Installation procedure for NetBSD/evbppc 10.0_RC2

NAME

INSTALL - Installation procedure for NetBSD/evbppc.

CONTENTS


 About this Document
 What is NetBSD?
 Dedication
 Changes Between The NetBSD 9 and 10 Releases
 Features to be removed in a later release
 The NetBSD Foundation
 Sources of NetBSD
 NetBSD 10.0_RC2 Release Contents
    NetBSD/evbppc subdirectory structure
    Binary distribution sets
 NetBSD/evbppc System Requirements and Supported Devices
    Supported devices
    Unsupported devices
    Supported boot devices and media
 Getting the NetBSD System on to Useful Media
 Preparing your System for NetBSD installation
    Booting over a serial line
    Booting from the network
 Installing the NetBSD System
    Booting the installer
    Example of a normal boot
    Common Problems and Error Messages
    Running the sysinst installation program
       Introduction
       Possible hardware problems
       General
       Quick install
       Booting NetBSD
       Network configuration
       Installation drive selection and parameters
       Selecting which sets to install
       Partitioning the disk
       Preparing your hard disk
       Getting the distribution sets
       Installation from CD-ROM
       Installation using FTP
       Installation using NFS
       Installation from an unmounted file system
       Installation from a local directory
       Extracting the distribution sets
       Configure additional items
       Finalizing your installation
 Post installation steps
 Upgrading a previously-installed NetBSD System
 Compatibility Issues With Previous NetBSD Releases
 Using online NetBSD documentation
 Administrivia
 Thanks go to
 Legal Mumbo-Jumbo
 The End

DESCRIPTION

About this Document

This document describes the installation procedure for NetBSD 10.0_RC2 on the evbppc platform. It is available in four different formats titled INSTALL.ext, where .ext is one of .ps, .html, .more, or .txt:

.ps
PostScript.

.html
Standard Internet HTML.

.more
The enhanced text format used on UNIX-like systems by the more(1) and less(1) pager utility programs. This is the format in which the on-line man pages are generally presented.

.txt
Plain old ASCII.

You are reading the HTML version.

What is NetBSD?

The NetBSD Operating System is a fully functional open-source operating system derived from the University of California, Berkeley Networking Release 2 (Net/2), 4.4BSD-Lite, and 4.4BSD-Lite2 sources. NetBSD runs on many different different system architectures (ports) across a variety of distinct CPU families, and is being ported to more. The NetBSD 10.0_RC2 release contains complete binary releases for most of these system architectures, with preliminary support for the others included in source form. Please see the NetBSD website for information on them.

NetBSD is a completely integrated system. In addition to its highly portable, high performance kernel, NetBSD features a complete set of user utilities, compilers for several languages, the X Window System, firewall software and numerous other tools, all accompanied by full source code.

NetBSD is a creation of the members of the Internet community. Without the unique cooperation and coordination the net makes possible, NetBSD would not exist.

Dedication

NetBSD 10.0 is dedicated to the memory of Ryo SHIMIZU, who passed away in May 2023.

Ryo's technical contributions are too many to list here in full. He was a long term contributor and worked on a lot of low-level code over various architectures, from x68k to aarch64. He also worked on various out-of-tree NetBSD items, like the IIJ git repository conversion.

The project lost an excellent technical contributor and many of us a good friend.

Changes Between The NetBSD 9 and 10 Releases

The NetBSD 10.0_RC2 release provides many significant changes, including support for many new devices, hundreds of bug fixes, new and updated kernel subsystems, and numerous userland enhancements. The result of these improvements is a stable operating system fit for production use that rivals most commercially available systems.

One important new feature in this release is the support for extended attributes and access controll lists on FFS file systems.

For new installations the installer will default to disable this features, so the file system is compatible with older NetBSD releases (before 10), and allow other operating systems to mount this file systems at least in read-only mode.

If you want a new installed file system to support extended attributes, change the file system type from ``FFSv2'' to ``FFSv2ea'' in the partitioning menu. You can also convert file systems later, using the fsck_ffs(8) utility. More details are available in this guide.

If you are upgrading from a version of NetBSD-current please also check the Compatibility Issues With Previous NetBSD Releases.

It is impossible to completely summarize the massive development that went into the NetBSD 10.0_RC2 release. The complete list of changes can be found in the following files:
CHANGES
CHANGES-10.0
files in the top level directory of the NetBSD 10.0 release tree.

Features to be removed in a later release

The following features are to be removed from NetBSD in the future:

The NetBSD Foundation

The NetBSD Foundation is a tax exempt, not-for-profit 501(c)(3) corporation that devotes itself to the traditional goals and spirit of the NetBSD Project and owns the trademark of the word ``NetBSD''. It supports the design, development, and adoption of NetBSD worldwide. More information on the NetBSD Foundation, its composition, aims, and work can be found at:
       https://www.NetBSD.org/foundation/

Sources of NetBSD

Refer to mirrors

NetBSD 10.0_RC2 Release Contents

The root directory of the NetBSD 10.0_RC2 release is organized as follows:

.../NetBSD-10.0_RC2/

CHANGES
Changes between the 9.0 and 10.0 releases.

CHANGES-10.0
Changes between the initial 10.0 branch and final release of 10.0.

CHANGES.prev
Changes in previous NetBSD releases.

LAST_MINUTE
Last minute changes and notes about the release.

README.files
README describing the distribution's contents.

images/
Images (ISO 9660 or USB) for installing NetBSD. Depending on your system, these may be bootable.

source/
Source distribution sets; see below.

In addition to the files and directories listed above, there is one directory per architecture, for each of the architectures for which NetBSD 10.0_RC2 has a binary distribution.

The source distribution sets can be found in subdirectories of the source subdirectory of the distribution tree. They contain the complete sources to the system. The source distribution sets are as follows:

gnusrc
This set contains the ``gnu'' sources, including the source for the compiler, assembler, groff, and the other GNU utilities in the binary distribution sets.

sharesrc
This set contains the ``share'' sources, which include the sources for the man pages not associated with any particular program; the sources for the typesettable document set; the dictionaries; and more.

src
This set contains all of the base NetBSD 10.0_RC2 sources which are not in gnusrc, sharesrc, or syssrc.

syssrc
This set contains the sources to the NetBSD 10.0_RC2 kernel for all architectures as well as the config(1) utility.

xsrc
This set contains the sources to the X Window System.

All the above source sets are located in the source/sets subdirectory of the distribution tree.

The source sets are distributed as compressed tar files. Except for the pkgsrc set, which is traditionally unpacked into /usr/pkgsrc, all sets may be unpacked into /usr/src with the command:
       # cd / ; tar -zxpf set_name.tgz

In each of the source distribution set directories, there are files which contain the checksums of the files in the directory:

MD5
MD5 digests in the format produced by the command:
cksum -a MD5 file.

SHA512
SHA512 digests in the format produced by the command:
cksum -a SHA512 file.

The SHA512 digest is safer, but MD5 checksums are provided so that a wider range of operating systems can check the integrity of the release files.

NetBSD/evbppc subdirectory structure
The evbppc-specific portion of the NetBSD 10.0_RC2 release is found in the evbppc subdirectory of the distribution: .../NetBSD-10.0_RC2/evbppc/. It contains the following files and directories:

INSTALL.html
INSTALL.ps
INSTALL.txt
INSTALL.more
Installation notes in various file formats, including this file. The .more file contains underlined text using the more(1) conventions for indicating italic and bold display.
binary/
kernel/
netbsd-DHT.gz
A gzipped kernel (in ELF format) for the DHT Walnut 405GP evaluation board.
netbsd.bin-DHT.gz
Same as the above, but in the raw binary format expected by the firmware.
netbsd-EV64260.gz
A gzipped kernel (in ELF format) for the Marvell EV-64260.
netbsd.img-EV64260.gz
Same as the above, but in the format expected by the firmware.
netbsd-EXPLORA451.gz
A gzipped kernel (in ELF format) for the NCD Explora451 NC.
netbsd.img-EXPLORA451.gz
Same as the above, but in the format expected by the firmware.
netbsd-INSTALL_OPENBLOCKS266.gz
A gzipped install kernel (in ELF format) for the Plat'Home OpenBlockS266 microserver.
netbsd-INSTALL_OPENBLOCKS266.img.gz
Same as the above, but in the format expected by the firmware.
netbsd-INSTALL_OPENBLOCKS266.symbols.gz
Symbols for netbsd-INSTALL_OPENBLOCKS266.gz.
netbsd-INSTALL_WALNUT.gz
A gzipped install kernel (in ELF format) for the IBM PowerPC 405GP Walnut evaluation board.
netbsd-INSTALL_WALNUT.img.gz
Same as the above, but in the format expected by the firmware.
netbsd-INSTALL_WALNUT.symbols.gz
Symbols for netbsd-INSTALL_WALNUT.gz.
netbsd-OPENBLOCKS200.gz
A gzipped kernel (in ELF format) for the Plat'Home OpenBlockS200.
netbsd.img-OPENBLOCKS200.gz
Same as the above, but in the format expected by the firmware.
netbsd-OPENBLOCKS266.gz
A gzipped kernel (in ELF format) for the Plat'Home OpenBlockS266 microserver.
netbsd.img-OPENBLOCKS266.gz
Same as the above, but in the format expected by the firmware.
netbsd-PMPPC.gz
A gzipped kernel (in ELF format) for Artesyn PM/PPC boards.
netbsd-WALNUT.gz
A gzipped kernel (in ELF format) for the IBM PowerPC 405GP Walnut evaluation board.
netbsd.img-WALNUT.gz
Same as the above, but in the format expected by the firmware.
sets/
evbppc binary distribution sets; see below.
installation/
Binary distribution sets
The NetBSD evbppc binary distribution sets contain the binaries which comprise the NetBSD 10.0_RC2 release for evbppc. The binary distribution sets can be found in the evbppc/binary/sets subdirectory of the NetBSD 10.0_RC2 distribution tree, and are as follows:

base
The NetBSD 10.0_RC2 evbppc base binary distribution. You must install this distribution set. It contains the base NetBSD utilities that are necessary for the system to run and be minimally functional.

comp
Things needed for compiling programs. This set includes the system include files (/usr/include) and the various system libraries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages.

debug
This distribution set contains debug information for all base system utilities. It is useful when reporting issues with binaries or during development. This set is huge, if the target disk is small, do not install it.

etc
This distribution set contains the system configuration files that reside in /etc and in several other places. This set must be installed if you are installing the system from scratch, but should not be used if you are upgrading.

games
This set includes the games and their manual pages.

kern-DHT
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the raw binary format needed by the bootloader as /netbsd.bin. These kernels are specific to the DHT Walnut 405GP evaluation board.

kern-EV64260
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the format needed by the bootloader as /netbsd.img. These kernels are specific to the Marvell EV-64260.

kern-EXPLORA451
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the format needed by the bootloader as /netbsd.img. These kernels are specific to the NCD Explora451 NC.

kern-OPENBLOCKS266
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the format needed by the bootloader as /netbsd.img. These kernels are specific to the Plat'Home OpenBlockS266 microserver.

kern-PMPPC
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the format needed by the bootloader as /netbsd.img. These kernels are specific to Artesyn PM/PPC boards.

kern-WALNUT
This set contains a NetBSD/evbppc 10.0_RC2 kernel in ELF format named /netbsd and the same kernel in the format needed by the bootloader as /netbsd.img. These kernels are specific to the IBM 405GP based Walnut evaluation board.

man
This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets.

misc
This set includes the system dictionaries, the typesettable document set, and other files from /usr/share.

modules
This set includes kernel modules to add functionality to a running system.

rescue
This set includes the statically linked emergency recover binaries installed in /rescue.

text
This set includes NetBSD's text processing tools, including groff(1), all related programs, and their manual pages.

NetBSD maintains its own set of sources for the X Window System in order to assure tight integration and compatibility. These sources are based on X.Org. Binary sets for the X Window System are distributed with NetBSD. The sets are:

xbase
The basic files needed for a complete X client environment. This does not include the X servers.

xcomp
The extra libraries and include files needed to compile X source code.

xdebug
This distribution set contains debug information for all X11 binaries. It is useful when reporting issues with these binaries or during development. This set is huge, if the target disk is small, do not install it.

xfont
Fonts needed by the X server and by X clients.

xetc
Configuration files for X which could be locally modified.

xserver
The X server.

The evbppc binary distribution sets are distributed as gzipped tar files named with the extension .tgz, e.g. base.tgz.

The instructions given for extracting the source sets work equally well for the binary sets, but it is worth noting that if you use that method, the filenames stored in the sets are relative and therefore the files are extracted below the current directory. Therefore, if you want to extract the binaries into your system, i.e. replace the system binaries with them, you have to run the tar -xzpf command from the root directory ( / ) of your system.

Note:
Each directory in the evbppc binary distribution also has its own checksum files, just as the source distribution does.

NetBSD/evbppc System Requirements and Supported Devices

NetBSD/evbppc is a port of NetBSD to PowerPC based evaluation boards. At the present time, the following boards are supported:

However, this documentation is specific to installing NetBSD/evbppc on the Walnut board only.

Supported devices
Unsupported devices
Supported boot devices and media
The firmware only supports booting from network or the serial port, so you cannot boot from disk even if you install a disk controller. Instructions for booting from serial port are not provided; in the following we will describe how to setup netbooting.

The first step is setting the IP addresses of both the walnut itself and the host that will be serving the kernel image. From the main menu, choose 3 to set the IP address of the machine:

  1 - Enable/disable tests
  2 - Enable/disable boot devices
  3 - Change IP addresses
  4 - Ping test
  5 - Toggle ROM monitor debugger
  6 - Toggle automatic menu
  7 - Display configuration
  8 - Save changes to configuration
  9 - Set baud rate for s1 boot
  A - Enable/disable I cache (Enabled )
  B - Enable/disable D cache (Enabled )
  0 - Exit menu and continue
-> 3

Set the IP address for the local Ethernet with 1:

---   CHANGE IP ADDRESS   ---
 Device List:
   001  Enabled   Ethernet      [ENET]
                  local=0.0.0.0  remote=0.0.0.0  hwaddr=0004ace312bd
   004  Disabled  Serial Port 2 [S2]
                  local=8.1.1.2  remote=255.255.255.255  hwaddr=ffffffffffff
 ----------------------------
select device to change ->1
  1 - Change local address
  2 - Change remote address
  0 - Return to main menu
->1
Current IP address = (0.0.0.0)
Enter new IP address ->Enter IP address in dot notation, (eg. 8.1.1.2)

Here you enter the machine's IP address, e.g. 10.0.0.1. Now you need to do the same thing to set the host IP address (choice 2 from the menu above).

Once both the local and remote addresses are set, you can use the ping test to make sure the ethernet is working; or you can simply use option 0, "Exit menu and continue" to try to boot the machine, if you already set up the remote machine to provide a kernel image. For details on how to do that, see the Booting from the network section below.

You should now be able to boot the operating system.

Getting the NetBSD System on to Useful Media

Installation is supported from several media types, including:

The steps necessary to prepare the distribution sets for installation depend upon which installation medium you choose. The steps for the various media are outlined below.

CD-ROM / DVD / USB stick
Find out where the distribution set files are on the CD-ROM, DVD or USB stick. Likely locations are binary/sets and evbppc/binary/sets. (You only need to know this if you are mixing installer and installation media from different versions - the installer will know the proper default location for the sets it comes with).

Proceed to the instructions on installation.

FTP
The preparations for this installation/upgrade method are easy; all you need to do is make sure that there's an FTP site from which you can retrieve the NetBSD distribution when you're about to install or upgrade. If you don't have DHCP available on your network, you will need to know the numeric IP address of that site, and, if it's not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the numeric IP address of the router closest to the NetBSD machine. Finally, you need to know the numeric IP address of the NetBSD machine itself.

Once you have this information, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.

NFS
Place the NetBSD distribution sets you wish to install into a directory on an NFS server, and make that directory mountable by the machine on which you are installing or upgrading NetBSD. This will probably require modifying the /etc/exports file on the NFS server and resetting its mount daemon (mountd). (Both of these actions will probably require superuser privileges on the server.)

You need to know the numeric IP address of the NFS server, and, if you don't have DHCP available on your network and the server is not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the numeric IP address of the router closest to the NetBSD machine. Finally, you need to know the numeric IP address of the NetBSD machine itself.

Once the NFS server is set up properly and you have the information mentioned above, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.

Tape
To install NetBSD from a tape, you need to make a tape that contains the distribution set files, in `tar' format.

If you're making the tape on a UNIX-like system, the easiest way to do so is probably something like:


       # tar -cf tape_device dist_sets

where tape_device is the name of the tape device that represents the tape drive you're using. This might be /dev/rst0, or something similar, but it will vary from system to system. In the above example, dist_sets is a list of filenames corresponding to the distribution sets that you wish to place on the tape. For instance, to put the kern-GENERIC, base, and etc distributions on tape (the absolute minimum required for installation), you would do the following:


       # cd .../NetBSD-10.0_RC2
       # cd evbppc/binary
       # tar -cf tape_device kern-GENERIC.tgz base.tgz etc.tgz

Note:
You still need to fill in tape_device in the example.

Once you have the files on the tape, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading.


Preparing your System for NetBSD installation

When installing NetBSD for your NetBSD/evbppc system, you have two options: Via serial port or via network. The firmware does not support loading the kernel from a disk.

Booting over a serial line
This is not currently documented or supported. If you would like to attempt this and supply documentation, please do!
Booting from the network

  1. Introduction

    To netboot a evbppc, you must configure one or more servers to provide information and files to your evbppc (the `client'). If you are using NetBSD (any architecture) on your netboot server(s), the information provided here should be sufficient to configure everything. Additionally, you may wish to look at the diskless(8) manual page and the manual pages for each daemon you'll be configuring. If the server(s) are another operating system, you should consult the NetBSD Diskless HOW-TO, which will walk you through the steps necessary to configure the netboot services on a variety of platforms:        https://www.NetBSD.org/docs/network/netboot/

    You may either netboot the installer so you can install onto a locally attached disk, or you may run your system entirely over the network.

    Briefly, the netboot process involves discovery, kernel and file system stages. In the first stage, the client discovers information about where to find the kernel image. Once the kernel is loaded, it starts executing. For RAM disk kernels, it mounts the RAM disk file system and begins executing the installer from the RAM disk. For normal (non-RAM disk) kernels, the kernel tries to mount the NFS share that had the kernel and starts executing the installation tools or init(8). All evbppc systems use BOOTP for the discovery stage. TFTP is used in the bootstrap phase to download the kernel via the on-board Ethernet card by the firmware. Thus, NetBSD support for the on-board card is not needed in this step. For NFS mounting a file system on the other hand, NetBSD support for the Ethernet card is needed, and the on-board one will not suffice; you have to provide a second Ethernet card supported by NetBSD.

    We will use `CC:CC:CC:CC:CC:CC' as the MAC address (ethernet hardware address) of your netboot client machine. You should have determined this address in an earlier stage. In this example, we will use `192.168.1.10' as the IP address of your client and `client.test.net' as its name. We will assume you're providing all of your netboot services on one machine called `server.test.net' with the client's files exported from the directory /export/client/root. You should, of course, replace all of these with the names, addresses, and paths appropriate to your environment.

    You should set up each netboot stage in order (i.e., discovery, bootstrap, kernel, and then file system) so that you can test them as you proceed.

  2. dhcpd(8) in bootpd(8) compatible mode

    Put the following lines in your /etc/dhcpd.conf (see dhcpd.conf(5) and dhcp-options(5) for more information):

    ddns-update-style none;
                    # Do not use any dynamic DNS features
                    #
    allow bootp;    # Allow bootp requests, thus the dhcp server
                    # will act as a bootp server.
                    #
    authoritative;  # master DHCP server for this subnet
                    #
    subnet 192.168.1.0 netmask 255.255.255.0 {
                    # Which network interface to listen on.
                    # The zeros indicate the range of addresses
                    # that are allowed to connect.
    }
    group {
                    # Set of parameters common to all clients
                    # in this "group".
                    #
            option broadcast-address        192.168.1.255;
            option domain-name              "test.net";
            option domain-name-servers      dns.test.net;
            option routers                  router.test.net;
            option subnet-mask              255.255.255.0;
                    #
                    # An individual client.
                    #
            host client.test.net {
                    hardware ethernet       CC:CC:CC:CC:CC:CC;
                    fixed-address           192.168.1.10;
                    #
                    # Name of the host (if the fixed address
                    # doesn't resolve to a simple name).
                    #
                    option host-name        "client";
            

    # # Name of the kernel image to download via tftp. # Note: Plain (ELF) kernels won't work, you # have to use the corresponding *.img file. # filename "netbsd-INSTALL_WALNUT.img" # # Name of the bootloader or kernel # to download via tftp.

    # # The path on the NFS server. # option root-path "/export/client/root";

    # # The host address of the NFS server. This is mandatory for # NetBSD kernels even it's the same host as the DHCP server. # next-server server.test.net; } #you may paste another "host" entry here for additional #clients on this network }

    You will need to make sure that the dhcpd.leases file exists.

    # touch /var/db/dhcpd.leases
    

    You will need to start the dhcpd. If it's already running, you will need to restart it to force it to re-read its configuration file. If the server is running NetBSD, you can achieve this with:

    # /etc/rc.d/dhcpd restart
    

  3. tftpd(8)

    The default configuration of the TFTP server is to run in a chroot(8) environment in the /tftpboot directory. Thus, the first order of business is to create this directory:

    # mkdir -p /tftpboot
    

    Next, edit /etc/inetd.conf and uncomment the line with the TFTP daemon:

    tftp  dgram  udp  wait  root  /usr/libexec/tftpd tftpd -l -s /tftpboot
    

    Now, restart inetd(8). If the server is running NetBSD, you can achieve this with:

    # /etc/rc.d/inetd restart
    

    Now, you need to copy the kernel for your evbppc machine to /tftpboot. Just to be sure, let's make everything readable.

    # chmod -R a+rX /tftpboot
    

    Sometimes, the arp(8) table gets messed up, and the TFTP server can't communicate with the client. In this case, it will write a log message (via syslogd(8)) to /var/log/messages saying: `tftpd: write: Host is down'. If this is the case, you may need to force the server to map your client's ethernet address to its IP address:

    # arp -s client CC:CC:CC:CC:CC:CC
    

  4. nfsd(8), mountd(8), and rpcbind(8)

    You can either boot a kernel, or the RAM disk-based installer binary/kernel/netbsd-INSTALL.img.gz. In the first case you'll also need an NFS-mounted userland. Let's set up the NFS server. Create the directory you are exporting for the netboot client:

    # mkdir -p /export/client/root
    

    Put the following line in /etc/exports to enable NFS sharing:

    /export/client/root -maproot=root client.test.net
    

    If your server is currently running an NFS server, you only need to restart mountd(8). Otherwise, you need to start rpcbind(8) and nfsd(8). If the server is running NetBSD, you can achieve this with:

    # /etc/rc.d/rpcbind start
    # /etc/rc.d/nfsd start
    # /etc/rc.d/mountd restart
    

  5. NetBSD kernel and installation tools

    If you are netbooting the installer, use binary/kernel/netbsd-INSTALL_WALNUT.img.gz (this has the installation tools in a RAM disk). Also, copy the distribution files to the client's root directory.

    # cp *.tgz /export/client/root
    # gunzip netbsd-INSTALL.img.gz
    # mv netbsd-INSTALL.img /export/client/root/netbsd
    

    If you are running your evbppc diskless, simply use binary/kernel/netbsd.img-WALNUT.gz.

  6. Client file system

    You can skip this step if you do not plan to run your client diskless after installation. Otherwise, you need to extract and set up the client's installation of NetBSD. The Diskless HOW-TO describes how to provide better security and save space on the NFS server over the procedure listed here. See for details.

  7. Setting up the server daemons

    If you want these services to start up every time you boot your server, make sure the following lines are present in your /etc/rc.conf:

    nfs_server=YES         # enable server daemons
    mountd=YES
    rpcbind=YES      rpcbind_flags="-l"   # -l logs libwrap
    

    Also, you'll need to make sure the tftpd line in /etc/inetd.conf remains uncommented.


Installing the NetBSD System

Booting the installer
The kernel starts automatically once it is loaded.
Example of a normal boot
If you already configured the network settings, just press `0' from the boot menu to boot.
Common Problems and Error Messages
Do not use the plain ELF kernel as the file provided to the firmware, use the ``netbsd.img'' file (which is in the format the firmware expects). Of course, you should put the matching ``netbsd'' as /netbsd on your root file system, otherwise some kernel grovellers won't work.

Running the sysinst installation program

  1. Introduction

    Using sysinst, installing NetBSD is a relatively easy process. Still, you should read this document and have it available during the installation process. This document tries to be a good guide to the installation, and as such, covers many details for the sake of completeness. Do not let this discourage you; the install program is not hard to use.

  2. Possible hardware problems

    Should you encounter hardware problems during installation, try rebooting after unplugging removable devices you don't need for installation. Non-removable devices can be disabled with userconf (use boot -c to enter it).

  3. General

    The following is a walk-through of the steps you will take while installing NetBSD on your hard disk. sysinst is a menu-driven program that guides you through the installation process. Sometimes questions will be asked, and in many cases the default answer will be displayed in brackets (``[ ]'') after the question. If you wish to stop the installation, you may press CONTROL-C at any time, but if you do, you'll have to begin the installation process again from scratch by running the /sysinst program from the command prompt. It is not necessary to reboot.

  4. Quick install

    First, let's describe a quick install. The other sections of this document go into the installation procedure in more detail, but you may find that you do not need this. If you want detailed instructions, skip to the next section. This section describes a basic installation, using a CD / DVD as the install medium.

  5. Booting NetBSD

    You may want to read the boot messages, to notice your disk's name and capacity. Its name will be something like sd0 or wd0 and the geometry will be printed on a line that begins with its name. As mentioned above, you may need your disk's geometry when creating NetBSD's partitions. You will also need to know the name, to tell sysinst which disk to use. The most important thing to know is that wd0 is NetBSD's name for your first IDE disk, wd1 the second, etc. sd0 is your first SCSI disk, sd1 the second, etc.

    Once NetBSD has booted and printed all the boot messages, you will be presented with a welcome message and a main menu. It will also include instructions for using the menus.

  6. Network configuration

    If you do not intend to use networking during the installation, but you do want your machine to be configured for networking once the system is installed, you should first go to the Utility menu and select the Configure network option. If you only want to temporarily use networking during the installation, you can specify these parameters later. If you are not using the Domain Name System (DNS), you can give an empty response when asked to provide a server.

  7. Installation drive selection and parameters

    To start the installation, select Install NetBSD to hard disk from the main menu.

    The first thing is to identify the disk on which you want to install NetBSD. sysinst will report a list of disks it finds and ask you for your selection. You should see disk names like sd0 or sd1.

  8. Selecting which sets to install

    The next step is to choose which distribution sets you wish to install. Options are provided for full, minimal, and custom installations. If you choose sets on your own, base, etc, and a kernel must be selected.

  9. Partitioning the disk

  10. Editing the NetBSD disklabel

    The partition table of the NetBSD part of a disk is called a disklabel. If your disk already has a disklabel written to it, you can choose Use existing partition sizes. Otherwise, select Set sizes of NetBSD partitions.

    After you have chosen your partitions and their sizes (or if you opted to use the existing partitions), you will be presented with the layout of the NetBSD disklabel and given one more chance to change it. For each partition, you can set the type, offset and size, block and fragment size, and the mount point. The type that NetBSD uses for normal file storage is called 4.2BSD. A swap partition has a special type called swap. Some partitions in the disklabel have a fixed purpose.

    a
    Root partition (/)

    b
    Swap partition.

    c
    The entire disk.

    d-p
    Available for other use. Traditionally, e is the partition mounted on /usr, but this is historical practice and not a fixed value.

    You will then be asked to name your disk's disklabel. The default response will be OK for most purposes. If you choose to name it something different, make sure the name is a single word and contains no special characters. You don't need to remember this name.

  11. Preparing your hard disk

    You are now at the point of no return. Nothing has been written to your disk yet, but if you confirm that you want to install NetBSD, your hard drive will be modified. If you are sure you want to proceed, select yes.

    The install program will now label your disk and create the file systems you specified. The file systems will be initialized to contain NetBSD bootstrapping binaries and configuration files. You will see messages on your screen from the various NetBSD disk preparation tools that are running. There should be no errors in this section of the installation. If there are, restart from the beginning of the installation process. Otherwise, you can continue the installation program after pressing the return key.

  12. Getting the distribution sets

    The NetBSD distribution consists of a number of sets that come in the form of gzipped tar files. At this point, you will be presented with a menu which enables you to choose from one of the following methods of installing the sets. Some of these methods will first transfer the sets to your hard disk, others will extract the sets directly.

    For all these methods, the first step is to make the sets available for extraction. The sets can be made available in a few different ways. The following sections describe each of the methods. After reading about the method you will be using, you can continue to the section labeled `Extracting the distribution sets'.

  13. Installation from CD-ROM

    When installing from a CD-ROM, you will be asked to specify the device name for your CD-ROM drive (usually cd0) and the directory name on the CD-ROM where the distribution files are.

    sysinst will then check that the files are actually present in the specified location and proceed to the extraction of the sets.

  14. Installation using FTP

    To install using FTP, you first need to configure your network setup if you haven't already done so. sysinst will help you with this, asking if you want to use DHCP. If you do not use DHCP, you can enter network configuration details yourself. If you do not have DNS set up for the machine that you are installing on, you can just press RETURN in answer to this question, and DNS will not be used.

    You will also be asked to specify the host that you want to transfer the sets from, the directory on that host, the account name and password used to log into that host using FTP, and optionally a proxy server to use. If you did not set up DNS, you will need to specify an IP address instead of a hostname for the FTP server.

    sysinst will then transfer the set files from the remote site to your hard disk.

  15. Installation using NFS

    To install using NFS, you first need to configure your network setup if you haven't already done so. sysinst will do this for you, asking you if you want to use DHCP. If you do not use DHCP, you can enter network configuration details yourself. If you do not have DNS set up for the machine that you are installing on, you can just press RETURN in answer to this question, and DNS will not be used.

    You will also be asked to specify the host that you want to transfer the sets from and the directory on that host that the files are in. This directory should be mountable by the machine you are installing on, i.e., correctly exported to your machine.

    If you did not set up DNS, you will need to specify an IP address instead of a hostname for the NFS server.

  16. Installation from an unmounted file system

    In order to install from a local file system, you will need to specify the device that the file system resides on (for example wd1e), the type of the file system, and the directory on the specified file system where the sets are located. sysinst will then check if it can indeed access the sets at that location.

  17. Installation from a local directory

    This option assumes that you have already done some preparation yourself. The sets should be located in a directory on a file system that is already accessible. sysinst will ask you for the name of this directory.

  18. Extracting the distribution sets

    A progress bar will be displayed while the distribution sets are being extracted.

    After all the files have been extracted, the device node files will be created. If you have already configured networking, you will be asked if you want to use this configuration for normal operation. If so, these values will be installed in the network configuration files.

  19. Configure additional items

    The next menu will allow you to select a number of additional items to configure, including the time zone that you're in, to make sure your clock has the right offset from UTC, the root user's shell, and the initial root password.

    You can also enable installation of binary packages, which installs the pkgin(1) tool for managing binary packages for third-party software. This will feel familiar to users of package tools such as apt-get or yum. If you prefer to install third-party software from source, you can install the pkgsrc(7) tree.

    Finally, you can enable some daemons such as sshd(8), ntpd(8), or mdnsd(8).

  20. Finalizing your installation

    Congratulations, you have successfully installed NetBSD 10.0_RC2. You can now reboot the machine and boot NetBSD from hard disk.


Post installation steps

Once you've got the operating system running, there are a few things you need to do in order to bring the system into a properly configured state. The most important steps are described below.

  1. Before all else, read postinstall(8).

  2. Configuring /etc/rc.conf

    If you or the installation software haven't done any configuration of /etc/rc.conf (sysinst normally will), the system will drop you into single user mode on first reboot with the message

           /etc/rc.conf is not configured. Multiuser boot aborted.

    and with the root file system (/) mounted read-only. When the system asks you to choose a shell, simply press RETURN to get to a /bin/sh prompt. If you are asked for a terminal type, respond with vt220 (or whatever is appropriate for your terminal type) and press RETURN. You may need to type one of the following commands to get your delete key to work properly, depending on your keyboard:
           # stty erase '^h'
           # stty erase '^?'
    At this point, you need to configure at least one file in the /etc directory. You will need to mount your root file system read/write with:
           # /sbin/mount -u -w /
    Change to the /etc directory and take a look at the /etc/rc.conf file. Modify it to your tastes, making sure that you set rc_configured=YES so that your changes will be enabled and a multi-user boot can proceed. Default values for the various programs can be found in /etc/defaults/rc.conf, where some in-line documentation may be found. More complete documentation can be found in rc.conf(5).

    When you have finished editing /etc/rc.conf, type exit at the prompt to leave the single-user shell and continue with the multi-user boot.

    Other values that may need to be set in /etc/rc.conf for a networked environment are hostname and possibly defaultroute. You may also need to add an ifconfig_int for your <int> network interface, along the lines of


           ifconfig_le0="inet 192.0.2.123 netmask 255.255.255.0"

    or, if you have myname.my.dom in /etc/hosts:


           ifconfig_le0="inet myname.my.dom netmask 255.255.255.0"

    To enable proper hostname resolution, you will also want to add an /etc/resolv.conf file or (if you are feeling a little more adventurous) run named(8). See resolv.conf(5) or named(8) for more information.

    Instead of manually configuring networking, DHCP can be used by setting dhcpcd=YES in /etc/rc.conf.

  3. Logging in

    After reboot, you can log in as root at the login prompt. If you didn't set a password in sysinst, there is no initial password. You should create an account for yourself (see below) and protect it and the ``root'' account with good passwords. By default, root login from the network is disabled (even via ssh(1)). One way to become root over the network is to log in as a different user that belongs to group ``wheel'' (see group(5)) and use su(1) to become root.

  4. Adding accounts

    Use the useradd(8) command to add accounts to your system. Do not edit /etc/passwd directly! See vipw(8) and pwd_mkdb(8) if you want to edit the password database.

  5. The X Window System

    If you installed the X Window System, you may want to read the chapter about X in the NetBSD Guide:

  6. Installing third-party packages

    If you wish to install any of the software freely available for UNIX-like systems you are strongly advised to first check the NetBSD package system, pkgsrc. pkgsrc automatically handles any changes necessary to make the software run on NetBSD. This includes the retrieval and installation of any other packages the software may depend upon.

  7. Misc

Upgrading a previously-installed NetBSD System

The easiest way to upgrade to NetBSD 10.0_RC2 is with binaries, and that is the method documented here.

To do the upgrade, you must have one form of boot media available. You must also have at least the base and kern binary distribution sets available. Finally, you must have sufficient disk space available to install the new binaries. Since files already installed on the system are overwritten in place, you only need additional free space for files which weren't previously installed or to account for growth of the sets between releases.

Since upgrading involves replacing the kernel, boot blocks, and most of the system binaries, it has the potential to cause data loss. You are strongly advised to back up any important data on the NetBSD partition or on another operating system's partition on your disk before beginning the upgrade process.

The upgrade procedure is similar to an installation, but without the hard disk partitioning.

Fetching the binary sets is done in the same manner as the installation procedure; refer to the installation part of the document for help. File systems are checked before unpacking the sets.

After a new kernel has been copied to your hard disk, your machine is a complete NetBSD 10.0_RC2 system. However, that doesn't mean that you're finished with the upgrade process. You will probably want to update the set of device nodes you have in /dev. If you've changed the contents of /dev by hand, you will need to be careful about this, but if not, you can just cd into /dev, and run the command:

       # sh MAKEDEV all

sysinst will attempt to merge the settings stored in your /etc directory with the new version of NetBSD using the postinstall(8) utility. However, postinstall(8) is only able to deal with changes that are easily automated. It is recommended that you use the etcupdate(8) tool to merge any remaining configuration changes.

Compatibility Issues With Previous NetBSD Releases

Users upgrading from previous versions of NetBSD may wish to bear the following problems and compatibility issues in mind when upgrading to NetBSD 10.0_RC2.

Note that sysinst will automatically invoke

postinstall fix
and thus all issues that are fixed by postinstall by default will be handled.

In NetBSD9 and earlier, filesystems listed in /etc/fstab would be mounted before non-legacy zfs filesystems. Starting from NetBSD10 this order has been reversed.

If you have ever run a version of NetBSD-current between April 18, 2020 and September 23, 2022 (the version numbers used in the affected time range are between 9.99.56 and 9.99.106) your FFS file systems might have broken extended attributes stored.

You should follow this guide before booting the updated system multi-user for the first time.

Note that you do not need to do anything special if you never did run any affected kernel, especially if you have never run NetBSD-current.

The display drivers used for modern GPUs and the whole subsystem supporting it (DRM/KMS) have been updated to a newer version. Unfortunately not all issues with this have been resolved before the NetBSD10.0 release. You can find a list of issues in the Open issues with new DRM/KMS section of the release engineering wiki page.

A number of things have been removed from the NetBSD 10.0_RC2 release. See the ``Components removed from NetBSD'' section near the beginning of this document for a list.

Using online NetBSD documentation

Documentation is available if you installed the manual distribution set. Traditionally, the ``man pages'' (documentation) are denoted by `name(section)'. Some examples of this are

The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8.

The man command is used to view the documentation on a topic, and is started by entering man [section] topic. The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the lowest numbered section name will be displayed. For instance, after logging in, enter


       # man passwd

to read the documentation for passwd(1). To view the documentation for passwd(5), enter


       # man 5 passwd

instead.

If you are unsure of what man page you are looking for, enter


       # apropos subject-word

where subject-word is your topic of interest; a list of possibly related man pages will be displayed.

Administrivia

If you've got something to say, do so! We'd like your input. There are various mailing lists available via the mailing list server at majordomo@NetBSD.org. See
       https://www.NetBSD.org/mailinglists/
for details.

There are various mailing lists set up to deal with comments and questions about this release. Please send comments to: netbsd-comments@NetBSD.org.

To report bugs, use the send-pr(1) command shipped with NetBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details.

Bugs also can be submitted and queried with the web interface at
       https://www.NetBSD.org/support/send-pr.html

There are also port-specific mailing lists, to discuss aspects of each port of NetBSD. Use majordomo to find their addresses, or visit
       https://www.NetBSD.org/mailinglists/

If you're interested in doing a serious amount of work on a specific port, you probably should contact the `owner' of that port (listed below).

If you'd like to help with NetBSD, and have an idea as to how you could be useful, send us mail or subscribe to: netbsd-users@NetBSD.org.

As a favor, please avoid mailing huge documents or files to these mailing lists. Instead, put the material you would have sent up for FTP or WWW somewhere, then mail the appropriate list about it. If you'd rather not do that, mail the list saying you'll send the data to those who want it.

Thanks go to

All product names mentioned herein are trademarks or registered trademarks of their respective owners.

The following notices are required to satisfy the license terms of the software that we have mentioned in this document:

NetBSD is a registered trademark of The NetBSD Foundation, Inc.

This product includes software developed by the University of California, Berkeley and its contributors.
This product includes software developed by the NetBSD Foundation.
This product includes software developed by The NetBSD Foundation, Inc. and its contributors.
This product includes software developed for the NetBSD Project. See https://www.NetBSD.org/ for information about NetBSD.
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
This product includes cryptographic software written by Eric Young (eay@mincom.oz.au)
This product includes software designed by William Allen Simpson.
This product includes software developed at Ludd, University of Luleå.
This product includes software developed at Ludd, University of Luleå, Sweden and its contributors.
This product includes software developed at the Information Technology Division, US Naval Research Laboratory.
This product includes software developed by Aaron Brown and Harvard University.
This product includes software developed by Adam Ciarcinski for the NetBSD project.
This product includes software developed by Adam Glass.
This product includes software developed by Adam Glass and Charles M. Hannum.
This product includes software developed by Alex Zepeda.
This product includes software developed by Alex Zepeda, and Colin Wood for the NetBSD Project.
This product includes software developed by Allen Briggs.
This product includes software developed by Amancio Hasty and Roger Hardiman
This product includes software developed by Ben Gray.
This product includes software developed by Berkeley Software Design, Inc.
This product includes software developed by Bill Paul.
This product includes software developed by Bodo Möller.
This product includes software developed by Boris Popov.
This product includes software developed by Brini.
This product includes software developed by Bruce M. Simpson.
This product includes software developed by Causality Limited.
This product includes software developed by Charles Hannum.
This product includes software developed by Charles M. Hannum.
This product includes software developed by Charles M. Hannum, by the University of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.
This product includes software developed by Christian E. Hopps.
This product includes software developed by Christian E. Hopps, Ezra Story, Kari Mettinen, Markus Wild, Lutz Vieweg and Michael Teske.
This product includes software developed by Christopher G. Demetriou.
This product includes software developed by Christopher G. Demetriou for the NetBSD Project.
This product includes software developed by Chuck Silvers.
This product includes software developed by Cisco Systems, Inc.
This product includes software developed by Colin Wood.
This product includes software developed by Colin Wood for the NetBSD Project.
This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).
This product includes software developed by Daan Vreeken.
This product includes software developed by Daishi Kato
This product includes software developed by Daniel Widenfalk and Michael L. Hitch.
This product includes software developed by Daniel Widenfalk for the NetBSD Project.
This product includes software developed by David Jones and Gordon Ross
This product includes software developed by David Miller.
This product includes software developed by Dean Huxley.
This product includes software developed by Emmanuel Dreyfus
This product includes software developed by Eric S. Hvozda.
This product includes software developed by Eric S. Raymond
This product includes software developed by Eric Young (eay@cryptsoft.com)
This product includes software developed by Eric Young (eay@mincom.oz.au)
This product includes software developed by Ezra Story.
This product includes software developed by Ezra Story and by Kari Mettinen.
This product includes software developed by Ezra Story, by Kari Mettinen and by Bernd Ernesti.
This product includes software developed by Ezra Story, by Kari Mettinen, and Michael Teske.
This product includes software developed by Ezra Story, by Kari Mettinen, Michael Teske and by Bernd Ernesti.
This product includes software developed by Frank van der Linden for the NetBSD Project.
This product includes software developed by Gardner Buchanan.
This product includes software developed by Garrett D'Amore.
This product includes software developed by Gary Thomas.
This product includes software developed by Gordon Ross
This product includes software developed by Harvard University.
This product includes software developed by Harvard University and its contributors.
This product includes software developed by Hellmuth Michaelis and Joerg Wunsch
This product includes software developed by Henrik Vestergaard Draboel.
This product includes software developed by Herb Peyerl.
This product includes software developed by Hidetoshi Shimokawa.
This product includes software developed by Hubert Feyrer for the NetBSD Project.
This product includes software developed by Ian W. Dall.
This product includes software developed by Intel Corporation and its contributors.
This product includes software developed by Internet Initiative Japan Inc.
This product includes software developed by Internet Research Institute, Inc.
This product includes software developed by James R. Maynard III.
This product includes software developed by Jared D. McNeill.
This product includes software developed by Jason L. Wright
This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com/
This product includes software developed by Joachim Koenig-Baltes.
This product includes software developed by Jochen Pohl for The NetBSD Project.
This product includes software developed by Joerg Wunsch
This product includes software developed by John Birrell.
This product includes software developed by John P. Wittkoski.
This product includes software developed by John Polstra.
This product includes software developed by Jonathan R. Stone for the NetBSD Project.
This product includes software developed by Jonathan Stone.
This product includes software developed by Jonathan Stone and Jason R. Thorpe for the NetBSD Project.
This product includes software developed by Jonathan Stone for the NetBSD Project.
This product includes software developed by Julian Highfield.
This product includes software developed by K. Kobayashi
This product includes software developed by K. Kobayashi and H. Shimokawa
This product includes software developed by Kazuhisa Shimizu.
This product includes software developed by Kazuki Sakamoto.
This product includes software developed by Kenneth Stailey.
This product includes software developed by Kiyoshi Ikehara.
This product includes software developed by Klaus Burkert,by Bernd Ernesti, by Michael van Elst, and by the University of California, Berkeley and its contributors.
This product includes software developed by Kyma Systems.
This product includes software developed by Leo Weppelman and Waldi Ravens.
This product includes software developed by Lloyd Parkes.
This product includes software developed by Lutz Vieweg.
This product includes software developed by Marc Horowitz.
This product includes software developed by Marcus Comstedt.
This product includes software developed by Mark Brinicombe.
This product includes software developed by Mark Brinicombe for the NetBSD Project.
This product includes software developed by Mark Tinguely and Jim Lowe
This product includes software developed by Markus Wild.
This product includes software developed by Marshall M. Midden.
This product includes software developed by Masanobu Saitoh.
This product includes software developed by Masaru Oki.
This product includes software developed by Matt DeBergalis
This product includes software developed by Matthew Fredette.
This product includes software developed by Michael Smith.
This product includes software developed by Microsoft
This product includes software developed by Mika Kortelainen
This product includes software developed by Mike Pritchard.
This product includes software developed by Mike Pritchard and contributors.
This product includes software developed by Minoura Makoto.
This product includes software developed by MINOURA Makoto, Takuya Harakawa.
This product includes software developed by Niels Provos.
This product includes software developed by Niklas Hallqvist.
This product includes software developed by Niklas Hallqvist, Brandon Creighton and Job de Haas.
This product includes software developed by Paolo Abeni.
This product includes software developed by Paul Kranenburg.
This product includes software developed by Paul Mackerras.
This product includes software developed by Paul Mackerras .
This product includes software developed by Pedro Roque Marques
This product includes software developed by Per Fogelstrom.
This product includes software developed by Peter Galbavy.
This product includes software developed by Phase One, Inc.
This product includes software developed by Philip A. Nelson.
This product includes software developed by QUALCOMM Incorporated.
This product includes software developed by Ravikanth.
This product includes software developed by RiscBSD.
This product includes software developed by Roar Thronæs.
This product includes software developed by Rodney W. Grimes.
This product includes software developed by Roger Hardiman
This product includes software developed by Rolf Grossmann.
This product includes software developed by Ross Harvey.
This product includes software developed by Ross Harvey for the NetBSD Project.
This product includes software developed by Scott Bartram.
This product includes software developed by Scott Stevens.
This product includes software developed by Shingo WATANABE.
This product includes software developed by Softweyr LLC, the University of California, Berkeley, and its contributors.
This product includes software developed by Stephan Thesing.
This product includes software developed by Steven M. Bellovin
This product includes software developed by Takashi Hamada.
This product includes software developed by Takumi Nakamura.
This product includes software developed by Tatoku Ogaito for the NetBSD Project.
This product includes software developed by Tommi Komulainen .
This product includes software developed by TooLs GmbH.
This product includes software developed by Trimble Navigation, Ltd.
This product includes software developed by Waldi Ravens.
This product includes software developed by WIDE Project and its contributors.
This product includes software developed by Winning Strategies, Inc.
This product includes software developed by Yen Yen Lim and North Dakota State University
This product includes software developed by Zembu Labs, Inc.
This product includes software developed by the Alice Group.
This product includes software developed by the Computer Systems Engineering Group at Lawrence Berkeley Laboratory.
This product includes software developed by the Computer Systems Laboratory at the University of Utah.
This product includes software developed by the Harvard University and its contributors.
This product includes software developed by the Kungliga Tekniska Högskolan and its contributors.
This product includes software developed by the Network Research Group at Lawrence Berkeley Laboratory.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)
This product includes software developed by the PocketBSD project and its contributors.
This product includes software developed by the RiscBSD kernel team
This product includes software developed by the RiscBSD team.
This product includes software developed by the SMCC Technology Development Group at Sun Microsystems, Inc.
This product includes software developed by the University of California, Lawrence Berkeley Laboratories.
This product includes software developed by the University of California, Lawrence Berkeley Laboratory.
This product includes software developed by the University of California, Lawrence Berkeley Laboratory and its contributors.
This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman.
This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.
This product includes software developed by the Urbana-Champaign Independent Media Center.
This product includes software developed for the FreeBSD project
This product includes software developed for the NetBSD Project by Allegro Networks, Inc., and Wasabi Systems, Inc.
This product includes software developed for the NetBSD Project by Bernd Ernesti.
This product includes software developed for the NetBSD Project by Christopher G. Demetriou.
This product includes software developed for the NetBSD Project by Eiji Kawauchi.
This product includes software developed for the NetBSD Project by Frank van der Linden
This product includes software developed for the NetBSD Project by Genetec Corporation.
This product includes software developed for the NetBSD Project by Jason R. Thorpe.
This product includes software developed for the NetBSD Project by John M. Vinopal.
This product includes software developed for the NetBSD Project by Jonathan Stone.
This product includes software developed for the NetBSD Project by Kyma Systems LLC.
This product includes software developed for the NetBSD Project by Matthias Drochner.
This product includes software developed for the NetBSD Project by Perry E. Metzger.
This product includes software developed for the NetBSD Project by Piermont Information Systems Inc.
This product includes software developed for the NetBSD Project by Shigeyuki Fukushima.
This product includes software developed for the NetBSD Project by SUNET, Swedish University Computer Network.
This product includes software developed for the NetBSD Project by Wasabi Systems, Inc.
This product includes software developed or owned by Caldera International, Inc.
This product includes software developed under OpenBSD by Per Fogelstrom.
This product includes software developed under OpenBSD by Per Fogelstrom Opsycon AB for RTMX Inc, North Carolina, USA.
This software was developed by Holger Veit and Brian Moore for use with "386BSD" and similar operating systems. "Similar operating systems" includes mainly non-profit oriented systems for research and education, including but not restricted to "NetBSD", "FreeBSD", "Mach" (by CMU).
The Institute of Electrical and Electronics Engineers and The Open Group, have given us permission to reprint portions of their documentation.

In the following statement, the phrase ``this text'' refers to portions of the system documentation.

Portions of this text are reprinted and reproduced in electronic form in NetBSD, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between these versions and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.

The original Standard can be obtained online at http://www.opengroup.org/unix/online.html.

This notice shall appear on any product containing this material.

In the following statement, "This software" refers to the parallel port driver:

This software is a component of "386BSD" developed by William F. Jolitz, TeleMuse.

Some files have the following copyright:

Mach Operating System
Copyright (c) 1991,1990,1989 Carnegie Mellon University
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation is hereby granted, provided that both the copyright notice and this permission notice appear in all copies of the software, derivative works or modified versions, and any portions thereof, and that both notices appear in supporting documentation.

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Carnegie Mellon requests users of this software to return to
Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

any improvements or extensions that they make and grant Carnegie the rights to redistribute these changes.

Some files have the following copyright:

Copyright (c) 1994, 1995 Carnegie-Mellon University.
All rights reserved.

Author: Chris G. Demetriou

Permission to use, copy, modify and distribute this software and its documentation is hereby granted, provided that both the copyright notice and this permission notice appear in all copies of the software, derivative works or modified versions, and any portions thereof, and that both notices appear in supporting documentation.
CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Carnegie Mellon requests users of this software to return to
Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

any improvements or extensions that they make and grant Carnegie the rights to redistribute these changes.

Some files have the following copyright:

Copyright 1996 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies. Stanford University makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

The End