
Contents

1 Description 2

2 Chart::Base 5

3 Chart::Bars 13

4 Chart::Composite 15

5 Chart::Direction 18

6 Chart::ErrorBars 21

7 Chart::HorizontalBars 23

8 Chart::Lines 25

9 Chart::LinesPoints 27

10 Chart::Mountain 30

11 Chart::Pareto 32

12 Chart::Pie 34

13 Chart::Points 36

14 Chart::Split 38

15 Chart::StackedBars 41

1

1 Description

SYNOPSIS

use Chart::type; (type is one of: Bars, Composite,
Direction, ErrorBars, HorizontalBars, Lines, LinesPoints,
Mountain,Pareto, Pie, Points, Split or StackedBars)

$obj = Chart::type->new;
$obj = Chart::type->new (width, height);

$obj->set($key_1, $val_1, ... , $key_n, $val_n);
$obj->set($key_1 => $val_1, ... , $key_n => $val_n);
$obj->set(%hash);

#GifGraph.pm-style API to produce png formatted charts
@data = (\@x_tick_labels, \@dataset_1, ... \@datase_n);
$obj->png ("filename", \@data);
$obj->png ($filehandle, \@data);
$obj->png (FILEHANDLE, \@data);
$obj->cgi_png ();

#Graph.pm-style API
$obj->add_pt ($label, $val_1, ... $val_n);
$obj->add_dataset ($val_1, ..., $val_n);
$obj->png ("filename");
$obj->png ($filehandle);
$obj->png (FILEHANDLE);
$obj->cgi_png();
The similar functions are available for jpeg

#Retrieve imagemap information
$obj->set('imagemap' => 'true');
$imagemap_ref = $obj->imagemap_dump();

2

The Perl module Chart creates png or jpeg Files with charts. Chart can
also create dynamic charts for web sites.

It is possible to create a lot of di�erent chart types with Chart: Bars,
Composite, Direction, ErrorBars, HorizontalBars, Lines, LinesPoints, Moun-
tain, Pareto, Pie, Points, Split and StackedBars.

Take a look at their descriptions to see how they work. All of the spe-
cial types are classes by themselves. All these classes have the same abstract
superclass: Base.pm. The hierarchy of Chart is shown in Figure 1.

Figure 1: The hierarchy of chart

Therefore, you have to create an instance of one of the subclasses ,to
get a chart object.

All of the methods and most of the options chart provides are implemented
in Base. But the drawing of the graph itself happens in the respective subclass.
Figure 2 shows the elements of an chart object.

Figure 2: Elements of a chart

The graph area in the middle is drawn by the subclass, all other elements are
drawn by Base. But some classes don't need all of these elements or need special
elements. Those elements have to be over written in the respective class. For
example, the class Pie doesn't need axes, so the methods for drawing the axes

3

in Base.pm are over written by methods in Pie.pm; the draw nothing in this
case. Furthermore the legend in a pie chart are a little bit di�erent. Therefore
Pie.pm has its own methods for drawing the legends. These rules are managed
by Chart. You don't have to attend to it.

Chart uses Lincoln Stein's GD module for all its graphics primitives calls.
So you need a installed version of GD.pm to use Chart. This module is like
Chart available in the CPAN online archive at http://www.cpan.org/ .

4

2 Chart::Base

Name: Chart::Base

File: Base.pm

Requires: GD, Carp, FileHandle

Description: Base is the abstract superclass of the modules: Bars,
Composite, Direction, ErrorBars, HorizontalBars, Lines, LinesPoints, Moun-
tain, Pareto, Pie, Points, Split, StackedBars.

The class Base provides all public methods and most of the attributs of a
chart object.

Constructor: An instance of a chart object can be created with the
constructor new():

$obj = Chart:: Type ->new();
$obj = Chart:: Type ->new(width , height);
Type means the type of chart it returns, i.e. Chart::Bars returns a chart

with bars.
If new has no arguments, the constructor returns an object with the size

300x400 pixels. If new has two arguments width and height , it returns a chart
object with the desired size.

Methods:
$obj->add_dataset(@array);

$obj->add_dataset(n@array_ref);
Adds a dataset to the object. The parameter is an array or a reference to an
array. Generally the �rst added array are interpreted by chart as the x-tick
labels. The following arrays should include the data points. For example if the
�rst call with an bars object is

$obj->add_dataset('Harry', 'Sally'); and the second call is
$obj->add_dataset(5, 8);

then chart will draw a picture with two bars and label them with Harry and
Sally.

Some modules handle it a little bit di�erent. Look at the respective description
of the module to get more information.
There are also di�erences if you want to use the xy_plot option, to create a
xy-graph.

$obj->add_pt(@array);
$obj->add_pt(n@array_ref);
This is another method to add data to a chart object. An argument can be
an array or a reference to an array. If you use this method, chart wants the
complete data of one data point.

5

For example

$obj->add_pt('Harry', 5);
$obj->add_pt('Sally', 8);

would create the same graph as the example for add_dataset.

$obj->add_data�le("�le", type);
$obj->add_data�le($�lehandle, type);
This method adds a complete data �le to the chart object.
Type can be 'set' or 'pt'. If the parameter is 'set' then one line in the data �le
has to be a complete data set. The values of the set has to be separated by
whitespaces. For Example the �le looks like this:

Harry Sally
3 8
2 1

If the parameter is 'pt' the lines of the �le have to look like the parameter
arrays of the add_pt method. Which means the line includes all values of one
data point, also separated by whitespaces. For Example:

Harry 3 2
Sally 8 1

$obj->get_data();
If you want a copy of the data that has been added so far, make a call to the
get_data method like so:

$dataref = $obj->get_data();

It returns a reference to an array of references to datasets. For Example, you
can get the x-tick labels this way:
@x_labels = @{$dataref->[0]};

$obj->clear_data();
This is the method to remove all data that may have been entered before.

$obj->set(attribut 1 => value 1 , ... , attribute n => value n);
$obj->set(%hash);
$obj->set(attribut 1 , value 1 , ... , attribute n , value n);
$obj->set(@array);
Use this method to change the attributes of the chart object. Set looks for a

6

hash of keys and values or an array of keys and values.
For Example

$obj->set('title' => 'The title of the image');

would set the title. The same job would do:

%hash = ('title' => 'The title of the image');
$obj->set(%hash);

$obj->png("�le");
$obj->png($�lehandle);
$obj->png(FILEHANDLE);
$obj->png("�le", n@data);
This method creates the png �le. The �le parameter can be, the �le name, a
reference to a �lehandle or a �lehandle itself. If the �le doesn't exist, chart will
create a �le for you. If there is already a �le, chart will overwrite this �le.
You can also add the data to the chart object in the png method. The @data
array should contain references to arrays of data, with the �rst array reference
pointing to an array with x-tick labels. @data could look like this:

@data = (['Harry', 'Sally'], [5, 8], [50, 80]);

This would set up an graph with two datasets, and three data points in these
sets.

$obj->jpeg("�le");
$obj->jpeg($�lehandle);
$obj->jpeg(FILEHANDLE);
$obj->jpeg("�le", n@data);
These are the methods to create jpeg �les. They work similar like the png()
method.

$obj->cgi_png();
$obj->cgi_jpeg();
With the cgi methods you can create dynamic images for your web site. The cgi
methods will print the chart, along with the appropriate http header to stdout,
allowing you to call chart-generating scripts directly from your html pages (ie.
with a HTML tag).

$obj->imagemap_dump();
Chart can also return the pixel positioning information so that you can create
image maps from the �les Chart generates. Simply set the 'imagemap' option

7

to 'true' before you generate the �le, then call the imagemap_dump method to
retrieve the information. A structure will be returned almost identical to the
@data array described above to pass the data into Chart.

$imagemap_data = $obj->imagemap_dump();

Instead of single data values, you will be passed references to arrays of pixel
information. For Bars, HorizontalBars, Pareto and StackedBars charts, the ar-
rays will contain two x-y pairs (specifying the upper left and the lower right
corner of the bar), like so

($x1, $y1, $x2, $y2) = @{ $imagemap_data->[$dataset][$datapoint] };

For Lines, Points, LinesPoints and Split, the arrays will contain a single xy-
pair (specifying the center of the point), like so

($x, $y) = @{ $imagemap_data->[$dataset][$datapoint] };

A few caveats apply here. First of all, Chart uses the GD-module by Lin-
coln Stein to draw lines, circles, strings, and so on. GD treats the upper-left
corner of the png/jpeg as the (0,0) point, so positives y values are measured
from the top of the png/jpeg, not the bottom. Second, these values will mostly
contain long decimal values. GD, of course, has to truncate these to single pixel
values. In a worst-case scenario, this will result an error of one pixel on your
imagemap. If this is really an issue, your only option is to experiment with it,
or to contact Lincoln Stein and ask him. Third, please remember that the 0th
dataset will be empty, since that's the place in the @data array for the data
point labels.

Attributes/Options: These are the options which have e�ects on all types
of chart:

'transparent' Makes the background of the image transparent if set to 'true'.
Useful for making web page images. It doesn't work for all browsers.
Defaults to false.

'png_border' Sets the number of pixels used as a border between the graph
and the edges of the png/jpeg. Defaults to 10.

'graph_border' Sets the number of pixels used as a border between the ti-
tle/labels and the actual graph within the png/jpeg. Defaults to 10.

'text_space' Sets the amount of space left on the sides of text, to make it
more readable. Defaults to 2.

'title' Tells Chart what to use for the title of the graph. If empty, no title is
drawn. It recognizes 'nn' as a newline, and acts accordingly. Remember, if

8

you want to use normal quotation marks instead of single quotation marks
then you have to quote "`nnn"'. Default is empty.

'sub_title' Writes a sub-title under the title in smaller letters.

'x_label' Tells Chart what to use for the x-axis label. If empty, no label is
drawn. Default is empty.

'y_label', 'y_label2' Tells Chart what to use for the y-axis labels. If empty,
no label is drawn. Default is empty.

'legend' Speci�es the placement of the legend. Valid values are 'left', 'right',
'top', 'bottom'. Setting this to 'none' tells chart not to draw a legend.
Default is 'right'.

'legend_labels' Sets the values for the labels for the di�erent datasets. Should
be assigned a reference to an array of labels. For example,

@labels = ('foo', 'bar');
$obj->set ('legend_labels' => n@labels);

Default is empty, in which case 'Dataset 1', 'Dataset 2', etc. are used
as the labels.

'tick_len' Sets the length of the x- and y-ticks in pixels. Default is 4.

'x_ticks' Speci�es how to draw the x-tick labels. Valid values are 'normal',
'staggered' (staggers the labels vertically), and 'vertical' (the labels are
draw upwards). Default is 'normal'.

'min_y_ticks' Sets the minimum number of y_ticks to draw when generating
a scale. Default is 6, The minimum is 2.

'max_y_ticks' Sets the maximum number of y_ticks to draw when gener-
ating a scale. Default is 100. This limit is used to avoid plotting an
unreasonably large number of ticks if non-round values are used for the
min_val and max_val.

The value for 'max_y_ticks' should be at least 5 times larger than 'min_y_ticks'.

'max_x_ticks', 'min_x_ticks' Works similar as 'max_y_ticks' and 'min_y_ticks'.
Of course, it works only for xy-plots!

'integer_ticks_only' Speci�es how to draw the x- and y-ticks: as �oating
point ('false', '0') or as integer numbers ('true', 1). If you want integer
ticks, it is maybe better to set the option 'precision' at zero. Default:
'false'

'skip_int_ticks' If 'integer_ticks_only' was set to 'true' the labels and ticks
at the y-axis will be drawn every nth tick. Of course in HorizontalBars it
a�ects the x-axis. Default to 1, no skipping.

9

'precision' Sets the number of numerals after the decimal point. A�ects in
most cases the y-axis. But also the x-axis if 'xy_plot' is set and the labels
in a pie chart. Defaults to 3.

'max_val' Sets the maximum y-value on the graph, overriding the normal
autoscaling. Does not work for a Split chart. Default is undef.

'min_val' Sets the minimum y-value on the graph, overriding the normal au-
toscaling. Does not work for a Split chart. Default is undef.

Caution should be used when setting 'max_val' and 'min_val' to �oat-
ing point or non-round numbers. This is because the scale must start &
end on a tick, ticks must have round-number intervals, and include round
numbers.

Example: Suppose your dataset has a range of 35-114 units, If you specify
them as the 'min_val' & 'max_val', The y_axis will be plot with 80 ticks
every 1 unit.. If no 'min_val' & 'max_val', the system will autoscale the
range to 30-120 with 10 ticks every 10 units.

If the 'min_val' & 'max_val' are speci�ed to exesive precision, they may
be overiden by the system, plotting a maximum 'max_y_ticks' ticks.

'include_zero' If 'true', forces the y-axis to include zero if it is not in the
dataset range. Default is 'false'.

In general, it is better to use this, than to set the 'min_val' if that is
all you want to achieve.

'skip_x_ticks' Sets the number of x-ticks and x-tick labels to skip. (ie. if
'skip_x_ticks' was set to 4, Chart would draw every 4th x-tick and x-tick
label). Default is undef.

'custom_x_ticks' This option allows you to specify exactly which x-ticks
and x-tick labels should be drawn. It should be assigned a reference to
an array of desired ticks. Just remember that I'm counting from the 0th
element of the array. (e.g., if 'custom_x_ticks' is assigned [0,3,4], then
the 0th, 3rd, and 4th x-ticks will be displayed) It doesn't work for Split,
HorizontalBars and Pie.

'f_x_tick' Needs a reference to a function which uses the x-tick labels gener-
ated by the @data->[0] as the argument. The result of this function can
reformat the labels. For instance

$obj -> set ('f_x_tick' => n&formatter);

An example for the function formatter: x labels are seconds since an event.
The referenced function can transform this seconds to hour, minutes and
seconds.

10

'f_y_tick' The same situation as for 'f_x_tick' but now used for y labels.

'colors' This option lets you control the colors the chart will use. It takes a
reference to a hash. The hash should contain keys mapped to references
to arrays of rgb values. For instance,

$obj->set('colors' => 'background' => [255,255,255]);

sets the background color to white (which is the default). Valid keys
for this hash are

'background' (background color for the png)
'title' (color of the title)
'text' (all the text in the chart)
'x_label' (color of the x axis label)
'y_label' (color of the �rst y axis label)
'y_label2' (color of the second y axis label)
'grid_lines' (color of the grid lines)
'x_grid_lines' (color of the x grid lines - for x axis ticks)
'y_grid_lines' (color of the y grid lines - for to left y axis ticks)
'y2_grid_lines' (color of the y2 grid lines - for right y axis ticks)
'dataset0'..'dataset63' (the di�erent datasets)
'misc' (everything else, e.g. ticks, box around the legend)

NB. For composite charts, there is a limit of 8 datasets per component.
The colors for 'dataset8' through 'dataset15' become the colors for 'dataset0'
through 'dataset7' for the second component chart.

'title_font' This option changes the font of the title. The key has to be a Gd
font. e.g. GD::Font->Large

'label_font' This option changes the font of the labels. The key has to be a
Gd font.

'legend_font' This option changes the font of the text of the legend. The key
has to be a Gd font.

'tick_label_font' This option changes the font of the ticks. The key has to
be a Gd font.

'grey_background' Puts a nice soft grey background on the actual data plot
when set to 'true'. Default is 'true'.

'x_grid_lines' Draws grid lines matching up to x ticks if set to 'true'. Default
is 'false'.

'y_grid_lines' Draws grid lines matching up to y ticks if set to 'true'. Default
is 'false'.

'grid_lines' Draws grid lines matching up to x and y ticks if set to 'true'.
Default is 'false'.

11

'imagemap' Lets Chart know you're going to ask for information about the
placement of the data for use in creating an image map from the png.
This information can be retrieved using the imagemap_dump() method.
NB. that the imagemap_dump() method cannot be called until after the
Chart has been generated (e.g. using the png() or cgi_png() methods).

'ylabel2' The label for the right y-axis (the second component chart). Default
is undef.

'no_cache' Adds Pragma: no-cache to the http header. Be careful with this
one, as Netscape 4.5 is unfriendly with POST using this method.

'legend_example_size' Sets the length of the example line in the legend.
Defaults to 20.

12

3 Chart::Bars

Name: Chart::Bars

File: Bars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Bars is a subclass of Chart::Base.
The class Bars creates a chart with bars.

Example:

Figure 3: Bars chart

use Chart::Bars;

$g = Chart::Bars->new(600,500);

$g->add_dataset ('Berlin', 'Paris', 'Rome', 'London', 'Munich');
$g->add_dataset (14, 5, 4, 5, 11);
$g->add_dataset (12, 4, 6, 7, 12);
$g->add_dataset (18, 2, 3, 3, 9);
$g->add_dataset (17, 5, 7, 6, 6);
$g->add_dataset (15, 3, 4, 5, 11);
$g->add_dataset (11, 6, 5, 6, 12);
$g->add_dataset (12, 1, 4, 5, 15);
$g->add_dataset (10, 4, 6, 8, 10);
$g->add_dataset (14, 5, 4, 5, 11);
$g->add_dataset (12, 4, 6, 6, 12);

13

$g->add_dataset (18, 2, 3, 3, 9);
$g->add_dataset (17, 5, 7, 2, 6);

%hash = ('title' => 'Sold Cars in 2001',
'text_space' => 5,
'grey_background' => 'false',
'integer_ticks_only' => 'true',
'x_label' => 'City',
'y_label' => 'Number of Cars',
'legend' => 'bottom',
'legend_labels' => ['January' , 'February' , 'March', 'April',

'May', 'June', 'July', 'August', 'September',
'October', 'November', 'December'],

'min_val' => 0,
'max_val' => 20,
'grid_lines' =>'true',
'colors' => {'title' => 'red',

'x_label' => 'blue',
'y_label' => 'blue'});

$g->set (%hash);

$g->png ("bars.png");

Constructor: An instance of a bars chart object can be created with the
constructor new():
$obj = Chart::Bars->new();
$obj = Chart::Bars->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'spaced_bars' Leaves space between the groups of bars at each data point
when set to 'true'. This just makes it easier to read a bar chart. Default
is 'true'.

14

4 Chart::Composite

Name: Chart::Composite

File: Composite.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Composite is a subclass of Chart::Base.
The class Composite creates a two component chart with two types of chart.
For example you can create a two component chart with bars and lines. Just
set the option 'composite_info' ! A composite chart doesn't make sense with all
types of chart. But it works pretty good with Lines, Points, LinesPoints and
Bars.

Example:

Figure 4: Composite chart

use Chart::Composite;

$g = Chart::Composite->new;

$g->add_dataset (1 , 2, 3, 4, 5, 6);
$g->add_dataset (0.1, 0.2, 0.3, 0.2, 0.4, 0.1);
$g->add_dataset (0.3, 0.5, 0.2, 0.6, 0.7, 0.4);
$g->add_dataset (10, 11, 6, 7, 7, 8);

$g->set('title' => 'Composite Chart',
'composite_info' => [['Bars', [1,2]],

['LinesPoints', [3]]]);
$g->set('include_zero' => 'true');

15

$g->png("composite.png");

Constructor: An instance of a Composite object can be created with the
constructor new():
$obj = Chart::Composite->new();
$obj = Chart::Composite->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universal valid options, see page 8.
The following options are also available:

'composite_info' This option is only used for composite charts. It contains
the information about which types to use for the two component charts,
and which datasets belong to which component chart. It should be a
reference to an array of array references, containing information like the
following
$obj->set ('composite_info' => [['Bars', [1,2]], ['Lines', [3,4]]]);

This example would set the two component charts to be a bar chart and
a line chart. It would use the �rst two data sets for the bar chart (note
that the numbering starts at 1, not zero like most of the other numbered
things in Chart), and the second two data sets for the line chart. The
default is undef.

NB. Chart::Composite can only do two component charts.

'min_val1', 'min_val2' Only for composite charts, these options specify the
minimum y-value for the �rst and second components respectively. Both
default to undef.

'max_val1', 'max_val2' Only for composite charts, these options specify the
maximum y-value for the �rst and second components respectively. Both
default to undef.

'y_ticks1', 'y_ticks2' The number of y ticks to use on the �rst and second
y-axis on a composite chart. Please note that if you just set the 'y_ticks'
option, both axes will use that number of y ticks. Both default to undef.

'f_y_tick1', 'f_y_tick2' Needs a reference to a funktion which uses the y-
tick labels for the �rst and second y-axis generatet by the @data->[0] as
the argument. The result of this function can reformat the labels. For
instance

16

$obj -> set ('f_y_tick1') => n&formatter1);
$obj -> set ('f_y_tick2') => n&formatter2);

'same_y_axes' Forces both component charts in a composite chart to use
the same maximum and minimum y-values if set to 'true'. This helps to
keep the composite charts from being too confusing. Default is undef.

'legend_example_height' Only for composite charts. These option changes
the thickness of the lines in the legend. If 'legend_example_height' ist
set to 'true'the thickness of all 'legend-lines' can be changed. Default is
false.

$obj -> set ('legend_exapmle_height' => 'true');
$obj -> set ('legend_example_height0' => '3');
$obj -> set ('legned_example_height1..4'=> '10');

This example would set the thickness of the �rst line in the legend to
3, and the thickness of the following 4 lines to 10. The Defaultvalues of
the individual datasets (use the same order as in 'composite_info') are
one, which means a 'normal' line is drawn. It is not possible to change
a 'legend_example_height#'(# means a datasetnumber)which was once
de�ned. The �rst value remains.

17

5 Chart::Direction

Name: Chart::Direction

File: Direction.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Direction is a subclass of Chart::Base.
The class Direction creates a diagram for polar coordinates.
Direction plots data, which is speci�ed by angle (eg. wind direction) and value
(eg. wind strength).
The �rst dataset to add is always a set of angels in degress. The second set is
a set of values. The right adding of following datasets depends on the option
'pairs'.
Direction will draw a point chart if no value ist set to the option 'point'. You
can also get a lines chart by turning the option 'point' to 'false' and the option
'line' to 'true'. If you want a linespoint chart, then 'point' and 'line' has to be
'true'. Additionally chart plots arrows from the center to the point or to the
end of the line, if the option 'arrow' is set to 'true'.

Example:

Figure 5: Direction chart

use Chart::Direction;
$g = Chart::Direction->new(500,500);

18

$g->add_dataset(0, 100, 50, 200, 280, 310);
$g->add_dataset(30, 40, 20, 35, 45, 20);

$g->add_dataset(10, 110, 60, 210, 290, 320);
$g->add_dataset(30, 40, 20, 35, 45, 20);

$g->add_dataset(20, 120, 70, 220, 300, 330);
$g->add_dataset(30, 40, 20, 35, 45, 20);

%hash = ('title' => 'Direction Demo',
'angle_interval' => 45,
'precision' => 0,
'arrow' => 'true',
'point' => 'false',
'include_zero' => 'true',
'pairs' => 'true',
'legend' => 'none',
'grey_background' => 'false');

$g->set(%hash);
$g->png("Grafiken/vector.png");

Constructor: An instance of a direction chart object can be created with the
constructor new():
$obj = Chart::Direction->new();
$obj = Chart::Direction->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8, apart from
the Options, that have e�ects on the axes, like 'custom_x_ticks', 'x_ticks' and
so on. Also available, these special options:

'point' Indicates to draw points, representing the data values. 'true' or 'false'
possible, per default 'true'.

'line' Connects the points with lines if set to 'true'. Defaults to 'false'.

'arrow' Draws an arrow from the center of the chart to the point, if set to
'true', per default 'false'.

'pairs' This option tells Chart how to handle more datasets. If 'pairs' is set
to 'true', Chart uses the �rst dataset as a set of degrees and the second
dataset as a set of values. Then, the third set is a set of degrees und the
fourth a set of values

19

If 'pairs' is set to 'false', Chart uses the �rst dataset as a set of angels and
all following datasets as sets of values.
Defaults to 'false'.

'angle_interval' This option tells Chart, how many angle lines should be
drawn. It is the di�erence between two angle lines. The default value is
30, which means that a line will be drawn every 30 degrees. There are not
all values allowed. Valid Values are: 0, 5, 10, 15, 20, 30, 45 and 90. If you
choose 0, Chart will draw no line.

'pt_size' Sets the radius of the points in pixels. Default is 18.

'brush_size' Sets the width of the lines in pixels. Default is 6.

'min_circles' Sets the minimum number of circles to draw when generating a
scale. Default is 4, the minimum is 2.

'max_circles' Sets the maximum number of circles to draw when generating a
scale. Default is 100. This limit is used to avoid plotting an unreasonably
large number of ticks if non-round values are used for the min_val and
max_val.
The value for 'max_circles' should be at least 5 times larger than 'min_circles'.

20

6 Chart::ErrorBars

Name: Chart::ErrorBars

File: ErrorBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: ErrorBars is a subclass of Chart::Base.
The class ErrorBars creates a point chart with error bars.
Chart expects the error values within the data array. By use of the add_dataset
method the error values are the two next sets after the y values. The �rst set
after the y values has to be a set values for the upper error bars. The next set
is an array of the down errors.
If you want to use the same value for the up and down error, then you have to
set the 'same_error' option to 'true'. In this case only one set after the y values
is interpreted as a set of errors.
Of course, it's also possible to use the add_pt method in a respective way.

Example:

Figure 6: Error bars chart

use Chart::ErrorBars;
$g = Chart::ErrorBars->new();

#the x values
$g->add_dataset(qw(1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

2.1 2.2 2.3 2.4 2.5));

21

#the y values
$g->add_dataset(qw(1 1.1 1.2 1.1 1.14 1.15 1.26 1.2 1.1 1.19 1.2

1.4 1.6 2.0 2.5 3.1));
#the up errors
$g->add_dataset(qw(0.4 0.1 0.2 0.1 0.14 0.15 0.26 0.27 0.1 0.19 0.2

0.1 0.1 0.2 0.1 0.3));
#the down errors
$g->add_dataset(qw(0.2 0.11 0.12 0.11 0.2 0.3 0.12 0.27 0.11 0.3 0.2

0.2 0.2 0.1 0.1 0.2));

$g->set('xy_plot' => 'true',
'precision' => 1,
'pt_size' =>10, 'brush_size' => 2,
'legend' => 'none',
'title' => 'Error Bars Demo',
'grid_lines' => 'true');

$g->png("errorbars.png");

Constructor: An instance of a error bars chart object can be created with
the constructor new():
$obj = Chart::ErrorBars->new();
$obj = Chart::ErrorBars->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able these special options:

'same_error' Tells chart that you want to use the same error value of a data
point if set to true. Then you have to add just one set of error values.
Defaults to 'false'.

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'pt_size' Sets the radius of the points in pixels. Default is 18.

'brush_size' Sets the width of the lines in pixels. Default is 6.

'xy_plot' Forces Chart to plot a x-y-graph, which means that the x-axis is also
numeric if set to 'true'. Very useful for plots of mathematical functions.
Defaults to 'false'.

'sort' Sorts the data of a x-y-graph ascending if set to 'true'. Should be set if
the added data isn't sorted. Defaults to 'false'.

22

7 Chart::HorizontalBars

Name: Chart::HorizontalBars

File: HorizontalBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: HorizontalBars is a subclass of Chart::Base.
The class HorizontalBars creates a chart with bars, that run horizontal.

Example:

Figure 7: Chart with horizontal bars

use Chart::HorizontalBars;

$g = Chart::HorizontalBars->new();
$g->add_dataset ('Foo', 'bar', 'junk', 'ding', 'bat');
$g->add_dataset (4, 3, 4, 2, 8);
$g->add_dataset (2, 10, 3, 8, 3);

%hash = ('title' => 'Horizontal Bars Demo',
'grid_lines' => 'true',
'x_label' => 'x-axis',
'y_label' => 'y-axis',
'include_zero' => 'true',
'x_ticks' => 'vertical',
);

23

$g->set (%hash);

$g->png ("hbars.png");

Constructor: An instance of a HorizontalBars object can be created with
the constructor new():
$obj = Chart::HorizontalBars->new();
$obj = Chart::HorizontalBars->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'spaced_bars' Leaves space between the groups of bars at each data point
when set to 'true'. This just makes it easier to read a bar chart. Default
is 'true'.

'skip_y_ticks' Does the same for the y-axis at a HorizontalBars chart as
'skip_x_ticks' does for other charts. Defaults to 1.

24

8 Chart::Lines

Name: Chart::Lines

File: Lines.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Lines is a subclass of Chart::Base.
The class Lines creates a lines chart.

Example:

Figure 8: Lines chart

use Chart::Lines;

$g = Chart::Lines->new();
$g->add_dataset ('foo', 'bar', 'junk', 'ding', 'bat');
$g->add_dataset (-4, 3, -4, -5, -2);
$g->add_dataset (2, 10, -3, 8, 3);
$g->add_dataset (-10, 2, 4, -3, -3);
$g->add_dataset (7, -5, -3, 4, 7);

%hash = ('legend_labels' => ['1st Quarter', '2nd Quarter',
'3rd Quarter', '4th Quarter'],

'y_axes' => 'both',
'title' => 'Lines Demo',
'grid_lines' => 'true',
'legend' => 'left',
'legend_example_size' => 20,
'colors' => {'text' => 'blue',

'misc' => 'blue',
'background' => 'grey',

25

'grid_lines' => 'light_blue',
'dataset0' => [220,0,0],
'dataset1' => [200,0,100],
'dataset2' => [150,50,175],
'dataset3' => [170,0,255] },

);

$g->set (%hash);

$g->png ("lines.png");

Constructor: An instance of a lines chart object can be created with the
constructor new():
$obj = Chart::Lines->new();
$obj = Chart::Lines->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Special op-
tions for this type of chart are:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'brush_size' Sets the width of the lines in pixels. Default is 6.

'xy_plot' Forces Chart to plot a x-y-graph, which means that the x-axis is also
numeric if set to 'true'. Very useful for plots of mathematical functions.
Defaults to 'false'.

'sort' Sorts the data of a x-y-graph ascending if set to 'true'. Should be set if
the added data isn't sorted. Defaults to 'false'.

26

9 Chart::LinesPoints

Name: Chart::LinesPoints

File: LinesPoints.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: LinesPoints is a subclass of Chart::Base.
The class LinesPoints creates a lines chart with points at the ends of the lines.

Example:

Figure 9: Linespoints chart

use Chart::LinesPoints;
use strict;

my (@data1, @data2, @data4, @data3, @labels, %hash, $g);

@labels = qw(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17);
@data1 = qw (-7 -5 -6 -8 -9 -7 -5 -4 -3 -2 -4 -6 -3 -5 -3 -4 -6);
@data2 = qw (-1 -1 -1 -1 -2 -2 -3 -3 -4 -4 -6 -3 -2 -2 -2 -1 -1);
@data3 = qw (-4 -4 -3 -2 -1 -1 -1 -2 -1 -1 -3 -2 -4 -3 -4 -2 -2);
@data4 = qw (-6 -3 -2 -3 -3 -3 -2 -1 -2 -3 -1 -1 -1 -1 -1 -3 -3);

$g = Chart::LinesPoints->new(600,300);
$g->add_dataset(@labels);
$g->add_dataset(@data1);
$g->add_dataset(@data2);
$g->add_dataset(@data3);
$g->add_dataset(@data4);

27

%hash =(
'integer_ticks_only' => 'true',
'title' => 'Soccer Season 2002\n ',
'legend_labels' => ['NY Soccer Club', 'Denver Tigers',

'Houston Spacecats', 'Washington Presidents'],
'y_label' => 'position in the table',
'x_label' => 'day of play',
'grid_lines' => 'true',
'f_y_tick' => \&formatter,
);

$g->set (%hash);
$g->png ("Grafiken/d_linesp2.png");

#just a trick, to let the y scale start at the biggest point:
#initiate with negative values, remove the minus sign!
sub formatter {
my $label = shift;
$label = substr($label, 1,2);
return $label;

}

Constructor: An instance of a linespoints chart object can be created with
the constructor new():
$obj = Chart::LinesPoints->new();
$obj = Chart::LinesPoints->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'pt_size' Sets the radius of the points in pixels. Default is 18.

'brush_size' Sets the width of the lines in pixels. Default is 6.

'xy_plot' Forces Chart to plot a x-y-graph, which means that the x-axis is also
numeric if set to 'true'. Very useful for plots of mathematical functions.
Defaults to 'false'.

28

'sort' Sorts the data of a x-y-graph ascending if set to 'true'. Should be set if
the added data isn't sorted. Defaults to 'false'.

29

10 Chart::Mountain

Name: Chart::Mountain

File: Mountain.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Mountain is a subclass of Chart::Base.
The class Mountain creates a mountain chart.

Example:

Figure 10: Mountain chart

use Chart::Mountain;

$g = Chart::Mountain->new();

@data = [[1910, 1930, 1950, 1970],
[1, 3, 4, 2],
[2, 4, 3, 3],
[0.5, 1, 2, 1]];

$g->set('title' => 'Mountain Chart',
'grid_lines' => 'false',
'precision' => 1);

$g->png("mountain.png", @data);

Constructor: An instance of a mountain chart object can be created with
the constructor new():

30

$obj = Chart::Mountain->new();
$obj = Chart::Mountain->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

31

11 Chart::Pareto

Name: Chart::Pareto

File: Pareto.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Pareto is a subclass of Chart::Base.
The class Pareto creates a pare-to chart. Pareto plots only one dataset and its
labels.

Example:

Figure 11: Pare-to chart

use Chart::Pareto;

$g = Chart::Pareto->new(500,400);
$g->add_dataset ('1st week', '2nd week', '3rd week', '4th week', '5th week',

'6th week', '7th week', '8th week', '9th week', '10th week');
$g->add_dataset (37, 15, 9 , 4, 3.5,

2.1, 1.2, 1.5, 6.2, 16);

32

%hash =('colors' => { 'dataset0' => 'mauve',
'dataset1' => 'light_blue',
'title' => 'orange'},

'title' => 'Visitors at the Picasso Exhibition',
'integer_ticks_only' => 'true',
'skip_int_ticks' => 5,
'grey_background' => 'false',
'max_val' => 100,
'y_label' => 'Visitors in Thousands',
'x_ticks' => 'vertical',
'spaced_bars' => 'true',
'legend' => 'none'
);

$g->set (%hash);
$g->png ("pareto.png");

Constructor: An instance of a pare-to chart object can be created with the
constructor new():
$obj = Chart::Pareto->new();
$obj = Chart::Pareto->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'spaced_bars' Leaves space between bars at each data point when set to
'true'. This just makes it easier to read a bar chart. Default is 'true'.

'sort' Sorts the data descending if set to 'true'. Defaults to 'false'.

33

12 Chart::Pie

Name: Chart::Pie

File: Pie.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Pie is a subclass of Chart::Base.
The class Pie creates a pie chart. The �rst added set are the labels. The second
set are the values.

Example:

Figure 12: Pie chart

use Chart::Pie;

$g = Chart::Pie->new();

$g->add_dataset ('Har', 'Sug', 'Ert', 'Her', 'Tar', 'Kure');
$g->add_dataset (12000, 20000 , 13000, 15000, 9000, 11000);

%opt = ('title' => 'Another Pie Demo Chart',
'label_values' => 'both',
'legend' => 'none',
'text_space' => 10,
'png_border' => 1,
'graph_border' => 0,
'colors' => { 'x_label' => 'red',

'misc' => 'plum',
'background' => 'grey',

34

'dataset0' => [120, 0, 255],
'dataset1' => [120, 100, 255],
'dataset2' => [120, 200, 255],
'dataset3' => [255, 100, 0],
'dataset4' => [255, 50, 0],
'dataset5' => [255, 0, 0],

},
'x_label' => 'The Winner is Team Blue!',
);

$g->set (%opt);

$g->png ("pie.png");

Constructor: An instance of a pie chart object can be created with the con-
structor new():
$obj = Chart::Pie->new();
$obj = Chart::Pie->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'label_values' Tells the pie chart what labels to draw beside the pie. Valid
values are 'percent', 'value', 'both' and 'none'. Defaults to 'percent'.

'legend_label_values' Tells the pie chart what labels to draw in the legend.
Valid values are 'percent', 'value', 'both' and 'none'. Defaults to 'value'.

35

13 Chart::Points

Name: Chart::Points

File: Points.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Points is a subclass of Chart::Base.
The class Points creates a point chart.

Example:

Figure 13: Points chart

use Chart::Points;

$g = Chart::Points->new();
$g->add_dataset (1, 4, 3, 6, 2, 2.5); # x-coordinates
$g->add_dataset (1, 5, 3, 2, 3, 3.2); # y-coordinates dataset 1
$g->add_dataset (2, 6, 4.8, 1, 4, 4.2); # y-coordinates dataset 2

@hash = ('title' => 'Points Chart',
'xy_plot' => 'true',
'x_ticks' => 'vertical',
'legend' => 'none',
'sort' => 'true',
'precision' => 3,
'include_zero' => 'true',

);

$g->set (@hash);

$g->png ("Grafiken/points.png");

36

Constructor: An instance of a points chart object can be created with the
constructor new():
$obj = Chart::Points->new();
$obj = Chart::Points->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'pt_size' Sets the radius of the points in pixels. Default is 18.

'sort' Sorts the data of a x-y-graph ascending if set to 'true'. Should be set if
the added data isn't sorted. Defaults to 'false'.

'xy_plot' Forces Chart to plot a x-y-graph, which means that the x-axis is also
numeric if set to 'true'. Very useful for plots of mathematical functions.
Defaults to 'false'.

37

14 Chart::Split

Name: Chart::Split

File: Split.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: Split is a subclass of Chart::Base.
The class Split creates a lines chart. Split makes always an xy-plot, which means
that both axes are numeric. The x-axis will be split in several parts of a same
interval (option 'interval' has to be set!). These intervals will be drawn one
upon the other. The top interval starts at the start point, which has to be set
by the programmer (option 'start').
The �rst passed dataset are the x coordinates. The following added sets are the
y coordinates of the sets.
Split draws only positive x-coordinates.
The y-axis is a numbering of the intervals.
The Split module is useful if you have a lot of data points to plot.

Example:

Figure 14: Split chart

38

use Chart::Split;

$g = Chart::Split->new(650 ,900);

#get the data that are in a file and push them in arrays
open(FILE , "data.dat") or die 'Can't open the data file!\n';
while (defined ($line = <FILE>)) {
($x, $y,) = unpack("a11 x1 a8" , $line);
push (@y, $y);
push (@x, $x);

}
close (FILE);

#add the data
$g->add_dataset(@x);
$g->add_dataset(@y);

#set the options
$g->set('xy_plot' => 'true');
$g->set('legend' => 'none');
$g->set('title' => 'Split Demo');
$g->set('interval' => 1/288);
$g->set('interval_ticks' => 10);
$g->set('start' => 260.5);
$g->set('brush_size' => 1);
$g->set('precision' => 4);
$g->set('y_label' => '5 minutes interval');

#give me a nice picture
$g->png("split.png");

Constructor: An instance of a split chart object can be created with the
constructor new():
$obj = Chart::Split->new();
$obj = Chart::Split->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'start' Required value for a split chart. If the x coordinate of the �rst data
point is zero, you should set start to zero. Sets the start value of the �rst
interval. Defaults to undef.

39

'interval' Required value of a split chart. Sets the interval of one line to
plot. Defaults to undef.

'interval_ticks' Sets the number of ticks for the x-axis. Defaults to 5.

'scale' Every y-value of a split chart will be multiplied with that value, but
the scale won't change. Which means that split allows to overdraw cer-
tain rows! Only useful if you want to give prominence to the maximal
amplitudes of the data. Defaults to 1.

'sort' Sorts the data ascending if set to 'true'. Should be set if the added data
isn't sorted. Defaults to 'false'.

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

40

15 Chart::StackedBars

Name: Chart::StackedBars

File: StackedBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description: StackedBars is a subclass of Chart::Base.
The class StackedBars creates a chart with stacked bars.

Example:

Figure 15: Chart with stacked bars

use Chart::StackedBars;

$g = Chart::StackedBars->new;

$g->add_dataset ('foo', 'bar', 'junk', 'taco', 'karp');
$g->add_dataset (3, 4, 9, 10, 11);
$g->add_dataset (8, 6, 1, 12, 1);
$g->add_dataset (5, 7, 2, 13, 4);

$g->set ('title' => 'Stacked Bar Chart');
$g->set('y_grid_lines' => 'true');
$g->set('legend' => 'bottom');

$g->png ("Grafiken/stackedbars.png");

Constructor: An instance of a stacked bars object can be created with the
constructor new():

41

$obj = Chart::StackedBars->new();
$obj = Chart::StackedBars->new(width , height);

If new has no arguments, the constructor returns an image with the size
300x400 pixels. If new has two arguments width and height , it returns an
image with the desired size.

Methods: All universally valid methods, see page 5: Chart::Base.

Attributes/Options: All universally valid options, see page 8. Also avail-
able, these special options:

'y_axes' Tells chart where to place the y-axis. Valid values are 'left', 'right'
and 'both'. Defaults to 'left'.

'spaced_bars' Leaves space between the groups of bars at each data point
when set to 'true'. This just makes it easier to read a bar chart. Default
is 'true'.

42

List of Figures

1 The hierarchy of chart . 3
2 Elements of a chart . 3
3 Bars chart . 13
4 Composite chart . 15
5 Direction chart . 18
6 Error bars chart . 21
7 Chart with horizontal bars . 23
8 Lines chart . 25
9 Linespoints chart . 27
10 Mountain chart . 30
11 Pare-to chart . 32
12 Pie chart . 34
13 Points chart . 36
14 Split chart . 38
15 Chart with stacked bars . 41

43

Index

Chart::Base, 5

Lincoln Stein's GD module, 4

44

