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Introduction

The sxml parse tree can be used to provide autocoding via the (nyacc lang c99 munge)

module. For example, start with the following C code

typedef const char *string_t;

extern string_t cmds[10];

The nyacc output (call it the-tree) for this will be

(trans-unit

(decl (decl-spec-list

(stor-spec (typedef))

(type-qual "const")

(type-spec (fixed-type "char")))

(init-declr-list

(init-declr

(ptr-declr (pointer) (ident "string_t")))))

(decl (decl-spec-list

(stor-spec (extern))

(type-spec (typename "string_t")))

(init-declr-list

(init-declr

(array-of (ident "cmds") (p-expr (fixed "10")))))))

If we feed the-tree into tree->udict and use assoc-ref to lookup "cmds" we get

(udecl (decl-spec-list

(stor-spec (extern))

(type-spec (typename "string_t")))

(init-declr

(array-of (ident "cmds") (p-expr (fixed "10")))))

Now take this and feed into expand-decl-typerefs to get

(udecl (decl-spec-list

(stor-spec (extern))

(type-qual "const")

(type-spec (fixed-type "char")))

(init-declr

(ptr-declr

(pointer)

(array-of (ident "cmds") (p-expr (fixed "10"))))))

which, when fed through the C99 pretty-printer, generates

extern const char *cmds[10];

Since the NYACC C99 parser captures some comments, these can be preserved in the above
procedure.
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The Util2 (or Munge) Module

Declarations must have one of

• declarators

int foo;

• struct or union reference

struct foo;

• enum value

enum { FOO = 1 };

We provide the following:

udict-ref udict name

Lookup name in udict. This is like assoc-ref but will check through enums also.

udict-struct-ref udict name

Lookup struct name.

udict-union-ref udict name

Lookup union name.

udict-enum-ref udict name

Lookup enum name.

From Util2
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