
Phylogenetic Tree HOWTO

<jason AT bioperl.org>

Table of Contents

1. Introduction

2. Simple Usage

3. Reading and Writing Trees

4. Example Code

use Bio::TreeIO;
parse in newick/new hampshire format
my $input = new Bio::TreeIO(-file => "tree.tre",

-format => "newick");
my $tree = $input->next_tree;

5. Bio::Tree::TreeI methods

my @taxa = $tree->get_leaf_nodes;

my $root = $tree->get_root_node;

my $total_length = $tree->total_branch_length;

6. Bio::Tree::TreeFunctionsI

find all the nodes named 'node1' (there should be only one)
my @nodes = $tree->find_node(-id => 'node1');
find all the nodes which have description 'BMP'
my @nodes = $tree->find_node(-description => 'BMP');
find all the nodes with bootstrap value of 70
my @nodes = $tree->find_node(-bootstrap => 70);

my @nodes = grep { $_->bootstrap > 70 } $tree->get_nodes;

provide the node object to remove from the Tree
$tree->remove_Node($node);
or specify the node Name to remove
$tree->remove_Node('Node12');

Provide a list of Nodes that are in this tree
my $lca = $tree->get_lca(-nodes => \@nodes);

my $distances = $tree->distance(-nodes => [$node1,$node2]);

if($tree->is_monophyletic(-nodes => \@internal_nodes,
-outgroup => $outgroup)) {

print "these nodes are monophyletic: ",
join(",",map { $_->id } @internal_nodes), "\n";

}

if($tree->is_paraphyletic(-nodes => \@internal_nodes,
-outgroup => $outgroup)) {

print "these nodes are monophyletic: ",
join(",",map { $_->id } @internal_nodes), "\n";

}

node can either be a Leaf node in which case it becomes the
outgroup and its ancestor is the new root of the tree
or it can be an internal node which will become the new
root of the Tree
$tree->reroot($node);

7. Advanced Topics

use Bio::TreeIO;
use Bio::Tree::RandomFactory;
initialize a TreeIO writer to output the trees as we create them
my $out = Bio::TreeIO->new(-format => 'newick',

-file => ">randomtrees.tre");
my @listoftaxa = qw(A B C D E F G H);
my $factory = new Bio::Tree::RandomFactory(-taxa => \@listoftaxa);
generate 10 random trees
for(my $i = 0; $i < 10; $i++) {

$out->write_tree($factory->next_tree);
}
One can also just request a total number of taxa (8 here) and
not provide labels for them
In addition one can specify the total number of trees
the object should return so we can call this in a while
loop
$factory = new Bio::Tree::RandomFactory(-num_taxa => 8

-max_count=> 10);
while(my $tree = $factory->next_tree) {

$out->write_tree($tree);
}

8. References and More Reading

	Phylogenetic Tree HOWTO
	Table of Contents
	1. Introduction
	2. Simple Usage
	3. Reading and Writing Trees
	4. Example Code
	5. Bio::Tree::TreeI methods
	6. Bio::Tree::TreeFunctionsI
	7. Advanced Topics
	8. References and More Reading

