(gca, ’xtick’, []) or set(gca,’xtick’,[...])
caxis([...])

xlabel(...), ylabel(...), title(...)
print (’-dpng’,eigs_1_OmegaFig2.png)

>>

Before the user types in 3 to answer the first question, the figure 8.3 has been displayed, showing
the domain mesh and an initial cutting plane. By choosing the value 3, the user accepts the
current settings and the figure 8.4 is drawn. The user then terminates by answering 0, and some
hints to modify the aspect of the figures are displayed.
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Domain mesh based on interpolation nodes.

Figure 8.3: Computational domain Omega.

eigs_1_Omega, eigvec_u

0.1

0.08
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Figure 8.4: Data representation corresponding to the selected slice.

When the script has terminated, we can observe the variables present in the workspace:

>> whos
Variables in the current scope:

Attr Name Size Bytes Class
coord 5859x3 140616 double
domaindim 1x1 8 double
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domainname 1x5 5 char

elem 4832x8 309248 double
elemtype 4832x1 38656 double
interpDeg 1x1 8 double
spacedim 1x1 8 double
unknown 1x8 8 char

val 5859x1 46872 double

Total is 66940 elements using 535429 bytes
>> quit

This allows the user to make any processing of his own with these data. The definitions of the
variables are the following:

e coord (real)
Coordinates of the interpolation nodes, one node per row. The nodes are implicitly
numbered from 1 to size(coord,1).

e domaindim (integer)
Dimension of the domain (1, 2 or 3).

e domainname (string)
Name of the domain.

e clem (integer)
Array containing the lists of elements: elem(i,:) is an element of type elemtype(i).
Format of the array: one element per row, column i holds the i-th interpolation node, given
by its number in the array coord above.

e clemtype (integer)
Vector containing the type of each element present in the mesh, in the same order as the
array elem above. Each type is a code number in XLIFE++s internal codification:
2 = point, 3 = segment, 4 = triangle, 5 = quadrangle,
6 = tetrahedron, 7 = hexahedron, 8 = prism, 9 = pyramid.

e interpDeg (integer)
Interpolation degree used during the computation.

e spacedim (integer)
Dimension of the space (1, 2 or 3).

e unknown (string)
1-column array containing the name of the unknowns, or their components in the vector
case, one name per row.

e val (real or complex)
Values corresponding to the unknowns, stored column-wise, one column per component
unknown. Each row contains the value at a node, or in an element if the interpolation
degree is 0, in the same order as the array coord or elem respectively. Indeed, the graphical
function ’patch’ used, makes the correspondence according to the number of rows of this
array, which should be size(coord,1) or size(elem,1) respectively.
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e rootfn (string)
Filename of the calling script.

The variables domaindim, domainname, interpDeg and spacedim are defined for information or
consistency check purpose. Indeed, spacedim should equal size (coord,2) and domaindim should
be less or equal spacedim and be consistent with the element types.
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External libraries

A.1 Installation and use of BLAS and LAPACK libraries

Using UMFPACK or ARPACK means using BLAS and LAPACK libraries. XLIFE++ offers the
ability to choose your BLAS/LAPACK installation :

e Using BLAS/LAPACK installed with UMFPACK or ARPACK
e Using default BLAS/LAPACK installed on your computer

e Using standard BLAS/LAPACK libraries, such as OPENBLAS.

To do so, you juste have to wuse XLIFEPP LAPACK LIB DIR and/or
XLIFEPP_BLAS_LIB_DIR to set the directory containing LAPACK and BLAS libraries:
cmake [...] —DXLIFEPP_BLAS_LIB_DIR=path/to/Blas/library/directory

—DXLIFEPP_LAPACK_LIB DIR=path/to/Lapack/library /directory
path/to/CMakeLists. txt

@ It is useless to use XLIFEPP_LAPACK_LIB_DIR and/or XLIFEPP_BLAS_LIB_DIR
options if you do not activates configuration with UMFPACK or ARPACK

A.2 Installation and use of UMFPACK library

The prerequisite to make use of UMFPACK is to have it installed or at least its libraries are
compiled. The umfpackSupport can be linked with or without UMFPACK in case of none of its
functions is invoked. Otherwise, any try to use its provided functions can lead to a linkage error.
Details to compile and install UMFPACK can be found at http://www.cise.ufl.edu/research/
sparse/umfpack/. All the steps will be described below supposing UMFPACK already installed
or compiled in the user’s system.

In order to make use of UMFPACK routines, user must configure CMAKE with
options: XLIFEPP_ENABLE UMFPACK, XLIFEPP_UMFPACK_INCLUDE_DIR
and XLIFEPP_UMFPACK_LIB_DIR.

cmake —DXLIFEPP_ ENABLE UMFPACK=ON
—DXLIFEPP_UMFPACK INCLUDE DIR=path /to /UMFPACK/include /directory
—DXLIFEPP_UMFPACK LIB_DIR=path /to /UMFPACK/library /directory
path/to/CMakeLists. txt

@ Theoretically, UMFPACK does not need to use BLAS/LAPACK, but as it is highly
recommended by UMFPACK (for accuracy reasons), XLIFE++ demand that you use
BLAS/LAPACK.
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UMFPACK is provided by SUITESPARSE. When looking how UMFPACK is compiled, it seems
that it can depend (maybe in the same way as BLAS/LAPACK) from other libraries provided by
SUITESPARSE.

In this case, you have a simpler way to define paths: by  using
XLIFEPP_SUITESPARSE HOME_DIR. When given alone, it consider the given
directory as the home directory containing every library provided by SUITESPARSE with a
specific tree structure. If it is not the case, you can use more specific options of the form
XLIFEPP_XXX_INCLUDE_DIR and XLIFEPP_XXX_LIB_DIR, where XXX can be
AMD, COLAMD, CAMD, CCOLAMD, CHOLMOD, SUITESPARSECONFIG or UMFPACK.

A.3 Installation and use of ARPACK library

ARPACK library can be obtained from the following URL: http://www.caam.rice.edu/
software/ARPACK/. It requires BLAS and LAPACK routines, so make sure these two libraries
are installed in the system. Like ARPACK, these two libraries are available under some Unix-like
systems.

By default, the intern eigensolver of XLIFE++ is used for calculating eigenvalues and
eigenvectors. To make use of ARPACK instead, users must configure CMAKE with options :
XLIFEPP_ENABLE_ARPACK and XLIFEPP_ARPACK_LIB_DIR.

The current directory is the root directory containing X LIFE++ source code. To enable ARPACK,
we use the command:

cmake —DXLIFEPP_ENABLE ARPACK=ON
—DXLIFEPP_ARPACK_LIB_DIR=path /to/arpack/libraries /directory
path/to/CMakeLists. txt

After configuring, we can make the library

make

@ XLIFE++ uses the wrapper ARPACK++. Because of its deprecation, a patch at http:
//reuter.mit.edu/index.php/software/arpackpatch/ needs to be applied to ensure a correct
compilation. With the evolution of compilers, this patch is often not enough now. This is the
reason why XLIFE++ contains its own patched release of ARPACK++, used by default.

A.4 Installation of MinGW 64 bits

When you download CodeBlocks, the default compiler is MinGW 32bits. To use the full
capabilities of XLIFE++, you may want to use a 64 bits compiler. 2 ways to download MinGW-
W64:

e Download the installer from the url https://downloads.sourceforge.net/project/
mingw-w64/Toolchains’20targetting’%20Win32/Personal’20Builds/mingw-builds/
installer/mingw-w64-install.exe?r=4ts=1522254087&use_mirror=netcologne. The
installer

e Download the binaries directly from the url from the https://sourceforge.net/
projects/mingw-w64/files/Toolchains)20targetting}%20Win64/Personal’,20Builds/
mingw-builds/. You select the version you need, for instance 7.3.0. You click on
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"threads-posix” directory, on one of the directories (sjlj, seh, ...). Personnally, I would
choose the directory having the best download rate per week. Flnally, you click on the
archive to donwload it.
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B Utility types in details

The wutils library collects all the general classes and functionalities required by the code : extended
string capabilities, Point, Vector and Matrix (dense storage) objects, Parameters and Function
objects to deal with user functions, Timer providing time computation tools and more internal
useful classes intended mainly to developers (messages and traces management).

B.1 String, Strings

String is a nice class allowing to deal with char of arrays without managing the memory. String
is no more than an alias to the string class of the STL which is either standard string (utf8, by
default) or wide string (utfl6); this choice is made in the config.hpp header file by setting the
macro WIDE_STRING. When this macro changes, all the library has to be rebuilt!

As a string or wstring class of the STL, String proposes all the functionalities of std::string.
Mainly, you can create, concatenate string, access to char and find string in string:

String sl1(”a string”);
String s2="an other string”;
String sl12=sl1+” and "+s2;
work !
sl+=" and 7"+4s2;
s12
int l=sl.size();
same
char a=sl[3];
s1[3]=p;
int p=sl.find (”string”,0);

beginning (if p=—1 not found)

sl.replace(p,5,”spring”);
s2=s1.substr(p,5) ;
sl.compare(s2);

char * c=sl.c_str ();
string

//
//
//

//
//
//

//
//

create a String
create a String using =
concatenate String, s3="a"+7b” does not

concatenate String, mow sl is the same as
number of char of s1, sl.length() gives the

char a=’t’ (the fourth character)
now sl="a spring and an other string?”;
find first position of 7string” from

replace ”string” by “spring”

extract string of length 5 from position p

alphanumeric comparison , return 0 if equal,
a negative (positive) value if s1<s2 (s1>s2)
return pointer to the char array of the

There a lot of variations of these string functions and other functions; see the STL documentation.

Some additional functions which may be useful have been introduced:

template<typename T_>

String tostring(const T & t);

template<typename T_>

T_ stringto (const String& s);

// ’anything’ to String

// String to ’anything’
// returns String converted to lowercase

String lowercase(const String&);
// returns String converted to uppercase
String uppercase(const String&);
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// returns String with initial converted to uppercase
String capitalize (const String&);

// trims leading white space from String

String trimLeading(const String&);

// trims trailing white space from String

String trimTrailing (const String&);

// trims leading and trailing white space from String
String trimSpace(const String&);

// delete all white space from String

String delSpace(const String& s);

// search capabilities

int findString (const String, const std::vector<String>&);

Be cautious with template conversion functions. The template T_ type has to be clarified when
invoking stringto.

// examples of conversion stringto
String s="1 2 37;

int i=stringto<int>(s); // i=1

Real r=stringto<Real>(s); // r=1.
Complex c=stringto<Complex>(s); // c¢=(1.,0)
void x p=stringto<void*>(s); // p=0z1
String ss=stringto<String>(s); // ss="1"
s="(0,1)";

c=stringto<Complex>(s) ; // c=(0.,1.)

Besides, lists of strings are available using Strings:

// list of strings
Strings ss(”x=0”,7x=1”,7y=0",72=0"); //initialize list (up to 5 elements)
Strings 1s(10); //10 empty strings

Is (1)="x=0"; //access to first string of list
String s=ss(3);
cout<<ss ; //output list

Strings inherits from std: :vector<String>.

B.2 Int, Dimen, Number, Numbers

Int is a nice datatype allowing to deal with signed integers properly, whatever the OS (Windows,
Unix/Linux, Mac OS) and the architecture (32/64 bits), so that an Int is 32 bits on 32 bits
architectures and 64 bits on 64 bits architectures. Number is defined in the same way as Int, but
for unsigned integers. Dimen is defined in the same way as Int and Number, but for short unsigned
integers.

In fact, Int is no more than an alias to long int on 32 bits architectures and long long int
on 64 bits architectures. Dimen is an alias of unsigned short int, and Number is an alias of
size_t. As a result, Int and Number follows both the architecture.

This choice is made in the config.hpp header file automatically.

Number datatype is the most often used for the user, so that we defined Numbers to manage lists
of Number, facilitating geometries definitions for instance:

// list of numbers
Numbers ns (10,11,12,13); //initialize list (up to 20 elements)
ns(1)=11; //access to first number of list
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Number n=ns(3) ;
cout<<ns; //output list

Numbers inherits from std: :vector<Number>.

B.3 Real, Complex and Reals

Real is a nice datatype allowing to deal with floats, whatever the precision. Real is no more
than an alias to float, double or long double; this choice is made in the config.hpp header file

by setting the corresponding macro: STD_TYPES, LONG_TYPES or LONG_LONG_TYPES.
When you change the macro, all the library has to be rebuilt!

Complex is no more than an alias to std: :complex<Real>.
To facilitate geometries definitions, Reals manages lists of Real:

// list of strings
Reals rs(2.5,-3.,0.1); //initialize list (up to 10 elements)

Reals 1s (10); //10 reals equal to zero

Is (1)=3.7; //access to first real of list
Real r=rs(3);
cout<<rs; //output list

Reals inherits from std: :vector<Real>.

B.4 Point

A finite element library deals obviously with points. The purpose of the Point class is to deal
with points in any dimension and providing some algebraic operations on points and comparison
capabilities. This class is used by the Function class encapsulating user functions.

There are mainly four ways to construct a point:

Point p4(4,0.); // dimension (4) and value (0) pl=(0,0,0,0)
Point pl (2. ) // a 1D point pl=(2);

Point p2(1.,0.); // a 2D point pl=(1,0);

Point p3(1.,0.,1.); // a 3D point pl=(1,0,1);

Real V[]:{1,2,3}; // array of real_t

Point p4(3, v); // dimension and real_t array

std :: vector<Real> w(3,0); // the std:vector (0,0,0)

Point p5(w); // stl wvector

To access to
e the dimension n of a point p: p.size(),
e to the i-th coordinate (1 < i < n) of a point p: p(i) or p[i—1]
e to the x,y or z coordinate (restricted to n < 3): p.x(), p.y() or p.z()
e the vector storing the point: p.toVect();

You can use the coordinate accessors in reading or writing mode. A simple example:
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Point p(1.,0.,1.); // a 3D point p=(1,0,1);
p(l)=2; // modify the first coordinate
p.y()=3; // modify the second coordinate
std :: vector<Real> v=p.toVect(); // convert point to wvector

Using standard operators (+=, -=, +, -, * and /), it is possible to perform algebraic computations
on points up to linear combinations:

Point p(1.,0.,1.),q(0.,0.,1.),r(1.,2.,3.); // some 8D points
Point g= (p+q+ /35 // compute the barycenter of p,q,r
(pt=q) /=2; // p contains the middle of p and q

Besides, there are some functions to compute the distance or the square of distance between two
points:

Point p (1., 1.),
real t d=p. dlstance

q(0.,0.,1.),r(1.,2.,3.); // some 3D points

(q
d=pointDistance(p,q) ;

q

) 4

) // compute distance between p and q

3 // alternative syntax

); // square of the distance between p and q
); // alternative syntazx

d=p.squareDistance (
d=squareDistance (p

Finally, comparing points is possible using standard operators ==, |=, <, >, <= or >=. The
comparison uses a tolerance factor 7 defined by the variable Point::tolerance (p,q being points of
R™):

p==qif [p—q/ <7

p<qif F3i<n, Vj<i, |pj—¢j|<Tandp; <q; —7T
The other comparison operators !=, >, <= or >= are naturally defined from == and < operators.
By default, the tolerance is set to 0. Below is an example:

Point p(1.,0.,1.),q9(0.,0.,1.); // some 3D points

bool r=(p=—q); // r=false
r=(p!=q); // r=true
r=(p<q) ; // r= false

Real eps=.00001;
Point :: tolerance=eps; // change the tolerance factor to eps

r=(p==(pteps/2)); // r=true

Geometrical transformations on points work as on geometries. Please see section 5.2 for definition
and use of transformations routines.

Then, if you want to create a new Point by applying a transformation on a Point, you should
use one of the following functions instead :

//! apply a geomelrical transformation on a Point (external)
Point transform (const Point& p, const Transformation& t);
//! apply a translation on a Point (external)
Point translate(const Point& p, std::vector<Real> u =
std :: vector<Real >(3,0.));
Point translate(const Point& p, Real ux, Real uy = 0., Real uz = 0.);
//! apply a rotation 2d on a Point (external)
Point rotate2d(const Point& p, const Point& ¢ = Point(0.,0.), Real angle =
0.);
//! apply a rotation 3d on a Point (external)
Point rotate3d(const Point& p, const Point& ¢ = Point (0.,0.,0.)
std :: vector<Real> u = std ::vector<Real>(3,0.), Real angle = 0.);
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Point rotate3d

Point rotate3d

Point rotate3d

Point rotate3d
Real angle);

//! apply a homothety on a Point (external)

Point homothetize (const Point& p, const Point& ¢ = Point (0.,0.,0.), Real
factor = 1.);

Point homothetize (const Point& p, Real factor);

//! apply a point reflection on a Point (external)

Point pointReflect(const Point& p, const Point& ¢ = Point (0.,0.,0.));

//! apply a reflection2d on a Point (external)

Point reflect2d (const Point& p, const Point& ¢ = Point (0.,0.),
std :: vector<Real> u = std :: vector<Real>(2,0.));

Point reflect2d (const Point& p, const Point& c, Real ux, Real uy = 0.);

//! apply a reflection3d on a Point (external)

Point reflect3d (const Point& p, const Point& ¢ = Point (0.,0.,0.),
std :: vector<Real> u = std :: vector<Real>(3,0.));

Point reflect3d (const Point& p, const Point& c, Real ux, Real uy, Real uz =
0.);

const Point& p, Real ux, Real uy, Real angle);

const Point& p, Real ux, Real uy, Real uz, Real angle);

const Point& p, const Point& c, Real ux, Real uy, Real angle);
const Point& p, const Point& c, Real ux, Real uy, Real uz,

e N e

For instance:

Point pl;
Point p2=translate(pl, 0.,0.,1.);

B.5 Vector

The purpose of the Vector class is mainly to deal with complex or real vector. In particular, this
class is used in the definition of the user functions (see the section Function). It is a templated
class mainly used as a real or complex vector:

Vector<Real> u; // u=[0.]

Vector<Real> v (3); // v=[0. 0. 0.]

Vector<Real> w(3,2.5) ; /) w=[2.5 2.5 2.5]
Vector<Complex> cu; // cu=[(0.,0.)]

Vector<Complex> c¢v (3) ; // co=[(0.,0.) [(0.,0.) (0.,0.)]
Complex i(0,1); // the complex i

Vector<Complex> cw(3,i); // co=[(0.,1.) [(0.,1.) (0.,1.)]

It is also possible to deal with vector of vectors, for instance:

Vector<Real> ones(3,1); // ones=[1. 1. 1.]
Vector<Vector<Real> > U(4,o0nes);

J/ U=[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]

To access to a vector component (both read and write access) use the operator () with index from
1 to the vector length:

Vector<Real> v (3); // v=[0. 0. 0.]
v(l)=1,;v(2)=2,;v(3)=3.; // v=[1. 2. 3.]
Vector<Complex> c¢v (3) ; // cv=[(0.,0.) [(0.,0.
cv (2)=Complex(1,1); // cv=[(0.,0.) [(1.,1.

~——
~
S S
S S
~——
RS S
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Note that access using operator [| with index from 0 to the vector length -1, is also possible.
Advanced users can use member functions begin and end returning respectively iterators (or
const iterators) to the beginning and the end of the vector.

It is also possible to extract some vector components in a new vector or to set some vector
components by specifying a set of indices either given by lower and upper indices or given by a
vector of indices:

Vector<Real> v (5); // v =[0. 0. 0. 0. 0.]
for (Number i=1;i<=5;i++)

v(i)=ixi; J/ v =[1. 5. 9. 16. 25.]
Vector<Real> w=v(3,5) ; J/ w =[9. 16. 25.]

Vector<Number> is (3);
is (1)=1;is (2)=3;is (3)=5; // is=[1 8 5]

w=v (is); J/ w =[1. 9. 25.]

v.set (1,3 ,w); J/ v =[1. 9. 25. 16. 25.]
Vector<Real> z(3,0.) ; J/ w =[0. 0. 0.]

v.set(is ,z); J/ v =[0. 9. 0. 16. 0.]

Standard algebraic operations (4+=,-=*=/=+,-*/) are supported by the Vector. Some
shortcuts are also possible, for instance a vector plus a scalar, a scalar plus a vector, ... Here are
a few examples:

Vector<Real> u(3,1); /) u=[1. 1. 1.]

Vector<Real> v (3); // v=[0. 0. 0.]

v=2 /) v=[2. 2. 2.]

Vector<Real> w=u+v; // v=[8. 3. 8.]

S 7 u=ld. 4. 4]

w—=2 J/ v=[2. 2. 2.]

Complex i(0,1); // complex number

Vector<Complex> cv (3,i); // cv=[(0.,1.) [(0.,1.) (0.,1.)]
cv=cvki; /) cv=[(-1.,0.) [(—=1.,0.) (—=1.,0.)]
cv/=2.; J/ co=[(=0.5,0.) [(0.5.,0.) (0.5.,0.)]

For algebraic operations involving two vectors, the compatibility of the size of vectors is checked.
All the algebraic operations involving a real vector (resp. a complex vector) and a real scalar
(resp. a complex scalar) are supported. Be cautious, as an integer value is not always certainly
cast to a real value, some operations may be failed during the compiling process. For instance,
the addition between a real vector and an integer does not work, cast explicitly to a real!

Vector<Real> u(3,1); // u=[1. 1. 1.]
Vector<Real> V(3) // v=[0. 0. 0.]
v=u+2; // DOES NOT WORK
v=u+2.; /) v=[3. 8. 8.]

Automatic cast from real vector to complex vector is supported. For instance, the following
instructions are legal:

Complex i(0,1); // complex number i
Vector<Real> u(3,1); J/ u=[1. 1. 1.]

Vector<Complex> c¢v(3); // co=[(0.,0.) [(0.,0.) (0.,0.)]
cv=u+2.%1; /) cv=[(1.,2.) [(1.,2.) (1.,2.)]
cv#=3.; /) cv=[(8.,6.) [(3.,6.) (3.,6.)]
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Be cautious, automatic cast is not supported for vector of vectors.

The class also provides some various functionalities:

Vector<Real> u(3,1); J/ u=[1. 1. 1.]

u.norminfty () ; // the sup norm of u

u.norm?2squared () ; // squared quadratic norm of u

u.norm?2 () ; // quadratic norm of u

cout<<u; // output the wvector w: [1 1 1]
Vector<Complex> cv(3,i); // cv=[(0.,1.) [(0.,1.) (0.,1.)]

conj(u); // conjugate of cv

cv=cmplx(u) ; // transform a real wvector in a complexr one
u=real (¢v); // take the real parts

u=imag(cv) ; // take the imaginary parts

Contrary to the Point class, the Vector class offers no comparison function. Note also that there
is no link between these two classes except that a Point may be automatically constructed from
a Vector:

Vector<Real> u(3,1);
Point P=u;

To avoid explicit templates in user program, the following aliases are provided:

Reals or RealVector stands for Vector<Real>,

Complexes or ComplexVector stands for Vector<Complex>,
RealVectors stands for Vector<Vector<Real> >,
ComplexVectors stands for Vector<Vector<Complex> >.

B.6 Matrix

The purpose of the Matrix class is mainly to deal with complex or real dense matrices. In
particular, this class is used in the definition of the user functions (see the section Function).
This class is compliant with the Vector class. Although, it can deal with matrices of anything,
it is only fully functional for real or complex matrices:

Matrix<Real> rA; // an empty matrizc
Matrix<Real> rB(3 2); // a 8X2 zeros matrix
Matrix<Real> rC(3,2,1); // a 3x2 ones matriz
Vector<Real> w(3,2. 5), /) w=[2.5 2.5 2.5]
Complex i(0,1); // the complex i
Matrix<Real> cA(3,2,i); // a 3x2 i matriz

It is possible to construct diagonal matrix from a Vector or a matrix from a Vector of Vector,
to load (and save) a matrix from a file and to construct particular matrices (_zeroMatrix,
_onesMatrix, _idMatrix, _hilbertMatrix):

Vector<Real> u(3,2.); // vector [2. 2. 2.]

Matrix<Real> rA (u); // 3x8 matriz with v as diagonal
Matrix<Real> rB(”mat.dat”); // matriz loaded from “mat.dat” file
Matrix<Real> rO (3, _zeroMatrix) ; // a 3x3 zeros matriz

Matrix<Real> rl1(3,_onesMatrix) ; // a 3x3 ones matriz

Matrix<Real> rI(3,_idMatrix); // a 3x3 identity matrix
Matrix<Real> rH(3,_hilbertMatrix); // the 3x3 Hilbert matriz

225



Construction of complex matrix from real data are allowed (automatic cast). But the contrary is
not.

There are some functions to access to the matrix properties:

numberOfRows () , numberOfColumns ()

isSymmetric (), isSkewSymmetric(), isSelfAdjoint (), isSkewAdjoint ()

ans some utilities to access to a coefficient, a row or a column or the diagonal of the matrix :

Matrix<Real> A(2,2,1); //a 2x2 ones matrix
A(1,1)=2; //change the coefficient All
Vector<Real> r=A.row(1l); //first row of A

r=A.column(2) ; //second column of A

r=A.diag() ; //diagonal of A

A.column(1,r); //assign a vector to the first column
Arow(2,r); //assign a wvector to the second row
A.diag(r); //assign a vector to the diagonal

All these functions support automatic cast from real to complex but not the contrary.

Advanced users can use member functions begin() and end() returning respectively iterators
(or const iterators) to the beginning and the end of the Matrix. The data values of the matrix
are stored according to the C convention, i.e. row-wise.

There are also generalized access tools either to extract submatrix (get () or operator()) or to
set submatrix of matrix (set()):

Matrix<Real> M(3,3) ;
for (Number i=1;i<=3;i++)
for (Number j=1;j<=3;j++)
M(i,j)=it ; J/M=[2 3 4; 8 4 5; 4 5 6]
Matrix<Real> N= M.get (2,3,2,3); //N=[4 5; 5 6]
J/N=M(2,8,2,3) gives the same
Vector<Number> is (2);
is (1)=1;is (2)=3;
N= M. get (is ,is);
J/NM(is,is) gives the same

//N=[2 4; 4 6]

Matrix<Real> Z(2,2,0) ; //Z=[0 0; 0 0]
M.set (1,2,1,2,%); JIM=[0 0 4; 00 5; 4 5 6]
Matrix<Real> U(2,2,1) ; //U=[1 1; 1 1]
M.set (is ,is ,Z); J/M=[1 0 1; 0 0 5; 1 5 1]

Other syntaxes are proposed, see the developer’s documentation.

Besides, the Matrix class proposes some transformations either as internal functions or external
functions:

Matrix<Real> A(2,2,1) ,B;
Matrix<Complex> C(2,2,i) ,D;

A.transpose () ;

// self transposition of A

B=transpose(A); // transposition of A, A not changed
C.adjoint () ; // self transposition and conjugate C
D=adjoint (A) ; // transpose and conjugate, C not changed
B=diag(A); // from diagonal of A to a diagonal matriz
A=real (C); // real part of C
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B=imag(C) ; // imaginary part of C

D=conj (C) ; // conjugate of C
D=cmplx (A) ; // forced casting from real to complex
Real n2=norm2(A); //Frobenius norm

Real ninf=norminfty (A);//infinite norm

Standard algebraic operations (+=,-=,*=,/=,+,-,*,/) are supported by the Matrix class. Some
shortcuts are also possible, for instance a matrix plus a scalar, a scalar plus a matrix,
Automatic cast from real to complex is supported. There is no comparison operator.

The Matrix proposes some solvers:

Matrix<Real> A
RealVector B;

// solve AX=B or AXs=Bzs using Gauss reduction

gaussSolver (A, B, piv, row);

gaussMultipleSolver (A, B, nbrhs, piv, row);

//inverse of a square malriz

RealMatrix invA=inverse(A);

// QR factorization

RealMatrix Q,R;

ar (A,Q,R);

// SVD factorization A=U S Vx, if A a (m,n)-matriz, U is a (m,r)—matriz, V
a (n,r)-matriz and S a r—vector where r=min(m,n)

RealMatrix U, V;

RealVector S; //singular values

svdMat (A, U, S, V);

@ QR and SVD are available only if Eigen library is set on.

@ It is also possible to deal with matrix of matrices, for instance:

Matrix<Real> ones(2,2,1); //a 2x2 ones matriz
Matrix<Matrix<Real> > A(2,2,0nes); //a 2x2 matriz of 2x2 ones malric

but all operations are not supported for such matrices!

To avoid explicit templates in user program, the following aliases are provided:

RealMatrix stands for Matrix<Real>,

ComplexMatrix stands for Matrix<Complex>.
RealMatrices stands for Matrix<Matrix<Real> >,
ComplexMatrices stands for Matrix<Matrix<Complex> >.

B.7 Parameters

In order to attached some user’s data to anything (in particular functions), two classes
(Parameter and Parameters) are proposed. The Parameter class handles a single data of type
integer, real, complex, string, real/complex vector/matriz or void * with the possibility to name
the parameter. The Parameters class handles a list of Parameter objects.
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B.7.1 The Parameter object

It is easy to define a parameter by its constructor or the assignment operation:

Parameter p(value ,[name]) ;
Parameter p=value;

where wvalue is of type integer, real, complex, string (or char*), RealVector, ComplexVector,
RealMatrix, ComplexMatrix or void * and name is an optional string defining the parameter
name.

Once a parameter is set, it is possible to get its name (if defined), its type, its value and print it:

Parameter k(1.,”frequency”);

cout<<”parameter "<<k.name()<<” type "<<k.type()<<” value="<<real(k);
k.print(); // print name and value

cout<<k; // print only its walue

RealMatrix H(5,_hilbertMatrix); // hilbert matriz 5x5

Parameter mat(H,” Hilbert matrix”); // H as parameter

The use of type void * allows the user to deal with data of any kind. This nice possibility is for
advanced users because a void * variable is unsafe in C++:
list <String> 1st; // a list of string

lst . push_back(”Helmholtz”); 1st.push back(”Laplace”);
Parameter par(&lst ,”problem list”); //void * parameter

cout<<par; // print the pointer not the list

list <String> >& rlst=static_cast<list <String>&>(xpointer (par)); // be sure
11

//or

list <String> >& rlst=static_cast<list <String>&>(xpar.get_p()); // be sure
11

cout<<rlst ; // print the list not the pointer

The functions to get the value are integer(), real(), cmplx(), string() and pointer(). Be cautious,
the user must invoke the ”"get” function compatible with the parameter type. In case of misfit call,
an error may occur or not if a logical cast is possible (only integer to real and real to complex).

Parameter k(1.,”frequency”); // a real parameter

Real r=real(k); // compatible get

Complex c=cmplx (k) ; // mo compatible get, but cast real to complex
String s=string (k) ; // mo compatible get, error

void * g=pointer (k) ; // no compatible get, error

A Parameter object can be automatically cast to its right value:

Parameter k(1.,”frequency”); // a real parameter
Parameter i(complex_ t(0,1),71”); // a complex parameter
Parameter mat(RealMatrix (5, _hilbertMatrix),”Hilbert matrix”);// a matriz

parameter
Real r=k; // auto cast to real
r=k; // auto cast to real
Complex c=k; // auto cast to complex
c=i; // does not work !l cannot resolve ambiguity of complexr class
c=k; // compler—> complex, double —> complex

String s=string(k); // error, incompatible types
void * g=pointer(k); // error, incompatible types
RealMatrix H=mat; // ok
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For numerical type parameters (integer, real or complex), it is possible to apply algebraic
operations (+=, -=, *=, /=+ | -, * /), comparison operations (==, |=, > >= <, <= ).
The result is a Parameter. These operations do not yet work on vectors and matrices.

Parameter k(1.,”frequency”);
Parameter k2=kxk;

B.7.2 The Parameters: list of Parameter

The Parameter object is a brick of the more interesting class Parameters which handles a list
of Parameter. With this class, the user is able to deal with lists of anything of the type of
numerics (integer, real, complex, vector, matrix) or string type or pointer type. In particular,
these parameters lists can be attached to functions as Parameters object of the function (see the
class Function documentation).

A Parameters object is simply defined by constructors taking one explicit data of type supported
by the Parameter class or one Parameter object:

Parameters ps(value ,[name]) ;

where value is of type integer, real, complex, real/complex vector/matrix, string (or char®) or
void * and name is an optional string defining the parameter name. When value is a Parameter
object, name is not required.

The main operations on the list are the insertion and the extraction of parameter values. To
insert a parameter in the list, you can use the push() function or the stream operator << :

Parameters ps;
ps.push(param) ;
ps<<value;

where value is of type integer, real, complex, string (or char®), void * or is a Parameter object.
For instance :

Parameters params(2.,”k”); //initialize from one data
params<<Parameter (1. ,”rho” )<<Parameter (3. ,”eps”); //insert 2 real
params < <3.1415926; //insert a real with no name get it by its index (4)

params<<Parameter (RealVector (5,1.) ,”v”); //insert a vector
params<<Parameter ( RealxMatrix (5, _hilbertMatrix) ,”H”); //insert a matriz

To extract a parameter from the list, you have to use the direct access operator () specifying its
rank (from 1) in the parameters list or its parameter name or the parameter itself:

Parameter p=ps(i); // i is an integer index
Parameter p=ps(name); // name is a string
Parameter p=ps(q); // q is a parameter

If a parameter has no name (case of a value insertion with no name) a default name is given
(parameterz with x its rank in the list)! To get the value of the parameter, capabilities of the
Parameter class may be used. It also possible to use the assignment operator = :

Parameters params;

Real k=params(”k”).get_r(); //use get with name

Real rho=params(”rho”); //work also
Real pi=params(4) ; //no name available
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RealVector v=params(”’v”); //get wvector
RealMatrix H=params(”H”); //get matriz

where value_type is the type of the parameter (be cautious with type compatibility).

This class provides print facilities of a list of parameters:

Parameters params;

params. print () ; // print on a default print file
params. print (out) ; // out is an output stream
out<<params;

Finally, the class provides a void list of parameters: Parameters::default_Parameters.

An example:

Parameter height=3;

Parameters data;

data<<height <<Parameter (4 ,” width” )<<”case 1”<<1.5;

// String 7case 17 has default name "parameter3”

// Real_t 71.57 has default name “parameters”

Parameter a=data(”height”); // acces by name, contains height

Parameter c=data(4); // acces by rank, contains 1.5

data(1)= 2; // replace the wvalue 3 by 2
data(”height”)=2; // same effect , height is thereafter modified
data (height)=2; // same effect

double x=data (4); // © contains 1.5

x=data (”width”); // © contains }

Note that there is no possibility to delete a parameter of the list and, contrary to the Parameter
class, no algebraic operations may be performed on list of parameters.

B.8 Function

In order to deal with functions with parameters of any kind it is necessary to use an object function
which is related to a Parameters object (a list of parameters, see Parameters documentation).
This approach allows to pass friendly, at low level of the code, some user’s functions, say functions
defined in the main program.

B.8.1 User function and object function

When you want to deal with the integral term:

/ e* u(x,y, 2) v(x,y, 2) dQ,
Q

where the loop of finite element computation requires the computation of the function f(z) = e

on quadrature points, it is necessary to pass the function f to the low-level code where the finite
element loop is implemented. Most functions are function of a point or a list of points. So, only
four kinds of function are concerned:

e function of a n-dimensional point (see B.4 for the class Point);

e function of two n-dimensional points, usually named kernel,
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e function of a vector of n-dimensional point;

e function of two vectors of n-dimensional points.

The functions may also have a Parameters as input argument if necessary (default value); for
example, the real k in the previous example. The output argument may be of any type (real,
complex, vector, matrix, ...), but has to be compatible which the type required in computation.
The way to define such a function is the following. First, define a standard C++ function, for
instance:

Complex f(const Point & P, Parameters& pa = default_Parameters)

{

Real k=pa(l); // k is the first parameter of the parameter’s list pa
// Real k=pa(”k”); is available if your have a parameter with name k7
Real x=P(1); // x is the first coordinate of the point P

return exp(ixkxx); // return a complex value result,
//return exp (ixpa(1)xP(1)); is also possible

}

Then create in your main program a Parameters object, a Function object from C++ function
and you Parameters object

{

Parameters pars(1,7k”);
Function F(f, pars);

}

If you have to deall with the integral term involving a real value matrix (with no parameter
involved in this example):

/ AVu .VudSQ,
Q

you may define:

Matrix<Real> A(const Point & P, Parameters& pa = default_Parameters)

{
Matrix<Real> vA(3,3);

return vA;

}

@ Note that even if your function does not involve some parameters, the second argument of
type Parameters is mandatory in the function definition.

For a kernel type function, it is quite similar. You have to specify two points as input arguments:

Complex Green_Helmholtz_3D (const Point& M, const Point& P, Parameters& pa =
default_Parameters)

{
Real r=distance(M,P); // we assume a distance function exists
Real k=pa(1l);
Real eps=pa(2);
if (r>eps) return exp(ixksr)/r;
else
}
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The vector form of a Function is a function working with a vector of points and returning a vector
of results (values on each point). It may be useful when computing n values together is really
faster than computing n times a single value. Such a function should be declared, for instance,
as follows:

Vector<Complex> vf(const Vector<Point> & vP, Parameters& pa =
default_Parameters)

{
Real k=pa(1l); //k is the first parameter of the parameter’s list pa
uint n=vP.size () ;
Vector<Complex> res (n) ;
for (int j=1;j<=n;j++) res(j)=exp(ixkxvP(j)(1));
return res;
}

Note that the function has to return a Vector object. For a function involving a couple of vectors
of points, the syntax of the declaration of the function is:

Vector<Complex> vf(const Vector<Point> & vP,const Vector<Point> & vQ,

Parameters& pa = default_Parameters)

The functions defined by the user may be used directly as argument of some functions of the
library. But in most of cases it is necessary to define explicitly the object Function associated to
the user function. This is the way to do this:

Parameters par;

par <<2.<<.000001; //k and eps wvalues, inserted in a parameter
list

Function funcf(f,par); //define a scalar function object wusing
parameters

Function funcA (A); //define a matriz function object

Function funcG (Green_Hemholtz_3D, par); //define a scalar kernel

Function funcvf(vf, par); //define a scalar function in its wvector form

Do not confuse the vector form of a Function and a function which returns a vector! The vector
form means a function which computes a quantity (scalar, vector, matrix) on a set of a points or
bipoints, the result being a vector of scalars, vectors or matrices. For most applications, scalar
form of Function are sufficient. Vector form is an extension allowing the user to compute the
function more efficiently in the case of multiple evaluations.

When the user wants to associate some parameters to his function, it is mandatory to define the
object Function because it stores the list of parameters. To understand the role of the object
Function, note that if P is a Point, the two instructions:

r=f(P,par); // call directly the user function f
funcf (P, r); // call the wuser function [ wusing the object function funcf

are allowed and give the same result. In other words, the object Function shadows the
Parameters object. In this example, using an object function seems to be artificial. The object
function has a real interest when internal computational routines requires user’s functions,
because it is easier to send one type of object encapsulating various type of function rather than
many different objects.
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When you have to pass an object Function to a function which requires such an object, it is
possible to use the constructor syntax Function(f,param), avoiding the explicit creation of the
object Function:

Parameters par;
par <<2.<<.000001; // value of k and eps
compute (Function (f ,par)); // compute requiring an object function

Dealing with normal vectors

Sometimes, user functions has to deal with some normal vectors and obviously the normal vectors
will depend on the point where the function is evaluated. For instance, a function computing the
normal derivative of a given incident field (e.g. a plane wave %), will look like

Complex dnuinc (const Point& P, Parameters& pa = default_Parameters)
{

Real x=P(1), k=pa(7k”); // get k from parameters

Reals n=getN () ; // get the normal vector at P

return i_xkxexp(i_xksx)*n(1);

}

When this function is passed to FE computation routines, the normal vector will be evaluated and
transmitted to the function only if the Function object associated to the function, has declared
to use the normal vector. It is done by the following instructions in the main program:

Parameters pars(1,”k”); // declare k in the parameters

Function f(dnuinc,pars); // associate parameters to Function object
f.require(_n); // tell the function will use the normal
TermVector B(intg (Sigma,fxv)); // use function f

The normal vector refers to the domain on which the linear or bilinear form (involving the
function) acts. The orientation of normal vector is described in section 5.9.2.

@ When using a function returning a vector or a matrix, because XLIFE++ checks the
dimension(s) of the returned object by using a fake point or a normal vector, it may occur
some consistency problems with the dimension of points or normals that is set to 3 by default.
You can change it by specifying explicitly the dimension of the function when building it:

Function f(dnuinc,pars);
f.dimPoint=2; //change the point dimension
//or

Function f(dnuinc,2,pars); // specifying the point dimension when building

It works in the same way for kernels.

Sum up

e to define a function of one point returning a value of type T and its associated object
Function:

T namefunction (const Point& P,Parameters& pa=default_Parameters)
Function nameofobjectfunction (namefunction ,[param]) ;
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e to define a function of two points (a kernel) returning a value of type T and its associated
object Function :
T namefunction (const Point& P, const Point& Q,Parameters&

pa=default_Parameters)
Function nameofobjectfunction (namefunction ,[param]) ;

e to define a vector function of one point returning a vector of value of type T and its associated
object Function:

Vector<T> namefunction (const Vector<Point>& P,Parameters&
pa=default_Parameters)
Function nameofobjectfunction (namefunction ,[param]) ;

e to define a vector function of two points (a vector kernel) returning a vector of value of type
T and its associated object Function:

Vector<T> namefunction (const Vector<Point> &,const Vector<Point> &,
Parameters& pa=default_Parameters)
Function nameofobjectfunction (namefunction ,[param]) ;

e to avoid the explicit construction of the object function (useful when you have to pass the
function as an argument)

Function (namefunction ,[param]) ;

e to declare that the object function uses the normal vector

Function nameofobjectfunction (namefunction ,[param]) ;
nameofobjectfunction.require(-n);

@ For the people who used MELINA Fortran, this approach replaces the famous fctrm.f and
the tbasso vector machinery.

B.8.2 Advanced user
Delaying computations

It may occur that the function you plan to use is a very complex one, involving some heavy
computations that you want compute only once by storing some intermediate results somewhere.
In order to allow flexibility to the user, it is advised to use the capabilities of Parameters object
to store void pointers. For instance, the first time the function is called, you can compute some
reusable quantities and store them in any structure with dynamic memory allocation and store
the pointer of this structure in the Parameters object. The next time the function is called, as
you have an access to this void pointer (do not forget to recast it), you can recover your data.

Calling a Function object

If you have to compute the values of the function via the object Function, there are mainly two
ways to do it:
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e using an alias to the pointer function (requires that you know the type of function and

arguments)
Point P=Point (0,0), Q=Point(1,1);
Complex c=funcf.funSC(P); //a function returning a complex scalar (funSC)

Complex g=funcG .kerSC(P,Q) ; //a kernel returning a complex scalar (kerSC)
Matrix<Real> m=funcA .funMR(P) ; //a function returning a real matriz
scalar (funMR)

As this method uses a recasting of a void pointer with no checking, it can cause segmentation
errors if there is a misfit between the type of function required and the real function stored in
the void pointer! It is possible to check the type of arguments by using the utility functions
typeReturned(), structReturned(), typeFunction() and typeArg(). This direct method is
offered to developers in order to have the best performance.

e using the safe overloaded operator (), allowing to deal with point or vector of points

Point P=Point (0,0), Q=Point(1,1);

Complex c; // complex to store the result

funcf.checkTypeOn(); // activate checking mode

funcf(P,c); // compute a complex scalar function at point P
// checking mode is disabled after the computation

Vector<Point> pts; // a wvector of points

pts (1)=P; pts (2)=Q;

vector<Complex> vc; // wector to store the result
funct.checkTypeOn(); // activate the checking mode

funcf (Pts,ve); // compute function at a vector of points

This method does not require the knowledge of the exact type of the function (the output
argument must be compatible !). It allows scalar or vector form independently of the form
of the user function. Note that, contrary to the first method, this method uses a reference
to return the values, so you have to manage its memory allocation. When the function is
called with a vector of points as input, the vector result is resized if it is too small. Using
the checkTypeOn function, it is possible to activate the checking of the type of argument.
After computation, the checkType variable is reset to false in order to avoid unnecessary
rechecking. As the checking process invokes RTTI functions (expensive in time), activate
wisely this option. So, if you have to evaluate many times the function, activate the checking
only for the first evaluation. Note that when the checking process is deactivated, this method
is still slightly more expensive than the first one.

B.9 Kernel

The Function class allows to define kernel type function, say function of two points. But, to
deal with integral equation, more informations are required. It is the role of the Kernel class. A
Kernel object manages mainly:

Function kernel; // kernel function
Function gradx; // x derivative
Function grady; // y derivative
Function gradxy ; // x,y derivative
Function ndotgradx; // nx.gradx if available
Function ndotgrady; // ny.grady if available
Function curlx; // curl_z if available
Function curly ; // curl_y if available
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Function curlxy; // curl_z curl_y if available
Function divx; // div_z if available
Function divy; // div_y if available
Function divxy; // div_z div_y if available
Function dxl1; // d_xl if available
Function dx2; // d_xz2 if available
Function dx3; // d_x8 if available

Kernelx singPart; // singular part of kernel

Kernelx regPart;

Dimen dimPoint ;
SingularityType singularType;
_logr, _loglogr)

regular part of kernel

dimension of points
singularity (_notsingular, _r,

Real singularOrder; // order of singularity

Complex singularCoefficient; // coefficient of singularity

SymType symmetry ; // kernel symmetry :_noSymmetry, _symmetric
String name; // kernel name

Parameters userData; // to store some additional informations

When dealing with a matrix kernel it may be useful to give d_x1, d_x2, d_x3 because it is not
possible to define the gradient of a matrix kernel as a Function.

So when defining a new one, you have to provide such informations. To understand how it works,
this is the example of Helmholtz3d kernel.
First define all the functions as ordinary c++ functions :

// kernel G(k; =z, y)=exp(ixkxr)/(4xpixr)
Complex Helmholtz3d (const Point& x, const Point& y, Parameters& pa)

Real k = real(pa(”k”));

Real r = x.distance(y);

Complex ikr = Complex(0., 1.) * k * r;
return overdpi * std::exp(ikr) / r;

}
Vector<Complex> Helmholtz3dGradx (const Point& x, const Point& y, Parameters&
pa)
{
Real k = real(pa(”k”));
Real r2 = x.squareDistance(y);
Real r = std::sqrt(r2);
Complex ikr = Complex(0., 1.) * k * r;
Complex dr = (ikr — 1.) / r2;
Vector<Complex> gl (3);
scaledVectorTpl(overdpi * exp(ikr)*dr / r, x.begin(), x.end(), y.begin(),
gl.begin());
return gl;
}
Vector<Complex> Helmholtz3dGrady (const Point& x, const Point& y,Parameters&
pa)
{

Real k = real(pa(7k”));
Real r2 = x.squareDistance(y);
Real r = std::sqrt(r2);
Complex ikr = Complex (0., 1.)
Complex dr = (ikr — 1.) / r2;
Vector<Complex> g1 (3) ;

* k % r;
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}

scaledVectorTpl(—overdpi * exp(ikr)*dr / r, x.begin(), x.end(), y.begin(),

gl.begin());
return gl;

Define regular part functions :

// regular part: G_reg(k; =, y)=(exp(ixkxr)—1)/(4*xpixr)
Complex Helmholtz3dReg (const Point& x, const Point& y, Parameters& pa)

{

}

Complex g;
Real k = real(pa(”k”));
Real kr = k x x.distance(y);
Complex ikr = Complex (0., kr);
if (std::abs(kr) < 1.e—04)
{
int n=4; // for abs(kr)<l.e—4 this is a good choice for n (checked)
g =1+ ikr / n——;
while (n > 1) {g =1+ g * ikr / n——;}
return g x= Complex (0., overdpi x k);

}

else return overdpi x k x (std::exp(ikr) — 1.) / kr;

Vector<Complex> Helmholtz3dGradxReg(const Point& x, const Point& y,

{

}

Parameters& pa)

Real k = real(pa(”k”));

Real r = x.distance(y);

Complex ikr = Complex (0., kxr);

Complex t = overdpi % (1. + std::exp(ikr)=*(ikr — 1.))/ r;
Vector<Complex> g(3) ;

scaledVectorTpl(t/ r, x.begin(), x.end(), y.begin(), g.begin());
return g;

Vector<Complex> Helmholtz3dGradyReg(const Point& x, const Point& y,

{

Parameters& pa)

Real k = real(pa(7k”));

Real r = x.distance(y);

Complex ikr = Complex (0., kxr);

Complex t = — overdpi * (1. + std::exp(ikr)=*(ikr — 1.))/ r;
Vector<Complex> g(3) ;

scaledVectorTpl(t/ r, x.begin(), x.end(), y.begin(), g.begin());
return g;

Define singular part functions :

//construct Helmholtz3d Kernel singular part: G_sing(k; =, y)=1/(4xpixr)
Complex Helmholtz3dSing (const Point& x, const Point& y, Parameters& pa)

{

}

Real r = x.distance(y);
return overdpi/r;

237



Vector<Complex> Helmholtz3dGradxSing (const Point& x, const Point& y,

{

}

Parameters& pa)

Real r = x.distance(y);

return —overdpi / (r=r);

Complex t = —overdpi / (rxr);

Vector<Complex> g(3) ;

scaledVectorTpl(t, x.begin(), x.end(), y.begin(), g.begin());
return g;

Vector<Complex> Helmholtz3dGradySing (const Point& x, const Point& y,

{

Parameters& pa)

Real r = x.distance(y);

Complex t = overdpi / (rxr);

Vector<Complex> g(3) ;

scaledVectorTpl(t, x.begin(), x.end(), y.begin(), g.begin());
return g;

Now construct Kernel objects :

Parameters pars;
pars<<Parameter (1.,”k”);

Kernel H3Dreg; //regular part
H3Dreg.name="Helmholtz 3D kernel regular part”;
H3Dreg.singularType =_notsingular;
H3Dreg.singularOrder = 0;

H3Dreg. singularCoefficient = overdpi;

H3Dreg . symmetry=_symmetric;

H3Dreg . userData = pars;

H3Dreg.dimPoint = 3;

H3Dreg. kernel = Function(Helmholtz3dReg, pars);
H3Dreg.gradx = Function(Helmholtz3dGradxReg, pars);
H3Dreg . grady = Function(Helmholtz3dGradyReg, pars);

Kernel H3Dsing; //singular part

H3Dsing .name="Helmholtz 3D kernel, singular part”;
H3Dsing.singularType =_r;

H3Dsing.singularOrder = —1;

H3Dsing. singularCoefficient = overdpi;

H3Dsing . symmetry=_symmetric;

H3Dsing . userData = pars;

H3Dsing . dimPoint = 3;

H3Dsing. kernel = Function(Helmholtz3dSing, pars);
H3Dsing.gradx = Function(Helmholtz3dGradxSing, pars);
H3Dsing.grady = Function(Helmholtz3dGradySing , pars);

Kernel H3D; //kernel
H3D.name="Helmholtz 3D kernel”;
H3D.singularType =_r;
H3D.singularOrder = —1;

H3D. singularCoefficient = overdpi;
H3D.symmetry=_symmetric;
H3D.userData = pars;

H3D.dimPoint = 3;
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H3D. kernel = Function(Helmholtz3d , pars);
H3D.gradx = Function(Helmholtz3dGradx, pars);
H3D.grady = Function(Helmholtz3dGrady, pars);
H3D.regPart = &H3Dreg;

H3D.singPart = &H3Dsing;

@ If you do not define singular and regular part kernels, some computations will not be available.

In fact the Helmholtz kernels are defined in mathsResources library of XLIFE++. To load it, use
the following code:

Parameters pars;
pars<<Parameter(1.,”k”);
Kernel H3D = Helmholtz3dKernel (pars) ;

For Kernel objects, one can pass to some kernel functions either _nx vector or _ny vector or both
using the same method as one used for Function :

Complex G(const Point& P,const Point& Q, Parameters& pa = default_Parameters)

{

Reals nx= getNx(); // get the normal vector at P
Reals ny= getNy(); // get the normal vector at Q

}

Parameters pars(1,”’k”); // declare k in the parameters

Kernel K(g, pars); // associate parameters to Kernel object
K.require(_nx); // declare that kernel uses z—normal
K.require(_ny); // declare that kernel uses y—normal

TermMatrix B(intg (Sigma,Sigma,uxK«v)); // use kernel K

Kernel functions defined in XLIFE++ managed the normal vectors, so the user has not to deal
with.

@ By default, the dimension of points of a Kernel is 3. When you define a 2D kernel, it
may happen some troubles with point dimensions, in particular if the kernel function involves
some operations sensitive to the point dimension. You can cure this problem by testing point
dimensions in the kernel function or by specifying the point dimension when building Kernel:

Real ker (const Point& x, const Point& x, Parameters&
pa=defaultParameters)

(..

Kernel K(ker); K.dimPoint=2;

//or
Kernel K(ker,2);

@ If you develop a new kernel for your own use, contact the administrators. May be they will
be happy to integrate your work in XLIFE-++.
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B.10 SymbolicFunction

Some finite element constructions require to pass as argument a SymbolicFunction object, that
is a symbolic expression of a function. Such object is built in by writting any expression involving

e some constants (real or complex)

e some variables : x_1, x_2, x_3

e some algebraic operators : + - * / ~ (power)

e some boolean operators : & || < <= > >= == I= 1 (not)

e some mathematical functions : abs, realPart, imagPart, sqrt, squared, sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, exp, log, loglO

The result of a boolean expression is either 0 (false) or 1 (true).

@ The functions asinh, acosh, atanh are only available when compiling with C++ 2011.

To deal with a symbolic function is very easy. For instance consider the function
f(@1,22) = [1 — 21 + cos(z2)]’.

To define it as a symbolic function, write:

SymbolicFunction fs = (1—x_1+cos(x-2)) "3;

To evaluate it, write:

Real r = fs(—-1,0);
Complex ¢ = fs(i_,0);

You can mix algebraic and boolean expressions. Consider the following function:

et 11 <0

f(gcl):{ 1 x>0

To define it, write:
SymbolicFunction fs = (x_1<=0)*xexp(x-1)+(x-1>0);

B.11 Timer

The Timer class is a utility class to perform computational time analysis (cpu time and elapsed
time) and manage dates. For a user, only a few functions are useful. They do not involve explicitly
some Timer objects. There are some functions to get date in various forms :

String theTime() ; // returns current time

String theDate() ; // returns current date as dd.mmm.yyyy

String theShortDate(); // returns current date as mm/dd/yyyy or dd/mm/yyyy

String theLongDate(); // returns current date as Month Day, Year or Day
Month Year

String thelsoDate() ; // returns 1SO8601 format of current date (yyyy—mm-dd)

String thelsoTime() ; // returns ISO8601 format of current time (hh—mi—ss)
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and others to get cpu or elapsed time :

double cpuTime() ; // user time ("cputime”) in sec.
since last call

double cpuTime(const String&); // same and prints it with comment

double totalCpuTime() ; // elapsed time in sec. since first
call

double totalCpuTime(const String&); // same and prints it with comment

double elapsedTime () ; // elapsed time in sec. since last
call

double elapsedTime(const String&) ; // same and prints it with comment

double totalElapsedTime () ; // elapsed time in sec. since first

runtime call
double totalElapsedTime (const String&); // same with comment

Using these functions, it is easy to perform time computation analysis. For instance :

#include 7xlife++.h”
using namespace xlifepp ;
int main()

init (fr); // initializes timers

// task 1

cpuTime(”cpu time for task 17);
elapsedTime (”elapsed time for task 17);
// task 2

cpuTime(”cpu time for task 27);
elapsedTime (”elapsed time for task 27);
// end of tasks

totalCpuTime(”total cpu time”);
totalElapsedTime(”total elapsed time”);

B.12 Memory

Using the Memory, the memory usage can be inspected using the following functions:

Real phyMem = Memory :: physicalMem () ; //physical memory

Real freeMem = Memory:: physicalFreeMem () ; //free physical memory

Real procMem = Memory :: processPhysicalMem () ; //physical memory used by the
process

The default unit is the MegaBytes (Mo), but you can change the unit by specifying one of the
following units in the argument of memory functions:

enum MemoryUnit {_byte,_kilobyte ,_megabyte,_gigabyte , _terabyte };
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