derivsubst SciMax Toolbox desolve

SciMax Toolbox >> describe

describe

Maxima Function

Calling Sequence

describe (string)
describe(string,exact)
describe(string,inexact)

Description

describe(string) is equivalent to describe(string, exact).

describe(string, exact) finds an item with title equal (case-insensitive) to string, if there is any such item.

describe(string, inexact) finds all documented items which contain string in their titles. If there is more than one such item, Maxima asks the user to select an item or items to display.

At the interactive prompt, ? foo (with a space between ? and foo) is equivalent to describe("foo", exact), and ?? foo is equivalent to describe("foo", inexact).

describe("", inexact) yields a list of all topics documented in the on-line manual.

describe quotes its argument. describe returns true if some documentation is found, otherwise false.

See also Documentation.

Example:

(%i1) ?? integ
 0: Functions and Variables for Elliptic Integrals
 1: Functions and Variables for Integration
 2: Introduction to Elliptic Functions and Integrals
 3: Introduction to Integration
 4: askinteger  (Functions and Variables for Simplification)
 5: integerp  (Functions and Variables for Miscellaneous Options)
 6: integer_partitions  (Functions and Variables for Sets)
 7: integrate  (Functions and Variables for Integration)
 8: integrate_use_rootsof  (Functions and Variables for
    Integration)
 9: integration_constant_counter  (Functions and Variables for
    Integration)
 10: nonnegintegerp  (Functions and Variables for linearalgebra)
Enter space-separated numbers, `all' or `none': 7 8
 -- Function: integrate (<expr>, <x>)
 -- Function: integrate (<expr>, <x>, <a>, <b>)
     Attempts to symbolically compute the integral of <expr> with
     respect to <x>.  `integrate (<expr>, <x>)' is an indefinite
     integral, while `integrate (<expr>, <x>, <a>, <b>)' is a
     definite integral, [...]
 -- Option variable: integrate_use_rootsof
     Default value: `false'
     When `integrate_use_rootsof' is `true' and the denominator of
     a rational function be factored, `integrate' returns
     the integral in a form which is a sum over the roots (not yet
     known) of the denominator.
     [...]

In this example, items 7 and 8 were selected (output is shortened as indicated by [...]. All or none of the items could have been selected by entering all or none, which can be abbreviated a or n, respectively.

derivsubst SciMax Toolbox desolve