
AMD Version 2.0 User Guide

Patrick R. Amestoy∗ Timothy A. Davis† Iain S. Duff‡

Dec 12, 2006

Abstract

AMD is a set of routines that implements the approximate minimum degree ordering algo-
rithm to permute sparse matrices prior to numerical factorization. There are versions written
in both C and Fortran 77. A MATLAB interface is included.

Technical report TR-04-002 (revised), CISE Department, University of Florida, Gainesville, FL,
2006.

AMD Version 2.0, Copyright c©2006 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff.
All Rights Reserved. AMD is available under alternate licences; contact T. Davis for details.

AMD License: Your use or distribution of AMD or any modified version of AMD implies that
you agree to this License.

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA

Permission is hereby granted to use or copy this program under the terms of the GNU LGPL,
provided that the Copyright, this License, and the Availability of the original version is retained on
all copies. User documentation of any code that uses this code or any modified version of this code
must cite the Copyright, this License, the Availability note, and ”Used by permission.” Permission
to modify the code and to distribute modified code is granted, provided the Copyright, this License,
and the Availability note are retained, and a notice that the code was modified is included.

Availability: http://www.cise.ufl.edu/research/sparse/amd
Acknowledgments:

∗ENSEEIHT-IRIT, 2 rue Camichel 31017 Toulouse, France. email: amestoy@enseeiht.fr.
http://www.enseeiht.fr/∼amestoy.

†Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, USA. email:
davis@cise.ufl.edu. http://www.cise.ufl.edu/∼davis. This work was supported by the National Science Foundation,
under grants ASC-9111263, DMS-9223088, and CCR-0203270. Portions of the work were done while on sabbatical
at Stanford University and Lawrence Berkeley National Laboratory (with funding from Stanford University and the
SciDAC program).

‡Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England. email: i.s.duff@rl.ac.uk.
http://www.numerical.rl.ac.uk/people/isd/isd.html. This work was supported by the EPSRC under grant
GR/R46441.

1

This work was supported by the National Science Foundation, under grants ASC-9111263 and
DMS-9223088 and CCR-0203270. The conversion to C, the addition of the elimination tree post-
ordering, and the handling of dense rows and columns were done while Davis was on sabbatical at
Stanford University and Lawrence Berkeley National Laboratory.

2

1 Overview

AMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It uses
an approximate minimum degree ordering algorithm [1, 2] to find a permutation matrix P so that
the Cholesky factorization PAPT = LLT has fewer (often much fewer) nonzero entries than the
Cholesky factorization of A. The algorithm is typically much faster than other ordering methods
and minimum degree ordering algorithms that compute an exact degree [4]. Some methods, such
as approximate deficiency [9] and graph-partitioning based methods [5, 7, 8, 10] can produce better
orderings, depending on the matrix.

The algorithm starts with an undirected graph representation of a symmetric sparse matrix A.
Node i in the graph corresponds to row and column i of the matrix, and there is an edge (i, j)
in the graph if aij is nonzero. The degree of a node is initialized to the number of off-diagonal
nonzeros in row i, which is the size of the set of nodes adjacent to i in the graph.

The selection of a pivot aii from the diagonal of A and the first step of Gaussian elimination
corresponds to one step of graph elimination. Numerical fill-in causes new nonzero entries in the
matrix (fill-in refers to nonzeros in L that are not in A). Node i is eliminated and edges are added
to its neighbors so that they form a clique (or element). To reduce fill-in, node i is selected as the
node of least degree in the graph. This process repeats until the graph is eliminated.

The clique is represented implicitly. Rather than listing all the new edges in the graph, a single
list of nodes is kept which represents the clique. This list corresponds to the nonzero pattern of the
first column of L. As the elimination proceeds, some of these cliques become subsets of subsequent
cliques, and are removed. This graph can be stored in place, that is using the same amount of
memory as the original graph.

The most costly part of the minimum degree algorithm is the recomputation of the degrees
of nodes adjacent to the current pivot element. Rather than keep track of the exact degree, the
approximate minimum degree algorithm finds an upper bound on the degree that is easier to
compute. For nodes of least degree, this bound tends to be tight. Using the approximate degree
instead of the exact degree leads to a substantial savings in run time, particularly for very irregularly
structured matrices. It has no effect on the quality of the ordering.

In the C version of AMD, the elimination phase is followed by an elimination tree post-ordering.
This has no effect on fill-in, but reorganizes the ordering so that the subsequent numerical factor-
ization is more efficient. It also includes a pre-processing phase in which nodes of very high degree
are removed (without causing fill-in), and placed last in the permutation P. This reduces the run
time substantially if the matrix has a few rows with many nonzero entries, and has little effect on
the quality of the ordering. The C version operates on the symmetric nonzero pattern of A+AT, so
it can be given an unsymmetric matrix, or either the lower or upper triangular part of a symmetric
matrix.

The two Fortran versions of AMD are essentially identical to two versions of the AMD algorithm
discussed in an earlier paper [1] (approximate minimum external degree, both with and without
aggressive absorption). For a discussion of the long history of the minimum degree algorithm, see
[4].

2 Availability

In addition to appearing as a Collected Algorithm of the ACM, AMD Version 2.0 is available at
http://www.cise.ufl.edu/research/sparse. The Fortran version is available as the routine MC47 in
HSL (formerly the Harwell Subroutine Library) [6].

3

3 Using AMD in MATLAB

The MATLAB function amd is now a built-in function in MATLAB 7.3 (R2006b). Compiling the
AMD mexFunction, here, causes a name conflict (it is MATLAB that is conflict with AMD, not
the other way around ...).

To avoid this issue, either use the built-in amd, or use the amd2 function provided here. amd and
amd2 differ in how the optional parameters are passed (the 2nd input parameter).

To use AMD2 in MATLAB, you must first compile the AMD2 mexFunction. Just type make in
the Unix system shell, while in the AMD/MATLAB directory. You can also type amd make in MATLAB,
while in the AMD/MATLAB directory. Place the AMD/MATLAB directory in your MATLAB path. This
can be done on any system with MATLAB, including Windows. See Section 8 for more details on
how to install AMD.

The MATLAB statement p=amd(A) finds a permutation vector p such that the Cholesky factor-
ization chol(A(p,p)) is typically sparser than chol(A). If A is unsymmetric, amd(A) is identical
to amd(A+A’) (ignoring numerical cancellation). If A is not symmetric positive definite, but has
substantial diagonal entries and a mostly symmetric nonzero pattern, then this ordering is also
suitable for LU factorization. A partial pivoting threshold may be required to prevent pivots from
being selected off the diagonal, such as the statement [L,U,P] = lu (A (p,p), 0.1). Type help
lu for more details. The statement [L,U,P,Q] = lu (A (p,p)) in MATLAB 6.5 is not suit-
able, however, because it uses UMFPACK Version 4.0 and thus does not attempt to select pivots
from the diagonal. UMFPACK Version 4.1 in MATLAB 7.0 and later uses several strategies, in-
cluding a symmetric pivoting strategy, and will give you better results if you want to factorize
an unsymmetric matrix of this type. Refer to the UMFPACK User Guide for more details, at
http://www.cise.ufl.edu/research/sparse/umfpack.

The AMD mexFunction is much faster than the built-in MATLAB symmetric minimum degree
ordering methods, SYMAMD and SYMMMD. Its ordering quality is comparable to SYMAMD,
and better than SYMMMD [3].

An optional input argument can be used to modify the control parameters for AMD (aggressive
absorption, dense row/column handling, and printing of statistics). An optional output argument
provides statistics on the ordering, including an analysis of the fill-in and the floating-point oper-
ation count for a subsequent factorization. For more details (once AMD is installed), type help
amd in the MATLAB command window.

4 Using AMD in a C program

The C-callable AMD library consists of seven user-callable routines and one include file. There
are two versions of each of the routines, with int and long integers. The routines with prefix
amd l use long integer arguments; the others use int integer arguments. If you compile AMD
in the standard ILP32 mode (32-bit int’s, long’s, and pointers) then the versions are essentially
identical. You will be able to solve problems using up to 2GB of memory. If you compile AMD in
the standard LP64 mode, the size of an int remains 32-bits, but the size of a long and a pointer
both get promoted to 64-bits.

The following routines are fully described in Section 9:

• amd order (long version: amd l order)

#include "amd.h"

int n, Ap [n+1], Ai [nz], P [n] ;

double Control [AMD_CONTROL], Info [AMD_INFO] ;

4

int result = amd_order (n, Ap, Ai, P, Control, Info) ;

Computes the approximate minimum degree ordering of an n-by-n matrix A. Returns a
permutation vector P of size n, where P[k] = i if row and column i are the kth row and
column in the permuted matrix. This routine allocates its own memory of size 1.2e + 9n
integers, where e is the number of nonzeros in A + AT. It computes statistics about the
matrix A, such as the symmetry of its nonzero pattern, the number of nonzeros in L, and
the number of floating-point operations required for Cholesky and LU factorizations (which
are returned in the Info array). The user’s input matrix is not modified. It returns AMD OK if
successful, AMD OK BUT JUMBLED if successful (but the matrix had unsorted and/or duplicate
row indices), AMD INVALID if the matrix is invalid, AMD OUT OF MEMORY if out of memory.

• amd defaults (long version: amd l defaults)

#include "amd.h"

double Control [AMD_CONTROL] ;

amd_defaults (Control) ;

Sets the default control parameters in the Control array. These can then be modified as
desired before passing the array to the other AMD routines.

• amd control (long version: amd l control)

#include "amd.h"

double Control [AMD_CONTROL] ;

amd_control (Control) ;

Prints a description of the control parameters, and their values.

• amd info (long version: amd l info)

#include "amd.h"

double Info [AMD_INFO] ;

amd_info (Info) ;

Prints a description of the statistics computed by AMD, and their values.

• amd valid (long version: amd valid)

#include "amd.h"

int n, Ap [n+1], Ai [nz] ;

int result = amd_valid (n, n, Ap, Ai) ;

Returns AMD OK or AMD OK BUT JUMBLED if the matrix is valid as input to amd order; the
latter is returned if the matrix has unsorted and/or duplicate row indices in one or more
columns. Returns AMD INVALID if the matrix cannot be passed to amd order. For amd order,
the matrix must also be square. The first two arguments are the number of rows and the
number of columns of the matrix. For its use in AMD, these must both equal n.

5

• amd 2 (long version: amd l2) AMD ordering kernel. It is faster than amd order, and can be
called by the user, but it is difficult to use. It does not check its inputs for errors. It does not
require the columns of its input matrix to be sorted, but it destroys the matrix on output.
Additional workspace must be passed. Refer to the source file AMD/Source/amd 2.c for a
description.

The nonzero pattern of the matrix A is represented in compressed column form. For an n-by-n
matrix A with nz nonzero entries, the representation consists of two arrays: Ap of size n+1 and
Ai of size nz. The row indices of entries in column j are stored in Ai[Ap[j] . . . Ap[j+1]-1]. For
amd order, if duplicate row indices are present, or if the row indices in any given column are not
sorted in ascending order, then amd order creates an internal copy of the matrix with sorted rows
and no duplicate entries, and orders the copy. This adds slightly to the time and memory usage of
amd order, but is not an error condition.

The matrix is 0-based, and thus row indices must be in the range 0 to n-1. The first entry
Ap[0] must be zero. The total number of entries in the matrix is thus nz = Ap[n].

The matrix must be square, but it does not need to be symmetric. The amd order routine
constructs the nonzero pattern of B = A + AT (without forming AT explicitly if A has sorted
columns and no duplicate entries), and then orders the matrix B. Thus, either the lower triangular
part of A, the upper triangular part, or any combination may be passed. The transpose AT may
also be passed to amd order. The diagonal entries may be present, but are ignored.

4.1 Control parameters

Control parameters are set in an optional Control array. It is optional in the sense that if a NULL
pointer is passed for the Control input argument, then default control parameters are used.

• Control[AMD DENSE] (or Control(1) in MATLAB): controls the threshold for “dense” rows/columns.
A dense row/column in A + AT can cause AMD to spend significant time in ordering the
matrix. If Control[AMD DENSE] ≥ 0, rows/columns with more than Control[AMD DENSE]√

n entries are ignored during the ordering, and placed last in the output order. The default
value of Control[AMD DENSE] is 10. If negative, no rows/columns are treated as “dense.”
Rows/columns with 16 or fewer off-diagonal entries are never considered “dense.”

• Control[AMD AGGRESSIVE] (or Control(2) in MATLAB): controls whether or not to use
aggressive absorption, in which a prior element is absorbed into the current element if it is a
subset of the current element, even if it is not adjacent to the current pivot element (refer to
[1, 2] for more details). The default value is nonzero, which means that aggressive absorption
will be performed. This nearly always leads to a better ordering (because the approximate
degrees are more accurate) and a lower execution time. There are cases where it can lead to
a slightly worse ordering, however. To turn it off, set Control[AMD AGGRESSIVE] to 0.

Statistics are returned in the Info array (if Info is NULL, then no statistics are returned). Refer
to amd.h file, for more details (14 different statistics are returned, so the list is not included here).

4.2 Sample C program

The following program, amd demo.c, illustrates the basic use of AMD. See Section 5 for a short
description of each calling sequence.

6

#include <stdio.h>

#include "amd.h"

int n = 5 ;

int Ap [] = { 0, 2, 6, 10, 12, 14} ;

int Ai [] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ;

int P [5] ;

int main (void)

{

int k ;

(void) amd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL) ;

for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ;

return (0) ;

}

The Ap and Ai arrays represent the binary matrix

A =

1 1 0 0 0
1 1 1 0 1
0 1 1 1 0
0 0 1 1 0
0 1 1 0 1

 .

The diagonal entries are ignored. AMD constructs the pattern of A+AT, and returns a permutation
vector of (0, 3, 1, 4, 2). Since the matrix is unsymmetric but with a mostly symmetric nonzero
pattern, this would be a suitable permutation for an LU factorization of a matrix with this nonzero
pattern and whose diagonal entries are not too small. The program uses default control settings
and does not return any statistics about the ordering, factorization, or solution (Control and Info
are both (double *) NULL). It also ignores the status value returned by amd order.

More example programs are included with the AMD package. The amd demo.c program provides
a more detailed demo of AMD. Another example is the AMD mexFunction, amd mex.c.

4.3 A note about zero-sized arrays

AMD uses several user-provided arrays of size n or nz. Either n or nz can be zero. If you attempt
to malloc an array of size zero, however, malloc will return a null pointer which AMD will report
as invalid. If you malloc an array of size n or nz to pass to AMD, make sure that you handle the
n = 0 and nz = 0 cases correctly.

5 Synopsis of C-callable routines

The matrix A is n-by-n with nz entries.

#include "amd.h"

int n, status, Ap [n+1], Ai [nz], P [n] ;

double Control [AMD_CONTROL], Info [AMD_INFO] ;

amd_defaults (Control) ;

status = amd_order (n, Ap, Ai, P, Control, Info) ;

amd_control (Control) ;

amd_info (Info) ;

status = amd_valid (n, n, Ap, Ai) ;

7

The amd l * routines are identical, except that all int arguments become long:

#include "amd.h"

long n, status, Ap [n+1], Ai [nz], P [n] ;

double Control [AMD_CONTROL], Info [AMD_INFO] ;

amd_l_defaults (Control) ;

status = amd_l_order (n, Ap, Ai, P, Control, Info) ;

amd_l_control (Control) ;

amd_l_info (Info) ;

status = amd_l_valid (n, n, Ap, Ai) ;

6 Using AMD in a Fortran program

Two Fortran versions of AMD are provided. The AMD routine computes the approximate minimum
degree ordering, using aggressive absorption. The AMDBAR routine is identical, except that it does
not perform aggressive absorption. The AMD routine is essentially identical to the HSL routine
MC47B/BD. Note that earlier versions of the Fortran AMD and AMDBAR routines included an IOVFLO
argument, which is no longer present.

In contrast to the C version, the Fortran routines require a symmetric nonzero pattern, with no
diagonal entries present although the MC47A/AD wrapper in HSL allows duplicates, ignores out-of-
range entries, and only uses entries from the upper triangular part of the matrix. Although we have
an experimental Fortran code for treating “dense” rows, the Fortran codes in this release do not
treat “dense” rows and columns of A differently, and thus their run time can be high if there are a
few dense rows and columns in the matrix. They do not perform a post-ordering of the elimination
tree, compute statistics on the ordering, or check the validity of their input arguments. These
facilities are provided by MC47A/AD and other subroutines from HSL. Only one integer version
of each Fortran routine is provided. Both Fortran routines overwrite the user’s input matrix, in
contrast to the C version. The C version does not return the elimination or assembly tree. The
Fortran version returns an assembly tree; refer to the User Guide for details. The following is the
syntax of the AMD Fortran routine. The AMDBAR routine is identical except for the routine name.

INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), DEGREE (N), NV (N),

$ NEXT (N), LAST (N), HEAD (N), ELEN (N), W (N), LEN (N)

CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT,

$ LAST, HEAD, ELEN, DEGREE, NCMPA, W)

CALL AMDBAR (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT,

$ LAST, HEAD, ELEN, DEGREE, NCMPA, W)

The input matrix is provided to AMD and AMDBAR in three arrays, PE, of size N, LEN, of size N,
and IW, of size IWLEN. The size of IW must be at least NZ+N. The recommended size is 1.2*NZ +
N. On input, the indices of nonzero entries in row I are stored in IW. PE(I) is the index in IW
of the start of row I. LEN(I) is the number of entries in row I. The matrix is 1-based, with row
and column indices in the range 1 to N. Row I is contained in IW (PE(I) . . . PE(I) + LEN(I) -
1). The diagonal entries must not be present. The indices within each row must not contain any
duplicates, but they need not be sorted. The rows themselves need not be in any particular order,
and there may be empty space between the rows. If LEN(I) is zero, then there are no off-diagonal
entries in row I, and PE(I) is ignored. The integer PFREE defines what part of IW contains the
user’s input matrix, which is held in IW(1 . . . PFREE-1). The contents of IW and LEN are undefined
on output, and PE is modified to contain information about the ordering.

As the algorithm proceeds, it modifies the IW array, placing the pattern of the partially elim-
inated matrix in IW(PFREE . . . IWLEN). If this space is exhausted, the space is compressed. The

8

number of compressions performed on the IW array is returned in the scalar NCMPA. The value of
PFREE on output is the length of IW required for no compressions to be needed.

The output permutation is returned in the array LAST, of size N. If I=LAST(K), then I is the
Kth row in the permuted matrix. The inverse permutation is returned in the array ELEN, where
K=ELEN(I) if I is the Kth row in the permuted matrix. On output, the PE and NV arrays hold the
assembly tree, a supernodal elimination tree that represents the relationship between columns of
the Cholesky factor L. If NV(I) > 0, then I is a node in the assembly tree, and the parent of I is
-PE(I). If I is a root of the tree, then PE(I) is zero. The value of NV(I) is the number of entries in
the corresponding column of L, including the diagonal. If NV(I) is zero, then I is a non-principal
node that is not in the assembly tree. Node -PE(I) is the parent of node I in a subtree, the root
of which is a node in the assembly tree. All nodes in one subtree belong to the same supernode in
the assembly tree. The other size N arrays (DEGREE, HEAD, NEXT, and W) are used as workspace, and
are not defined on input or output.

If you want to use a simpler user-interface and compute the elimination tree post-ordering, you
should be able to call the C routines amd order or amd l order from a Fortran program. Just be
sure to take into account the 0-based indexing in the P, Ap, and Ai arguments to amd order
and amd l order. A sample interface is provided in the files AMD/Demo/amd f77cross.f and
AMD/Demo/amd f77wrapper.c. To compile the amd f77cross program, type make cross in the
AMD/Demo directory. The Fortran-to-C calling conventions are highly non-portable, so this example
is not guaranteed to work with your compiler C and Fortran compilers. The output of amd f77cross
is in amd f77cross.out.

7 Sample Fortran main program

The following program illustrates the basic usage of the Fortran version of AMD. The AP and AI
arrays represent the binary matrix

A =

1 1 0 0 0
1 1 1 0 1
0 1 1 1 1
0 0 1 1 0
0 1 1 0 1

in a conventional 1-based column-oriented form, except that the diagonal entries are not present.
The matrix has the same as nonzero pattern of A+AT in the C program, in Section 4. The output
permutation is (4, 1, 3, 5, 2). It differs from the permutation returned by the C routine amd order
because a post-order of the elimination tree has not yet been performed.

INTEGER N, NZ, J, K, P, IWLEN, PFREE, NCMPA

PARAMETER (N = 5, NZ = 10, IWLEN = 17)

INTEGER AP (N+1), AI (NZ), LAST (N), PE (N), LEN (N), ELEN (N),

$ IW (IWLEN), DEGREE (N), NV (N), NEXT (N), HEAD (N), W (N)

DATA AP / 1, 2, 5, 8, 9, 11/

DATA AI / 2, 1,3,5, 2,4,5, 3, 2,3 /

C load the matrix into the AMD workspace

DO 10 J = 1,N

PE (J) = AP (J)

LEN (J) = AP (J+1) - AP (J)

10 CONTINUE

DO 20 P = 1,NZ

IW (P) = AI (P)

9

20 CONTINUE

PFREE = NZ + 1

C order the matrix (destroys the copy of A in IW, PE, and LEN)

CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, LAST, HEAD,

$ ELEN, DEGREE, NCMPA, W)

DO 60 K = 1, N

PRINT 50, K, LAST (K)

50 FORMAT (’P (’,I2,’) = ’, I2)

60 CONTINUE

END

The Demo directory contains an example of how the C version may be called from a Fortran
program, but this is highly non-portable. For this reason, it is placed in the Demo directory, not in
the primary Source directory.

8 Installation

The following discussion assumes you have the make program, either in Unix, or in Windows with
Cygwin.

System-dependent configurations are in the ../UFconfig/UFconfig.mk file. You can edit that
file to customize the compilation. The default settings will work on most systems. Sample con-
figuration files are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq
Alpha.

To compile and install the C-callable AMD library, go to the AMD directory and type make. The
library will be placed in AMD/Lib/libamd.a. Three demo programs of the AMD ordering routine
will be compiled and tested in the AMD/Demo directory. The outputs of these demo programs will
then be compared with output files in the distribution.

To compile and install the Fortran-callable AMD library, go to the AMD directory and type make
fortran. The library will be placed in AMD/Lib/libamdf77.a. A demo program will be compiled
and tested in the AMD/Demo directory. The output will be compared with an output file in the
distribution.

Typing make clean will remove all but the final compiled libraries and demo programs. Typing
make purge or make distclean removes all files not in the original distribution. If you compile
AMD and then later change the ../UFconfig/UFconfig.mk file then you should type make purge
and then make to recompile.

When you compile your program that uses the C-callable AMD library, you need to add the
AMD/Lib/libamd.a library and you need to tell your compiler to look in the AMD/Include directory
for include files. To compile a Fortran program that calls the Fortran AMD library, you need to
add the AMD/Lib/libamdf77.a library. See AMD/Demo/Makefile for an example.

If all you want to use is the AMD2 mexFunction in MATLAB, you can skip the use of the
make command entirely. Simply type amd make in MATLAB while in the AMD/MATLAB directory.
This works on any system with MATLAB, including Windows. Alternately, type make in the
AMD/MATLAB directory, or just use the built-in amd in MATLAB 7.3 or later.

If you are including AMD as a subset of a larger library and do not want to link the C standard
I/O library, or if you simply do not need to use them, you can safely remove the amd control.c
and amd info.c files. Similarly, if you use default parameters (or define your own Control ar-
ray), then you can exclude the amd defaults.c file. Each of these files contains the user-callable
routines of the same name. None of these auxiliary routines are directly called by amd order.
The amd dump.c file contains debugging routines that are neither used nor compiled unless de-
bugging is enabled. The amd internal.h file must be edited to enable debugging; refer to the

10

instructions in that file. The bare minimum files required to use just amd order are amd.h
and amd internal.h in the Include directory, and amd 1.c, amd 2.c, amd aat.c, amd global.c,
and order.c, amd postorder.c, amd post tree.c, amd preprocess.c, and amd valid.c in the
Source directory.

11

9 The AMD routines

The file AMD/Include/amd.h listed below describes each user-callable routine in the C version of
AMD, and gives details on their use.

/* === */

/* === AMD: approximate minimum degree ordering =========================== */

/* === */

/* --- */

/* AMD Version 2.0, Copyright (c) 2006 by Timothy A. Davis, */

/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */

/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */

/* web: http://www.cise.ufl.edu/research/sparse/amd */

/* --- */

/* AMD finds a symmetric ordering P of a matrix A so that the Cholesky

* factorization of P*A*P’ has fewer nonzeros and takes less work than the

* Cholesky factorization of A. If A is not symmetric, then it performs its

* ordering on the matrix A+A’. Two sets of user-callable routines are

* provided, one for int integers and the other for UF_long integers.

*

* The method is based on the approximate minimum degree algorithm, discussed

* in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm",

* SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp.

* 886-905, 1996. This package can perform both the AMD ordering (with

* aggressive absorption), and the AMDBAR ordering (without aggressive

* absorption) discussed in the above paper. This package differs from the

* Fortran codes discussed in the paper:

*

* (1) it can ignore "dense" rows and columns, leading to faster run times

* (2) it computes the ordering of A+A’ if A is not symmetric

* (3) it is followed by a depth-first post-ordering of the assembly tree

* (or supernodal elimination tree)

*

* For historical reasons, the Fortran versions, amd.f and amdbar.f, have

* been left (nearly) unchanged. They compute the identical ordering as

* described in the above paper.

*/

#ifndef AMD_H

#define AMD_H

/* make it easy for C++ programs to include AMD */

#ifdef __cplusplus

extern "C" {

#endif

/* get the definition of size_t: */

#include <stddef.h>

/* define UF_long */

#include "UFconfig.h"

int amd_order /* returns AMD_OK, AMD_OK_BUT_JUMBLED,

* AMD_INVALID, or AMD_OUT_OF_MEMORY */

(

int n, /* A is n-by-n. n must be >= 0. */

const int Ap [], /* column pointers for A, of size n+1 */

12

const int Ai [], /* row indices of A, of size nz = Ap [n] */

int P [], /* output permutation, of size n */

double Control [], /* input Control settings, of size AMD_CONTROL */

double Info [] /* output Info statistics, of size AMD_INFO */

) ;

UF_long amd_l_order /* see above for description of arguments */

(

UF_long n,

const UF_long Ap [],

const UF_long Ai [],

UF_long P [],

double Control [],

double Info []

) ;

/* Input arguments (not modified):

*

* n: the matrix A is n-by-n.

* Ap: an int/UF_long array of size n+1, containing column pointers of A.

* Ai: an int/UF_long array of size nz, containing the row indices of A,

* where nz = Ap [n].

* Control: a double array of size AMD_CONTROL, containing control

* parameters. Defaults are used if Control is NULL.

*

* Output arguments (not defined on input):

*

* P: an int/UF_long array of size n, containing the output permutation. If

* row i is the kth pivot row, then P [k] = i. In MATLAB notation,

* the reordered matrix is A (P,P).

* Info: a double array of size AMD_INFO, containing statistical

* information. Ignored if Info is NULL.

*

* On input, the matrix A is stored in column-oriented form. The row indices

* of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1].

*

* If the row indices appear in ascending order in each column, and there

* are no duplicate entries, then amd_order is slightly more efficient in

* terms of time and memory usage. If this condition does not hold, a copy

* of the matrix is created (where these conditions do hold), and the copy is

* ordered. This feature is new to v2.0 (v1.2 and earlier required this

* condition to hold for the input matrix).

*

* Row indices must be in the range 0 to

* n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros

* in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n].

* The matrix does not need to be symmetric, and the diagonal does not need to

* be present (if diagonal entries are present, they are ignored except for

* the output statistic Info [AMD_NZDIAG]). The arrays Ai and Ap are not

* modified. This form of the Ap and Ai arrays to represent the nonzero

* pattern of the matrix A is the same as that used internally by MATLAB.

* If you wish to use a more flexible input structure, please see the

* umfpack_*_triplet_to_col routines in the UMFPACK package, at

* http://www.cise.ufl.edu/research/sparse/umfpack.

*

* Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the

* range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0

* to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these

* restrictions are not met, AMD returns AMD_INVALID.

13

*

* AMD returns:

*

* AMD_OK if the matrix is valid and sufficient memory can be allocated to

* perform the ordering.

*

* AMD_OUT_OF_MEMORY if not enough memory can be allocated.

*

* AMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is

* NULL.

*

* AMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate

* entries, but was otherwise valid.

*

* The AMD routine first forms the pattern of the matrix A+A’, and then

* computes a fill-reducing ordering, P. If P [k] = i, then row/column i of

* the original is the kth pivotal row. In MATLAB notation, the permuted

* matrix is A (P,P), except that 0-based indexing is used instead of the

* 1-based indexing in MATLAB.

*

* The Control array is used to set various parameters for AMD. If a NULL

* pointer is passed, default values are used. The Control array is not

* modified.

*

* Control [AMD_DENSE]: controls the threshold for "dense" rows/columns.

* A dense row/column in A+A’ can cause AMD to spend a lot of time in

* ordering the matrix. If Control [AMD_DENSE] >= 0, rows/columns

* with more than Control [AMD_DENSE] * sqrt (n) entries are ignored

* during the ordering, and placed last in the output order. The

* default value of Control [AMD_DENSE] is 10. If negative, no

* rows/columns are treated as "dense". Rows/columns with 16 or

* fewer off-diagonal entries are never considered "dense".

*

* Control [AMD_AGGRESSIVE]: controls whether or not to use aggressive

* absorption, in which a prior element is absorbed into the current

* element if is a subset of the current element, even if it is not

* adjacent to the current pivot element (refer to Amestoy, Davis,

* & Duff, 1996, for more details). The default value is nonzero,

* which means to perform aggressive absorption. This nearly always

* leads to a better ordering (because the approximate degrees are

* more accurate) and a lower execution time. There are cases where

* it can lead to a slightly worse ordering, however. To turn it off,

* set Control [AMD_AGGRESSIVE] to 0.

*

* Control [2..4] are not used in the current version, but may be used in

* future versions.

*

* The Info array provides statistics about the ordering on output. If it is

* not present, the statistics are not returned. This is not an error

* condition.

*

* Info [AMD_STATUS]: the return value of AMD, either AMD_OK,

* AMD_OK_BUT_JUMBLED, AMD_OUT_OF_MEMORY, or AMD_INVALID.

*

* Info [AMD_N]: n, the size of the input matrix

*

* Info [AMD_NZ]: the number of nonzeros in A, nz = Ap [n]

*

* Info [AMD_SYMMETRY]: the symmetry of the matrix A. It is the number

14

* of "matched" off-diagonal entries divided by the total number of

* off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also

* an entry, for any pair (i,j) for which i != j. In MATLAB notation,

* S = spones (A) ;

* B = tril (S, -1) + triu (S, 1) ;

* symmetry = nnz (B & B’) / nnz (B) ;

*

* Info [AMD_NZDIAG]: the number of entries on the diagonal of A.

*

* Info [AMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A’, excluding the

* diagonal. If A is perfectly symmetric (Info [AMD_SYMMETRY] = 1)

* with a fully nonzero diagonal, then Info [AMD_NZ_A_PLUS_AT] = nz-n

* (the smallest possible value). If A is perfectly unsymmetric

* (Info [AMD_SYMMETRY] = 0, for an upper triangular matrix, for

* example) with no diagonal, then Info [AMD_NZ_A_PLUS_AT] = 2*nz

* (the largest possible value).

*

* Info [AMD_NDENSE]: the number of "dense" rows/columns of A+A’ that were

* removed from A prior to ordering. These are placed last in the

* output order P.

*

* Info [AMD_MEMORY]: the amount of memory used by AMD, in bytes. In the

* current version, this is 1.2 * Info [AMD_NZ_A_PLUS_AT] + 9*n

* times the size of an integer. This is at most 2.4nz + 9n. This

* excludes the size of the input arguments Ai, Ap, and P, which have

* a total size of nz + 2*n + 1 integers.

*

* Info [AMD_NCMPA]: the number of garbage collections performed.

*

* Info [AMD_LNZ]: the number of nonzeros in L (excluding the diagonal).

* This is a slight upper bound because mass elimination is combined

* with the approximate degree update. It is a rough upper bound if

* there are many "dense" rows/columns. The rest of the statistics,

* below, are also slight or rough upper bounds, for the same reasons.

* The post-ordering of the assembly tree might also not exactly

* correspond to a true elimination tree postordering.

*

* Info [AMD_NDIV]: the number of divide operations for a subsequent LDL’

* or LU factorization of the permuted matrix A (P,P).

*

* Info [AMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a

* subsequent LDL’ factorization of A (P,P).

*

* Info [AMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a

* subsequent LU factorization of A (P,P), assuming that no numerical

* pivoting is required.

*

* Info [AMD_DMAX]: the maximum number of nonzeros in any column of L,

* including the diagonal.

*

* Info [14..19] are not used in the current version, but may be used in

* future versions.

*/

/* --- */

/* direct interface to AMD */

/* --- */

/* amd_2 is the primary AMD ordering routine. It is not meant to be

15

* user-callable because of its restrictive inputs and because it destroys

* the user’s input matrix. It does not check its inputs for errors, either.

* However, if you can work with these restrictions it can be faster than

* amd_order and use less memory (assuming that you can create your own copy

* of the matrix for AMD to destroy). Refer to AMD/Source/amd_2.c for a

* description of each parameter. */

void amd_2

(

int n,

int Pe [],

int Iw [],

int Len [],

int iwlen,

int pfree,

int Nv [],

int Next [],

int Last [],

int Head [],

int Elen [],

int Degree [],

int W [],

double Control [],

double Info []

) ;

void amd_l2

(

UF_long n,

UF_long Pe [],

UF_long Iw [],

UF_long Len [],

UF_long iwlen,

UF_long pfree,

UF_long Nv [],

UF_long Next [],

UF_long Last [],

UF_long Head [],

UF_long Elen [],

UF_long Degree [],

UF_long W [],

double Control [],

double Info []

) ;

/* --- */

/* amd_valid */

/* --- */

/* Returns AMD_OK or AMD_OK_BUT_JUMBLED if the matrix is valid as input to

* amd_order; the latter is returned if the matrix has unsorted and/or

* duplicate row indices in one or more columns. Returns AMD_INVALID if the

* matrix cannot be passed to amd_order. For amd_order, the matrix must also

* be square. The first two arguments are the number of rows and the number

* of columns of the matrix. For its use in AMD, these must both equal n.

*

* NOTE: this routine returned TRUE/FALSE in v1.2 and earlier.

*/

16

int amd_valid

(

int n_row, /* # of rows */

int n_col, /* # of columns */

const int Ap [], /* column pointers, of size n_col+1 */

const int Ai [] /* row indices, of size Ap [n_col] */

) ;

UF_long amd_l_valid

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai []

) ;

/* --- */

/* AMD memory manager and printf routines */

/* --- */

/* The user can redefine these to change the malloc, free, and printf routines

* that AMD uses. */

#ifndef EXTERN

#define EXTERN extern

#endif

EXTERN void *(*amd_malloc) (size_t) ; /* pointer to malloc */

EXTERN void (*amd_free) (void *) ; /* pointer to free */

EXTERN void *(*amd_realloc) (void *, size_t) ; /* pointer to realloc */

EXTERN void *(*amd_calloc) (size_t, size_t) ; /* pointer to calloc */

EXTERN int (*amd_printf) (const char *, ...) ; /* pointer to printf */

/* --- */

/* AMD Control and Info arrays */

/* --- */

/* amd_defaults: sets the default control settings */

void amd_defaults (double Control []) ;

void amd_l_defaults (double Control []) ;

/* amd_control: prints the control settings */

void amd_control (double Control []) ;

void amd_l_control (double Control []) ;

/* amd_info: prints the statistics */

void amd_info (double Info []) ;

void amd_l_info (double Info []) ;

#define AMD_CONTROL 5 /* size of Control array */

#define AMD_INFO 20 /* size of Info array */

/* contents of Control */

#define AMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */

#define AMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */

/* default Control settings */

#define AMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */

#define AMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */

17

/* contents of Info */

#define AMD_STATUS 0 /* return value of amd_order and amd_l_order */

#define AMD_N 1 /* A is n-by-n */

#define AMD_NZ 2 /* number of nonzeros in A */

#define AMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */

#define AMD_NZDIAG 4 /* # of entries on diagonal */

#define AMD_NZ_A_PLUS_AT 5 /* nz in A+A’ */

#define AMD_NDENSE 6 /* number of "dense" rows/columns in A */

#define AMD_MEMORY 7 /* amount of memory used by AMD */

#define AMD_NCMPA 8 /* number of garbage collections in AMD */

#define AMD_LNZ 9 /* approx. nz in L, excluding the diagonal */

#define AMD_NDIV 10 /* number of fl. point divides for LU and LDL’ */

#define AMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL’ */

#define AMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */

#define AMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */

/* --- */

/* return values of AMD */

/* --- */

#define AMD_OK 0 /* success */

#define AMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */

#define AMD_INVALID -2 /* input arguments are not valid */

#define AMD_OK_BUT_JUMBLED 1 /* input matrix is OK for amd_order, but

* columns were not sorted, and/or duplicate entries were present. AMD had

* to do extra work before ordering the matrix. This is a warning, not an

* error. */

/* == */

/* === AMD version == */

/* == */

/* AMD Version 1.2 and later include the following definitions.

* As an example, to test if the version you are using is 1.2 or later:

*

* #ifdef AMD_VERSION

* if (AMD_VERSION >= AMD_VERSION_CODE (1,2)) ...

* #endif

*

* This also works during compile-time:

*

* #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE (1,2))

* printf ("This is version 1.2 or later\n") ;

* #else

* printf ("This is an early version\n") ;

* #endif

*

* Versions 1.1 and earlier of AMD do not include a #define’d version number.

*/

#define AMD_DATE "Dec 12, 2006"

#define AMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))

#define AMD_MAIN_VERSION 2

#define AMD_SUB_VERSION 0

#define AMD_SUBSUB_VERSION 4

#define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION,AMD_SUB_VERSION)

#ifdef __cplusplus

18

}

#endif

#endif

19

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. SIAM J. Matrix Anal. Applic., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: An approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw., 30(3):381–388, 2004.

[3] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30:353–376, 2004.

[4] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM
Review, 31(1):1–19, 1989.

[5] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection
ordering. SIAM J. Sci. Comput., 20:468–489, 1999.

[6] HSL. HSL 2002: A collection of Fortran codes for large scale scientific computation, 2002.
www.cse.clrc.ac.uk/nag/hsl.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

[8] F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. Concurrency: Practice and Experience,
12:68–84, 2000.

[9] E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix or-
derings. SIAM J. Matrix Anal. Applic., 19(3):682–695, 1998.

[10] J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods. BIT, 41(4):800–841, 2001.

20

