Maxima Function
nusum (expr, x, i_0, i_1)
Carries out indefinite hypergeometric summation of expr with respect to x using a decision procedure due to R.W. Gosper. expr and the result must be expressible as products of integer powers, factorials, binomials, and rational functions.
The terms "definite"
and "indefinite summation" are used analogously to "definite" and
"indefinite integration".
To sum indefinitely means to give a symbolic result
for the sum over intervals of variable length, not just e.g. 0 to
inf. Thus, since there is no formula for the general partial sum of
the binomial series, nusum
can't do it.
nusum
and unsum
know a little about sums and differences of finite products.
See also .
Examples:
(%i1) nusum (n*n!, n, 0, n); Dependent equations eliminated: (1) (%o1) (n + 1)! - 1 (%i2) nusum (n^4*4^n/binomial(2*n,n), n, 0, n); 4 3 2 n 2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2 (%o2) ------------------------------------------------ - ------ 693 binomial(2 n, n) 3 11 7 (%i3) unsum (%, n); 4 n n 4 (%o3) ---------------- binomial(2 n, n) (%i4) unsum (prod (i^2, i, 1, n), n); n - 1 /===\ ! ! 2 (%o4) ( ! ! i ) (n - 1) (n + 1) ! ! i = 1 (%i5) nusum (%, n, 1, n); Dependent equations eliminated: (2 3) n /===\ ! ! 2 (%o5) ! ! i - 1 ! ! i = 1