ChiSqSelector#
- class pyspark.ml.feature.ChiSqSelector(*, numTopFeatures=50, featuresCol='features', outputCol=None, labelCol='label', selectorType='numTopFeatures', percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]#
- Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label. The selector supports different selection methods: numTopFeatures, percentile, fpr, fdr, fwe. - numTopFeatures chooses a fixed number of top features according to a chi-squared test. 
- percentile is similar but chooses a fraction of all features instead of a fixed number. 
- fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. 
- fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold. 
- fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection. 
 - By default, the selection method is numTopFeatures, with the default number of top features set to 50. - Deprecated since version 3.1.0: Use UnivariateFeatureSelector - New in version 2.0.0. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0), ... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0), ... (Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0)], ... ["features", "label"]) >>> selector = ChiSqSelector(numTopFeatures=1, outputCol="selectedFeatures") >>> model = selector.fit(df) >>> model.getFeaturesCol() 'features' >>> model.setFeaturesCol("features") ChiSqSelectorModel... >>> model.transform(df).head().selectedFeatures DenseVector([18.0]) >>> model.selectedFeatures [2] >>> chiSqSelectorPath = temp_path + "/chi-sq-selector" >>> selector.save(chiSqSelectorPath) >>> loadedSelector = ChiSqSelector.load(chiSqSelectorPath) >>> loadedSelector.getNumTopFeatures() == selector.getNumTopFeatures() True >>> modelPath = temp_path + "/chi-sq-selector-model" >>> model.save(modelPath) >>> loadedModel = ChiSqSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - getFdr()- Gets the value of fdr or its default value. - Gets the value of featuresCol or its default value. - getFpr()- Gets the value of fpr or its default value. - getFwe()- Gets the value of fwe or its default value. - Gets the value of labelCol or its default value. - Gets the value of numTopFeatures or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of percentile or its default value. - Gets the value of selectorType or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setFdr(value)- Sets the value of - fdr.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFpr(value)- Sets the value of - fpr.- setFwe(value)- Sets the value of - fwe.- setLabelCol(value)- Sets the value of - labelCol.- setNumTopFeatures(value)- Sets the value of - numTopFeatures.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, numTopFeatures, ...])- Sets params for this ChiSqSelector. - setPercentile(value)- Sets the value of - percentile.- setSelectorType(value)- Sets the value of - selectorType.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - fit(dataset, params=None)#
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - fitMultiple(dataset, paramMaps)#
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - getFdr()#
- Gets the value of fdr or its default value. - New in version 2.2.0. 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getFpr()#
- Gets the value of fpr or its default value. - New in version 2.1.0. 
 - getFwe()#
- Gets the value of fwe or its default value. - New in version 2.2.0. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getNumTopFeatures()#
- Gets the value of numTopFeatures or its default value. - New in version 2.0.0. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getOutputCol()#
- Gets the value of outputCol or its default value. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPercentile()#
- Gets the value of percentile or its default value. - New in version 2.1.0. 
 - getSelectorType()#
- Gets the value of selectorType or its default value. - New in version 2.1.0. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setFdr(value)#
- Sets the value of - fdr. Only applicable when selectorType = “fdr”.- New in version 2.2.0. 
 - setFeaturesCol(value)#
- Sets the value of - featuresCol.
 - setFpr(value)#
- Sets the value of - fpr. Only applicable when selectorType = “fpr”.- New in version 2.1.0. 
 - setFwe(value)#
- Sets the value of - fwe. Only applicable when selectorType = “fwe”.- New in version 2.2.0. 
 - setNumTopFeatures(value)#
- Sets the value of - numTopFeatures. Only applicable when selectorType = “numTopFeatures”.- New in version 2.0.0. 
 - setParams(self, \*, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="label", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]#
- Sets params for this ChiSqSelector. - New in version 2.0.0. 
 - setPercentile(value)#
- Sets the value of - percentile. Only applicable when selectorType = “percentile”.- New in version 2.1.0. 
 - setSelectorType(value)#
- Sets the value of - selectorType.- New in version 2.1.0. 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - fdr = Param(parent='undefined', name='fdr', doc='The upper bound of the expected false discovery rate.')#
 - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - fpr = Param(parent='undefined', name='fpr', doc='The highest p-value for features to be kept.')#
 - fwe = Param(parent='undefined', name='fwe', doc='The upper bound of the expected family-wise error rate.')#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - numTopFeatures = Param(parent='undefined', name='numTopFeatures', doc='Number of features that selector will select, ordered by ascending p-value. If the number of features is < numTopFeatures, then this will select all features.')#
 - outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - percentile = Param(parent='undefined', name='percentile', doc='Percentile of features that selector will select, ordered by ascending p-value.')#
 - selectorType = Param(parent='undefined', name='selectorType', doc='The selector type. Supported options: numTopFeatures (default), percentile, fpr, fdr, fwe.')#
 - uid#
- A unique id for the object.