
M4 Macros for Electric Circuit Diagrams in LATEX Documents

Dwight Aplevich

Version 8.0

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1

2 Using the macros . . . . . . . . . . . . . . . . 2
2.1 Quick start . . . . . . . . . . . . . 2

2.1.1 Processing with dpic and
PSTricks or Tikz PGF . . . 2

2.1.2 Processing with gpic . . . . 3
2.1.3 Simplifications . . . . . . . 4

2.2 Including the libraries . . . . . . . 5

3 Pic essentials . . . . . . . . . . . . . . . . . . . . . 6
3.1 Manuals . . . . . . . . . . . . . . . 6
3.2 The linear objects: line,

arrow, spline, arc . . . . . . . 6
3.3 Positions . . . . . . . . . . . . . . . 6
3.4 The planar objects: box,

circle, ellipse, and text . . . . 7
3.5 Compound objects . . . . . . . . . 8
3.6 Other language facilities . . . . . . 8

4 Two-terminal circuit elements . . . . 9
4.1 Circuit and element basics . . . . . 9
4.2 The two-terminal elements . . . . . 10
4.3 Branch-current arrows . . . . . . . 13

4.4 Labels . . . . . . . . . . . . . . . . 13

5 Composite circuit elements . . . . . . . 14
5.1 Semiconductors . . . . . . . . . . . 20

6 Directions, looping, and corners . . 22

7 Logic gates . . . . . . . . . . . . . . . . . . . . . . . 24

8 Element and diagram scaling . . . . . 28
8.1 Circuit scaling . . . . . . . . . . . 28
8.2 Pic scaling . . . . . . . . . . . . . . 28

9 Writing macros . . . . . . . . . . . . . . . . . . 29

10 Interaction with LATEX . . . . . . . . . . . 32

11 PSTricks and other tricks . . . . . . . . 34

12 Web documents, pdf, and alterna-
tive output formats . . . . . . . . . . . . . . 35

13 Developer’s notes . . . . . . . . . . . . . . . . 36

14 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

15 List of macros . . . . . . . . . . . . . . . . . . . . 40

1 Introduction

It appears that people who are unable to execute pretty pictures with pen and paper
find it gratifying to try with a computer [13].

This manual describes a method for drawing electric circuits and other diagrams in LATEX and
web documents. The diagrams are defined in the simple pic drawing language [12] augmented
with m4 macros [11], and are processed by m4 and a pic processor to convert them to PSTricks,
Tikz PGF, or other LATEX-compatible code, Postscript, or SVG. The method has the advantages
and disadvantages of TEX itself, since it is macro-based and non-WYSIWYG, with ordinary text
input. The book from which the above quotation is taken correctly points out that the payoff can
be in quality of diagrams at the price of the time spent in learning how to draw them.

A collection of basic components, most based on IEEE standards [9], and conventions for their
internal structure are described. Macros such as these are only a starting point, since it is often
convenient to customize elements or to package combinations of them for particular drawings.

1



2 Using the macros

This section describes the basic process of adding circuit diagrams to LATEX documents to produce
postscript or pdf files. On some operating systems, project management software with graphical
interfaces can be used to automate the process but the steps can be performed by a script, makefile,
or by hand for simple documents as described in Section 2.1.

The diagram source file is preprocessed as illustrated in Figure 1. The predefined macros,
followed by the diagram source, are read by m4. The result is passed through a pic interpreter to
produce .tex output that can be inserted into a .tex document using the \input command.

.m4
diagram

.m4
macros

m4
pic

interpreter

.tex
files

LATEX
or

PDFlatex

.dvi
or

.pdf

Figure 1: Inclusion of figures and macros in the LATEX document.

The interpreter output contains PSTricks [17] commands, Tikz PGF commands, basic LATEX graph-
ics, tpic specials, or other formats, depending on the chosen options, These variations are described
in Section 12.

There are two principal choices of pic interpreter. One is dpic, described later in this document.
A partial alternative [5] is GNU gpic -t (sometimes simply named pic) together with a printer driver
that understands tpic specials, typically dvips [15]. The dpic processor extends the pic language in
small but important ways; consequently, some of the macros and examples in this distribution work
fully only with dpic. Pic processors contain basic macro facilities, so some of the concepts applied
here do not require m4.

2.1 Quick start

The contents of file quick.m4 and resulting diagram are shown in Figure 2 to illustrate the language,
to show several ways for placing circuit elements, and to provide sufficient information for producing
basic labeled circuits.

To process the file, make sure that the libraries libcct.m4 and libgen.m4 are installed and
readable. Verify that m4 is installed and accepts the -I option; otherwise, see page 40. Now there
are at least two basic possibilities as follows, but be sure to read Section 2.1.3 for simplified use.

2.1.1 Processing with dpic and PSTricks or Tikz PGF

If you are using dpic with PSTricks, type the following commands or put them into a script:

m4 -I installdir pstricks.m4 quick.m4 > quick.pic

dpic -p quick.pic > quick.tex

where installdir is the full name (i.e., the path) of the directory containing libcct.m4. The
option -I installdir can be omitted if environment variable M4PATH points to installdir. Put
\usepackage{pstricks} in the main LATEX source file header and the following in the body:

\begin{figure}[hbt]

\centering

\input quick

\caption{Customized caption for the figure.}

\label{Symbolic_label}

\end{figure}

Then the commands latex file; dvips file produce file.ps that can be printed or viewed using
gsview, for example.

2



.PS # Pic input begins with .PS

cct_init # Read in macro definitions and set defaults

elen = 0.75 # Variables are allowed; default units are inches

Origin: Here # Position names are capitalized

source(up_ elen); llabel(-,v_s,+)

resistor(right_ elen); rlabel(,R,)

dot

{ # Save the current position and direction

capacitor(down_ to (Here,Origin)) #(Here,Origin) = (Here.x,Origin.y)

rlabel(+,v,-); llabel(,C,)

dot

} # Restore position and direction

line right_ elen*2/3

inductor(down_ Here.y-Origin.y); rlabel(,L,); b_current(i)

line to Origin

.PE # Pic input ends

−
vs

+ R
+
v
− C L

i

Figure 2: The file quick.m4 and resulting diagram. There are several ways of drawing the same picture;
for example, nodes (such as Origin) can be defined and circuit branches drawn between them; or
absolute coordinates can be used (e.g., source(up from (0,0) to (0,0.75)) ). Element sizes
and styles can be varied as described in later sections.

The effect of the m4 command above is shown in Figure 3. Configuration file pstricks.m4

causes library libgen.m4 to be read, thereby defining the macro cct init. The diagram source file
is then read and the circuit-element macros in libcct.m4 are defined during expansion of cct init.

.pic
m4 Configuration file

pstricks.m4 libgen.m4

· · ·
define(‘cct init’,...)
· · ·

Diagram source quick.m4

.PS
cct init
· · ·

libcct.m4

· · ·
define(‘resistor’,...)
· · ·

Figure 3: The command m4 -I installdir pstricks.m4 quick.m4 > quick.pic.

To produce Tikz PGF code, the commands are modified to read pgf.m4 and invoke the -g

option of dpic as follows:
m4 -I installdir pgf.m4 quick.m4 > quick.pic

dpic -g quick.pic > quick.tex

The LATEX header should contain \usepackage{tikz}, but the inclusion statements are the
same as for PSTricks input. Invoking PDFlatex on the source produces .pdf output directly.

In all cases the essential line is \input quick, which inserts the previously created file quick.tex.

2.1.2 Processing with gpic

If your printer driver understands tpic specials and you are using gpic (on some systems the gpic
command is pic), the commands are

m4 -I installdir gpic.m4 quick.m4 > quick.pic

gpic -t quick.pic > quick.tex

and the figure inclusion statements are as shown:

\begin{figure}[hbt]

3



\input quick

\centerline{\box\graph}

\caption{Customized caption for the figure.}

\label{Symbolic_label}

\end{figure}

2.1.3 Simplifications

m4 must read a configuration file followed by the macro definitions in one or more library files,
either before reading the diagram source file or at the beginning of it. There are several ways to
control the process, as follows:

1. The macros can be processed by LATEX-specific project software and by graphic applications
such as Cirkuit [10]. Alternatively when many files are to be processed, a facility such as Unix
“make,” which is also available in PC and Mac versions, can be employed to automate the
required commands. On systems without such facilities, a scripting language can be used.

2. The m4 commands illustrated above can be shortened to

m4 -I installdir quick.m4 > quick.pic

by inserting include(pstricks.m4) (assuming PSTricks processing) or include(libgen.m4)
(assuming the default processor is to be used) after the .PS line. The effect of the first include
statement is shown in Figure 4 and the second in Figure 5.

3. On some systems, setting the environment variable M4PATH to installdir allows the -I installdir
option of m4 to be omitted, but it will be kept in following examples.

4. In the absence of a need to examine the file quick.pic, the commands for producing the .tex
file can be reduced (provided the above inclusions have been made) to

m4 -I installdir quick.m4 | dpic -p > quick.tex

.pic
m4

Diagram source
.PS
include(pstricks.m4)

cct init
· · ·

Configuration file

pstricks.m4 libgen.m4

· · ·
define(‘cct init’,...)
· · ·

libcct.m4

· · ·
define(‘resistor’,...)
· · ·

Figure 4: The command m4 -I installdir quick.m4 > quick.pic, with include(pstricks.m4) pre-
ceding cct init.

.pic
m4

Diagram source
.PS
include(libgen.m4)

cct init
· · ·

libgen.m4

if..include(pstricks.m4)
· · ·
define(‘cct init’,...)
· · ·

Configuration file

pstricks.m4

libcct.m4

· · ·
define(‘resistor’,...)
· · ·

Figure 5: The command m4 -I installdir quick.m4 > quick.pic, with include(libgen.m4) preceding
cct init, causing the default configuration file to be read.

4



5. It may be desirable to invoke m4 and dpic automatically from the document file as shown:

\documentclass{article}

\usepackage{tikz}

\newcommand\mtotex[2]{\immediate\write18{m4 -I installdir #2.m4 | dpic -#1 > #2.tex}}%

\begin{document}

\mtotex{g}{FileA}

\input{FileA.tex} \par

\mtotex{g}{FileB}

\input{FileB.tex}

\end{document}

The first argument of \mtotex is a p for pstricks or g for pgf. Sources FileA.m4 and FileB.m4

must contain any required include statements, and the main document should be processed
using the latex or pdflatex option -shell-escape. This method processes the picture source
each time LATEX is run, so for large documents containing many diagrams, the \mtotex line
could be commented out after debugging the corresponding graphic.

6. You can put several diagrams into a single source file. Make each diagram the body of a LATEX
macro, as shown:

\newcommand{\diaA}{%

.PS

drawing commands
.PE

\box\graph }% \box\graph not required for dpic

\newcommand{\diaB}{%

.PS

drawing commands
.PE

\box\graph }% \box\graph not required for dpic

Produce a .tex file using \mtotex or m4 and dpic or gpic, insert the .tex into the LATEX
source, and invoke the macros \diaA and \diaB at the appropriate places.

2.2 Including the libraries

The configuration files for dpic are as follows, depending on the output format (see Section 12):
pstricks.m4, pgf.m4, mfpic.m4, mpost.m4, postscript.m4, svg.m4, gpic.m4, or xfig.m4.
For gpic, the configuration file is gpic.m4. The usual case for producing circuit diagrams is to read
pstricks.m4 or pgf.m4 first when dpic is the postprocessor or to set one of these as the default
configuration file.

At the top of each diagram source, put one or more initialization commands; that is,
cct init, log init, sfg init, darrow init, threeD init

or, for diagrams not requiring specialized macros, gen init. As shown in Figure 3 to Figure 5,
each initialization command reads in the appropriate macro library if it hasn’t already been read;
for example, cct init tests whether libcct.m4 has been read and includes it if necessary.

A few of the distributed example files contain other experimental macros that can be pasted
into diagram source files. See Flow.m4, for example.

The libraries contain hints and explanations that might help in debugging or if you wish to
modify any of the macros. Macros are generally named using the obvious circuit element names so
that programming becomes something of an extension of the pic language. Some macro names end
in an underscore to reduce the chance of name clashes. These can be invoked in the diagram source
but there is no long-term guarantee that their names and functionality will remain unchanged.
Finally, macros intended only for internal use begin with the characters m4.

5



3 Pic essentials

Pic source is a sequence of lines in a file. The first line of a diagram begins with .PS with optional
following arguments, and the last line is normally .PE. Lines outside of these pass through the pic
processor unchanged.

The visible objects can be divided conveniently into two classes, the linear objects line, arrow,

spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A compound object, or block, is planar and
consists of a pair of square brackets enclosing other objects, as described in Section 3.5. Objects
can be placed using absolute coordinates or relative to other objects.

Pic allows the definition of real-valued variables, which are alphameric names beginning with
lower-case letters, and computations using them. Objects or locations on the diagram can be given
symbolic names beginning with an upper-case first letter.

3.1 Manuals

The classic pic manual [12] is still a good introduction to pic, but a more complete manual [14]
can be found in the GNU groff package, and both are available on the web [12, 14]. Reading either
will give you competence with pic in an hour or two. Explicit mention of *roff string and font
constructs in these manuals should be replaced by their equivalents in the LATEX context. A man-
page language summary is appended to the dpic manual [1], and the gpic man page is part of the
GNU groff package.

Examples of use of the circuit macros in an electronics course are available on the web [4].
For a discussion of “little languages” for document production, and of pic in particular, see

reference [3] and Chapter 9 of [2]. Chapter 1 of reference [7] also contains a brief discussion of this
and other languages.

3.2 The linear objects: line, arrow, spline, arc

A line can be drawn as follows:
line from position to position

where position is defined below or
line direction distance

where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up , down , left , right . The distance is a number or
expression and the units are inches, but the assignment

scale = 25.4

has the effect of changing the units to millimetres, as described in Section 8.
Lines can also be drawn to any distance in any direction. The example,
line up 3/sqrt(2) right 3/sqrt(2) dashed

draws a line 3 units long from the current location, at a 45◦ angle above horizontal. Lines (and
other objects) can be specified as dotted, dashed, or invisible, as above.

The construction
line from A to B chop x

truncates the line at each end by x (which may be negative) or, if x is omitted, by the current circle
radius, which is convenient when A and B are circular graph nodes, for example. Otherwise

line from A to B chop x chop y

truncates the line by x at the start and y at the end.
Any of the above means of specifying line (or arrow) direction and length will be called a linespec.
Lines can be concatenated. For example, to draw a triangle:
line up sqrt(3) right 1 then down sqrt(3) right 1 then left 2

3.3 Positions

A position can be defined by a coordinate pair, e.g. 3,2.5, more generally using parentheses by
(expression, expression), as a sum or difference as position + (expression, expression), or by the

6



construction (position, position), the latter taking the x-coordinate from the first position and the
y-coordinate from the second. A position can be given a symbolic name beginning with an upper-
case letter, e.g. Top: (0.5,4.5). Such a definition does not affect the calculated figure boundaries.
The current position Here is always defined and is equal to (0, 0) at the beginning of a diagram or
block. The coordinates of a position are accessible, e.g. Top.x and Top.y can be used in expressions.
The center, start, and end of linear objects (and the defined points of other objects as described
below) are predefined positions, as shown in the following example, which also illustrates how to
refer to a previously drawn element if it has not been given a name:

line from last line.start to 2nd last arrow.end then to 3rd line.center

Objects can be named (using a name commencing with an upper-case letter), for example:
Bus23: line up right

after which, positions associated with the object can be referenced using the name; for example:
arc cw from Bus23.start to Bus23.end with .center at Bus23.center

An arc is drawn by specifying its rotation, starting point, end point, and center, but sensible
defaults are assumed if any of these are omitted. Note that

arc cw from Bus23.start to Bus23.end

does not define the arc uniquely; there are two arcs that satisfy this specification. This distribution
includes the m4 macros

arcr( position, radius, start radians, end radians)
arcd( position, radius, start degrees, end degrees)
arca( chord linespec, ccw|cw, radius, modifiers)

to draw uniquely defined arcs. For example,
arcd((1,1),2,0,-90) -> cw

draws a clockwise arc with centre at (1, 1), radius 2, from (3, 1) to (1,−1), and
arca(from (1,1) to (2,2),,1,->)

draws an acute angled arc with arrowhead on the chord defined by the first argument.
The linear objects can be given arrowheads at the start, end, or both ends, for example:
line dashed <- right 0.5

arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)

spline -> right 0.5 then down 0.2 left 0.3 then right 0.4

The arrowheads on the arc above have had their shape adjusted using the height and width

parameters.

3.4 The planar objects: box, circle, ellipse, and text

Planar objects are drawn by specifying the width, height, and position, thus:
A: box ht 0.6 wid 0.8 at (1,1)

after which, in this example, the position A.center is defined, and can be referenced simply as A.
In addition, the compass corners A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw are automatically
defined, as are the dimensions A.height and A.width. Planar objects can also be placed by
specifying the location of a defined point; for example, two touching circles can be drawn as shown:

circle radius 0.2

circle diameter (last circle.width * 1.2) with .sw at last circle.ne

The planar objects can be filled with gray or colour. For example, the line
box dashed fill

produces a dashed box filled with a medium gray by default. The gray density is controlled using
the fill_(number) macro, where 0 ≤ number ≤ 1, with 0 corresponding to black and 1 to white.

Basic colours for lines and fills are provided by gpic and dpic, but more elaborate line and fill
styles can be incorporated, depending on the printing device, by inserting \special commands or
other lines beginning with a backslash in the drawing code. In fact, arbitrary lines can be inserted
into the output using

command "string"
where string is one or more lines to be inserted.

7



Arbitrary text strings, typically meant to be typeset by LATEX, are delimited by double-quote
characters and occur in two ways. The first way is illustrated by

"\large Resonances of $C_{20}H_{42}$" wid x ht y at position
which writes the typeset result, like a box, at position and tells pic its size. The default size assumed
by pic is given by parameters textwid and textht if it is not specified as above. The exact typeset
size of formatted text can be obtained as described in Section 10. The second occurrence associates
one or more strings with an object, e.g., the following writes two words, one above the other, at the
centre of an ellipse:

ellipse "\bf Stop" "\bf here"

The C-like pic function sprintf("format string",numerical arguments) is equivalent to a string.

3.5 Compound objects

A compound object is a group of statements enclosed in square brackets. Such an object is placed
by default as if it were a box, but it can also be placed by specifying the final position of a defined
point. A defined point is the center or compass corner of the bounding box of the compound object
or one of its internal objects. Consider the last line of the code fragment shown:
Ands: [ right_

And1: AND_gate

And2: AND_gate at And1 - (0,And1.ht*3/2)

. . .
] with .And2.In1 at position

The two gate macros evaluate to compound objects containing Out, In1, and other locations.
The final positions of all objects between the square brackets are determined in the last line by
specifying the position of In1 of gate And2.

3.6 Other language facilities

All objects have default sizes, directions, and other characteristics, so part of the specification of
an object can sometimes be profitably omitted.

Another possibility for defining positions is
expression between position and position

which means
1st position + expression× (2nd position− 1st position)

and which can be abbreviated as
expression < position , position >

Care has to be used in processing the latter construction with m4, since the comma may have to
be put within quotes, ‘,’ to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables. The scope of a position is
the current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)

line to Here+(3*cos(theta),3*sin(theta)).

Expressions are the usual algebraic combinations of primary quantities: constants, environ-
mental parameters such as scale, variables, horizontal or vertical coordinates of terms such as
position.x or position.y, dimensions of pic objects, e.g. last circle.rad. The elementary alge-
braic operators are +, -, *, /, %, =, +=, -=, *=, /=, and %=, similar to the C language.

The logical operators ==, !=, <=, >=, >, and < apply to expressions and strings. A modest
selection of numerical functions is also provided: the single-argument functions sin, cos, log,

exp, sqrt, int, where log and exp are base-10, the two-argument functions atan2, max, min,

and the random-number generator rand(). Other functions are also provided using macros.
A pic manual should be consulted for details, more examples, and other facilities, such as the

branching facility
if expression then { anything } else { anything },

the looping facility
for variable = expression to expression by expression do { anything },

operating-system commands, pic macros, and external file inclusion.

8



4 Two-terminal circuit elements

There is a fundamental difference between the two-terminal elements, which are directed objects
that are positioned and oriented by defining an invisible line segment, and other elements, which
are compound objects mentioned in Section 3.5. The two-terminal element macros follow a set of
conventions described in this section, and other elements will be described in Section 5.

4.1 Circuit and element basics

A list of the library macros and their arguments is in Section 15. The arguments have default
values, so that only those that differ from defaults need be specified.

Figure 6, which shows a resistor, also serves as an example of pic commands. The first part of
the source file for this figure is on the left:

.PS

cct init

linewid = 2.0

linethick (2.0)

R1: resistor
last []R1.start R1.endR1.centre

elen
dimen

Figure 6: Resistor named R1, showing the size parameters, enclosing block, and predefined positions.

The lines of Figure 6 and the remaining source lines of the file are explained below:

• The first line invokes the macro cct init that loads the library libcct.m4 and initializes
local variables needed by some circuit-element macros.

• The sizes of circuit elements are multiples of the pic environmental variable linewid, so
redefining this variable changes element sizes. The element body is drawn in proportion to
dimen , a macro that evaluates to linewid unless redefined, and the default element length
is elen , which evaluates to dimen *3/2 unless redefined. Setting linewid to 2.0 as in the
example means that the default element length becomes 3.0 in. For resistors, the default length
of the body is dimen /2, and the width is dimen /6. All of these values can be customized.
Element scaling and the use of SI units is discussed further in Section 8.

• The macro linethick sets the default thickness of subsequent lines (to 2.0 pt in the example).
Macro arguments are written within parentheses following the macro name, with no space
between the name and the opening parenthesis. Lines can be broken before macro arguments
because m4 and dpic ignore white space immediately preceding arguments. Otherwise, a long
line can be continued to the next by putting a backslash as the rightmost character.

• The two-terminal element macros expand to sequences of drawing commands that begin with
‘line invis linespec’, where linespec is the first argument of the macro if it is non-blank,
otherwise the line is drawn a distance elen in the current direction, which is to the right
by default. The invisible line is first drawn, then the element is drawn on top of it. The
element—rather, the initial invisible line—can be given a name, R1 in the example, so that
positions R1.start, R1.centre, and R1.end are automatically defined as shown.

• The element body is overlaid by a block, which can be used to place labels around the
element. The block corresponds to an invisible rectangle with horizontal top and bottom
lines, regardless of the direction in which the element is drawn. A dotted box has been drawn
in the diagram to show the block boundaries.

• The last sub-element, identical to the first in two-terminal elements, is an invisible line that
can be referenced later to place labels or other elements. If you create your own macros, you
might choose simplicity over generality, and include only visible lines.

To produce Figure 6, the following embellishments were added after the previously shown source:

9



thinlines_

box dotted wid last [].wid ht last [].ht at last []

move to 0.85 between last [].sw and last [].se

spline <- down arrowht*2 right arrowht/2 then right 0.15; "\tt last []" ljust

arrow <- down 0.3 from R1.start chop 0.05; "\tt R1.start" below

arrow <- down 0.3 from R1.end chop 0.05; "\tt R1.end" below

arrow <- down last [].c.y-last arrow.end.y from R1.c; "\tt R1.centre" below

dimension_(from R1.start to R1.end,0.45,\tt elen\_,0.4)

dimension_(right_ dimen_ from R1.c-(dimen_/2,0),0.3,\tt dimen\_,0.5)

.PE

• The line thickness is set to the default thin value of 0.4 pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

• The next paragraph draws two objects, a spline with an arrowhead, and a string left justified
at the end of the spline. Other string-positioning modifiers than ljust are rjust, above,

and below.

• The last paragraph invokes a macro for dimensioning diagrams.

4.2 The two-terminal elements

The two-terminal elements are shown in Figure 7 to Figure 12. Several elements are included more
than once to illustrate some of their arguments, which are listed in Section 15.

resistor resistor(,,Q)
resistor(,,E)
≡ ebox

resistor(,,ES) resistor(,4,QR) resistor(,,H)

resistor(,,V) ebox(,,,0.5) ebox(,0.5,0.3)

inductor inductor(,W) inductor(,L)

inductor(,,,M) inductor(,W,6,P) G ttmotor(,G)

capacitor capacitor(,C) capacitor(,C+)

capacitor(,P) capacitor(,E) capacitor(,K)

capacitor(,M) capacitor(,N) xtal

memristor heater tline

gap gap(,,A) arrowline

Figure 7: Basic two-terminal elements, showing some variations.

The first macro argument specifies the invisible line segment along which the element is drawn.
If the argument is blank, the element is drawn from the current position in the current drawing
direction along a default length. The other arguments produce variants of the default elements.
Thus, for example,

resistor(up 1.25,7)

draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The macro
up evaluates to up but also resets the current directional parameters to point up.

Most of the two-terminal elements are oriented; that is, they have a defined polarity. Sev-
eral element macros include an argument that reverses polarity, but there is also a more general
mechanism, as follows.

10



source

source(,I)

source(,i)

− + source(,V)

source(,v)

source(,AC)

source(,X)

source(,F)

source(,G)

source(,Q)

source(,,0.4)

source(,P)

source(,U)

source(,R)

source(,S)

source(,T)

source(,L)

source(,B)

nullator

norator

source(,N)

µA source(,"$\mu$A")

consource

consource(,I)

consource(,i)

− + consource(,V)

consource(,v)

battery

battery(,3,R)

Figure 8: Sources and source-like elements.

diode

diode(,S)

diode(,V)

diode(,v)

diode(,w)

diode(,B)

diode(,CR)

diode(,K)

diode(,L)

diode(,D)

diode(,LE)

diode(,Z,RE)

diode(,T,E)

diode(,PR)

Figure 9: The macro diode(linespec,B|CR|D|K|L|LE[R]|P[R]|S|T|V|v|w|Z,[R][E]).

fuse fuse(,D) fuse(,B) fuse(,C) fuse(,S) fuse(,HB)

(,HC,0.5,0.3) cbreaker cbreaker(,R) . . .(,,D) . . .(,,T) . . .(,,TS)

Figure 10: Variations of the macros fuse(linespec, A|dA|B|C|D|E|S|HB|HC, wid, ht) and
cbreaker(linespec,L|R,D|T|TS).

amp

amp(,0.3)

delay

delay(,0.2)

integrator

integrator(,0.3)

Figure 11: Amplifier, delay, and integrator.

The first argument of the macro
reversed(‘macro name’,macro arguments)

is the name of a two-terminal element in quotes, followed by the element arguments. The element
is drawn with reversed direction. Thus,

diode(right 0.4); reversed(‘diode’,right 0.4)

draws two diodes to the right, but the second one points left.

11



lswitch (,,O) (,,C) (,,D) (,,DO) (,,DC)

(,,K) (,,KD) (,,KOD) (,,KCD) bswitch (,,C)

dswitch=
switch(,,,D)

W B

(,,WdBK)

dB K

(,,WBuD) (,,WBF)
(,,WdBKF)

(,,WBL)

(,,WdBKL)
(,,WBT)

(,,WdBKC)
(,,WBM) (,,WBCO) (,,WBMP)

(,,WBCY) (,,WBCZ) (,,WBCE) (,,WBRH) (,,WBRdH) (,,WBRHH)

(,,WBMMR) (,,WBMM) (,,WBMR) (,,WBEL) (,,WBLE)
(,,WdBKEL)

Figure 12: The switch(linespec,L|R,chars,L|B|D) macro is a wrapper for the macros
lswitch(linespec,[L|R],[O|C][D][K]), bswitch(linespec,[L|R],[O|C]), and the many-optioned
dswitch(linespec,R,W[ud]B[K] chars) shown. The switch is drawn in the current drawing direc-
tion. A second-argument R produces a mirror image with respect to the drawing direction.

Similarly, the macro
resized(factor,‘macro name’,macro arguments)

can be used to resize the body of an element by temporarily multiplying the dimen macro by factor.
More general resizing should be done by redefining dimen as described in Section 8.1. These two
macros can be nested; the following scales the above example by 1.8, for example

resized(1.8,‘diode’,right 0.4); resized(1.8,‘reversed’,‘diode’,right 0.4)

Figure 13 shows some two-terminal elements with arrows or lines overlaid to indicate variability
using the macro variable(‘element’,type,angle,length), where type is one of A, P, L, N, with
C or S optionally appended to indicate continuous or stepwise variation. Alternatively, this macro
can be invoked similarly to the label macros in Section 4.4 by specifying an empty first argument;
thus, the following line draws the resistor in Figure 13:

resistor(down dimen ); variable(,uN)
C S

A

P

L

N

Figure 13: Illustrating variable(‘element’,[A|P|L|[u]N][C|S],angle,length). For example,
variable(‘capacitor(down dimen )’) draws the leftmost capacitor shown above, and
variable(‘resistor(down dimen )’,uN) draws the resistor. The default angle is 45◦, regardless
of the direction of the element. The array on the right shows the effect of the second argument.

12



Figure 14 contains arrows for indicating radiation effects. The arrow stems are named A1, A2,
and each pair is drawn in a [] block, with the names Head and Tail defined to aid placement near
another device. The second argument specifies absolute angle in degrees (default 135 degrees).

Head

Tail

A1

A2

em arrows(N)

em arrows(ND,45) . . .(I) . . .(ID) . . .(E) . . .(ED)

Figure 14: Radiation arrows: em arrows(type, angle, length)

4.3 Branch-current arrows

Arrowheads and labels can be added to conductors using basic pic statements. For example, the
following line adds a labeled arrowhead at a distance alpha along a horizontal line that has just
been drawn. Many variations of this are possible:

arrow right arrowht from last line.start+(alpha,0) "$i_1$" above

Macros have been defined to simplify labelling two-terminal elements, as shown in Figure 15.
The macro

b current(label, above |below , In|O[ut], Start|E[nd], frac)
draws an arrow from the start of the last-drawn two-terminal element frac of the way toward the
body.

i

b current(i)
i

. . .(i,below )

i

. . .(i,,O)
i

. . .(i,below ,O)

i

b current(i,,,E)
i

. . .(i,below ,,E)

i

. . .(i,,O,E,0.2)
i

. . .(i,below ,O,E)

i

larrow(i)
i

rarrow(i)

i

larrow(i,<-)
i

rarrow(i,<-)

Figure 15: Illustrating b current, larrow, and rarrow. The drawing direction is to the right.

If the fourth argument is End, the arrow is drawn from the end toward the body. If the third
element is Out, the arrow is drawn outward from the body. The first argument is the desired label,
of which the default position is the macro above , which evaluates to above if the current direction
is right or to ljust, below, rjust if the current direction is respectively down, left, up. The label
is assumed to be in math mode unless it begins with sprintf or a double quote, in which case it
is copied literally. A non-blank second argument specifies the relative position of the label with
respect to the arrow, for example below , which places the label below with respect to the current
direction. Absolute positions, for example below or ljust, also can be specified.

For those who prefer a separate arrow to indicate the reference direction for current, the macros
larrow(label, ->|<-,dist) and rarrow(label, ->|<-,dist) are provided. The label is placed out-
side the arrow as shown in Figure 15. The first argument is assumed to be in math mode unless it
begins with sprintf or a double quote, in which case the argument is copied literally. The third
argument specifies the separation from the element.

4.4 Labels

Special macros for labeling two-terminal elements are included:
llabel( arg1,arg2,arg3 )

clabel( arg1,arg2,arg3 )

rlabel( arg1,arg2,arg3 )

dlabel( long,lat,arg1,arg2,arg3,[X][A|B][L|R])

13



The first macro places the three arguments, which are treated as math-mode strings, on the
left side of the element block with respect to the current direction: up, down, left, right. The
second places the arguments along the centre, and the third along the right side. A simple circuit
example with labels is shown in Figure 16. The macro dlabel performs these functions for an
obliquely drawn element, placing the three macro arguments at vec (-long,lat), vec (0,lat),

and vec (long,lat) respectively relative to the centre of the element. In the fourth argument,
an X aligns the labels with respect to the line joining the two terminals rather than the element
body, and A, B, L, R use absolute above, below, left, or right alignment respectively for the
labels. Labels beginning with sprintf or a double quote are copied literally rather than assumed
to be in math mode.

Arbitrary LATEX including \includegraphics, for example, can also be placed on a diagram
using

"LATEX text" wid width ht height at position

% ‘Loop.m4’

.PS

cct_init

define(‘dimen_’,0.75)

loopwid = 1; loopht = 0.75

source(up_ loopht); llabel(-,v_s,+)

resistor(right_ loopwid); llabel(,R,); b_current(i)

inductor(down_ loopht,W); rlabel(,L,)

capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)

.PE

−

vs

+

Ri

L

+
vC
−
C

Figure 16: A loop containing labeled elements, with its source code.

5 Composite circuit elements

Many basic elements are not two-terminal. These elements are usually enclosed in a [ ] pic block,
and contain named interior locations and components. The block must be placed by using its
compass corners, thus: element with corner at position or, when the block contains a predefined
location, thus: element with location at position. A few macros are positioned with the first
argument; the ground macro, for example: ground(at position). In some cases, an invisible line
can be specified by the first argument to determine length and direction (but not position) of the
block.

Nearly all elements drawn within blocks can be customized by adding an extra argument, which
is executed as the last item within the block.

The macro potentiometer(linespec,cycles,fractional pos,length, . . .), shown in Figure 17,
first draws a resistor along the specified line, then adds arrows for taps at fractional positions along
the body, with default or specified length. A negative length draws the arrow from the right of the
current drawing direction.

potentiometer(down dimen )

Start

End

T1

...(down dimen ,,0.5,-5m )

Start

End

T1

...(down dimen ,,0.25,-5mm ,0.75,5mm )

Start

End

T1
T2

Figure 17: Default and multiple-tap potentiometer.

The macro addtaps([arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length,
. . .), shown in Figure 18, will add taps to the immediately preceding two-terminal element. However,
the default names Tap1, Tap2 . . . may not be unique in the current scope. An alternative name
for the taps can be specified or, if preferable, the tapped element can be drawn in a [ ] block using

14



the macro tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name], fraction,
length, fraction, length, . . .). Internal names .Start, .End, and .C are defined automatically,
corresponding to the drawn element. These and the tap names can be used to place the block.
These two macros require the two-terminal element to be drawn either up, down, to the left, or to
the right; they are not designed for obliquely drawn elements.

R1.start R1.end

Tap1

Tap2
right ; t = 0.2in

R1: resistor(,,E)
addtaps(<-,0.2,-t,0.8,t) Tx1 Tx3

R2: ebox(,elen *0.6)
addtaps(type=-;name=Tx,

0.2,-t,0.5,-t,0.8,-t)

R3.Start R3.End

R3.Tap1 R3.Tap3

R3: tapped(‘ebox(,elen *0.6,)’,->,0.2,-t,0.5,-t,0.8,-t) \

with .Start at R1.start+(0.25in ,-0.6in )

L1: tapped(‘inductor(right 9*dimen /8,,9)’,

-,0,-t,3/9,-t/2,6/9,-t/2,1,-t)
L1.Tap1 L1.Tap4

Figure 18: Macros for adding taps to two-terminal elements.

A few composite symbols derived from two-terminal elements are shown in Figure 19.

KelvinR

T1 T2Start End

KelvinR(,R)
T1 T2

FTcap

Start End
T1

T2

FTcap(B)

Start End
T1

T2
FTcap(C)

Start End

T
FTcap(D)

Start End

T

Figure 19: Composite elements KelvinR(cycles,[R],cycle wid) and FTcap(chars) .

The ground symbol is shown in Figure 20. The first argument specifies position; for example,
the two lines shown have identical effect:

move to (1.5,2); ground

ground(at (1.5,2))

The second argument truncates the stem, and the third defines the symbol type. The fourth
argument specifies the angle at which the symbol is drawn, with D (down) the default. This macro
is one of several in which a temporary drawing direction is set using the setdir ( U|D|L|R|degrees,
default R|L|U|D|degrees ) macro and reset at the end using resetdir .

ground
ground(,T)

(,,F) (,,E) (,,S) (,,S,90) (,,Q) (,,L) (,,P)

Figure 20: The ground( at position, T, N|F|S|L|P|E, U|D|L|R|degrees ) macro.

The arguments of the macro antenna( at position, T, A|L|T|S|D|P|F, U|D|L|R|degrees )

shown in Figure 21 are similar to those of ground.

T

antenna

T

(,T)

T1 T2

(,,L)

T1 T2

(,T,L)

T

(,,T)

T1 T2

(,,S)

T1 T2

(,,D)

T

(,,P)

T

(,,F)

Figure 21: Antenna symbols, with macro arguments shown above and terminal names below.

15



Figure 22 illustrates the macro opamp(linespec, - label, + label, size, chars). The element
is enclosed in a block containing the predefined internal locations shown. These locations can
be referenced in later commands, for example as ‘last [].Out.’ The first argument defines the
direction and length of the opamp, but the position is determined either by the enclosing block of
the opamp, or by a construction such as ‘opamp with .In1 at Here’, which places the internal
position In1 at the specified location. There are optional second and third arguments for which the
defaults are \scriptsize$-$ and \scriptsize$+$ respectively, and the fourth argument changes
the size of the opamp. The fifth argument is a string of characters. P adds a power connection, R
exchanges the second and third entries, and T truncates the opamp point.

−

+

opamp

Out

In1

In2

N
E1

E

E2
S

W
−

+

Point (15); opamp(,,,,PR)

V1

V2 − +

Point (90); opamp

−

+

opamp(,,,,T)

Figure 22: Operational amplifiers. The P option adds power connections. The second and third arguments
can be used to place and rotate arbitrary text at In1 and In2.

Typeset text associated with circuit elements is not rotated by default, as illustrated by the
second and third opamps in Figure 22. The opamp labels can be rotated if necessary by using
postprocessor commands (for example PSTricks \rput) as second and third arguments.

The code in Figure 23 places an opamp with three connections.

line right 0.2 then up 0.1

A: opamp(up_,,,0.4,R) with .In1 at Here

line right 0.2 from A.Out

line down 0.1 from A.In2 then right 0.2

−+

Figure 23: A code fragment invoking the opamp(linespec,-,+,size,[R][P]) macro.

Figure 24 shows variants of the transformer macro, which has predefined internal locations P1,
P2, S1, S2, TP, and TS. The first argument specifies the direction and distance from P1 to P2,
with position determined by the enclosing block as for opamps. The second argument places the
secondary side of the transformer to the left or right of the drawing direction. The optional third
and fifth arguments specify the number of primary and secondary arcs respectively. If the fourth
argument string contains an A, the iron core is omitted; if a P, the core is dashed (powder); and if
it contains a W, wide windings are drawn. A D1 puts phase dots at the P1, S1 end, D2 at the P2, S2
ends, and D12 or D21 puts dots at opposite ends.

P1

P2

TP

S1

S2

TS

transformer

P1

P2

TP

S1

S2

TS

...(down 0.6,,2,P,8)

P1

P2

TP

S1

S2

TS

...(,,8,WD12,4)

P1

P2

TP

S1

S2

TS

...(,,9,AL)

P1

P2

TP

S1

S2

TS

...(,R,8,AW)

Figure 24: The transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns) macro (drawing di-
rection down), showing predefined terminal and centre-tap points.

Figure 25 shows some audio devices, defined in [] blocks, with predefined internal locations as
shown. The first argument specifies the device orientation.

Thus,
S: speaker(U) with .In2 at Here

places an upward-facing speaker with input In2 at the current location.

16



speaker

In1

In2

In3

In4 In5

In6 In7

Box

. . .(,,H)

bell

In1

In2

In3

Box Circle

microphone

In1

In2

In3

Circle

buzzer

In1

In2

In3

Box

buzzer(,,C)

In1

In2

In3

Face

earphone

In1

In2

In3

Box

earphone(,,C)

L R

N

C

Figure 25: Audio components: speaker(U|D|L|R|degrees,size,type), bell, microphone, buzzer,

earphone, with their internally named positions and components.

The nport(box specs [; other commands], nw, nn, ne, ns, space ratio, pin lgth, style) macro
is shown in Figure 26. The macro begins with the line define(‘nport’,‘[Box: box ‘$1’, so the
first argument is a box specification such as size, fill, or text. The second to fifth arguments specify
the number of ports (pin pairs) to be drawn respectively on the west, north, east, and south sides
of the box. The end of each pin is named according to the side, port number, and a or b pin, as
shown. The sixth argument specifies the ratio of port width to inter-port space, the seventh is the
pin length, and setting the eighth argument to N omits the pin dots. The macro ends with ‘$9’]’),
so that a ninth argument can be used to add further customizations within the enclosing block.

W1a

W1b

E1a

E1b

n-port

W1a

W1b

E1a

E3b

N1a N1b N2a N2b

S1a S4b· · ·

... W1 E1

S1
nport

nport(wid 2.0 ht 1 fill (0.9) "n-port",1,2,3,4)

nterm

Figure 26: The nport macro draws a sequence of pairs of named pins on each side of a box. The pin
names are shown. The default is a twoport. The nterm macro draws single pins instead of pin
pairs.

The nterm(box specs, nw, nn, ne, ns, pin lgth, style) macro illustrated in Figure 26 is similar to
the nport macro but has one fewer argument, draws single pins instead of pin pairs, and defaults
to a 3-terminal box.

Many custom labels or added elements may be required, particularly for 2-ports. These elements
can be added using the first argument and the ninth of the nport macro. For example, the following
code adds a pair of labels to the box immediately after drawing it but within the enclosing block:

nport(; ‘"0"’ at Box.w ljust; ‘"∞"’ at Box.e rjust)

If this trick were to be used extensively, then the following custom wrapper would save typing,
add the labels, and pass all arguments to nport:

define(‘nullor’,‘nport(‘$1’

{‘"${}0$"’ at Box.w ljust

‘"$\infty$"’ at Box.e rjust},shift($@))’)

The above example and the related gyrator macro are illustrated in Figure 27.
A basic winding macro for magnetic-circuit sketches and similar figures is shown in Figure 28.

For simplicity, the complete spline is first drawn and then blanked in appropriate places using the
background (core) color (lightgray for example, default white).

17



0 ∞

nullor gyrator
gyrator(invis,,0,N)

gyrator(invis wid boxht,,0,NV)

Figure 27: The nullor example and the gyrator macro are customizations of the nport macro.

winding

winding(R)

pitch

diam core wid

core color

T1 T2

Left pins
cw

T1

T2

Left pins
ccw

T1

T2

Right pins
cw

T1

T2

Right pins
ccw

T1

T2

g
i1

−
v1

+

N1

i2

−
v2

+

N2

φ

Figure 28: The winding(L|R, diam, pitch, turns, core wid, core color) macro draws a coil with
axis along the current drawing direction. Terminals T1 and T2 are defined. Setting the first argument
to R draws a right-hand winding.

Figure 29 shows the macro contact(chars), which contains predefined locations P, C, O for the
armature and normally closed and normally open terminals. An I in the first argument draws open
circles for contacts. The macro relay(poles, chars, R) defines coil terminals V1, V2 and contact
terminals Pi, Ci, Oi.

contact

P

O

C

contact(,R)

P

O

C

contact(P)

P

O

C

contact(O,) contact(C,)

contact(I)

P
O
C

contact(RI)

P
O
C

contact(PI)

P
O

C

contact(OI) contact(CI)

V1 V2

P1

O1

C1

relay

V1 V2

P1

O1

C1

P2

O2

C2

relay(2)

V1 V2

P1
O1

C1

P2
O2

C2

relay(2,RIP) relay(2,O) relay(2,CT)

Figure 29: The contact(O|C,R) and relay(poles,O|C,R) macros (default direction right).

The double-throw switches shown in Figure 30 are drawn in the current drawing direction like
the two-terminal elements, but are composite elements that must be placed accordingly.

RTL
NPDT

R

T

L
up ; NPDT

R1L1

R2L2

NPDT(2)

R1L1

R2L2

R3L3

NPDT(3,R)

R1 L1

R2 L2

left ; NPDT(2,R)

Figure 30: Multipole double-throw switches drawn by NPDT(npoles, [R]).

18



The jack and plug macros and their defined points are illustrated in Figure 31. The first
argument of both macros establishes the drawing direction. The second argument is a string of
characters defining drawn components. An R in the string specifies a right orientation with respect
to the drawing direction. The two principal terminals of the jack are included by putting L S or
both into the string with associated make (M) or break (B) points. Thus, LMB within the third
argument draws the L contact with associated make and break points. Repeated L[M|B] or S[M|B]
substrings add auxiliary contacts with specified make or break points.

A

B TB

TA

A

B A

B
C

A

B
C

plug plug(,R) plug(,3) plug(L,3R)

L
F

G

L
LM

LB
S

L

S

L1
LM1L2
LM2

S

L
LB

L

S

S1
SM1

LB
SB

jack jack(,LMBS) ..(L,RLS) ..(L,RLBLMLMS) ..(,RSBSMLB)

Figure 31: The jack(U|D|L|R|degrees, chars) and plug(U|D|L|R|degrees,[2|3][R]) components and
their defined points.

A macro for drawing headers is in Figure 32, and some experimental connectors are shown in
Figure 33 and Figure 34. The tstrip macros allows key=value; arguments for width and height.

P1

Header

P2
P1

Header(2,3,8mm ,10mm )

P2

P5 P6 P1

left ; Header(2,4,,,fill (0.9))

P8
P1

P2
down ; Header(2,8)

P15

P16

PinP1
PinP2

Figure 32: Macro Header(1|2, rows, wid, ht, type).

L1

L4
...

R1

R4
...

T1

T4
...

tstrip(U)

T1 T5· · ·

tstrip(R,5,

DO;wid=1.0;ht=0.25)

ccoax

C

S

ccoax(,F)

tconn(,O) (,>) (,>>)

tconn(,<) (,<<)

Figure 33: Macros tstrip(R|L|U|D|degrees, chars), ccoax(at location, M|F, diameter), and
tconn(linespec, >|>>|<|<<|O, wid).

H N
G

pconnex(,A)

HN

G

(,AF) (,AC) (,ACF) (,P) (U,D) (U,DF) (U,J) (U,JF)

(,G) (,GF) (L,GF) (,GC)

Figure 34: A small set of power connectors drawn by pconnex(R|L|U|D|degrees, chars). Each connector
has an internal H, N, and where applicable, a G shape.

19



5.1 Semiconductors

Figure 35 shows the variants of bipolar transistor macro bi tr(linespec,L|R,P,E) which contains
predefined internal locations E, B, C. The first argument defines the distance and direction from E

E

B

C

bi tr(up dimen )

E

B

C

bi tr(,R)
E

B

C

bi tr(,,P)

E

B

C

bi tr(,,,E)
E

G

C

igbt

E

G

C

igbt(,,LD)

Figure 35: Bipolar transistor variants (current direction upward).

to C, with location determined by the enclosing block as for other elements, and the base placed
to the left or right of the current drawing direction according to the second argument. Setting the
third argument to ‘P’ creates a PNP device instead of NPN, and setting the fourth to ‘E’ draws
an envelope around the device. Figure 36 shows a composite macro with several optional internal
elements.

E

B

C

Darlington

E

B

B1

C

(R,DZB1)

E

B

B1

C

(,EB1)

E

B

B1

C

(,EB1DZR1)

E

B

B1

C

(,EB1DE1E2)

Figure 36: Macro Darlington(L|R,[E][P][B1][E1|R1][E2|R2][D][Z]), drawing direction up .

The code fragment example in Figure 37 places a bipolar transistor, connects a ground to the
emitter, and connects a resistor to the collector.

S: dot; line left_ 0.1; up_

Q1: bi_tr(,R) with .B at Here

ground(at Q1.E)

line up 0.1 from Q1.C; resistor(right_ S.x-Here.x); dot

Figure 37: The bi tr(linespec,L|R,P,E) macro.

The bi tr and igbt macros are wrappers for the macro bi trans(linespec, L|R, chars, E),
which draws the components of the transistor according to the characters in its third argument.
For example, multiple emitters and collectors can be specified as shown in Figure 38.

C

B

E

B

C

BU

uE
S

S

bi trans(,,BCuEBUS)

C

B

E0E2 E1

Em2

bi trans(,,BCdE2BU)

E

B

C0 C2C1

Cm2

bi trans(,,BC2dEBU)

Figure 38: The bi trans(linespec,L|R,chars,E) macro. The sub-elements are specified by the third
argument. The substring En creates multiple emitters E0 to En. Collectors are similar.

A UJT macro with predefined internal locations B1, B2, and E is shown in Figure 39, and a
thyristor macro with predefined internal locations G and T1, T2, or A, K is in Figure 40. Except
for the G terminal, a thyristor (the C variant excluded) is much like an two-terminal element. The
wrapper macro scr(linespec, chars, label) draws a thyristor and places it using linespec as for a
two-terminal element, but requires a third argument for the label for the compound block; thus,

scr(from A to B,UA,Q3); line right from Q3.G

20



B1

E
B2

ujt(up dimen ,,,E)

B1

E B2

ujt(,,P,)

B1

EB2

ujt(,R,,)

B1

EB2

ujt(,R,P,)

Figure 39: UJT devices, with current drawing direction up .
A

K
G

thyristor

T1

T2
G

...(,B)

T1

T2
G

...(,BR)

T1

T2
G

...(,BGE)

T1

T2
G

...(,BRGE)

A

K

G

...(,C)

A

KG

...(,ARE)

A

K G

...(,UA)

A

K

G

...(,UAV)

A

K

G

...(,UAH)

A

K

G

...(,UAN)

A

K

G

...(,UANRE)

Figure 40: The thyristor(linespec, chars) macro, drawing direction down . The element is not two-
terminal, so the linespec determines length and direction but not position. The scr macro places
the thyristor as a two-terminal element.

draws the element from position A to position B with label Q3, and draws a line from G.
The number of possible semiconductor symbols is very large, so these macros must be regarded

as prototypes. Often an element is a minor modification of existing elements. For example, the
thyristor(linespec, chars) macro illustrated in Figure 40 is derived from the diode and bipolar
transistor macros. Another example is the tgate macro shown in Figure 41, which also shows a
pass transistor.

A B
G

Gb
tgate

A B
G

Gb

tgate(,L)

A B
G

tgate(,B)

A B

G

Gb
ptrans

A B

G

Gb

ptrans(,L)

Figure 41: The tgate(linespec, [B][R|L]) element, derived from a customized diode and ebox, and the
ptrans(linespec, [R|L]) macro. These are not two-terminal elements, so the linespec argument
defines the direction and length of the line from A to B but not the element position.

Some FETs with predefined internal locations S, D, and G are also included, with similar
arguments to those of bi tr, as shown in Figure 42. In all cases the first argument is a linespec,
and entering R as the second argument orients the G terminal to the right of the current drawing
direction. The macros in the top three rows of the figure are wrappers for the general macro
mosfet(linespec,R,characters,E). The third argument of this macro is a subset of the characters
{BDEFGLMQRSTXZ}, each letter corresponding to a diagram component as shown in the bottom row
of the figure. Preceding the characters B, G, and S by u or d adds an up or down arrowhead to the
pin, preceding T by d negates the pin, and preceding M by u or d puts the pin at the drain or source
end respectively of the gate. The obsolete letter L is equivalent to dM and has been kept temporarily
for compatibility. This system allows considerable freedom in choosing or customizing components,
as illustrated in Figure 42.

Some other non-two-terminal macros are dot, which has an optional argument ‘at location’,
the line-thickness macros, the fill macro, and crossover, which is a useful if archaic method to
show non-touching conductor crossovers, as in Figure 43.

This figure also illustrates how elements and labels can be colored using the macro
rgbdraw(r, g, b, drawing commands)

21



j fet(right dimen ,,,E)

G

S D

j fet(,,P,)

G

S D

e fet(,R,,)

G

S D

e fet(,,P,)

d fet(,,,)

d fet(,,P,)

e fet(,,,S)

e fet(,,P,S)

d fet(,,,S)

d fet(,,P,S)

c fet(,,,)

c fet(,,P)

mosfet(,,dGSDF,)

dG

F
S D

. . .(,,uHSDF,)

uH

. . .(,,dMEDSQuB,)

dM

E
Q

uB

. . .(,,uMEDSuB)

G

S D
B . . .(,,ZSDFdT,)

Z

dT

IRF4905

G

D

S

Figure 42: JFET, insulated-gate enhancement and depletion MOSFETs, and simplified versions. These
macros are wrappers that invoke the mosfet macro as shown in the bottom row. The two lower-
right examples show custom devices, the first defined by omitting the substrate connection, and the
second defined using a wrapper macro.

Q1 Q2

RL

Vcc

RLR1 R1

R2

−Vcc

R2

Figure 43: Bipolar transistor circuit, illustrating crossover and colored elements.

where the r, g, b values are in the range 0 to 1 (integers from 0 to 255 for SVG) to specify the rgb
color. This macro is a wrapper for the following, which may be more convenient if many elements
are to be given the same color:

setrgb(r, g, b)
drawing commands
resetrgb

A macro is also provided for colored fills:
rgbfill(r, g, b, drawing commands)

These macros depend heavily on the postprocessor and are intended only for PSTricks, Tikz PGF,
MetaPost, SVG, and the Postscript output of dpic.

6 Directions, looping, and corners

Aside from its block-structure capabilities, looping, and macros, pic has a very useful concept
of the current point and current direction, the latter unfortunately limited to up, down, left,

right. The circuit macros need to know the current direction, so whenever up, down, left,

right are used they should be written respectively as the macros up , down , left , right . To
allow drawing circuit objects in other than the standard four directions, a transformation matrix is
applied at the macro level to generate the required pic code. Potentially, the matrix can be used for
other transformations. The macros Point (degrees), point (radians), and rpoint (rel linespec)
re-define the entries m4a , m4b , m4c , m4d of the matrix for the required rotation.

The macro eleminit in the two-terminal elements invokes rpoint with a specified or default
linespec to establish element length and direction. As shown in Figure 44, ‘Point (-30); resistor’

22



% ‘Oblique.m4’

.PS

cct_init

Ct:dot; Point_(-60); capacitor(,C); dlabel(0.12,0.12,,,C_3)

Cr:dot; left_; capacitor(,C); dlabel(0.12,0.12,C_2,,)

Cl:dot; down_; capacitor(from Ct to Cl,C); dlabel(0.12,-0.12,,,C_1)

T:dot(at Ct+(0,elen_))

inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))

dlabel(0,-0.07,,L_3,)

R:dot

L:dot( at Cl-(R.x-Cr.x,Cr.y-R.y) )

inductor(from L to Cl); dlabel(0,-0.12,,L_2,)

right_; resistor(from L to R); rlabel(,R_2,)

resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(y,ljust)

line from L to 0.2<L,T>

source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,-,,+)

dlabel(0,sourcerad_+0.07,,u,)

resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)

line to T

.PE

C3

C2

C1

L1

L3L2

R2

R3

y

−

+
u

R1

Figure 44: Illustrating elements drawn at oblique angles.

draws a resistor along a line with slope of -30 degrees, and ‘rpoint (to Z)’ sets the current direction
cosines to point from the current location to location Z. Macro vec (x,y) evaluates to the position
(x,y) rotated as defined by the argument of the previous Point , point or rpoint command.
The principal device used to define relative locations in the circuit macros is rvec (x,y), which
evaluates to position Here + vec (x,y). Thus, line to rvec (x,0) draws a line of length x in
the current direction.

Figure 44 illustrates that some hand placement of labels using dlabel may be useful when
elements are drawn obliquely. The figure also illustrates that any commas within m4 arguments
must be treated specially because the arguments are separated by commas. Argument commas are
protected either by parentheses as in inductor(from Cr to Cr+vec (elen ,0)), or by multiple
single quotes as in ‘‘,’’, as necessary. Commas also may be avoided by writing 0.5 between L

and T instead of 0.5<L,T>.
Sequential actions can be performed using either the dpic command
for variable=expression to expression [by expression] do { actions }

or at the m4 processing stage. The libgen library defines the macro
for (start, end, increment, ‘actions’)

for this and other purposes. Nested loops are allowed and the innermost loop index variable is m4x.
The first three arguments must be integers and the end value must be reached exactly; for example,
for_(1,3,2,‘print In‘’m4x’) prints locations In1 and In3, but for_(1,4,2,‘print In‘’m4x’)

does not terminate since the index takes on values 1, 3, 5, . . ..
Repetitive actions can also be performed with the libgen macro
Loopover (‘variable’, actions, value1, value2, . . .)

which evaluates actions for each instance of variable set to value1, value2, . . ..
If two straight lines meet at an angle then, depending on the postprocessor, the corner may not

be mitred or rounded unless the two lines belong to a multisegment line, as illustrated in Figure 45.
This is normally not an issue for circuit diagrams unless the figure is magnified or thick lines are
drawn. Rounded corners can be obtained by setting post-processor parameters, but the figure
shows the effect of two macros, corner for right angles, and round, that may assist in some cases.
Otherwise, a two-segment line can be overlaid at the corner to produce the same effect.

23



line up 0.2
line right 0.2

line up 0.2 then right 0.2 line up 0.2
round
line right 0.2

line up 0.2
corner
line right 0.2

Figure 45: Producing mitred angles and corners.

7 Logic gates

Figure 46 shows the basic logic gates included in library liblog.m4. The first argument of the gate
macros can be an integer N from 0 to 16, specifying the number of input locations In1, . . . InN,
as illustrated for the NOR gate in the figure. By default, N = 2 except for macros NOT gate and
BUFFER gate, which have one input In1 unless they are given a first argument, which is treated as
the line specification of a two-terminal element.

AND gate

OR gate

BUFFER gate

XOR gate

NAND gate

NOR gate(3)
Out

N Out

In1
In2
In3

NOT gate

NXOR gate(NPN)
In1
In2

In3

&
NAND gate(,B)

≥ 1
NOR gate(3,NB)

= 1
BOX gate(PN,N,,,=1)

=
BOX gate(PP,N,,,=)

Figure 46: Basic logic gates. The input and output locations of a three-input NOR gate are shown.
Inputs are negated by including an N in the second argument letter sequence. A B in the second
argument produces a box shape as shown in the rightmost column, where the second example has
AND functionality and the bottom two are examples of exclusive OR functions.

Input locations retain their positions relative to the gate body regardless of gate orientation, as
in Figure 47. Beyond a default number (6) of inputs, the gates are given wings as in Figure 48.

% ‘FF.m4’

.PS

log_init

S: NOR_gate

left_

R: NOR_gate at S+(0,-L_unit*(AND_ht+1))

line from S.Out right L_unit*3 then down S.Out.y-R.In2.y then to R.In2

line from R.Out left L_unit*3 then up S.In2.y-R.Out.y then to S.In2

line left 4*L_unit from S.In1 ; "$S$sp_" rjust

line right 4*L_unit from R.In1 ; "sp_$R$" ljust

.PE

S

R

Figure 47: SR flip-flop.

Negated inputs or outputs are marked by circles drawn using the NOT_circle macro. The name
marks the point at the outer edge of the circle and the circle itself has the same name prefixed by
N . For example, the output circle of a nand gate is named N Out and the outermost point of the
circle is named Out. Instead of a number, the first argument can be a sequence of letters P or N

to define normal or negated inputs; thus for example, NXOR gate(NPN) defines a 3-input nxor gate
with not-circle inputs In1 and In3 and normal input In2 as shown in the figure. The macro IOdefs

can also be used to create a sequence of custom named inputs or outputs.
Gates are typically not two-terminal elements and are normally drawn horizontally or vertically

(although arbitrary directions may be set with e.g. Point (degrees)). Each gate is contained in a
block of typical height 6*L unit where L unit is a macro intended to establish line separation for
an imaginary grid on which the elements are superimposed.

24



Ȳ

Y

Ē

S0

S1

S2

I0 I1 I2 I3 I4 I5 I6 I7

Figure 48: Eight-input multiplexer, showing a gate with wings.

Including an N in the second argument character sequence of any gate negates the inputs, and
including B in the second argument invokes the general macro BOX gate([P|N]...,[P|N],horiz
size,vert size,label), which draws box gates. Thus, BOX gate(PNP,N,,8,\geq 1) creates a gate
of default width, eight L units height, negated output, three inputs with the second negated, and
internal label “≥ 1”. If the fifth argument begins with sprintf or a double quote then the argument
is copied literally; otherwise it is treated as scriptsize mathematics.

The macro BUFFER gate(linespec,[N|B],wid,ht,[N|P]*,[N|P]*) is a wrapper for the com-
posite element BUFFER gen. If the second argument is B, then a box gate is drawn; otherwise the
gate is triangular. Arguments 5 and 6 determine the number of defined points along the northeast
and southeast edges respectively, with an N adding a NOT circle. If the first argument is non-blank
however, then the buffer is drawn along an invisible line like a two-terminal element, which is con-
venient sometimes but requires internal locations of the block to be referenced using last [], as
shown in Figure 49.

In1

bd = dimen *3/4
BUFFER gate(,,bd,bd)

NE Out

SE
C

In1

N NE1
N NE2

Out

BUFFER gate(,N,bd,bd,NN)
BUFFER gen(ITNOC,bd,bd,PN,,N,

LH symbol at C)

In1

In2
Out

N SE1
C

BUFFER gate(right elen ,,bd,bd)

BUFFER gate(right elen ,N,bd,bd,,N,LH symbol at C)

line down dimen /3 from last [].N SE1.s then left dimen *2/3

Figure 49: The BUFFER gate and BUFFER gen macros. The bottom two examples show how the gate can
be drawn as a two-terminal macro but internal block locations must be referenced using last [].

A good strategy for drawing complex logic circuits might be summarized as follows:

• Establish the absolute locations of gates and other major components (e.g. chips) relative to
a grid of mesh size commensurate with L unit, which is an absolute length.

25



• Draw minor components or blocks relative to the major ones, using parameterized relative
distances.

• Draw connecting lines relative to the components and previously drawn lines.

• Write macros for repeated objects.

• Tune the diagram by making absolute locations relative, and by tuning the parameters. Some
useful macros for this are the following, which are in units of L unit:

AND ht, AND wd: the height and width of basic AND and OR gates

BUF ht, BUF wd: the height and width of basic buffers

N diam: the diameter of NOT circles

Figure 50 shows a multiplexer block with variations, and Figure 51 shows the very similar
demultiplexer.

M1

0

1

2

3

Mux(4,M1)

In0

In1

In2

In3

Out

Sel

0

1

2

3

OE

left ; Mux(4,,LNOE)

In0

NOE

Out

Sel
00

01

10

11

OE

Mux(4,,OEBN2)

Sel0 Sel1

In0

In3

OE

0 1 2 3 4 5 6 7

down ; Mux(8,,L3,,28*L unit)

Sel0

Sel2

In0 In7

Figure 50: The Mux(input count, label, [L][B|H][N[n]|S[n]][[N]OE],wid,ht) macro.

DM1

0

1

2

3

Demux(4,DM1)

Out0

Out3

In

Sel

0

1

2

3

OE

left ; Demux(4,,LOE)

Sel

Out0

OE
In

00

01

10

11
OE

(4,,NOEBN2)

Sel0 Sel1

Out0

Out3NOE

In
0 1 2 3 4 5 6 7

down ; Demux(8,,L3,,28*L unit)

Sel0

Sel2

Out0 Out7

In

Figure 51: The Demux(input count, label, [L][B|H][N[n]|S[n]][[N]OE],wid,ht) macro.

Figure 52 shows the macro FlipFlop(D|T|RS|JK, label, boxspec), which is a wrapper for the
more general macro FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins). Each of
arguments 3 to 6 is null or a string of pinspecs separated by semicolons (;). Pinspecs are either
empty (null) or of the form [pinopts]:[label[:Picname]]. The first colon draws the pin. Pins are
placed top to bottom or left to right along the box edges with null pinspecs counted for placement.
Pins are named by side and number by default; eg W1, W2, ..., N1, N2, ..., E1, ..., S1,

... ; however, if :Picname is present in a pinspec then Picname replaces the default name. A
pinspec label is text placed at the pin base. Semicolons are not allowed in labels; use eg \char59{}

instead, and to put a bar over a label, use lg bartxt(label). The pinopts are [L|M|I|O][N][E]

as for the lg_pin macro.
Customized gates can be defined simply. For example, the following code defines the custom

flipflops in Figure 53.

define(‘customFF’,‘FlipFlopX(wid 10*L_unit ht FF_ht*L_unit,,

:S;NE:CK;:R, N:PR, :Q;;ifelse(‘$1’,1,:lg_bartxt(Q)), N:CLR) ’)

26



Q1

D

CK

Q

Q

FlipFlop(D,Q1)

Q2

T

CK

Q

Q

FlipFlop(T,Q2,ht h1 wid w1 fill (0.9))

R

S

Q

Q

FlipFlop(RS)

J

CK

K

CLR

Q

Q

PR

FlipFlop(JK)

D

CK

Q

Q

FlipFlopX(,,

:D;E:CK,,:Q;:lg bartxt(Q))

T

CK

Q

FlipFlopX(,,

:T;E:CK,,:Q;)

J

CK

K

CLR

Q

FlipFlopX(,,

:J;E:CK;:K,N:CLR,:Q;)

Figure 52: The FlipFlop and FlipFlopX macros, with variations.

S

CK

R

PR
Q

Q
CLR

SERIAL
INPUT

CLEAR

CLOCK

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

CLR

OUTPUT

PR4 PR3 PR2 PR1 PR0

PRESET
ENABLE

Figure 53: A 5-bit shift register.

This definition makes use of macros L_unit and FF_ht that predefine dimensions. There are three
pins on the right side; the centre pin is null and the bottom is null if the first macro argument is 1.

For hybrid applications, the dac and adc macros are illustrated in Figure 54. The figure shows
the default and predefined internal locations, the number of which can be specified as macro argu-
ments.

In1

NW

SW SE

NE
N1

S1

Out1
C

dac

DAC
In1

In2

N1 N2

Out1
Out2

Out3

S1 S2 S3
Q: dac(,,2,2,3,3); "DAC" "2" at Q.C

NW

SW SE

NE

In1

N1

S1

Out1
C

adc

ADC
In1

In2

N1 N2

Out1
Out2
Out3

S1 S2 S3
adc(,,2,2,3,3)

Figure 54: The dac(width,height,nIn,nN,nOut,nS) and adc(width,height,nIn,nN,nOut,nS) macros.

In addition to the logic gates described here, some experimental IC chip diagrams are included
with the distributed example files.

27



8 Element and diagram scaling

There are several issues related to scale changes. You may wish to use millimetres, for example,
instead of the default inches. You may wish to change the size of a complete diagram while keeping
the relative proportions of objects within it. You may wish to change the sizes or proportions
of individual elements within a diagram. You must take into account that line widths are scaled
separately from drawn objects, and that the size of typeset text is independent of the pic language.

The scaling of circuit elements will be described first, then the pic scaling facilities.

8.1 Circuit scaling

The circuit elements all have default dimensions that are multiples of the pic environmental param-
eter linewid, so changing this parameter changes default element dimensions. The scope of a pic
variable is the current block; therefore, a sequence such as

resistor

T: [linewid = linewid*1.5; up_; Q: bi_tr] with .Q.B at Here

ground(at T.Q.E)

resistor(up_ dimen_ from T.Q.C)

connects two resistors and a ground to an enlarged transistor. Alternatively, you may redefine the
default length elen or the body-size parameter dimen . For example, adding the line

define(‘dimen ’,(dimen *1.2))

after the cct init line of quick.m4 produces slightly larger body sizes for all circuit elements. For
logic elements, the equivalent to the dimen macro is L unit, which has default value (linewid/10).

The macros capacitor, inductor, and resistor have arguments that allow the body sizes
to be adjusted individually. The macro resized mentioned previously can also be used.

8.2 Pic scaling

There are at least three kinds of graphical elements to be considered:

1. When generating final output after reading the .PE line, pic processors divide distances and
sizes by the value of the environmental parameter scale, which is 1 by default. Therefore, the
effect of assigning a value to scale at the beginning of the diagram is to change the drawing
unit (initially 1 inch) throughout the figure. For example, the file quick.m4 can be modified
to use millimetres as follows:

.PS # Pic input begins with .PS

scale = 25.4 # mm

cct_init # Set defaults

elen = 19 # Variables are allowed

...

The default sizes of pic objects are redefined by assigning new values to the environmental
parameters arcrad, arrowht, arrowwid, boxht, boxrad, boxwid, circlerad, dashwid,

ellipseht, ellipsewid, lineht, linewid, moveht, movewid, textht, and textwid.

The . . .ht and . . .wid parameters refer to the default sizes of vertical and horizontal lines,
moves, etc., except for arrowht and arrowwid, which are arrowhead dimensions. The boxrad

parameter can be used to put rounded corners on boxes. Assigning a new value to scale

also multiplies all of these parameters except arrowht, arrowwid, textht, and textwid by
the new value of scale (gpic multiplies them all). Therefore, objects drawn to default sizes
are unaffected by changing scale at the beginning of the diagram. To change default sizes,
redefine the appropriate parameters explicitly.

28



2. The .PS line can be used to scale the entire drawing, regardless of its interior. Thus, for ex-
ample, the line .PS 100/25.4 scales the entire drawing to a width of 100 mm. Line thickness,
text size, and dpic arrowheads are unaffected by this scaling.

If the final picture width exceeds maxpswid, which has a default value of 8.5, then the picture
is scaled to this size. Similarly, if the height exceeds maxpsht (default 11), then the picture
is scaled to fit. These parameters can be assigned new values as necessary, for example, to
accommodate landscape figures.

3. The finished size of typeset text is independent of pic variables, but can be determined as in
Section 10. Then, "text" wid x ht y tells pic the size of text, once the printed width x
and height y have been found.

4. Line widths are independent of diagram and text scaling, and have to be set explicitly.
For example, the assignment linethick = 1.2 sets the default line width to 1.2 pt. The
macro linethick (points) is also provided, together with default macros thicklines and
thinlines .

9 Writing macros

The m4 language is quite simple and is described in numerous documents such as the original
reference [11] or in later manuals [16]. If a new circuit or other element is required, then it may
suffice to modify and rename one of the library definitions or simply add an option to it. Hints for
drawing general two-terminal elements are given in libcct.m4. However, if an element or block
is to be drawn in only one orientation then most of the elaborations used for general two-terminal
elements in Section 4 can be dropped. If you develop a library of custom macros in the installation
directory then the statement include(mylibrary.m4) can bring its definitions into play.

It may not be necessary to define your own macro if all that is needed is a small addition to
an existing element that is defined in an enclosing [ ] block. After the element arguments are
expanded, one argument beyond the normal list is automatically expanded before exiting the block,
as mentioned near the beginning of Section 5. This extra argument can be used to embellish the
element.

A macro is defined using quoted name and replacement text as follows:
define(‘name’,‘replacement text’)
After this line is read by the m4 processor, then whenever name is encountered as a separate

string, it is replaced by its replacement text, which may have multiple lines. The quotation charac-
ters are used to defer macro expansion. Macro arguments are referenced inside a macro by number;
thus $1 refers to the first argument. A few examples will be given.

Example 1: Custom two-terminal elements can often be defined by writing a wrapper for an
existing element. For example, an enclosed thermal switch can be defined as shown in Figure 55.

define(‘thermalsw’,

‘dswitch(‘$1’,‘$2’,WDdBT)

circle rad distance(M4T,last line.c) at last line.c ’)

Figure 55: A custom thermal switch defined from the dswitch macro.

Example 2: In the following, two macros are defined to simplify the repeated drawing of a series
resistor and series inductor, and the macro tsection defines a subcircuit that is replicated several
times to generate Figure 56.

% ‘Tline.m4’

.PS

cct_init

hgt = elen_*1.5

ewd = dimen_*0.9

define(‘sresistor’,‘resistor(right_ ewd); llabel(,r)’)

define(‘sinductor’,‘inductor(right_ ewd,W); llabel(,L)’)

29



r L

RC

r L

RC

r L

RC

r L

RC

r L

RC

r

Figure 56: A lumped model of a transmission line, illustrating the use of custom macros.

define(‘tsection’,‘sinductor

{ dot; line down_ hgt*0.25; dot

gpar_( resistor(down_ hgt*0.5); rlabel(,R),

capacitor(down_ hgt*0.5); rlabel(,C))

dot; line down_ hgt*0.25; dot }

sresistor ’)

SW: Here

gap(up_ hgt)

sresistor

for i=1 to 4 do { tsection }

line dotted right_ dimen_/2

tsection

gap(down_ hgt)

line to SW

.PE

Example 3: Composite elements containing several basic elements may be required. Figure 57
shows a circuit that can be drawn in any reference direction prespecified by Point (degrees), con-
taining labels that always appear in their natural horizontal orientation. Two flags in the argument

rπ

+

−
vπ

gmvπ

ro

Base

Emitter

Collector

hybrid PI BJT

rπ

+

−
vπ

gmvπ

ro

hybrid PI BJT(M)

rπ

+

−
vπ

gmvπ
ro

hybrid PI BJT(LM)

rπ+

−
vπ

gmvπ

ro

Point (45)
hybrid PI BJT

Figure 57: A composite element containing several basic elements

determine the circuit orientation with respect to the current drawing direction and whether a mir-
rored circuit is drawn. The key to writing such a macro is to observe that the pic language allows
two-terminal elements to change the current drawing direction, so the value of rp ang should be
saved and restored as necessary after each internal two-terminal element has been drawn. A draft
of such a macro follows:

# ‘Point_(degrees)

# hybrid_PI_BJT([L][M])

# L=left orientation; M=mirror’

define(‘hybrid_PI_BJT’,

‘[ # Size (and direction) parameters:

hunit = ifinstr(‘$1’,M,-)dimen_

30



vunit = ifinstr(‘$1’,L,-)dimen_*3/2

hp_ang = rp_ang # Save the reference direction

Base: dot(,,1)

line to rvec_(hunit/2,0)

Rpi: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction

line to rvec_(hunit*5/4,0)

Dot1: dot

Gm: consource(to rvec_(0,vunit),I,R); point_(hp_ang) # Restore direction

line to rvec_(hunit*3/4,0)

Ro: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction

line to Dot1

Dotro: dot(at Ro.start)

line to rvec_(hunit/2,0)

Collector: dot(,,1)

Dot2: dot(at 0.5 between Rpi.end and Dot1)

line to rvec_(0,-vunit/2)

Emitter: dot(,,1)

# Labels

‘"$\mathrm{r_\pi}$"’ at Rpi.c+vec_(hunit/4,0)

‘"$ + $"’ at Rpi.c+vec_(-hunit/6, vunit/4)

‘"$ - $"’ at Rpi.c+vec_(-hunit/6,-vunit/4)

‘"$\mathrm{v_\pi}$"’ at Rpi.c+vec_(-hunit/4,0)

‘"$\mathrm{g_m}$$\mathrm{v_\pi}$"’ at Gm.c+vec_(-hunit*3/8,-vunit/4)

‘"$\mathrm{r_o}$"’ at Ro.c+vec_(hunit/4,0)

‘$2’ ] ’)

Example 4: A number of elements have arguments meant explicitly for customization. Figure 58
customizes the source macro to show a cycle of a horizontal sinusoid with adjustable phase given
by argument 2 in degrees, as might be wanted for a 3-phase circuit:

phsource(,120)

define(‘phsource’,‘source($1,

#‘Set angle to 0, draw sinusoid, restore angle’

m4smp_ang = rp_ang; rp_ang = 0

sinusoid(m4h/2,twopi_/(m4h),

ifelse(‘$2’,,,‘($2)/360*twopi_+’)pi_/2,-m4h/2,m4h/2) with .Origin at Here

rp_ang = m4smp_ang,

$3,$4,$5)’)

Figure 58: A source element customized using its second argument.

Example 5: Repeated subcircuits might have different orientations but the potential orientations
often include only the element and its mirror image, so the power of the vec_() and rvec_() macros
is not required. Suppose that an optoisolator is to be drawn with left-right or right-left orientation
as shown in Figure 59.

C CA A

E EK KB

Figure 59: Showing opto and opto(BR), with defined labels.

The macro interface could be something like the following:
opto( [L|R][A|B] ),

31



where an R in the argument string signifies a right-left (mirrored) orientation and the element is of
either A or B type; that is, there are two related elements that might be drawn in either orientation,
for a total of four possibilities. Those who find such an interface to be too cryptic might prefer to
invoke the macro as

opto(orientation=Rightleft;type=B),
which includes semantic sugar surrounding the R and B characters for readability; this usage is made
possible by testing the argument string using the ifinstr() macro rather than requiring an exact
match. A draft of the macro follows, and the file Optoiso.m4 in the examples directory adds a
third type option.

# ‘opto([R|L][A|B])’

define(‘opto’,‘[{u = dimen_/2

Q: bi_trans(up u*2,ifinstr(‘$1’,R,R),ifinstr(‘$1’,B,B)CBUdE)

E: Q.E; C: Q.C; A:ifinstr(‘$1’,R,Q.e+(u*3/2,u),Q.w+(-u*3/2,u)); K: A-(0,u*2)

ifinstr(‘$1’,B,line from Q.B to (Q.B,E); B: Here)

D: diode(from A to K)

arrow from D.c+(0,u/6) to Q.ifinstr(‘$1’,R,e,w)+(0,u/6) chop u/3 chop u/4

arrow from last arrow.start-(0,u/3) to last arrow.end-(0,u/3)

Enc: box rad u wid abs(C.x-A.x)+u*2 ht u*2 with .c at 0.5 between C and K

‘$2’ }]’)

Two instances of this subcircuit are drawn and placed by the following code, with the result shown
in Figure 59.

Q1: opto

Q2: opto(type=B;orientation=Rightleft) with .w at Q1.e+(dimen_,0)

10 Interaction with LATEX

The sizes of typeset labels and other TEX boxes are generally unknown prior to processing the
diagram by LATEX. Although they are not needed for many circuit diagrams, these sizes may be
required explicitly for calculations or implicitly for determining the diagram bounding box. The
following example shows how text sizes can affect the overall size of a diagram:

.PS

B: box

"Left text" at B.w rjust

"Right text: $x^2$" at B.e ljust

.PE

The pic interpreter cannot know the dimensions of the text to the left and right of the box, and
the diagram is generated using default text dimensions. One solution to this problem is to measure
the text sizes by hand and include them literally, thus:
"Left text" wid 38.47pt__ ht 7pt__ at B.w rjust

but this is tedious.
A better solution is to process the diagram twice. The diagram source is processed as usual by

m4 and a pic processor, and the main document source is LATEXed to input the diagram and format
the text, and also to write the text dimensions into a supplementary file. Then the diagram source
is processed again, reading the required dimensions from the supplementary file and producing a
diagram ready for final LATEXing. This hackery is summarized below, with an example in Figure 60.

• Put \usepackage{boxdims} into the document source.

• Insert the following at the beginning of the diagram source, where jobname is the name of
the main LATEX file:
sinclude(jobname.dim)
s init(unique name)

32



.PS

gen init

sinclude(CMman.dim)

s init(stringdims)

B: box

s box(Left text) at B.w rjust

s box(Right text: $x^%g$,2) at B.e ljust

.PE

Left text Right text: x2

Figure 60: The macro s box sets string dimensions automatically when processed twice. If two or more
arguments are given to s box, they are passed through sprintf. The dots show the figure bounding
box.

• Use the macro s box(text) to produce typeset text of known size as shown in Figure 60;
alternatively, invoke the macros \boxdims and boxdim described later.

The macro s_box(text) evaluates initially to
"\boxdims{name}{text}" wid boxdim(name,w) ht boxdim(name,v)

On the second pass, this is equivalent to
"text" wid x ht y

where x and y are the typeset dimensions of the LATEX input text. If s box is given two or more
arguments as in Figure 60 then they are processed by sprintf.

The argument of s init, which should be unique within jobname.dim, is used to generate a
unique \boxdims first argument for each invocation of s_box in the current file. If s_init has been
omitted, the symbols “!!” are inserted into the text as a warning. Be sure to quote any commas
in the arguments. Since the first argument of s box is LATEX source, make a rule of quoting it to
avoid comma and name-clash problems. For convenience, the macros s ht, s wd, and s dp evaluate
to the dimensions of the most recent s box string or to the dimensions of their argument names, if
present.

The file boxdims.sty distributed with this package should be installed where LATEX can find it.
The essential idea is to define a two-argument LATEX macro \boxdims that writes out definitions for
the width, height and depth of its typeset second argument into file jobname.dim, where jobname
is the name of the main source file. The first argument of \boxdims is used to construct unique
symbolic names for these dimensions. Thus, the line

box "\boxdims{Q}{\Huge Hi there!}"

has the same effect as
box "\Huge Hi there!"

except that the line
define(‘Q w’,77.6077pt )define(‘Q h’,17.27779pt )define(‘Q d’,0.0pt )dnl

is written into file jobname.dim (and the numerical values depend on the current font). These
definitions are required by the boxdim macro described below.

The LATEX macro
\boxdimfile{dimension file}

is used to specify an alternative to jobname.dim as the dimension file to be written. This simplifies
cases where jobname is not known in advance or where an absolute path name is required.

Another simplification is available. Instead of the sinclude(dimension file) line above, the
dimension file can be read by m4 before reprocessing the source for the second time:

m4 library files dimension file diagram source file ...

Objects can be tailored to their attached text by invoking \boxdims and boxdim explicitly. The
small source file in Figure 61, for example, produces the box in the figure.

The figure is processed twice, as described previously. The line sinclude(jobname.dim) reads
the named file if it exists. The macro boxdim(name,suffix,default) from libgen.m4 expands the
expression boxdim(Q,w) to the value of Q_w if it is defined, else to its third argument if defined, else
to 0, the latter two cases applying if jobname.dim doesn’t exist yet. The values of boxdim(Q,h) and
boxdim(Q,d) are similarly defined and, for convenience, boxdim(Q,v) evaluates to the sum of these.
Macro pt__ is defined as *scale/72.27 in libgen.m4, to convert points to drawing coordinates.

33



% ‘eboxdims.m4’

.PS

sinclude(CMman.dim) # The main input file is CMman.tex

box fill_(0.9) wid boxdim(Q,w) + 5pt__ ht boxdim(Q,v) + 5pt__ \

"\boxdims{Q}{\large$\displaystyle\int_0^T e^{tA}\,dt$}"

.PE

∫ T

0

etA dt

Q w

Q h+Q d

Figure 61: Fitting a box to typeset text.

Sometimes a label needs a plain background in order to blank out previously drawn components
overlapped by the label, as shown on the left of Figure 62. The technique illustrated in Figure 61
is automated by the macro f box(boxspecs, label arguments). For the special case of only one
argument, e.g., f box(Wood chips), this macro simply overwrites the label on a white box of
identical size. Otherwise, the first argument specifies the box characteristics (except for size), and
the macro evaluates to

box boxspecs s box(label arguments).
For example, the result of the following command is shown on the right of Figure 62.

Wood chips n3

Figure 62: Illustrating the f box macro.

f_box(color "lightgray" thickness 2 rad 2pt__,"\huge$n^{%g}$",4-1)

More tricks can be played. The example
Picture: s_box(‘\includegraphics{file.eps}’) with .sw at location

shows a nice way of including eps graphics in a diagram. The included picture (named Picture

in the example) has known position and dimensions, which can be used to add vector graphics or
text to the picture. To aid in overlaying objects, the macro boxcoord(object name, x-fraction,
y-fraction) evaluates to a position, with boxcoord(object name,0,0) at the lower left corner of
the object, and boxcoord(object name,1,1) at its upper right.

11 PSTricks and other tricks

This section applies only to a pic processor (dpic) that is capable of producing output compatible
with PSTricks, Tikz PGF, or in principle, other graphics postprocessors.

By using command lines, or simply by inserting LATEX graphics directives along with strings
to be formatted, one can mix arbitrary PSTricks (or other) commands with m4 input to create
complicated effects.

Some commonly required effects are particularly simple. For example, the rotation of text by
PSTricks postprocessing is illustrated by the file

% ‘Axes.m4’

.PS

arrow right 0.7 "‘$x$-axis’" below

arrow up 0.7 from 1st arrow.start "‘\rput[B]{90}(0,0){$y$-axis}’" rjust

.PE

which contains both horizontal text and text rotated 90◦ along the vertical line. This rota-
tion of text is also implemented by the macro rs box, which is similar to s box but rotates
its text argument by 90◦, a default angle that can be changed by preceding invocation with
define(‘text_ang’,degrees). The rs box macro requires either PSTricks or Tikz PGF and, like
s box, it calculates the size of the resulting text box but requires the diagram to be processed twice.

Another common requirement is the filling of arbitrary shapes, as illustrated by the following
lines within a .m4 file:

34



command "‘\pscustom[fillstyle=solid,fillcolor=lightgray]{’"

drawing commands for an arbitrary closed curve
command "‘}%’"

For colour printing or viewing, arbitrary colours can be chosen, as described in the PSTricks
manual. PSTricks parameters can be set by inserting the line

command "‘\psset{option=value, . . .}’"

in the drawing commands or by using the macro psset (PSTricks options).
The macros shade(gray value,closed line specs) and rgbfill(red value, green value, blue value,

closed line specs) can be invoked to accomplish the same effect as the above fill example, but are
not confined to use only with PSTricks.

Since arbitrary LATEX can be output, either in ordinary strings or by use of command output,
complex examples such as found in reference [6], for example, can be included. The complications
are twofold: LATEX and dpic may not know the dimensions of the formatted result, and the code
is generally unique to the postprocessor. Where postprocessors are capable of equivalent results,
then macros such as rs box, shade, and rgbfill mentioned previously can be used to hide code
differences.

12 Web documents, pdf, and alternative output formats

Circuit diagrams contain graphics and symbols, and the issues related to web publishing are similar
to those for other mathematical documents. Here the important factor is that gpic -t generates out-
put containing tpic \special commands, which must be converted to the desired output, whereas
dpic can generate several alternative formats, as shown in Figure 63. One of the easiest methods
for producing web documents is to generate postscript as usual and to convert the result to pdf
format with Adobe Distiller R© or equivalent.

LATEX
LATEX
pict2e

LATEX
.tex

-e

tpic
.tex

LATEX
psfrag

Postscript
psfrag

.eps

-f

LATEX
or

PDFlatex
tikz

PGF
.tex

-g

LATEX
Mfpic

Metafont

mfpic
.tex

-m

LATEX
PSTricks

PSTricks
.tex

-p

dpic

Postscript
.eps

-r

MetaPost

MetaPost
.mp

-s

LATEX
or

PDFlatex

SVG
.svg

-v

Inkscape
or

HTML

Xfig
.fig

-x

Xfig

LATEX
or

PDFlatex

gpic -t m4
.pic.pic

Diagram source Macro libraries

Figure 63: Output formats produced by gpic -t and dpic. SVG output can be read by Inkscape or used
directly in web documents.

PDFlatex produces pdf without first creating a postscript file but does not handle tpic \specials,
so dpic must be installed.

Most PDFLatex distributions are not directly compatible with PSTricks, but the Tikz PGF
output of dpic is compatible with both LATEX and PDFLatex. Several alternative dpic output
formats such as mfpic and MetaPost also work well. To test MetaPost, create a file filename.mp
containing appropriate header lines, for example:

verbatimtex

\documentclass[11pt]{article}

35



\usepackage{times,boxdims,graphicx}

\boxdimfile{tmp.dim}

\begin{document} etex

Then append one or more diagrams by using the equivalent of
m4 <installdir>mpost.m4 library files diagram.m4 | dpic -s >> filename.mp
The command “mpost --tex=latex filename.mp end” processes this file, formatting the di-

agram text by creating a temporary .tex file, LATEXing it, and recovering the .dvi output to
create filename.1 and other files. If the boxdims macros are being invoked, this process must be
repeated to handle formatted text correctly as described in Section 10. In this case, either put
sinclude(tmp.dim) in the diagram .m4 source or read the .dim file at the second invocation of m4
as follows:

m4 <installdir>mpost.m4 library files tmp.dim diagram.m4 | dpic -s >> filename.mp
On some operating systems, the absolute path name for tmp.dim has to be used to ensure that

the correct dimension file is written and read. This distribution includes a Makefile that simplifies
the process; otherwise a script can automate it.

Having produced filename.1, rename it to filename.mps and, voilà, you can now run PDFlatex
on a .tex source that includes the diagram using \includegraphics{filename.mps} as usual.

The dpic processor is capable of other output formats, as illustrated in Figure 63 and in example
files included with the distribution. The LATEX drawing commands alone or with eepic or pict2e

extensions are suitable only for simple diagrams.

13 Developer’s notes

Years ago in the course of writing a book, I took a few days off to write a pic-like interpreter (dpic) to
automate the tedious coordinate calculations required by LATEX picture objects. The macros in this
distribution and the interpreter are the result of that effort, drawings I have had to produce since,
and suggestions received from others. The interpreter has been upgraded over time to generate
mfpic, MetaPost [8], raw Postscript, Postscript with psfrag tags, and PSTricks output, the latter
my preference because of its quality and flexibility, including facilities for colour and rotations,
together with simple font selection. TikZ PGF output, which combines most of the power of
PSTricks with PDFlatex compatibility, has been added. Xfig-compatible output was introduced
early on to allow the creation of diagrams both by programming and by interactive graphics. Most
recently, SVG output has been added, and seems suitable for producing web diagrams directly and
for further editing by the Inkscape interactive graphics editor.

Instead of using pic macros, I preferred the equally simple but more powerful m4 macro proces-
sor, and therefore m4 is required here, although dpic now supports pic-like macros. Free versions
of m4 are available for Unix, Windows, and other operating systems.

If starting over today would I not just use one of the other drawing packages available these
days? It would depend on the context, but pic remains a good choice for line drawings because it
is easy to learn and read but powerful enough for coding the geometrical calculations required for
precise component sizing and placement. It would be nice if arbitrary rotations and scaling were
simpler and if a general path element were available as in Postscript.

The main value of this distribution is not in the use of a specific language but in the element data
encoded in the macros, which have been developed and refined over two decades. Some of them have
become less readable as more options and flexibility have been added, and if starting over today,
perhaps I would change some details. Compromises have been made in order to retain reasonable
compatibility with the variety of postprocessors. No choice of tool is without compromise, and
producing good graphics seems to be time consuming, no matter how it is done.

The dpic interpreter has several output-format options that may be useful. The eepicemu and
pict2e extensions of the primitive LATEX picture objects are supported. The mfpic output allows
the production of Metafont alphabets of circuit elements or other graphics, thereby essentially
removing dependence on device drivers, but with the complication of treating every alphabetic
component as a TEX box. The xfig output allows elements to be precisely defined with dpic and
interactively placed with xfig. Similarly, the SVG output can be read directly by the Inkscape

36



graphics editor, but SVG can also be used directly for web pages. Dpic will also generate low-level
MetaPost or Postscript code, so that diagrams defined using pic can be manipulated and combined
with others. The Postscript output can be imported into CorelDraw R© and Adobe Illustrator R© for
further processing. With raw Postscript output, the user is responsible for ensuring that the correct
fonts are provided and for formatting labels.

Many thanks to the people who continue to send comments, questions, and, occasionally, bug
fixes. What began as a tool for my own use changed into a hobby that has persisted, thanks to
your help and advice.

14 Bugs

The distributed macros are not written for maximum robustness. Arguments could be entered in
a key–value style (for example, resistor(up elen ,style=N;cycles=8) instead of by positional
parameters. Macro arguments could be tested for correctness and explanatory error messages could
be written as necessary, but that would make the macros more difficult to read and to write. You
will have to read them when unexpected results are obtained or when you wish to modify them.

Here are some hints, gleaned from experience and from comments I have received.

1. Misconfiguration: One of the configuration files listed in Section 2.2 and libgen.m4 must
be read by m4 before any of the drawing macros. If only PSTricks is to be used, for example,
then the simplest strategy is to set it as the default processor by typing “make psdefault”
in the installation directory to change the mention of gpic to pstricks near the top of
libgen.m4. Similarly if only Tikz PGF will be used, change gpic to pgf using the Makefile.
The package default is to read gpic.m4 for historical compatibility. The processor options
must be chosen correspondingly, gpic -t for gpic.m4 and, most often, dpic -p or dpic -g

when dpic is employed. For example, the pipeline for PSTricks output from file quick.m4 is

m4 -I installdir pstricks.m4 quick.m4 | dpic -p > quick.tex

but for Tikz PGF processing, the configuration file and dpic option have to be changed:

m4 -I installdir pgf.m4 quick.m4 | dpic -g > quick.tex

Any non-default configuration file must appear explicitly in the command line or in an
include() statement.

2. Pic objects versus macros: A common error is to write something like

line from A to B; resistor from B to C; ground at D

when it should be

line from A to B; resistor(from B to C); ground(at D)

This error is caused by an unfortunate inconsistency between pic object attributes and the
way m4 and pic pass macro arguments.

3. Commas: Macro arguments are separated by commas, so any comma that is part of an
argument must be protected by parentheses or quotes. Thus,

shadebox(box with .n at w,h)

produces an error, whereas

shadebox(box with .n at w‘,’h)

and

shadebox(box with .n at (w,h))

do not. The parentheses are preferred.

4. Default directions and lengths: The linespec argument of element macros requires both
a direction and a length, and if either is omitted, a default value is used. Writing

source(up )

37



draws a source up a distance equal to the current lineht value, which may cause confusion.
Writing

source(0.5)

draws a source of length 0.5 units in the current pic default direction, which is one of right,
left, up, or down. The best practice is to specify both the direction and length of an
element, thus:

source(up elen ).

The effect of a linespec argument is independent of any direction set using the Point or
similar macros. To draw an element at an obtuse angle (see Section 6) try, for example,

Point (45); source(to rvec (0.5,0))

5. Processing sequence: It is easy to forget that m4 finishes before pic processing begins.
Consequently, it may be puzzling that the following mix of a pic loop and the m4 macro s box

does not appear to produce the required result:

for i=1 to 5 do {s box(A[i]); move }

In this example, the s box macro is expanded only once and the index i is not a number.
This particular example can be repaired by using an m4 loop:

for (1,5,1,‘s box(A[m4x]); move’)

6. Quotes: Single quote characters are stripped in pairs by m4, so the string

"‘‘inverse’’"

will be typeset as if it were

"‘inverse’".

The cure is to add single quotes.

The only subtlety required in writing m4 macros is deciding when to quote arguments. In the
context of circuits it seemed best to assume that macro arguments would not be protected by
quotes at the level of macro invocation, but should be quoted inside each macro. There may
be cases where this rule is not optimal or where the quotes could be omitted.

7. Dollar signs: The i-th argument of an m4 macro is $i, where i is an integer, so the following
construction can cause an error when it is part of a macro,

"$0$" rjust below

since $0 expands to the name of the macro itself. To avoid this problem, put the string in
quotes or write "$‘’0$".

8. Name conflicts: Using the name of a macro as part of a comment or string is a simple and
common error. Thus,

arrow right "$\dot x$" above

produces an error message because dot is a macro name. Macro expansion can be avoided by
adding quotes, as follows:

arrow right ‘"$\dot x$"’ above

Library macros intended only for internal use have names that begin with m4 or M4 to avoid
name clashes, but in addition, a good rule is to quote all LATEX in the diagram input.

If extensive use of strings that conflict with macro names is required, then one possibility is
to replace the strings by macros to be expanded by LATEX, for example the diagram

.PS

box "\stringA"

.PE

with the LaTeX macro

38



\newcommand{\stringA}{

Circuit containing planar inductor and capacitor}

9. Current direction: Some macros, particularly those for labels, do unexpected things if
care is not taken to preset the current direction using macros right , left , up , down , or
rpoint (·). Thus for two-terminal macros it is good practice to write, e.g.

resistor(up from A to B); rlabel(,R 1)

rather than

resistor(from A to B); rlabel(,R 1),

which produce different results if the last-defined drawing direction is not up. It might be
possible to change the label macros to avoid this problem without sacrificing ease of use.

10. Position of elements that are not 2-terminal: The linespec argument of elements
defined in [ ] blocks must be understood as defining a direction and length, but not the
position of the resulting block. In the pic language, objects inside these brackets are placed
by default as if the block were a box. Place the element by its compass corners or defined
interior points as described in the first paragraph of Section 5 on page 14, for example

igbt(up elen ) with .E at (1,0)

11. Pic error messages: Some errors are detected only after scanning beyond the end of the
line containing the error. The semicolon is a logical line end, so putting a semicolon at the
end of lines may assist in locating bugs.

12. Line continuation: A line is continued to the next if the rightmost character is a backslash
or, with dpic, if the backslash is followed immediately by the # character. A blank after the
backslash, for example, produces a pic error.

13. Scaling: Pic and these macros provide several ways to scale diagrams and elements within
them, but subtle unanticipated effects may appear. The line .PS x provides a convenient way
to force the finished diagram to width x. However if gpic is the pic processor then all scaled
parameters are affected, including those for arrowheads and text parameters, which may not
be the desired result. A good general rule is to use the scale parameter for global scaling
unless the primary objective is to specify overall dimensions.

14. Buffer overflow: For some m4 implementations, the error message pushed back more

than 4096 chars results from expanding large macros or macro arguments, and can be
avoided by enlarging the buffer. For example, the option -B16000 enlarges the buffer size
to 16000 bytes. However, this error message could also result from a syntax error.

15. PSTricks anomaly: If you are using PSTricks and you get the error message Graphics

parameter ‘noCurrentPoint’ not defined.. then your version of PSTricks is older than
August 2010. You can do the following:

(a) Update your PSTricks package.

(b) Instead, comment out the second definition of M4PatchPSTricks in pstricks.m4. The
first definition works for some older PSTricks distributions.

(c) Insert define(‘M4PatchPSTricks’,) immediately after the .PS line of your diagram.
This change prevents the line \psset{noCurrentPoint} from being added to the .tex

code for the diagram. This line is a workaround for a “feature” of the current PSTricks
\psbezier command that changes its behaviour within the \pscustom environment.
This situation occurs rarely and so the line is unnecessary for many diagrams.

(d) For very old versions of PSTricks such as pstricks97, disable the workaround totally by
changing the second definition in pstricks.m4 to define(‘M4PatchPSTricks’,). Undo
the change if you later update PSTricks.

39



16. m4 -I error: Some old versions of m4 do not implement the -I option or the M4PATH

environment variable that simplify file inclusion. The simplest course of action is probably
to install GNU m4, which is free and widely available. Otherwise, all include(filename)
statements in the libraries and calling commands have to be given absolute filename paths.
You can define the HOMELIB macro in libgen.m4 to the path of the installation directory and
change the library include statements to the form include(HOMELIB ‘’filename).

15 List of macros

The following table lists the macros in libraries darrow.m4, libcct.m4, liblog.m4, libgen.m4, and
files gpic.m4, mfpic.m4, and pstricks.m4. Some of the sources in the examples directory contain
additional macros, such as for flowcharts, Boolean logic, and binary trees.

Internal macros defined within the libraries begin with the characters m4 or M4 and, for the
most part, are not listed here.

The library in which each macro is found is given, and a brief description.

AND gate(n,N) log basic ‘and’ gate, 2 or n inputs; N=negated input.
Otherwise, arg1 can be a sequence of letters P|N to
define normal or negated inputs.

AND gen(n,chars,[wid,[ht]]) log general AND gate: n=number of inputs (0 ≤ n ≤ 16);
chars: B=base and straight sides; A=Arc;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]O=output; C=center. Otherwise, arg1 can be a
sequence of letters P|N to define normal or negated
inputs.

AND ht log height of basic ‘and’ and ‘or’ gates in L units

AND wd log width of basic ‘and’ and ‘or’ gates in L units

And, Or, Not, Nand, Nor, Xor, Nxor, Buffer

log Wrappers of AND gate, . . . for use in the Autologix

macro
AutoGate log Draw the tree for a gate as in the Autologix macro. No

inputs or external connections are drawn. The names of
the internal gate inputs are stacked in ‘AutoInNames’

Autologix(Boolean function sequence,[N[oconnect]][L[eftinputs]][R][V][M][;offset=value]
log Draw the Boolean expressions defined in function

notation using And, Or, Not, Buffer, Xor, Nand,

Nor, Nxor and variables, e.g.,
Autologix(And(Or(x1, x2),Or( x1,x2)));. The
Boolean functions are separated by semicolons (;).
Function outputs are aligned vertically but appending
:location attribute to a function can be used to place it.
Each unique variable var causes an input point Invar to
be defined. Preceding the variable by a ~ causes a not
gate to be drawn at the input. The inputs are drawn in
a row at the upper left by default. An L in arg2 draws
the inputs in a column at the left; R reverses the order of
the drawn inputs; V scans the expression from right to
left when listing inputs; M draws the left-right mirror
image of the diagram; and N draws only the function tree
without the input array. The inputs are labelled In1,
In2, . . . and the function outputs are Out1, Out2, . . . .
Each variable var corresponds also to one of the input
array points with label Invar. Setting offset=value
displaces the drawn input list in order to disambiguate
the input connections when L is used

40



BOX gate(inputs,output,swid,sht,label)
log output=[P|N], inputs=[P|N]. . ., sizes swid and sht in

L units (default AND wd = 7)

BUFFER gate(linespec, [N|B], wid, ht, [N|P]*, [N|P]*, [N|P]*)

log basic buffer, dfault 1 input or as a 2-terminal element,
arg2: N=negated input, B=box gate; arg 5: normal (P)
or negated N) inputs labeled In1

BUFFER gen(chars,wd,ht,[N|P]*,[N|P]*,[N|P]*)
log general buffer, chars: T=triangle, [N]O=output location

Out (NO draws circle N Out); [N]I, [N]N, [N]S,

[N]NE, [N]SE input locations; C=centre location. Args
4-6 allow alternative definitions of respective In, NE,

and SE argument sequences

BUF ht log basic buffer gate height in L units

BUF wd log basic buffer gate width in L units

Cintersect(Pos1, Pos2, rad1, rad2, [R])

gen Upper (lower if arg5=R) intersection of circles at Pos1
and Pos2, radius rad1 and rad2

Cos(integer) gen cosine function, integer degrees

Cosine( amplitude, freq, time, phase )

gen function a× cos(ωt+ φ)

Darc(center position, radius, start radians, end radians, parameters)
darrow Wrapper for darc. CCW arc in dline style, with closed

ends or (dpic only) arrowheads. Semicolon-separated
parameters: thick=value, wid=value, ends= x-, -x, x-x,
->, x->, <-, <-x, <-> where x means | or (half-thickness
line) !.

Darlington(L|R,chars) cct Composite Darlington pair Q1 and Q2 with internal
locations E, B, C; Characters in arg2: E= envelope, P=
P-type, B1= internal base lead, D= damper diode, R1=
Q1 bias resistor; E1= ebox, R2= Q2 bias resistor; E1=
ebox, Z= zener bias diode

Darrow(linespec, parameters) darrow Wrapper for darrow. Semicolon-separated parameters:
S, E truncate at start or end by dline thickness/2;
thick=val (total thicknes, ie width); wid=val (arrowhead
width); ht=val (arrowhead height); ends= x-x or -x or
x- where x is ! (half-width line) or | (full-width line).

Dline(linespec, parameters) darrow Wrapper for dline. Semicolon-separated parameters: S,
E truncate at start or end by dline thickness/2;
thick=val (total thicknes, ie width); ends= x-x or -x or
x- where x is ! (half-width line) or | (full-width line).

E gen the constant e

Equidist3(Pos1, Pos2, Pos3, Result)
gen Calculates location named Result equidistant from the

first three positions, i.e. the centre of the circle passing
through the three positions

FF ht cct flipflop height parameter in L units

FF wid cct flipflop width parameter in L units

Fector(x1,y1,z1,x2,y2,z2) 3D vector projected on current view plane with top face of
3-dimensonal arrowhead normal to x2,y2,z2

41



FTcap(chars) cct Feed-through capacitor; example of a composite element
derived from a two-terminal element. Defined points:
.Start, .End, .C .T1 .T2 T Arg 1: (default) A= type A,
B= type B, C= type C

FlipFlop(D|T|RS|JK, label, boxspec)
log flip-flops, boxspec=e.g. ht x wid y

FlipFlop6(label, spec, boxspec)
log This macro (6-input flip-flops) has been superseded by

FlipFlopX and may be deleted in future.
spec=[[n]NQ][[n]Q][[n]CK][[n]PR][lb]

[[n]CLR][[n]S][[n].|D|T|R] to include and negate
pins, lb to print labels

FlipFlopJK(label, spec,boxspec)
log This macro (JK flip-flop) has been superseded by

FlipFlopX and may be deleted in future. Similar to
FlipFlop6.

FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins)
log General flipflop. Each of args 3 to 6 is null or a string of

pinspecs separated by semicolons (;). Pinspecs are either
empty or of the form [pinopts]:[label[:Picname]].
The first colon draws the pin. Pins are placed top to
bottom or left to right along the box edges with null
pinspecs counted for placement. Pins are named by side
and number by default; eg W1, W2, ..., N1, N2, ...,

E1, ..., S1, ... ; however, if :Picname is present in
a pinspec then Picname replaces the default name. A
pinspec label is text placed at the pin base. Semicolons
are not allowed in labels; use, e.g., \char59{} instead,
and to put a bar over a label, use lg bartxt(label).
The pinopts are [N|L|M][E]; N=pin with not circle;
L=active low out; M=active low in; E=edge trigger.

G hht log gate half-height in L units

H ht log hysteresis symbol dimension in L units

Header(1|2,rows,wid,ht,type) log Header block with 1 or 2 columns and square Pin 1

HeaderPin(location, type, Picname,n|e|s|w,length)
log General pin for Header macro; arg 4 specifies pin

direction with respect to the current drawing direction)

Int gen corrected (old) gpic int() function

IOdefs(linespec,label,[P|N]*,L|R)
log Define locations label1, . . . labeln along the line; P=

label only; N=with NOT circle; R=circle to right of
current direction

Intersect (Name1,Name2) gen intersection of two named lines

LCintersect(line name, Centre, rad, [R])

gen First (second if arg4 is R) intersection of a line with a
circle

LCtangent(Pos1, Centre, rad, [R])

gen Left (right if arg4=R) tangent point of line from Pos1 to
circle at Centre with radius arg3

LH symbol(U|D|L|R|degrees) log logic-gate hysteresis symbol

Loopover (‘variable’,actions,value1, value2, . . .)

42



gen Repeat actions with variable set successively to value1,
value2, . . ., setting macro m4Lx to 1, 2, . . .

LT symbol(U|D|L|R|degrees) log logic-gate triangle symbol

L unit log logic-element grid size

Max(arg, arg, . . .) gen Max of an arbitrary number of inputs

Min(arg, arg, . . .) gen Min of an arbitrary number of inputs

Mux(n,label, [L][B|H][N[n]|S[n]], wid,ht)
log binary multiplexer, n inputs, L reverses input pin

numbers, B displays binary pin numbers, H displays
hexadecimal pin numbers, N[n] puts Sel or Sel0 .. Seln
at the top (i.e., to the left of the drawing direction),
S[n] puts the Sel inputs at the bottom (default)

Mux ht cct Mux height parameter in L units

Mux wid cct Mux width parameter in L units

Mx pins log max number of gate inputs without wings

NAND gate(n,N) log ‘nand’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

NOR gate(n,N) log ‘nor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

NOT circle log ‘not’ circle

NOT gate(linespec,N) log ‘not’ gate, 1 input or as a 2-terminal element,
N=negated input

NOT rad log ‘not’ radius in absolute units

NPDT(npoles,] [R]) cct Double-throw switch; npoles: number of poles; R= right
orientation with respect to drawing direction

NXOR gate(n,N) log ‘nxor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

N diam log diameter of ‘not’ circles in L units

N rad log radius of ‘not’ circles in L units

OR gate(n,N) log ‘or’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

OR gen(n,chars,[wid,[ht]]) log general OR gate: n=number of inputs (0 ≤ n ≤ 16);
chars: B=base and straight sides; A=Arcs;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]P=XOR arc; [N]O=output; C=center. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

OR rad log radius of OR input face in L units

Point (integer) gen sets direction cosines in degrees

Rect (radius,angle) gen (deg) polar-to-rectangular conversion

SIdefaults gen Sets scale = 25.4 for drawing units in mm, and sets
pic parameters lineht = 12, linewid = 12, moveht

= 12, movewid = 12, arcrad = 6, circlerad = 6,

boxht = 12, boxwid = 18, ellipseht = 12,

ellipsewid = 18, dashwid = 2, arrowht = 3,

arrowwid = arrowht/2,

43



Sin(integer) gen sine function, integer degrees

SQUID(n, diameter, initial angle, ccw|cw)

cct Superconducting quantum interface device with n
junctions labeled J1, ... Jn placed around a circle
with initial angle -90 deg (by default) with respect to the
current drawing direction. The default diameter is
dimen

View3D 3D The view vector (triple) defined by setview(azim, elev).
The project macro projects onto the plane
perpendicular to this vector

Vperp(position name, position name)
gen unit-vector pair CCW-perpendicular to line joining two

named positions

XOR gate(n,N) log ‘xor’ gate, 2 or n inputs; N=negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs.

XOR off log XOR and NXOR offset of input face

above gen string position above relative to current direction

abs (number) gen absolute value function

adc(width,height,nIn,nN,nOut,nS)
cct ADC with defined width, height, and number of inputs

Ini, top terminals Ni, ouputs Outi, and bottom
terminals Si

addtaps[arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length, · · ·)
cct Add taps to the previous two-terminal element. arrowhd

= blank or one of . - <- -> <->. Each fraction
determines the position along the element body of the
tap. A negative length draws the tap to the right of the
current direction; positive length to the left. Tap names
are Tap1, Tap2, · · · by default or Name1, Name2, · · · if
specified

amp(linespec,size) cct amplifier

along (linear object name) gen short for between name.start and name.end

antenna(at location, T, A|L|T|S|D|P|F, U|D|L|R|degrees)
cct antenna, without stem for nonblank 2nd arg; A=aerial,

L=loop, T=triangle, S=diamond, D=dipole, P=phased,
F=fork; up, down, left, right, or angle from horizontal
(default 90)

arca(absolute chord linespec, ccw|cw, radius, modifiers)
gen arc with acute angle (obtuse if radius is negative), drawn

in a [ ] block

arcd(center, radius,start degrees,end degrees)
gen arc definition (see arcr), angles in degrees

arcr(center,radius,start angle,end angle)
gen arc definition, e.g., arcr(A,r,0,pi /2) cw ->

arcto(position 1,position 2,radius,[dashed|dotted])
gen line toward position 1 with rounded corner toward

position 2

arrowline(linespec) cct line (dotted, dashed permissible) with centred arrowhead

b gen blue color value

b current(label,pos,In|Out,Start|End,frac)

44



cct labelled branch-current arrow to frac between branch
end and body

basename (string sequence, separator)
gen Extract the rightmost name from a sequence of names

separated by arg2 (default dot “.”)

battery(linespec,n,R) cct n-cell battery: default 1 cell, R=reversed polarity

beginshade(gray value) gen begin gray shading, see shade e.g., beginshade(.5);
closed line specs; endshade

bell( U|D|L|R|degrees, size) cct bell, In1 to In3 defined

below gen string position relative to current direction

bi tr(linespec,L|R,P,E) cct left or right, N- or P-type bipolar transistor, without or
with envelope

bi trans(linespec,L|R,chars,E)
cct bipolar transistor, core left or right; chars: BU=bulk line,

B=base line and label, S=Schottky base hooks,
uEn|dEn=emitters E0 to En, uE|dE=single emitter,
Cn|uCn|dCn=collectors C0 to Cn; u or d add an arrow,
C=single collector; u or d add an arrow, G=gate line and
location, H=gate line; L=L-gate line and location,
[d]D=named parallel diode, d=dotted connection,
[u]T=thyristor trigger line; arg 4 = E: envelope

binary (n, [m]) gen binary representation of n, left padded to m digits if the
second argument is nonblank

boxcoord(planar obj,x fraction,y fraction)
gen internal point in a planar object

boxdim(name,h|w|d|v,default) gen evaluate, e.g. name w if defined, else default if given, else
0 v gives sum of d and h values

bp gen big-point-size factor, in scaled inches, (*scale/72)

bswitch(linespec, [L|R],chars)

cct pushbutton switch R=right orientation (default L=left);
chars: O= normally open, C=normally closed

buzzer( U|D|L|R|degrees, size,[C])

cct buzzer, In1 to In3 defined, C=curved

c fet(linespec,L|R,P) cct left or right, plain or negated pin simplified MOSFET

capacitor(linespec,char[+[L]],R, height, wid)
cct capacitor, char: F or none=flat plate, C=curved-plate,

E=polarized boxed plates, K=filled boxed plates,
M=unfilled boxes, M=one rectangular plate,
P=alternate polarized; + adds a polarity sign; +L
polarity sign to the left of drawing direction; arg3:
R=reversed polarity, arg4 = height (defaults F:
dimen /3, C,P: dimen /4, E,K: dimen /5) arg5 = wid
(defaults F: height*0.3, C,P: height*0.4, E,K: height)

cbreaker(linespec, L|R, D|T|TS)

cct circuit breaker to left or right, D=with dots; T=thermal;
TS=squared thermal

ccoax(at location, M|F, diameter)
cct coax connector, M=male, F=female

cct init cct initialize circuit-diagram environment (reads libcct.m4)

centerline (linespec, thickness|color, minimum long dash len, short dash len, gap len
gen Technical drawing centerline

45



clabel(label,label,label) cct centre triple label

consource(linespec,V|I|v|i,R)cct voltage or current controlled source with alternate forms;
R=reversed polarity

contact(chars) cct single-pole contact: P= three position, O= normally
open, C= normally closed, I= circle contacts, R= right
orientation

contline(line) gen evaluates to continue if processor is dpic, otherwise to
first arg (default line)

corner(line thickness,color) gen filled square to make square corner at line intersection

cosd(arg) gen cosine of an expression in degrees

cross(at location) gen plots a small cross

cross3D(x1,y1,z1,x2,y2,z2) 3D cross product of two triples

crossover(linespec, L|R, Line1, ...)

cct line jumping left or right over named lines

crosswd gen cross dimension

csdim cct controlled-source width

dac(width,height,nIn,nN,nOut,nS)
cct DAC with defined width, height, and number of inputs

Ini, top terminals Ni, ouputs Outi, and bottom
terminals Si

d fet(linespec,L|R,P,S,E|S) cct left or right, N or P depletion MOSFET, normal or
simplified, without or with envelope or thick channel

dabove(at location) darrow above (displaced dlinewid/2)

darc(center position, radius, start radians, end radians, dline thickness, arrowhead wid, ar-
rowhead ht, terminals)

darrow See also Darc. CCW arc in dline style, with closed ends
or (dpic only) arrowheads. Permissible terminals: x-, -x,
x-x, ->, x->, <-, <-x, <-> where x means | or
(half-thickness line) !.

darrow(linespec, t,t,width,arrowhd wd,arrowhd ht,parameters)
darrow See also Darrow. double arrow, truncated at beginning

or end, specified sizes, with arrowhead or closed stem.
parameters= x- or -> or x-> or <- or <-x or <-> where
x is | or !. The !- or -! parameters close the stem with
half-thickness lines to simplify butting to other objects.

darrow init darrow initialize darrow drawing parameters (reads darrow.m4)

dashline(linespec,thickness|color|<->, dash len, gap len,G)
gen dashed line with dash at end (G ends with gap)

dbelow(at location) darrow below (displaced dlinewid/2)

dcosine3D(i,x,y,z) 3D extract i-th entry of triple x,y,z

def bisect gen defines the pic procedure bisect ( func, xmin, xmax, eps,
result ) that finds a root of func(arg,value) to precision
eps in the interval (xmin,xmax) by the method of
bisection

delay(linespec,size) cct delay element

delay rad cct delay radius

deleminit darrow sets drawing direction for dlines

dend(at location) darrow close (or start) double line

dfillcolor darrow dline fill color (default white)

46



diff3D(x1,y1,z1,x2,y2,z2) 3D difference of two triples

diff (a,b) gen difference function

dimen cct size parameter for circuit elements

dimension (linespec,offset,label, D|H|W|blank width,tic offset,arrowhead )

gen macro for dimensioning diagrams; arrowhead=-> | <-

diode(linespec,B|CR|D|K|L|LE[R]|P[R]|S|T|V|v|w|Z,[R][E])
cct diode: B=bi-directional, CR=current regulator, D=diac,

K=open form, L=open form with centre line,
LED[R]=LED [right], P[R]=photodiode [right],
S=Schottky, T=tunnel, V=varicap, v=varicap (curved
plate), w=varicap (reversed polarity), Z=zener; arg 4:
R=reversed polarity, E=enclosure

dir darrow used for temporary storage of direction by darrow
macros

distance(Position 1, Position2)
gen distance between named positions

distance(position, position) gen distance between positions

dlabel(long,lat,label,label,label,chars)
cct general triple label; chars: X displacement is from the

centre of the last line rather than the centre of the last [
]; L,R,A,B align labels ljust, rjust, above, or below
(absolute) respectively

dleft darrow double line left turn

dline(linespec,t,t,width,parameters)
darrow See also Dline. Double line, truncated by half width at

either end, closed at either or both ends. parameters=
x-x or -x or x- where x is ! (half-width line) or |
(full-width line).

dlinewid darrow width of double lines

dn gen down with respect to current direction

dljust(at location) darrow ljust (displaced dlinewid/2)

dna cct characters that determine which components are drawn

dnm cct similar to dna

dot(at location,radius,fill) gen filled circle (third arg= gray value: 0=black, 1=white)

dot3D(x1,y1,z1,x2,y2,z2) 3D dot product of two triples

dotrad gen dot radius

down gen sets current direction to down

dright darrow double arrow right turn

drjust(at location) darrow rjust (displaced dlinewid/2)

dswitch(linespec,L|R,W[ud]B[K]chars)

47



cct SPST switch left or right, W=baseline, B=contact
blade, dB=contact blade to the right of drawing
direction, K=vertical closing contact line, C = external
operating mechanism, D = circle at contact and hinge,
(dD = hinge only, uD = contact only) E = emergency
button, EL = early close (or late open), LE = late close
(or early open), F = fused, H = time delay closing, uH
= time delay opening, HH = time delay opening and
closing, K = vertical closing contact, L = limit, M =
maintained (latched), MM = momentary contact on
make, MR = momentary contact on release, MMR =
momentary contact on make and release, O = hand
operation button, P = pushbutton, T = thermal control
linkage, Y = pull switch, Z = turn switch

dtee([L|R]) darrow double arrow tee junction with tail to left, right, or
(default) back along current direction

dtor gen degrees to radians conversion constant

dturn(degrees ccw) darrow turn dline arg1 degrees left (ccw)

e gen .e relative to current direction

e fet(linespec,L|R,P,S,E|S) cct left or right, N or P enhancement MOSFET, normal or
simplified, without or with envelope or thick channel

earphone( U|D|L|R|degrees, size)

cct earphone, In1 to In3 defined

ebox(linespec,length,ht,fill value)
cct two-terminal box element with adjustable dimensions

and fill value 0 (black) to 1 (white). length and ht are
relative to the direction of linespec

elchop(E,A) gen chop for ellipses: evaluates to chop r where r is the
distance from the centre of ellipse E to the intersection
of E with a line to location A; e.g., line from A to E

elchop(E,A)

eleminit (linespec) cct internal line initialization

elen cct default element length

em arrows([N|I|E][D],angle,length)
cct radiation arrows, N=nonionizing, I=ionizing, E=simple;

D=dot
endshade gen end gray shading, see beginshade

expe gen exponential, base e

f box(boxspecs,text,expr1,· · ·) gen like s box but the text is overlaid on a box of identical
size. If there is only one argument then the default box
is invisible and filed white

fill (number) gen fill macro, 0=black, 1=white

fitcurve(V,n,[e.g. dotted],m (default 0))

gen Draw a spline through V[m],...V[n]: Works only with
dpic: V[m]:position; ... V[n]:position

for (start,end,increment,‘actions’)
gen integer for loop with index variable m4x

fuse(linespec, type, wid, ht) cct fuse symbol, type= A|B|C|D|S|HB|HC or dA=D

g gen green color value

gap(linespec,fill,A) cct gap with (filled) dots, A=chopped arrow between dots

48



gen init gen initialize environment for general diagrams
(customizable, reads libgen.m4)

glabel cct internal general labeller

gpar (element,element,separation)
cct two same-direction elements in parallel

gpolyline (fraction,location, ...)

gen internal to gshade

grid (x,y) log absolute grid location

ground(at location, T, N|F|S|L|P|E, U|D|L|R|degrees)
cct ground, without stem for nonblank 2nd arg; N=normal,

F=frame, S=signal, L=low-noise, P=protective,
E=European; up, down, left, right, or angle from
horizontal (default -90)

gyrator(box specs,space ratio,pin lgth,[N][V])
cct Gyrator two-port wrapper for nport, N omits pin dots; V

gives a vertical orientation.

gshade(gray value,A,B,...,Z,A,B)
gen (Note last two arguments). Shade a polygon with named

vertices, attempting to avoid sharp corners

heater(linespec, ndivisions, wid, ht)
cct heater element

hex digit(n) gen hexadecimal digit for 0 ≤ n < 16

hexadecimal (n, [m]) gen hexadecimal representation of n, left padded to m digits
if the second argument is nonblank

hoprad cct hop radius in crossover macro

ht gen height relative to current direction

ifdpic(if true,if false) gen test if dpic has been specified as pic processor

ifgpic(if true,if false) gen test if gpic has been specified as pic processor

ifinstr(string,string,if true,if false)
gen test if the second argument is a substring of the first;

also ifinstr(string,string,if true,string,string,if true,
. . . if false)

ifmfpic(if true,if false) gen test if mfpic has been specified as pic post-processor

ifmpost(if true,if false) gen test if MetaPost has been specified as pic post-processor

ifpgf(if true,if false) gen test if Tikz PGF has been specified as pic post-processor

ifpostscript(if true,if false) gen test if Postscript (dpic -r) has been specified as pic
output format

ifpstricks(if true,if false) gen test if PSTricks has been specified as post-processor

ifroff(if true,if false) gen test if troff or groff has been specified as post-processor

ifxfig(if true,if false) gen test if Fig 3.2 (dpic -x) has been specified as pic output
format

igbt(linespec,L|R,[L][[d]D]) cct left or right IGBT, L=alternate gate type, D=parallel
diode, dD=dotted connections

in gen absolute inches

inductor(linespec,W|L,n,[M|P],loop wid)
cct inductor, arg2: narrow (default), W=wide, L=looped;

arg3: n arcs (default 4); arg4: M=magnetic core,
P=powder (dashed) core, arg5: loop width (default L,W:
dimen /5; other: dimen /8)

49



inner prod(linear obj,linear obj)
gen inner product of (x,y) dimensions of two linear objects

integrator(linespec,size) cct integrating amplifier

intersect (line1.start,line1.end, line2.start,line2.end)
gen intersection of two lines

jack(U|D|L|R|degrees,chars) cct arg1: drawing direction; string arg2: R=right
orientation, one or more L[M][B] for L and auxiliary
contacts with make or break points; S[M][B] for S and
auxiliary contacts

j fet(linespec,L|R,P,E) cct left or right, N or P JFET, without or with envelope

KelvinR(cycles,[R],cycle wid) cct IEEE resistor in a [ ] block with Kelvin taps T1 and T2

larrow(label,->|<-,dist) cct arrow dist to left of last-drawn 2-terminal element

lbox(wid, ht, type) gen box oriented in current direction, type= e.g. dotted

left gen left with respect to current direction

length3D(x,y,z) 3D Euclidean length of triple x,y,z

lg bartxt log draws an overline over logic-pin text (except for xfig)

lg pin(location, logical name, pin label, n|e|s|w[L|M|I|O][N][E], pinno, optlen)
log comprehensive logic pin; n|e|s|w=direction, L=active

low out, M=active low in, I=inward arrow, O=outward
arrow, N=negated, E=edge trigger

lg pintxt log reduced-size text for logic pins

lg plen log logic pin length in in L units

lin leng(line-reference) gen calculate the length of a line

linethick (number) gen set line thickness in points

ljust gen ljust with respect to current direction

llabel(label,label,label) cct triple label on left side of the element

loc (x, y) gen location adjusted for current direction

log10E gen constant log10(e)

log init log initialize environment for logic diagrams (customizable,
reads liblog.m4)

loge gen logarithm, base e

lp xy log coordinates used by lg pin

lpop(xcoord, ycoord, radius, fill, zero ht)
gen for lollipop graphs: filled circle with stem to

(xcoord,zeroht)

lswitch( linespec, L|R, chars )

cct knife switch R=right orientation (default L=left);
chars=[O|C][D][K] O=opening arrow; C=closing arrow;
D=dots; K=closed switch

lthick gen current line thickness in drawing units

lt gen left with respect to current direction

manhattan gen sets direction cosines for left, right, up, down

memristor(linespec, wid, ht) cct memristor element

microphone( U|D|L|R|degrees, size)

cct microphone, In1 to In3 defined

mm gen absolute millimetres

50



mosfet(linespec,L|R,chars,E) cct MOSFET left or right, included components defined by
characters, envelope. arg 3 chars: [u][d]B: center bulk
connection pin; D: D pin and lead; E: dashed substrate;
F: solid-line substrate; [u][d]G: G pin to substrate at
source; [u][d]H: G pin to substrate at center; L: G pin
to channel (obsolete); [u][d]M: G pin to channel; u: at
drain end; d: at source end Pz: parallel zener diode; Q:
connect B pin to S pin; R: thick channel; [u][d]S: S pin
and lead u: arrow up; d: arrow down; [d]T: G pin to
center of channel d: not circle; X: XMOSFET terminal;
Z: simplified complementary MOS

m4lstring(arg1,arg2) gen expand arg1 if it begins with sprintf or ", otherwise
arg2

m4 arrow(linespec,ht,wid) gen arrow with adjustable head, filled when possible

m4dupstr(string,n,‘name’) gen Defines name as n concatenated copies of string.

m4xpand(arg) gen Evaluate the argument as a macro

m4xtract(‘string1’,string2) gen delete string2 from string1, return 1 if present

n gen .n with respect to current direction

ne gen .ne with respect to current direction

neg gen unary negation

norator(linespec,width,ht) cct norator two-terminal element

nport(box spec;other commands, nw,nn,ne,ns,space ratio,pin lgth,style, other commands)
cct nport macro (default 2-port)

nterm(box spec;other commands, nw,nn,ne,ns,pin lgth,style, other commands)
cct n-terminal box macro (default three pins)

nullator(linespec,width,ht) cct nullator two-terminal element

nw gen .nw with respect to current direction

opamp(linespec,label,label,size,chars, other commands)

cct operational amplifier with −, + or other internal labels,
specified size. chars: P= add power connections, R= swap
In1, In2 labels, T= truncated point. The first and last
arguments allow added customizations

open arrow(linespec,ht,wid) gen arrow with adjustable open head

par (element,element,separation)
cct two same-direction, same-length elements in parallel

pconnex(R|L|U|D|degrees,chars)
cct power connectors, arg 1: drawing direction; chars:

R=right orientation, M|F= male, female, A|AC=115V, 3
prong, B=box, C=circle, P= PC connector, D= 2-pin
connector, G|GC= GB 3-pin, J= 110V 2-pin

pc gen absolute points

pi gen π

plug(U|D|L|R|degrees,[2|3][R])
cct arg1: drawing direction; string arg2: R right orientation,

2|3 number of conductors

pmod(integer, integer) gen +ve mod(M,N) e.g., pmod(−3, 5) = 2

point (angle) gen (radians) set direction cosines

polar (x,y) gen rectangular-to polar conversion

51



potentiometer(linespec,cycles,fractional pos,length,· · ·)
cct resistor with taps T1, T2, . . . with specified fractional

positions and lengths (possibly neg)

print3D(x,y,z) 3D write out triple for debugging

prod (a,b) gen binary multiplication

project(x,(y,(z) 3D 3D to 2D projection onto the plane perpendicular to the
view vector with angles defined by setview(azim, elev)

psset (PSTricks settings) gen set PSTricks parameters

ptrans(linespec, [R|L]) cct pass transistor; L= left orientation

pt gen TEX point-size factor, in scaled inches, (*scale/72.27)

r gen red color value

rarrow(label,->|<-,dist) cct arrow dist to right of last-drawn 2-terminal element

rect (radius,angle) gen (radians) polar-rectangular conversion

relay(n,chars) cct relay: n poles (default 1), chars: O=normally open,
C=normally closed, P=three position, default double
throw, L=drawn left (default), R=drawn right,
T=thermal. Argument 3=[L|R] is deprecated but works
for backward compatibility

resetdir ) gen resets direction set by setdir

resetrgb gen cancel r , g , b color definitions

resistor(linespec,n|E,chars, cycle wid)
cct resistor, n cycles (default 3), chars: E=ebox, ES=ebox

with slash, Q=offset, H=squared, N=IEEE, V=varistor
variant, R=right-oriented, cycle width (default dimen /6)

resized(factor,‘macro name’,args)
cct scale the element body size by factor

restorem4dir([‘stack name’])gen Restore m4 direction parameters from the named stack
(default ‘savm4dir ’)

reversed(‘macro name’,args) cct reverse polarity of 2-terminal element

rgbdraw(color triple, drawing commands)
gen color drawing for PSTricks, pgf, MetaPost, svg

postprocessors; see setrgb

rgbfill(color triple, closed path)
gen fill with arbitrary color; see setrgb

right gen set current direction right

rjust gen right justify with respect to current direction

rlabel(label,label,label) cct triple label on right side of the element

rot3Dx(radians,x,y,z) 3D rotates x,y,z about x axis

rot3Dy(radians,x,y,z) 3D rotates x,y,z about y axis

rot3Dz(radians,x,y,z) 3D rotates x,y,z about z axis

rotbox(wid,ht,type,[r|t=val]) gen box oriented in current direction in [ ] block; type= e.g.
dotted shaded "green". Defined internal locations: N,
E, S, W (and NE, SE, NW, SW if arg4 is blank). If arg4
is r=val then corners have radius val. If arg4 is t=val
then a spline with tension val is used to draw a
“superellipse,” and the bounding box is then only
approximate.

52



rotellipse(wid,ht,type) gen ellipse oriented in current direction in [ ] block; e.g.
Point (45); rotellipse(,,dotted fill (0.9)).

Defined internal locations: N, S, E, W.

round(at location,line thickness,attributes)
gen filled circle for rounded corners; attributes=colored

"gray" for example

rpoint (linespec) gen set direction cosines

rpos (position) gen Here + position

rrot (x, y, angle) gen Here + vrot (x, y, cos(angle), sin(angle))

rs box(text,expr1,· · ·) gen like s box but the text is rotated by text ang (default
90) degrees

rsvec (position) gen Here + position

rt gen right with respect to current direction

rtod gen constant, degrees/radian

rtod gen constant, degrees/radian

rvec (x,y) gen location relative to current direction

s gen .s with respect to current direction

s box(text,expr1,· · ·) gen generate dimensioned text string using \boxdims from
boxdims.sty. Two or more args are passed to
sprintf()

s dp(name,default) gen depth of the most recent (or named) s box

s ht(name,default) gen height of the most recent (or named) s box

s init(name) gen initialize s box string label to name which should be
unique

s name gen the value of the last s init argument

s wd(name,default) gen width of the most recent (or named) s box

savem4dir([‘stack name’]) gen Stack m4 direction parameters in the named stack
(default ‘savm4dir ’)

sc draw(dna string, chars, iftrue, iffalse)
cct test if chars are in string, deleting chars from string

scr(linespec, chars, label) cct Wrapper to place thyristor as a two-terminal element
with label given by the third argument

se gen .se with respect to current direction

setdir (R|L|U|D|degrees, default U|D|R|L|degrees)
gen store drawing direction and set it to up, down, left,

right, or angle in degrees (reset by resetdir )

setrgb(red value, green value, blue value,[name])
gen define colour for lines and text, optionally named

(default lcspec); svg values are integers from 0 to 255

setview(azimuth degrees,elevation degrees)
3D set projection viewpoint

sfg init(default line len, node rad, arrowhd len, arrowhd wid), (reads libcct.m4)

cct initialization of signal flow graph macros

sfgabove cct like above but with extra space

sfgarc(linespec,text,text justification,cw|ccw, height scale factor)
cct directed arc drawn between nodes, with text label and a

height-adjustment parameter

sfgbelow cct like below but with extra space

53



sfgline(linespec,text,text justification)
cct directed straight line chopped by node radius, with text

label
sfgnode(at location,text,above|below,sl circle options)

cct small circle default white interior, with text label. The
default label position is inside if the diameter is bigger
than textht and textwid; otherwise it is sfgabove.

Options such as fill or line thickness can be given.

sfgself(at location, U|D|L|R|degrees, text, text justification, cw|ccw, scale factor)
cct self-loop drawn at angle angle from a node, with text

label and a size-adjustment parameter

shade(gray value,closed line specs)
gen fill arbitrary closed curve

shadebox(box specification) gen box with edge shading

sign (number) gen sign function

sinc(number) gen the sinc(x) function

sind(arg) gen sine of an expression in degrees

sinusoid(amplitude, frequency, phase, tmin, tmax)
gen draws a sinusoid over the interval (tmin, max

source(linespec,V|v|I|i|AC|B|F|G|Q|L|N|P|S|T|X|U|other,diameter,R)
cct source, blank or voltage (2 types), current (2 types), AC,

or type F, G, Q, B, L, N, X or labelled, P = pulse, U =
square, R = ramp, S = sinusoid, T = triangle; other =
custom interior label or waveform, R = reversed polarity

sourcerad cct default source radius

sp gen evaluates to medium space for gpic strings

speaker( U|D|L|R|degrees,size,H)
cct speaker, In1 to In7 defined; H=horn

sprod3D(a,x,y,z) 3D scalar product of triple x,y,z by a

stackcopy (‘name 1’,‘name 2’)
gen Copy stack 1 into stack 2, preserving the order of pushed

elements
stackexec (‘name 1’,‘name 2’,commands)

gen Copy stack 1 into stack 2, performing arg3 for each
nonblank entry

stackprint (‘stack name’) gen Print the contents of the stack to the terminal

stackpromote (prefix,‘stack name’,In name)
gen Define locations In1 or In name 1, . . . corresponding to

the locations in stack stack name, as created by the
AutoGate and Autologic macros. Each location is
prefixed by argument 1 “.”

stackreverse (‘stack name’) gen Reverse the order of elements in a stack, preserving the
name

stacksplit (‘stack name’,string,separator)
gen Stack the fields of string left to right separated by

nonblank separator (default .). White space preceding
the fields is ignored.

sum3D(x1,y1,z1,x2,y2,z2) 3D sum of two triples

sum (a,b) gen binary sum

svec (x,y) log scaled and rotated grid coordinate vector

54



sw gen .sw with respect to current direction

switch(linespec,L|R,[C|O][D],[B|D])
cct SPST switch (wrapper for bswitch, lswitch, and

dswitch), arg2: R=right orientation (default L=left); if
arg4=blank (knife switch): arg3 = [O|C][D] O=
opening, C=closing, D=dots; if arg4=B (button switch):
arg3 = O|C O=normally open, C=normally closed, if
arg4=D: arg3 = same as for dswitch

ta xy(x, y) cct macro-internal coordinates adjusted for L|R

tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name], fraction, length,
fraction, length, · · ·)

cct Draw the two-terminal element with taps in a [ ] block
(see addtaps). arrowhd = blank or one of . - <- ->

<->. Each fraction determines the position along the
element body of the tap. A negative length draws the
tap to the right of the current direction; positive length
to the left. Tap names are Tap1, Tap2, · · · by default or
Name1, Name2, · · · if specified. Internal block names are
.Start, .End, and .C corresponding to the drawn
element, and the tap names

tgate(linespec, [B][R|L]) cct transmission gate, B= ebox type; L= oriented left

thicklines (number) gen set line thickness in points

thinlines (number) gen set line thickness in points

threeD init 3D initialize 3D transformations (reads lib3D.m4)

thyristor(linespec,chars) cct thyristor, chars: D=Diode, A=Open diode,
B=Bidirectional diode, C=Type IEC, E=Envelope,
G=Full-size gate terminal, H=Gate at arrowhead centre,
N=Anode gate, R=Right orientation, U=Adds centre
line (to open diode), V=Arrowhead centre gate bar

tline(linespec,wid,ht) cct transmission line, manhattan direction

tr xy(x, y) cct relative macro internal coordinates adjusted for L|R

tr xy init(origin, unit size, sign )

cct initialize tr xy

transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns)
cct 2-winding transformer or choke with terminals P1, P2,

TP, S1, S2, TS: arg2: L = left, R = right, arg3: np
primary arcs, arg5: ns secondary arcs, arg4: A = air
core, P = powder (dashed) core, W = wide windings, L
= looped windings, D1: phase dots at P1 and S1 end;
D2 at P2 and S2 end; D12 at P1 and S2 end; D21 at P2
and S1 end

tstrip(R|L|U|D|degrees, nterms, chars)
cct terminal strip, chars: I=invisible terminals, C=circle

terminals (default), D=dot terminals, O=omitted
separator lines, wid=value; total strip width, ht=value;
strip height

ttmotor(linespec, string, diameter, brushwid, brushht)
cct motor with label

twopi gen 2π

ujt(linespec,R,P,E) cct unijunction transistor, right, P-channel, envelope

unit3D(x,y,z) 3D unit triple in the direction of triple x,y,z

55



up gen set current direction up

up gen up with respect to current direction

variable(‘element’, [A|P|L|[u]N][C|S],angle,length)
cct overlaid arrow or line to indicate variable 2-terminal

element: A=arrow, P=preset, L=linear, N=nonlinear,
C=continuous, S=setpwise

vec (x,y) gen position rotated with respect to current direction

vlength(x,y) gen vector length
√
x2 + y2

vperp(linear object) gen unit-vector pair CCW-perpendicular to linear object

vrot (x,y,xcosine,ycosine) gen rotation operator

vscal (number,x,y) gen vector scale operator

w gen .w with respect to current direction

while (‘test’,‘actions’) gen Integer m4 while loop

wid gen width with respect to current direction

winding(L|R, diam, pitch, turns, core wid, core color)
cct core winding drawn in the current direction;

R=right-handed

xtal(linespec) cct quartz crystal

xtract(string, substring) gen returns substring if present

References

[1] J. D. Aplevich. Drawing with dpic, 2014. In the dpic source distribution.

[2] J. Bentley. More Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1988.

[3] J. Bentley and A. Yepez. Little languages, 2010. www.cse.msstate.edu/~niu/courses/

CSE8990/slides/Alejandra-0210.pdf.

[4] A. R. Clark. Using circuit macros, 1999. Courtesy of Alan Robert Clark at http://ytdp.ee.
wits.ac.za/cct.html.

[5] The Free Software Foundation. Gpic man page, 1992.

[6] D. Girou. Présentation de PSTricks. Cahiers GUTenberg, 16, 1994. http://cahiers.

gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf.

[7] M. Goossens, S. Rahtz, and F. Mittelbach. The LATEXGraphics Companion. Addison-Wesley,
Reading, Massachusetts, 1997.

[8] J. D. Hobby. A user’s manual for MetaPost, 1990.

[9] IEEE. Graphic symbols for electrical and electronic diagrams, 1975. Std 315-1975, 315A-1986,
reaffirmed 1993.

[10] KDE-Apps.org. Cirkuit, 2009. KDE application: http://kde-apps.org/content/show.php/
Cirkuit?content=107098.

[11] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell Labora-
tories, 1977.

[12] B. W. Kernighan and D. M. Richie. PIC—A graphics language for typesetting, user man-
ual. Technical Report 116, AT&T Bell Laboratories, 1991. http://www.cs.bell-labs.com/

10thEdMan/pic.pdf.

56

www.cse.msstate.edu/~niu/courses/CSE8990/slides/Alejandra-0210.pdf
www.cse.msstate.edu/~niu/courses/CSE8990/slides/Alejandra-0210.pdf
http://ytdp.ee.wits.ac.za/cct.html
http://ytdp.ee.wits.ac.za/cct.html
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf
http://kde-apps.org/content/show.php/Cirkuit?content=107098
http://kde-apps.org/content/show.php/Cirkuit?content=107098
http://www.cs.bell-labs.com/10thEdMan/pic.pdf
http://www.cs.bell-labs.com/10thEdMan/pic.pdf


[13] Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, 1995.

[14] E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution, also
in the dpic package and at http://www.kohala.com/start/troff/gpic.raymond.ps.

[15] T. Rokicki. DVIPS: A TEX driver. Technical report, Stanford, 1994.

[16] R. Seindal et al. GNU m4, 1994. http://www.gnu.org/software/m4/manual/m4.html.

[17] T. Van Zandt. PSTricks user’s guide, 1993.

57

http://www.kohala.com/start/troff/gpic.raymond.ps
http://www.gnu.org/software/m4/manual/m4.html

	Contents
	Introduction
	Using the macros
	Quick start
	Processing with dpic and PSTricks or Tikz PGF
	Processing with gpic
	Simplifications

	Including the libraries

	Pic essentials
	Manuals
	The linear objects: line, arrow, spline, arc
	Positions
	The planar objects: box, circle, ellipse, and text
	Compound objects
	Other language facilities

	Two-terminal circuit elements
	Circuit and element basics
	The two-terminal elements
	Branch-current arrows
	Labels

	Composite circuit elements
	Semiconductors

	Directions, looping, and corners
	Logic gates
	Element and diagram scaling
	Circuit scaling
	Pic scaling

	Writing macros
	Interaction with LaTeX
	PSTricks and other tricks
	Web documents, pdf, and alternative output formats
	Developer's notes
	Bugs
	Misconfiguration
	Pic objects versus macros
	Commas
	Default directions and lengths
	Processing sequence
	Quotes
	Dollar signs
	Name conflicts
	Current direction
	Position of elements that are not 2-terminal
	Pic error messages
	Line continuation
	Scaling
	Buffer overflow
	PSTricks anomaly
	m4 -I error

	List of macros
	AND_gate
	AND_gen
	AND_ht
	AND_wd
	And, Or, Not, Nand, Nor, Xor, Nxor, Buffer
	AutoGate
	Autologix
	BOX_gate
	BUFFER_gate
	BUFFER_gen
	BUF_ht
	BUF_wd
	Cintersect
	Cos
	Cosine
	Darc
	Darlington
	Darrow
	Dline
	E_
	Equidist3
	FF_ht
	FF_wid
	Fector
	FTcap
	FlipFlop
	FlipFlop6
	FlipFlopJK
	FlipFlopX
	G_hht
	H_ht
	Header
	HeaderPin
	Int_
	IOdefs
	Intersect_
	LCintersect
	LCtangent
	LH_symbol
	Loopover_
	LT_symbol
	L_unit
	Max
	Min
	Mux
	Mux_ht
	Mux_wid
	Mx_pins
	NAND_gate
	NOR_gate
	NOT_circle
	NOT_gate
	NOT_rad
	NPDT
	NXOR_gate
	N_diam
	N_rad
	OR_gate
	OR_gen
	OR_rad
	Point_
	Rect_
	SIdefaults
	Sin
	SQUID
	View3D
	Vperp
	XOR_gate
	XOR_off
	above_
	abs_
	adc
	addtaps
	amp
	along_
	antenna
	arca
	arcd
	arcr
	arcto
	arrowline
	b_
	b_current
	basename_
	battery
	beginshade
	bell
	below_
	bi_tr
	bi_trans
	binary_
	boxcoord
	boxdim
	bp__
	bswitch
	buzzer
	c_fet
	capacitor
	cbreaker
	ccoax
	cct_init
	centerline_
	clabel
	consource
	contact
	contline
	corner
	cosd
	cross
	cross3D
	crossover
	crosswd_
	csdim_
	dac
	d_fet
	dabove
	darc
	darrow
	darrow_init
	dashline
	dbelow
	dcosine3D
	def_bisect
	delay
	delay_rad_
	deleminit_
	dend
	dfillcolor
	diff3D
	diff_
	dimen_
	dimension_
	diode
	dir_
	distance
	distance
	dlabel
	dleft
	dline
	dlinewid
	dn_
	dljust
	dna_
	dnm_
	dot
	dot3D
	dotrad_
	down_
	dright
	drjust
	dswitch
	dtee
	dtor_
	dturn
	e_
	e_fet
	earphone
	ebox
	elchop
	eleminit_
	elen_
	em_arrows
	endshade
	expe
	f_box
	fill_
	fitcurve
	for_
	fuse
	g_
	gap
	gen_init
	glabel_
	gpar_
	gpolyline_
	grid_
	ground
	gyrator
	gshade
	heater
	hex_digit
	hexadecimal_
	hoprad_
	ht_
	ifdpic
	ifgpic
	ifinstr
	ifmfpic
	ifmpost
	ifpgf
	ifpostscript
	ifpstricks
	ifroff
	ifxfig
	igbt
	in__
	inductor
	inner_prod
	integrator
	intersect_
	jack
	j_fet
	KelvinR
	larrow
	lbox
	left_
	length3D
	lg_bartxt
	lg_pin
	lg_pintxt
	lg_plen
	lin_leng
	linethick_
	ljust_
	llabel
	loc_
	log10E_
	log_init
	loge
	lp_xy
	lpop
	lswitch
	lthick
	lt_
	manhattan
	memristor
	microphone
	mm__
	mosfet
	m4lstring
	m4_arrow
	m4dupstr
	m4xpand
	m4xtract
	n_
	ne_
	neg_
	norator
	nport
	nterm
	nullator
	nw_
	opamp
	open_arrow
	par_
	pconnex
	pc__
	pi_
	plug
	pmod
	point_
	polar_
	potentiometer
	print3D
	prod_
	project
	psset_
	ptrans
	pt__
	r_
	rarrow
	rect_
	relay
	resetdir_)
	resetrgb
	resistor
	resized
	restorem4dir
	reversed
	rgbdraw
	rgbfill
	right_
	rjust_
	rlabel
	rot3Dx
	rot3Dy
	rot3Dz
	rotbox
	rotellipse
	round
	rpoint_
	rpos_
	rrot_
	rs_box
	rsvec_
	rt_
	rtod_
	rtod__
	rvec_
	s_
	s_box
	s_dp
	s_ht
	s_init
	s_name
	s_wd
	savem4dir
	sc_draw
	scr
	se_
	setdir_
	setrgb
	setview
	sfg_init
	sfgabove
	sfgarc
	sfgbelow
	sfgline
	sfgnode
	sfgself
	shade
	shadebox
	sign_
	sinc
	sind
	sinusoid
	source
	sourcerad_
	sp_
	speaker
	sprod3D
	stackcopy_
	stackexec_
	stackprint_
	stackpromote_
	stackreverse_
	stacksplit_
	sum3D
	sum_
	svec_
	sw_
	switch
	ta_xy
	tapped
	tgate
	thicklines_
	thinlines_
	threeD_init
	thyristor
	tline
	tr_xy
	tr_xy_init
	transformer
	tstrip
	ttmotor
	twopi_
	ujt
	unit3D
	up_
	up__
	variable
	vec_
	vlength
	vperp
	vrot_
	vscal_
	w_
	while_
	wid_
	winding
	xtal
	xtract

	References

