
ElmerParam Manual

Erik Edelmann and Peter Råback

September 22, 2009

Copyright

This document is licensed under the Creative Commons Attribution-No Deriva-
tive Works 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

1 Introduction

ElmerParam is a simple tool for parametrized computation for software that
uses ASCII-format input and output �les. It was primarily designed to be
used with Elmer, but can easily be used with other software packages as well.
The parametrized approach is particularly useful for optimization purposes.

ElmerParam exists both as a standalone program and as a library with
bindings for C, Fortran, R and Matlab.

In this document, the following designations are used:

[whatever] whatever is optional.
A|B either A xor B.
${ELMER_HOME} Environment variable supposed to be set to the di-

rectory where Elmer (including ElmerParam) was in-
stalled.

ElmerParam (in normal font) The ElmerParam package.
ElmerParam (this font) The standalone ElmerParam program.

2 General overview

ElmerParam acts a layer between computational programs such as Elmer-
Solver and programs that wants to call the computational programs as func-
tions of some parameters. It provides functions which take real and/or integer

1

Figure 1: ElmerParam as a layer between ElmerSolver and a program that
wants to call ElmerSolver as function of some parameters.

parameters as arguments, and return a scalar or vector of real output values:

f :Rn × Zm −→ R

or

f :Rn × Zm −→ Rk

where n is the number of real parameters, m the number of integer param-
eters, and k the length of the return vector. These functions are from the
caller's point of view black boxes and therefore no information about the
case is provided. This information is instead provided in a set of �les read
by ElmerParam.

The most important �le is a ElmerParam command �le, which contains
the commands to run the computation programs. A typical command �le will
create input �les with parameter values for the computation program, execute
the computation program, and read parameter values from it's output �les.
The input �les are created and output �les interpreted with the help of
template (model) �les. Simple calculations speci�ed in the MATC language
can be performed by ElmerParam itself (see section ??).

In addition to computation parameters, ElmerParam can also be given a
special �tag� parameter. The tag can be expanded not only in the input �les,

2

but also be used in the command �le. It can be used to give unique names to
all the input and output �les, which can be important when running several
instances of ElmerParam in parallel.

3 ElmerParam Files

ElmerParam routines need a number of di�erent �les with information on
the problem to be solved.

• The ELMERPARAM_STARTINFO �le has a �xed name and has only one
line, the name of the ElmerParam command �le.

• ElmerParam command �le is the �le containing the execution instruc-
tions needed for the evaluation of the function return value.

• Each case needs a set of model �les that are generalized versions of the
input and output �les. In the model �les the parameters are given in
brackets. For example the �rst real valued parameter is inserted where
<!R1!> occurs. Input �le models are used to create input �les for the
computation of, for example, ElmerGrid or ElmerSolver. Output �le
models are used to read result information from the output �le.

3.1 ElmerParam command �le

The ElmerParam command �le includes some simple statements that are run
in the order of appearance. The general form of a statement is

Command = argument

Commands are case insensitive. Lines starting with #, ! or * are ignored. A
statement can be split onto several lines by putting a '\' as the last character
on a line. <!T!> in an argument will be expanded to the value of the tag
parameter.

3.1.1 Commands:

Comment = string

Echo string to stdout.

Echo = True|False

Turn ECHO on|o�. If `on', all commands are echoed to stdout when
executed. `On' by default.

3

Matc = True|False

Turn MATC support on|o�. Has to be `on' if you use MATC expres-
sions. Requires that ElmerParam was compiled with MATC support.
O� by default.

Input File = fname1 [Using fname2]

Create the �le fname1 from the model �le fname2. If no model �le
name is given, the name fname1.model is assumed.

Execute = cmd

Execute the shell command cmd. Usually this would be the computa-
tion part, or mesh generation if using parametrized mesh generation.

Output Files = fname1 [Using fname2]

Read parameters from the output �le fname1 using the model �le
fname2. If fname2 isn't given, fname1.model is assumed.

Save File = fname

Save history data of all the computations in �le fname. If this keyword
is active all the input parameters and the function return value are
saved to a line that is appended in the given �le.

$<expression>

Use MATC to evaluate the MATC expression <expression>. See sec-
tion ?? for more.

Below is a simple example of a ElmerParam command �le.

#

This comment will be ignored.

#

Comment = ElmerOptim routine

Echo = True

Input File = OptimTemp2.sif

Execute = ElmerSolver

Output File = cost.dat

Save File = evals.dat

4

3.1.2 MATC extension

The ElmerParam includes the MATC language written by Juha Ruokolainen
that may be used, for example, to evaluate the values of the parameters. The
MATC extensions are by default not evaluated and the variable MATC need
to be set True to activate the library.

In MATC, the real parameters are stored in a vector called R, integer
paremeters in the vector I, and the function result in the vector O. Thus, Rn
can be accessed through R(n), and so on.

Below is an example command �le that shows how the MATC library
may be used.

Comment = Testing routine

MATC = True

$ apu1 = R(0) + R(1)

$ apu2 = sin(apu1)

$ R(1) = apu2

$ I(0) = 5

$ I(1) = sum(I(2:4))

$ O = R(0) + R(1) + I(0)

3.2 Model �les

3.2.1 Creating Input �les

When creating an input �le, ElmerParam simple copies the contents of the
model �le, expanding parameter references where they occur. A parameter
reference in the model �le has the form

<!ParamSpec[^]!>

where ParamSpec can be:

T The tag parameter
Xn Parameter of type 'X' and index n.
X(n:m) A vector of parameters from Xn to Xm.
X A vector of all parameters of type 'X'

Here `X' can be `R' for real, or `I' for integer. Note that indexing starts at
0; thus the �rst real parameter will be R0, the second R1, and so on. An
optional transpose operator ^ after the ParamSpec denotes that it is a column
vector (vectors are by default row vectors.). If a line contains a column vector,
it will be repeated n times, where n is the lentgh of the vector, with the i:th

5

vector component at the i:th copy of the line. If a line contains more than
one columns, they have better be of the same length, or the vicious Yeti will
eat your computer.

Example: if the model �le looks like

r = <!R0!>

i = <!I!>

Temperature = Variable Coordinate 2

Real

<!R(1:19)^!> <!R(20:38)^!>

End

and I = [1, 2, 3], R0 = 1.0, R(1:19) = [0.0, 0.2, 0.4 . . .], and R(20:38) =
[1.0, 2.0, 3.0, . . .] the input �le becomes

r = 1.0

i = 1 2 3

Temperature = Variable Coordinate 2

Real

0.0 1.0

0.2 2.0

0.4 3.0

. .

. .

. .

End

3.2.2 Reading Output �les

When reading parameter values from an output �le using a model �le, Elmer-
Param will skip everything in the output �le except those places where there
is a parameter reference in the model �le, in which case ElmerParam reads
values from these places in the output �le into the speci�ed parameters.

The parameter references for output �les has the same general form as
for input �les, where ParamSpec in this case can be

Xn The n:th parameter of type 'X'.
X(n:m) A vector of parameters from Xn to Xm.
X A vector of all parameters of type 'X'

where `X' can be `R' for real, `I' for integer, or 'O' (uppercase 'o') for function
result.

For example, if the model �le looks like

6

r = <!R!>

i = <!I0!>

y = <!O(0:4)^!> <!O(5:9)^!>

and the output �le is

r = 1.0 2.0 3.0

i = 6

y = 1.0 6.0

2.0 7.0

3.0 8.0

4.0 9.0

5.0 10.0

ElmerParam will read [1.0, 2.0, 3.0] into R(0:2) (assuming the number of
real parameters is 3), 6 into I0, and [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,
10.0] into O(0:9).

4 Interfaces

4.1 Standalone program

ElmerParam [inputfile [outputfile [tag]]]

inputfile: Name of �le containing input parameters (use '-' or leave empty
for stdin). It shall have the following format:

[nr

R0

R1

.

.

.

[ni

I0

I1

.

.

.

[nfun]]]

If nfun is absent, 1 will be assumed. Example: Three real parameters,
no integer parameters, and 3 output parameters:

7

3

1.0

2.0

3.0

0

3

outputfile: Name of �le where output parameters will be written in a
column (use '-' or leave empty for stdout).

tag: Optional tag parameter.

4.2 C interface

#include <elmerparam.h>

double elmer_param(int nr, const double *xr, int ni, const int *xi,

const char *tag)

void elmer_param_vec(int nfun, double *fun,

int nr, const double *xr, int ni, const int *xi,

const char *tag)

nfun Number of output parameters. (elmer_param_vec only)
fun Array of output parameters, corresponds to O(0:nfun-1)

in the ElmerParam input �les. Must be big enough to
hold nfun values. (elmer_param_vec only.)

nr Number of real parameters.
xr Array of real parameters, corresponds to R(0:nr-1) in

the ElmerParam input �les. (Use NULL for no real pa-
rameters.)

ni Number of integer valued parameters.
xi Array of integer parameters, corresponds to I(0:ni-1) in

the ElmerParam input �les. (Use NULL for no integer
parameters.)

tag Tag parameter. (Use NULL for no tag.)
Return value Scalar output parameter, corresponds to O (or O0) in

the ElmerParam input �les. (elmer_param only.)

To compile a C code that calls elmer_param(), add

8

-I${ELMER_HOME}/include

to the compiler �ags. For linking, add

-L${ELMER_HOME}/lib -lelmerparam -lmatc -lm

to the linker �ags. (-lmatc can be omitted if ElmerParam was compiled
without MATC support).

4.3 Fortran interface

use elmerparam

interface elmer_param

function elmer_param_scal (xr, xi, tag) result(y)

double precision, optional, intent(in) :: xr(:)

integer, optional, intent(in) :: xi(:)

character(*), optional, intent(in) :: tag

double precision :: y

end function elmer_param_scal

function elmer_param_vec (nfun, xr, xi, tag) result(y)

integer, intent(in) :: nfun

double precision, optional, intent(in) :: xr(:)

integer, optional, intent(in) :: xi(:)

character(*), optional, intent(in) :: tag

double precision :: y(nfun)

end function elmer_param_vec

end interface elmer_param

9

nfun Length of return vector (elmer_param_vec only).
xr Array of real parameters, corresponds to R(0:size(xr)-

1) in the ElmerParam input �les.
xi Array of integer parameters, corresponds to

I(0:size(xi)-1) in the ElmerParam input �les.
tag Tag parameter.
Return value elmer_param_scal: Scalar output parameter, corre-

sponds to O (or O0) in the ElmerParam input �les.

elmer_param_vec: nfun Output parameters, corre-
sponds to O(1:nfun) in the ElmerParam input �les.

To compile a Fortran code that USEs elmerparam, add

-I${ELMER_HOME}/include

to the compiler �ags. You'll have to replace �-I� with whatever option your
compiler uses to tell where to look for *.mod �les. This varies from one
compiler to another � check the documentation of your compiler1. Also note
that you have to use the same compiler that was used to compile ElmerParam.
For linking, add

-L${ELMER_HOME}/lib -lelmerparamf -lelmerparam -lmatc -lm

to the linker �ags. (-lmatc can be omitted if ElmerParam was compiled
without MATC support).

4.4 R interface

library("elmerparam")

elmer_param <- function(xr = NULL, xt = NULL, xi = NULL, tag = "", nfun = 1)

xr Array of real parameters, corresponds to
R(0:length(xr)-1) in the ElmerParam input �les.

xi Array of integer parameters, corresponds to
I(0:length(xi)-1) in the ElmerParam input �les.

tag Tag parameter.
nfun Length of return vector.
Return value Vector of output parameters, corresponds to O(0:nfun-

1) in the ElmerParam input �les.

1Most compilers uses -I; among the exceptions are Sun f95 which uses -M.

10

Note: Unless the package was installed in the default R library tree, you
have to tell R where to �nd it. This can be done two ways; either using the
lib.loc argument to library():

library("elmerparam", lib.loc="/where/to/find/it/lib/R")

or by setting the environment variable "R_LIBS" to "/where/to/find/it/lib/R",
where "/where/to/find/it" in both cases typically would be $ELMER_HOME.

4.5 Matlab interface

path(path, '/where/to/find/it/lib')

elmer_param(xr, xt, xi, tag, nfun)

Arguments are the same as for the R interface. Arguments xr, xi and tag

can be a zero length vectors ([]), and arguments at the end of the argument
list can be omitted. If nfun is omitted, a value of 1 is assumed.

Again, �/where/to/find/it�, would typically be $ELMER_HOME.

5 Example: the Rosenbrock function

(Note: More examples can be found in the examples/ directory in the source
distribution of ElmerParam.)

Let's assume we have a computation program called �rosenbrock� that reads
values for x1 and x2 from stdin, calculates the Rosenbrock function

z = (1− x1)
2 + 100(x2 − x2

1)
2

and writes the result to stdout. The implementation of �rosenbrock� is not
important; it can be written in any language, as long as it can be run from
the command line as a stand alone program. For an implementation in awk,
see code listing ??.

To run rosenbrock via ElmerParam we need to create these �les:

1. costfunction.epc, an ElmerParam model �le with the following con-
tents:

Input file = xvalues

Execute = rosenbrock < xvalues > zval

Output file = zval

11

Listing 1 An awk implementation of �rosenbrock�

#!/bin/awk -f

BEGIN{

getline;

x = $1

y = $2

print (1-x)^2 + 100*(y - x^2)^2

}

2. ELMERPARAM_STARTINFO, to tell the name of the command �le.
The contents of ELMERPARAM_STARTINFO is thus simply

costfunction.epc

3. xvalues.model, a model �le used to instruct ElmerParam to write <!R0!>
and <!R1!> to �xvalues�:

<!R0!> <!R1!>

4. zval.model, a model �le to tell ElmerParam how to extract the function
value from the �le �zval�:

<!O!>

5.1 Optimize using R

To �nd the minimum of the rosenbrock function in R using the function
�optim�, start up R and type the commands:

> library("elmerparam")

> optim(c(0,0), elmer_param)

...

$par

[1] 0.9999564 0.9999085

$value

12

[1] 3.72849e-09

$counts

function gradient

169 NA

$convergence

[1] 0

$message

NULL

The yielded result xmin = (0.9999564, 0.9999085) with zmin = 3.72849e− 09
is very close to the expected result xmin = (1.0, 1.0) with zmin = 0.

5.2 Optimize using APPSPACK; standalone program

APPSPACK2 is an optimization package designed to be used to optimize
functions de�ned using external computation programs, and is thus very
well suited to be use with Elmer via ElmerParam. We have no ambitions to
provide a complete APPSPACK manual here, only a simple example is given.
Please see the APPSPACK web page for more information on APPSPACK.

APPSPACK comes in two �avors; a serial version, and a MPI parallel
version. Their usage is very similar, and we'll cover both.

APPSPACK needs a standalone program to evaluate the cost function;
for this we can use ElmerParam directly.

For the serial version of APPSPACK the tag parameter doesn't matter,
but for the MPI version it's important. To use it, we have to make some
small modi�cations to the ElmerParam command �le costfunction.epc:

Input file = xvalues.<!T!> Using xvalues.model

Execute = rosenbrock < xvalues.<!T!> > zval.<!T!>

Output file = zval.<!T!> Using zval.model

Clean up afterwards:

Execute = rm xvalues.<!T!> zval.<!T!>

No other ElmerParam �les needs changes. Finally, an input �le for APPSPACK
is needed. For this case, we use a �le named �appspack_input.apps�:

2http://software.sandia.gov/appspack/

13

SAMPLE APPSPACK INPUT FILE

@ "Linear"

"Upper" vector 2 100 100

"Lower" vector 2 -100 -100

"Scaling" vector 2 1 1

@@

@ "Evaluator"

"Executable Name" string "ElmerParam"

@@

@ "Solver"

"Debug" int 3

"Initial X" vector 2 0 0

"Step Tolerance" double 1.0e-5

@@

With this, we can run APPSPACK with the command

> mpirun -n 2 /usr/local/bin/appspack_mpi appspack_input.apps

for the MPI version, or

> appspack_serial appspack_input.apps

for the serial version, yielding the result

Final State: Step Converged

Final Min: f=5.290e-10 x=[1.000e-00 1.000e-00] \

step=1.000e-05 tag=27176 state=Evaluated Success: 11251

Again, the result is correct (albeit at 11257 function evaluations, it's not very
e�cient. Increasing the �Step Tolerance� in appspack_input.apps reduces the
numer of function evaluations, but also the accuracy.)

14

