
Copyright © 2006, Spread Concepts LLC. 1

Transitioning from Spread 3.17.3 to Spread 4.0

Version 4.0 of The Spread Toolkit introduces some notable changes over version 3.17.3.
These include:

• Dynamic Configuration
• Configuration Equality Enforcement
• Flush Client API
• Increased Membership Information
• New Membership Information Access Functions
• Support for Unix Process Forking
• New Default and Spread-Core Client Libraries
• StdUtil Data Structures
• New Distribution Directory Layout
• New Win32 Build Files

Dynamic Configuration
Spread prior to version 4 required a configuration file specifying all of the daemons who
would ever be part of the spread configuration and to make changes to the set of potential
daemons required that all of the daemons be shut down and restarted once the
configuration file was edited to include the changes. This made adding servers to a pool
or changing the name or IP of an existing server require a full restart of the system which
can be disruptive.

Version 4 of Spread can now handle changes to the spread.conf daemon configuration
without shutting down and restarting all of the daemons. Daemons can be added to
segments or removed without existing clients losing their spread connections. Some
changes to the spread configuration (such as changing the name of an existing daemon)
will cause the clients to receive a view change message showing a temporary change in
the membership. See the DynamicConfiguration.txt document in the /docs directory for
more details.

Configuration Equality Enforcement
The Spread system has always had a requirement that the spread.conf file, specifying the
daemon configuration, specified identical configurations at all nodes. However earlier
versions of Spread did not enforce this requirement automatically. Now Spread enforces
that all participating daemons are using an identical configuration. See the
DynamicConfiguration.txt document for more details.

Copyright © 2006, Spread Concepts LLC. 2

Flush Client API
Flush Spread was available as an add-on for Spread 3.x. In Spread 4, Flush Spread is
now included with the main distribution. The classic Spread API has calls that start with
SP_, whereas the Flush Spread interface has API calls that begin with FL_. Both the
Flush and classic Spread interfaces are exported in the libspread client library.

A user should use either FL or SP calls on any given Spread client connection. Most
users should continue to use the classic SP interface. If Flush is used however, two rules
should be followed:

• do not mix or use both FL and SP calls on the same Spread client connection.
• do not mix FL and SP clients in the same Spread group.

Flush Spread is an extension to Spread. Flush Spread and Spread are extremely similar
group communication systems in the services that they provide, and in their general
interface. The main difference between Flush and Spread interfaces is how they handle
view/membership changes. The Spread interface presents a group communication system
which conforms to the Extended Virtual Synchrony (EVS) semantics whereas; the Flush
interface presents a group communications system which conforms to the Virtual
Synchrony (VS) semantics. In an EVS system, membership changes occur without a
client's intervention, whereas in a VS system a client must give its permission before a
new view/membership can be installed. For more information on the Flush interface, see
the Flush_or_SpreadAPI.txt file and the flush man pages included in the docs directory.

Increased Membership Information
In Spread 4, membership messages that occur as a result of a network partition or merge
now contain more information about the membership event then was presented by
version 3.x. Prior to Spread 4, a message with a CAUSED_BY_NETWORK
service_type contained a set of the private group names of processes which came with the
receiver from the old into the new membership. In Spread 4 however, these membership
messages contain a list of sets of private group names. Each of these sets contains the list
of processes from one of the merging network segments that was previously partitioned.
This provides a more complete picture of the network event.

Consider an example of 3 network segments A, B, and C merging together. Each
segment contains 2 members 1 & 2 (Ex A1, A2 and B1 , B2) that are in group X. The
new membership of the group X is {A1,A2,B1,B2,C1,C2} and the VS sets received in
the membership message at each daemon are specified in the table below.

Group X Membership
Message Received By:

Spread 3.x
membership
information

Spread 4 membership information

A1 {A1, A2} {A1, A2}, {B1, B2}, {C1, C2}
B1 {B1, B2} {A1, A2}, {B1, B2}, {C1, C2}
C1 {C1, C2} {A1, A2}, {B1, B2}, {C1, C2}

Copyright © 2006, Spread Concepts LLC. 3

A membership message received by A1 in Spread 3.x would only list which members
came with A1 into the new membership view. Now in Spread 4, A1 receives that list, as
well as the lists of members that came from segment B, and a list of members that came
from segment C.

Copyright © 2006, Spread Concepts LLC. 4

New Membership Information Access Functions
With the increase of the information provided by the membership messages, accessing
this information needed a new API. In Spread 3.x a developer used the
SP_get_gid_offset_memb_mess, SP_get_num_vs_offset_memb_mess, and
SP_get_vs_set_offset_memb_mess functions to get the offsets into the message body of
where this information resided.

In Spread 4, the message body layout is documented, and the user is free to parse the
information themselves. Alternatively they can use the new Membership Information
Access Functions below:

• A call to SP_get_memb_info will extract the membership information from the
message body into a membership_info structure.

• A call to SP_get_vs_sets_info will extract the multiple vs_sets in a membership
body

• A call to SP_get_vs_set_members will copy out the list of private group names
from a specific set.

For the specifics on these functions, please see the documentation and man pages.

Support for Unix Process Forking
The client libraries of Spread in versions 3.x and 4 are thread-safe. However prior to
version 4, it was not safe to use the Spread connection in a child process that was forked
from a multithreaded parent process who set up the connection. In Spread 4 however,
this is now allowed, so long as only one process is accessing the connection at a time. It
is the applications responsibility to ensure this.

The new SP_kill function aides in support of forking by allowing the parent process to
close its copy of the Spread connection without signaling the daemon and without
shutting down the child process’s connection. See the MultiThreadedClients.txt and
SP_kill documentation for more information.

Copyright © 2006, Spread Concepts LLC. 5

New Default and Spread-Core Client Libraries
Spread 3.x came with 2 client libraries:
• libspread: Non thread safe client library
• libtspread: Thread safe client library

In Spread 4, there are 3 client libraries distributed with the binary release:
• libspread: Default client library. Exports thread safe SP and FL API calls and

includes STDUtil data structures.

• libspread-core: Exports non thread safe SP calls only, and does not include
STDUtil data structures.

• libtspread-core: Exports thread safe SP calls only, and does not include STDUtil
data structures

For most users, it is sufficient to link with the libspread library. It is thread safe and
contains both the classic Spread API as well as the new Flush Spread API.

If however the user is using a previous version of the StdUtil library, and are worried
about name-space collisions, they can link with either the libspread-core or libtspread-
core libraries depending on their need for thread safety. Be advised however, that the
Flush Spread Interface depends on StdUtil and is not included in the libspread-core
libraries.

StdUtil Data Structures
The data structures used internally by the Spread daemon have been replaced with the
data structures from the StdUtil library. StdUtil is an open source cross-platform set of
high performance data structures in C.

The StdUtil data structures are already linked into the libspread default client library.
The user does not, and should not, link with the StdUtil library directly. If you need to
link with it directly, use one of the libspread-core libraries to avoid namespace collisions.

Copyright © 2006, Spread Concepts LLC. 6

New Distribution Directory Layout
The directory layout of the Spread distribution has changes from version 3.x. In version
4, the layout is the same for both the source and binary distributions. The layout is as
follows:

Directory Description
bin Compiled executables
buildtools Tools needed during build process
daemon Daemon source code
docs Documentation
examples Sample program sources
include Headers to include when linking to client

library
java Java client library code
lib Compiled libraries
libspread Client library source
perl Perl client library code
stdutil StdUtil data structures code
win32 Microsoft Windows project files

The bin and lib directories will contain platform specific subdirectories (such as win32,
Linux, Mac, etc) in the binary distribution.

New Win32 Build Files
The included build files for Windows are only for when you are building Spread from
source. They are not needed if you are using the binary distribution.

In Spread 3.x, the build files for Spread source on Microsoft Windows were project files
for Microsoft’s Visual Studio 5.0. The Spread 4 release updates these project files to
Microsoft’s Visual Studio 2002 .Net. To build on Windows, open up the spread.sln in
Visual Studio .Net 2002 or later, and compile the entire solution.

I you have a previous version of Visual Studio, or do not use Visual Studio to build, see
the Win32BuildInstructions.pdf document to understand the build requirements.

