Distributed Programming
with Ice

Michi Henning
Mark Spruiell

With contributions by

Dwayne Boone, Brent Eagles, Benoit Foucher,
Marc Laukien, Matthew Newhook, Bernard Normier

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and ZeroC was aware of the trademark claim,
the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

This documentation is licensed under the Creative Commons Attribution-NoDerivs 2.5 License. You

can find a copy of this license in Appendix J. The Ice software is licensed under different terms. See the
Ice distribution for details on that license.

Copyright © 2003-2008 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Revision 3.3.0, May 2008

This revision of the documentation describes Ice version 3.3.0.

The Ice source distribution makes use of a number of third-party products:

* Berkeley DB, developed by Oracle (http://www.oracle.com)

* bzip2/libbzip2, developed by Julian R. Seward (http://sources.redhat.com/bzip2)

» The OpenSSL Toolkit, developed by the OpenSSL Project (http://www.openssl.org)

» SSLeay, developed by Eric Young (mailto:eay @cryptsoft.com)

* Expat, developed by James Clark (http://www.libexpat.org)

* STLport, developed by the STLport Standard Library Project (http://www.stlport.org)
* mcpp, developed by Kiyoshi Matsui (http://mcpp.sourceforge.net)

See the Ice source distribution for the license agreements for each of these products.

mailto:info@zeroc.com
http://www.oracle.com
http://sources.redhat.com/bzip2
http://www.openssl.org
mailto:eay@cryptsoft.com
http://www.libexpat.org
http://www.zeroc.com
http://www.stlport.org
http://mcpp.sourceforge.net

Contents

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 The Internet Communications Engine (Ice) 4
1.3 Organization of this Book 4
1.4 Typographical Conventions 6
1.5 Source Code Examples 6
1.6 Contacting the Authors 6
1.7 Ice Support 7
Part I Ice Overview 9
Chapter 2 Ice Overview 11
2.1 Chapter Overview 11
2.2 The Ice Architecture 11
2.3 Ice Services 27
2.4 Architectural Benefits of Ice 30
2.5 A Comparison with CORBA 32
Chapter 3 A Hello World Application 37
3.1 Chapter Overview 37
3.2 Writing a Slice Definition 38
3.3 Writing an Ice Application with C++ 38
3.4 Writing an Ice Application with Java 47
3.5 Writing an Ice Application with C# 54
3.6 Writing an Ice Application with Visual Basic 61
3.7 Writing an Ice Application with Python 69
3.8 Writing an Ice Application with Ruby 75
3.9 Summary 78

Part II Slice 79
Chapter 4 The Slice Language 81
4.1 Chapter Overview 81
4.2 Introduction 81
4.3 Compilation 82
4.4 Source Files 85
4.5 Lexical Rules 87
4.6 Modules 90
47 The Ice Module 91
4.8 Basic Slice Types 92
4.9 User-Defined Types 94
4.10 Interfaces, Operations, and Exceptions 101
4.11 Classes 126
4.12 Forward Declarations 142
4.13 Type IDs 143
4.14 Operations on Object 144
4.15 Local Types 146
4.16 Names and Scoping 147
4.17 Metadata 154
4.18 Deprecating Slice Definitions 155
4.19 Using the Slice Compilers 155
4.20 Slice Checksums 157
4.21 A Comparison of Slice and CORBA IDL 158
4.22 Generating Slice Documentation 167
4.23 Summary 173
Chapter 5 Slice for a Simple File System 175
5.1 Chapter Overview 175
5.2 The File System Application 175
5.3 Slice Definitions for the File System 176
5.4 The Complete Definition 178

Part III Language Mappings 181
Part III.A C++ Mapping 183
Chapter 6 Client-Side Slice-to-C++ Mapping 185
6.1 Chapter Overview 185
6.2 Introduction 185
6.3 Mapping for Identifiers 186
6.4 Mapping for Modules 187
6.5 The Ice Namespace 188
6.6 Mapping for Simple Built-In Types 188
6.7 Mapping for User-Defined Types 190
6.8 Mapping for Constants 199
6.9 Mapping for Exceptions 200
6.10 Mapping for Run-Time Exceptions 204
6.11 Mapping for Interfaces 205
6.12 Mapping for Operations 215
6.13 Exception Handling 221
6.14 Mapping for Classes 223
6.15 slice2cpp Command-Line Options 247
6.16 Using Slice Checksums 252
6.17 A Comparison with the CORBA C++ Mapping 253
Chapter 7 Developing a File System Client in C++ 255
7.1 Chapter Overview 255
7.2 The C++ Client 255
7.3 Summary 260
Chapter 8 Server-Side Slice-to-C++ Mapping 261
8.1 Chapter Overview 261
8.2 Introduction 261
8.3 The Server-Side main Function 262
8.4 Mapping for Interfaces 277
8.5 Parameter Passing 280
8.6 Raising Exceptions 281
8.7 Object Incarnation 282
8.8 Summary 288
Chapter 9 Developing a File System Server in C++ 289
9.1 Chapter Overview 289
9.2 Implementing a File System Server 289

9.3 Summary 306

Vi

Part II11.B Java Mapping 309
Chapter 10 Client-Side Slice-to-Java Mapping 311
10.1 Chapter Overview 311
10.2 Introduction 311
10.3 Mapping for Identifiers 312
10.4 Mapping for Modules 313
10.5 The Ice Package 314
10.6 Mapping for Simple Built-in Types 314
10.7 Mapping for User-Defined Types 314
10.8 Mapping for Constants 319
10.9 Mapping for Exceptions 320
10.10 Mapping for Run-Time Exceptions 322
10.11 Mapping for Interfaces 323
10.12 Mapping for Operations 332
10.13 Exception Handling 337
10.14 Mapping for Classes 339
10.15 Customizing the Java Mapping 347
10.16 slice2java Command-Line Options 362
10.17 Using Slice Checksums 363
Chapter 11 Developing a File System Client in Java 365
11.1 Chapter Overview 365
11.2 The Java Client 365
11.3 Summary 369
Chapter 12 Server-Side Slice-to-Java Mapping 371
12.1 Chapter Overview 371
12.2 Introduction 371
12.3 The Server-Side main Function 372
12.4 Mapping for Interfaces 379
12.5 Parameter Passing 382
12.6 Raising Exceptions 383
12.7 Tie Classes 384
12.8 Object Incarnation 387
12.9 Summary 391
Chapter 13 Developing a File System Server in Java 393
13.1 Chapter Overview 393
13.2 Implementing a File System Server 393
13.3 Summary 402

Vii

Part I11.C C# Mapping 403
Chapter 14 Client-Side Slice-to-C# Mapping 405
14.1 Chapter Overview 405
14.2 Introduction 405
14.3 Mapping for Identifiers 406
14.4 Mapping for Modules 407
14.5 The Ice Namespace 408
14.6 Mapping for Simple Built-in Types 408
14.7 Mapping for User-Defined Types 409
14.8 Mapping for Constants 426
14.9 Mapping for Exceptions 427
14.10 Mapping for Interfaces 430
14.11 Mapping for Operations 438
14.12 Exception Handling 442
14.13 Mapping for Classes 444
14.14 C#-Specific Metadata Directives 454
14.15 slice2cs Command-Line Options 455
14.16 Using Slice Checksums 456
Chapter 15 Developing a File System Client in C# 457
15.1 Chapter Overview 457
15.2 The C# Client 457
15.3 Summary 461
Chapter 16 Server-Side Slice-to-C# Mapping 463
16.1 Chapter Overview 463
16.2 Introduction 463
16.3 The Server-Side Main Method 464
16.4 Mapping for Interfaces 470
16.5 Parameter Passing 473
16.6 Raising Exceptions 474
16.7 Tie Classes 476
16.8 Object Incarnation 479
16.9 Summary 483
Chapter 17 Developing a File System Server in C# 485
17.1 Chapter Overview 485
17.2 Implementing a File System Server 485
17.3 Summary 494

viii

Part II1.D Python Mapping 495
Chapter 18 Client-Side Slice-to-Python Mapping 497
18.1 Chapter Overview 497
18.2 Introduction 497
18.3 Mapping for Identifiers 498
18.4 Mapping for Modules 499
18.5 The Ice Module 499
18.6 Mapping for Simple Built-In Types 499
18.7 Mapping for User-Defined Types 501
18.8 Mapping for Constants 506
18.9 Mapping for Exceptions 507
18.10 Mapping for Run-Time Exceptions 509
18.11 Mapping for Interfaces 510
18.12 Mapping for Operations 516
18.13 Exception Handling 521
18.14 Mapping for Classes 522
18.15 Code Generation 528
18.16 Using Slice Checksums 538
Chapter 19 Developing a File System Client in Python 541
19.1 Chapter Overview 541
19.2 The Python Client 541
19.3 Summary 545
Chapter 20 Server-Side Slice-to-Python Mapping 547
20.1 Chapter Overview 547
20.2 Introduction 547
20.3 The Server-Side main Program 548
20.4 Mapping for Interfaces 554
20.5 Parameter Passing 556
20.6 Raising Exceptions 558
20.7 Object Incarnation 559
20.8 Summary 563
Chapter 21 Developing a File System Server in Python 565
21.1 Chapter Overview 565
21.2 Implementing a File System Server 565
21.3 Thread Safety 572
21.4 Summary 573

Part II1.LE Ruby Mapping 575
Chapter 22 Client-Side Slice-to-Ruby Mapping 577
22.1 Chapter Overview 577
22.2 Introduction 577
22.3 Mapping for Identifiers 578
22.4 Mapping for Modules 579
22.5 The Ice Module 579
22.6 Mapping for Simple Built-In Types 579
22.7 Mapping for User-Defined Types 580
22.8 Mapping for Constants 585
22.9 Mapping for Exceptions 586
22.10 Mapping for Run-Time Exceptions 588
22.11 Mapping for Interfaces 588
22.12 Mapping for Operations 595
22.13 Exception Handling 599
22.14 Mapping for Classes 601
22.15 Code Generation 609
22.16 The main Program 614
22.17 Using Slice Checksums 620
Chapter 23 Developing a File System Client in Ruby 623
23.1 Chapter Overview 623
23.2 The Ruby Client 623
23.3 Summary 627
Part II1.F PHP Mapping 629
Chapter 24 Ice Extension for PHP 631
24.1 Chapter Overview 631
24.2 Introduction 631
24.3 Configuration 633
24.4 Client-Side Slice-to-PHP Mapping 637
Chapter 25 Developing a File System Client in PHP 655
25.1 Chapter Overview 655
25.2 The PHP Client 655
25.3 Summary 659

Part IV Advanced Ice 661

Chapter 26 Ice Properties and Configuration 663
26.1 Chapter Overview 663
26.2 Properties 663
26.3 Configuration Files 665
26.4 Setting Properties on the Command Line 667
26.5 The Ice.Config Property 668
26.6 Command-Line Parsing and Initialization 669
26.7 The Ice.ProgramName property 671
26.8 Using Properties Programmatically 672
26.9 Unused Properties 682
26.10 Summary 682

Chapter 27 Threads and Concurrency with C++ 683
27.1 Chapter Overview 683
27.2 Introduction 683
27.3 Library Overview 684
27.4 Mutexes 684
27.5 Recursive Mutexes 691
27.6 Read-Write Recursive Mutexes 694
27.7 Timed Locks 698
27.8 Monitors 703
27.9 Condition Variables 711
27.10 Efficiency Considerations 715
27.11 Threads 716
27.12 Portable Signal Handling 725

27.13 Summary 727

Xi

Chapter 28

Chapter 29

The Ice Run Time in Detail

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10
28.11
28.12
28.13
28.14
28.15
28.16
28.17
28.18
28.19
28.20
28.21
28.22
28.23
28.24
28.25
28.26

Introduction

Communicators

Communicator Initialization
Object Adapters

Object Identity

The Ice: :Current Object
Servant Locators

Server Implementation Techniques
The Ice Threading Model

Proxies

The Ice: :Context Parameter
Connection Timeouts

Oneway Invocations

Datagram Invocations

Batched Invocations

Testing Proxies for Dispatch Type
Location Services

Administrative Facility

The Ice: :Logger Interface

The Ice: :Stats Interface
Location Transparency

Dispatch Interceptors

String Conversion

Developing a Plugin

A Comparison of the Ice and CORBA Run Time
Summary

Asynchronous Programming

29.1
29.2
293
294
29.5

Chapter Overview
Introduction
Using AMI

Using AMD
Summary

729
729
730
735
736
750
753
755
770
806
818
831
840
842
847
849
852
852
861
869
877
878
880
885
892
897
899

901
901
901
904
924
935

Xii

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Facets and Versioning

30.1
30.2
30.3
304
30.5
30.6
30.7
30.8

Introduction

Concept and APIs

The Versioning Problem
Versioning with Facets
Facet Selection
Behavioral Versioning
Design Considerations
Summary

Object Life Cycle

31.1
31.2
31.3
314
31.5
31.6
31.7
31.8
31.9
31.10
31.11
31.12

Chapter Overview

Introduction

Object Existence and Non-Existence

Life Cycle of Proxies, Servants, and Ice Objects
Object Creation

Object Destruction

Removing Cyclic Dependencies

Life Cycle and Parallelism

Object Identity and Uniqueness

Object Life Cycle for the File System Application
Avoiding Server-Side Garbage

Summary

Dynamic Ice

32.1
322
323
324
32.5

Chapter Overview

Streaming Interface

Dynamic Invocation and Dispatch

Asynchronous Dynamic Invocation and Dispatch
Summary

Connection Management

33.1
332
333
334
335
33.6
33.7
33.8

Chapter Overview

Introduction

Connection Establishment
Active Connection Management
Obtaining a Connection
Connection Closure
Bidirectional Connections
Summary

937
937
937
944
950
950
952
954
956

957
957
958
959
964
966
970
987
993
996
998
1025
1035

1037
1037
1037
1071
1088
1095

1097
1097
1097
1098
1103
1104
1107
1108
1113

xiii

Chapter 34 The Ice Protocol 1115
34.1 Chapter Overview 1115
34.2 Data Encoding 1116
34.3 Protocol Messages 1140
34.4 Compression 1150
34.5 Protocol and Encoding Versions 1152
34.6 A Comparison with IIOP 1156

Part V Ice Services 1163

Chapter 35 IceGrid 1165
35.1 Chapter Overview 1165
35.2 Introduction 1166
35.3 IceGrid Architecture 1168
35.4 Getting Started 1172
35.5 Using Deployment 1177
35.6 Well-known Objects 1186
35.7 Templates 1195
35.8 IceBox Integration 1201
35.9 Object Adapter Replication 1204
35.10 Load Balancing 1207
35.11 Sessions 1210
35.12 Registry Replication 1218
35.13 Application Distribution 1223
35.14 Administrative Sessions 1231
35.15 Glacier2 Integration 1238
35.16 XML Reference 1242
35.17 Variable and Parameter Semantics 1272
35.18 Property Set Semantics 1278
35.19 XML Features 1283
35.20 Server Reference 1286
35.21 Administrative Facility Integration 1295
35.22 Securing IceGrid 1303
35.23 Administrative Utilities 1308
35.24 Server Activation 1316
35.25 Solving Problems 1319
35.26 Summary 1322

Xiv

Chapter 36

Chapter 37

Chapter 38

Freeze
36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9

Freeze
37.1
37.2
37.3
374
37.5
37.6
37.7
37.8
37.9

Chapter Overview
Introduction
The Freeze Map

Using a Freeze Map in the File System Server

Freeze Evictors

Using the Freeze Evictor in a File System Server

The Freeze Catalog
Backups
Summary

Script

Chapter Overview

Introduction

Database Migration
Transformation Descriptors
Using transformdb
Database Inspection

Using dumpdb

Descriptor Expression Language
Summary

IceSSL

38.1
38.2
383
384
38.5
38.6
38.7
38.8

Chapter Overview

Introduction

Using IceSSL

Configuring IceSSL
Programming with IceSSL
Advanced Topics

Setting up a Certificate Authority
Summary

1325
1325
1326
1326
1348
1374
1390
1411
1412
1413

1415
1415
1415
1416
1422
1436
1444
1455
1459
1462

1465
1465
1465
1468
1471
1483
1498
1506
1511

XV

Chapter 39 Glacier2

Chapter 40

Chapter 41

39.1
39.2
39.3
394
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13

Chapter Overview
Introduction

Using Glacier2
Callbacks

Router Security
Session Management
Dynamic Filtering
Request Buffering
Request Contexts
Firewalls

Advanced Client Configurations
IceGrid Integration
Summary

IceBox

40.1
40.2
40.3
40.4
40.5
40.6

Chapter Overview
Introduction
Developing a Service
Starting IceBox
IceBox Administration
Summary

IceStorm

41.1
41.2
41.3
414
41.5
41.6
41.7
41.8
419
41.10
41.11
41.12
41.13

Chapter Overview
Introduction

Concepts

IceStorm Interface Overview
Using IceStorm

Publishing to a Specific Subscriber
Highly Available IceStorm
IceStorm Administration
Topic Federation

Quality of Service

Delivery Mode

Configuring IceStorm
Summary

1513
1513
1513
1518
1525
1528
1537
1540
1542
1543
1546
1546
1548
1549

1551
1551
1551
1552
1560
1562
1567

1569
1569
1569
1571
1574
1576
1587
1589
1593
1596
1600
1602
1604
1608

XVi

Chapter 42 IcePatch2 1609
42.1 Chapter Overview 1609

42.2 Introduction 1609

42.3 Using icepatch2calc 1610

42.4 Running the Server 1613

42.5 Running the Client 1614

42.6 Object Identities 1617

42.7 The IcePatch2 Client Utility Library 1617

42.8 Summary 1622
Appendixes 1623
Appendix A Slice Keywords 1625
Appendix B Slice API Reference 1627
Appendix C Properties 1629
C.1 Ice Configuration Property 1629

C.2 Ice Trace Properties 1630

C.3 Ice Warning Properties 1633

C4 Ice Object Adapter Properties 1635

C.5 Ice Administrative Properties 1640

C.6 Ice Plugin Properties 1642

C.7 Ice Thread Pool Properties 1645

C.8 Ice Default and Override Properties 1647

C.9 Ice Proxy Properties 1652

C.10 Ice Transport Properties 1654

C.11 Ice Miscellaneous Properties 1657

C.12 IceSSL Properties 1664

C.13 IceBox Properties 1680

C.14 IceBoxAdmin Properties 1683

C.15 IceGrid Properties 1683

C.16 IceGrid Administrative Client Properties 1702

C.17 IceStorm Properties 1703

C.18 Glacier2 Properties 1711

C.19 Freeze Properties 1725

C.20 IcePatch2 Properties 1734

Appendix D Proxies and Endpoints 1737
D.1 Proxies 1737

D.2 Endpoints 1739

XVii

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

The C++ Utility Library

E.1 Introduction

E.2 AbstractMutex

E.3 Cache

E4 CtrlCHandler

E.5 Exception

E.6 generateUUID

E.7 Handle Template

E.8 Handle Template Adaptors
E9 Sharedand SimpleShared
E.10 Threads and Synchronization Primitives
E.11 Time

E.12 Timer and TimerTask

E.13 Unicode and UTF-8 Conversion Functions
E.14 Version Information

The Java Utility Library

F.1 Introduction

F2 The IceUtil Package

F3 The Ice.Util Class

The .NET Utility Library

G.1 Introduction

G.2 Communicator Initialization Methods
G.3 Identity Conversion

G.4 Property Creation Methods

G.5 Proxy Comparison Methods
G.6 Stream Creation

G.7 UUID Generation

G.8 Version Information

Windows Services

H.1 Introduction

H.2 Installing a Windows Service
H.3 The Ice Service Installer

H.4 Manual Installation

H.5 Troubleshooting

Binary Distributions

I.1 Introduction

1.2 Developer Kits

1.3 Guidelines

1749
1749
1749
1752
1755
1756
1756
1757
1760
1765
1766
1766
1766
1769
1770

1771
1771
1771
1774

1777
1777
1777
1777
1778
1778
1778
1778
1778

1781
1781
1782
1782
1788
1796

1799
1799
1799
1800

xviii

Appendix J License Information

Bibliography

J.1
J.2
13
J4
1.5
J.6
1.7
1.8

Definitions

Fair Use Rights

License Grant

Restrictions

Representations, Warranties and Disclaimer
Limitation on Liability

Termination

Miscellaneous

1805
1805
1806
1806
1807
1808
1809
1809
1810

1811

Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

* Although CORBA was available from a variety of vendors, it was rarely
possible to find a single vendor that could provide an implementation for all of

1

Introduction

the environments in a heterogeneous network. Despite much standardization
effort, lack of interoperability between different CORBA implementations
continued to cause problems, and source code compatibility for languages
such as C or C++ was never fully achieved, usually due to vendor-specific
extensions and CORBA'’s lack of a specification for multi-threaded environ-
ments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:

* SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

* While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

* The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

® There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

* Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

® Choose .NET/WCF

The most serious drawback is that it supports only a limited number of
languages and platforms.

® Choose Java RMI
This is a Java-only solution and so does not qualify as middleware.
® Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

* Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can choose a platform
that will run only with limited languages or platforms, you can choose a platform

Introduction

1.2

that is complex and suffering from gradual abandonment, or you can choose a
platform that is inefficient and, due to the lack of standardization, proprietary.

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

* Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a
middleware platform that is more powerful than CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* “Part I: Ice Overview” provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Python, and Ruby.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.

1.3 Organization of this Book

NOTE:

® “Part II: Slice” explains the Slice definition language. After reading this part,
you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

e “Part III: Language Mappings” contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

® “Part IV: Advanced Ice” presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

* “Part V: Ice Services” covers the services provided with Ice, such as IceGrid
(a sophisticated deployment tool), Glacier2 (the Ice firewall solution),
IceStorm (the Ice messaging service), and IcePatch2 (a software patching
service).2

* The Appendixes contain Ice reference material.

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/3.3.0/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/3.3.0/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that

software developers are still inveterate punsters.

http://www.zeroc.com/doc/Ice-3.3.0/manual
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.3.0/reference
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Slice-Reference.html

Introduction

1.4

Typographical Conventions

1.5

This book uses the following typographical conventions:
¢ Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
* File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.

mailto:icebook@zeroc.com

1.7 Ice Support

1.7 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.

http://www.zeroc.com/forums
http://www.zeroc.com/forums

Introduction

Part 1

Ice Overview

Chapter 2
Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate

11

12

Ice Overview

2.2.2

using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:

2.2 The Ice Architecture 13

An Ice object is an entity in the local or a remote address space that can
respond to client requests.

A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 31.

Proxies

Fo

r a client to be able to contact an Ice object, the client must hold a proxy for the

Ice object.1 A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1.

A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.

Ice Overview

ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
* Addressing information that allows the client-side run time to contact the
correct server
* An object identity that identifies which particular object in the server is the
target of a request
* An optional facet identifier that determines which particular facet of an object
the proxy refers to
Section 28.10 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)

2.2 The Ice Architecture 15

® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 28.17). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used for direct proxies, and
indirect binding is used for indirect proxies.

16

Ice Overview

The main advantage of indirect binding is that it allows us to move servers
around (that is, change their address) without invalidating existing proxies that are
held by clients. In other words, direct proxies avoid the extra lookup to locate the
server but no longer work if a server is moved to a different machine. On the other
hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of
containing addressing information or an adapter name, the proxy contains a
connection handle. The connection handle stays valid only for as long as the
connection stays open so, once the connection is closed, the proxy no longer
works (and will never work again). Fixed proxies cannot be marshaled, that is,
they cannot be passed as parameters on operation invocations. Fixed proxies are
used to allow bidirectional communication, so a server can make callbacks to a
client without having to open a new connection (see Section 33.7).

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object,
instead of sending invocations directly to the actual target. Routed proxies are
useful to implement services such as Glacier2, which enables clients to communi-
cate with servers that are behind a firewall (see Chapter 39).

Replication

In Ice, replication involves making object adapters (and their objects) available at
multiple addresses. The goal of replication is usually to provide redundancy by
running the same server on several computers. If one of the computers should
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple
addresses for an object. The Ice run time selects one of the addresses at random
for its initial connection attempt (see Section 28.10) and tries all of them in the
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 10001l:tcp -h server2 -p 10002

2.2 The Ice Architecture 17

The proxy states that the object with identity SimplePrinter is available
using TCP at two addresses, one on the host serverl and another on the host
server2. The burden falls to users or system administrators to ensure that the
servers are actually running on these computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 28.17).

A replica group has a unique identifier and consists of any number of object
adapters. An object adapter may be a member of at most one replica group; such
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.”
The behavior of the location service when resolving an indirect proxy containing a
replica group id is an implementation detail. For example, the location service
could decide to return the addresses of all object adapters in the group, in which
case the client’s Ice run time would select one of the addresses at random using
the limited form of replication discussed earlier. Another possibility is for the
location service to return only one address, which it decided upon using some
heuristic.

Regardless of the way in which a location service resolves a replica group, the
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 12, an Ice object is a conceptual entity that has a type,
identity, and addressing information. However, client requests ultimately must end
up with a concrete server-side processing entity that can provide the behavior for
an operation invocation. To put this differently, a client request must ultimately
end up executing code inside the server, with that code written in a specific
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is
known as a servant. A servant provides substance for (or incarnates) one or more

18

Ice Overview

Ice objects. In practice, a servant is simply an instance of a class that is written by
the server developer and that is registered with the server-side run time as the
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice
objects simultaneously. If the former, the identity of the Ice object incarnated by
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we
might choose to create a proxy for an Ice object with two different addresses for
different machines. In that case, we will have two servers, with each server
containing a servant for the same Ice object. When a client invokes an operation
on such an Ice object, the client-side run time sends the request to exactly one
server. In other words, multiple servants for a single Ice object allow you to build
redundant systems: the client-side run time attempts to send the request to one
server and, if that attempt fails, sends the request to the second server. An error is
reported back to the client-side application code only if that second attempt fails
as well.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver
a request to the correct destination and, depending on the exact circumstances,
may retry a failed request. Ice guarantees that it will either deliver the request, or,
if it cannot deliver the request, inform the client with an appropriate exception;
under no circumstances is a request delivered twice, that is, retries are attempted
only if it is known that a previous attempt definitely failed.

At-most-once semantics are important because they guarantee that operations
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example,
x = 1; is an idempotent operation: if we execute the operation twice, the end
result is the same as if we had executed it once. On the other hand, x++ ; is not
idempotent: if we execute the operation twice, the end result is not the same as if
we had executed it once.

2. One exception to this rule are datagram invocations over UDP transports. For these, duplicated
UDP packets can lead to a violation of at-most-once semantics.

2.2 The Ice Architecture 19

Without at-most-once semantics, we can build distributed systems that are
more robust in the presence of network failures. However, realistic systems
require non-idempotent operations, so at-most-once semantics are a necessity,
even though they make the system less robust in the presence of network failures.
Ice permits you to mark individual operations as idempotent. For such operations,
the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the
client thread is suspended for the duration of the call and resumes when the call
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback
object and the client invocation returns immediately. Once the operation
completes, the client-side run time invokes a method on the callback object passed
initially, passing the results of the operation to the callback object (or, in case of
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous
one—either way, the server simply sees that a client has invoked an operation on
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is
informed of the arrival of an operation invocation. However, instead of being
forced to process the request immediately, the server-side application can choose
to delay processing of the request and, in doing so, releases the execution thread
for the request. The server-side application code is now free to do whatever it

20

Ice Overview

likes. Eventually, once the results of the operation are available, the server-side
application code makes an API call to inform the server-side Ice run time that a
request that was dispatched previously is now complete; at that point, the results
of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available.
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen
clients. With asynchronous dispatch, hundreds or thousands of clients can be
blocked in the same operation invocation without tying up any threads in the
server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This
allows you to continue processing after results have been returned to the client, for
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client,
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has
“best effort” semantics. For a oneway invocation, the client-side run time hands
the invocation to the local transport, and the invocation completes on the client
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not
reply to oneway invocations, that is, traffic flows only from client to server, but not
vice versa.

Oneway invocations are unreliable. For example, the target object may not
exist, in which case the invocation is simply lost. Similarly, the operation may be
dispatched to a servant in the server, but the operation may fail (for example,
because parameter values are invalid); if so, the client receives no notification that
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return
value, do not have out-parameters, and do not throw user exceptions (see
Chapter 4).

2.2 The Ice Architecture 21

To the application code on the server-side, oneway invocations are transparent,
that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.

Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented
transport, they may be processed out of order in the server. This can happen
because each invocation may be dispatched in its own thread: even though the
invocations are initiated in the order in which the invocations arrive at the server,
this does not mean that they will be processed in that order—the vagaries of
thread scheduling can result in a oneway invocation to complete before other
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the
oneway invocations you want to send, you make a separate API call to send all the
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single
message. This avoids the overhead of repeatedly trapping into the kernel for both
client and server, and is much easier on the network between them because one
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in
order in the server.

Batched oneway invocations are particularly useful for messaging services,
such as IceStorm (see Chapter 41), and for fine-grained interfaces that offer set
operations for small attributes.

22

Ice Overview

Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations.
However, datagram invocations require the object to offer UDP as a transport
(whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A datagram
invocation uses UDP to invoke the operation. The operation returns as soon as the
local UDP stack has accepted the message; the actual operation invocation is sent
asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not
exist in the server, the server may not be running, or the operation may be invoked
in the server but fail due to invalid parameters sent by the client. As for oneway
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of
additional error scenarios:

¢ Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you
invoke three operations in sequence, the middle invocation may be lost. (The
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be
lost.)

¢ Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is
sent as a separate datagram, and individual datagrams can take different paths
through the network, it can happen that invocations arrive in an order that
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the
likelihood of loss is small. They are also suited to situations in which low latency
is more important than reliability, such as for fast, interactive internet applications.
Finally, datagram invocations can be used to multicast messages to multiple
servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to
accumulate a number of invocations in a buffer and then send the entire buffer as a
single datagram by making an API call to flush the buffer. Batched datagrams
reduce the overhead of repeated system calls and allow the underlying network to

2.2 The Ice Architecture 23

223

operate more efficiently. However, batched datagram invocations are useful only
for batched messages whose total size does not substantially exceed the PDU limit
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the
loss of the entire batched message. However, you are guaranteed that either all
invocations in a batch will be delivered, or none will be delivered. It is impossible
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual
invocations in a batch. This guarantees that the invocations are made in the order
in which they were queued—invocations cannot appear to be reordered in the
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are
pre-defined by the Ice run time and cover common error conditions, such as
connection failure, connection timeout, or resource allocation failure. Run-time
exceptions are presented to the application as native exceptions and so integrate
neatly with the native exception handling capabilities of languages that support
exception handling.

User Exceptions

User exceptions are used to indicate application-specific error conditions to
clients. User exceptions can carry an arbitrary amount of complex data and can be
arranged into inheritance hierarchies, which makes it easy for clients to handle
categories of errors generically, by catching an exception that is further up the
inheritance hierarchy. Like run-time exceptions, user exceptions map to native
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name—value
pairs, such as Ice.Default .Protocol=tcp. Properties are typically stored
in text files and parsed by the Ice run time to configure various options, such as the
thread pool size, the level of tracing, and various other configuration parameters.

Slice (Specification Language for Ice)

As mentioned on page 13, each Ice object has an interface with a number of oper-
ations. Interfaces, operations, and the types of data that are exchanged between

24

Ice Overview

224

client and server are defined using the Slice language. Slice allows you to define
the client-server contract in a way that is independent of a specific programming
language, such as C++, Java, or C#. The Slice definitions are compiled by a
compiler into an API for a specific programming language, that is, the part of the
API that is specific to the interfaces and types you have defined consists of gener-
ated code.

Language Mappings

The rules that govern how each Slice construct is translated into a specific
programming language are known as language mappings. For example, for the
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector,
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks
like, you only need the Slice definition and knowledge of the language mapping
rules. The rules are simple and regular enough to make it unnecessary to read the
generated code to work out how to use the generated APL

Of course, you are free to peruse the generated code. However, as a rule, that is
inefficient because the generated code is not necessarily suitable for human
consumption. We recommend that you familiarize yourself with the language
mapping rules; that way, you can mostly ignore the generated code and need to
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, and, for
the client side, PHP and Ruby.

http://www.zeroc.com/languages.html
http://www.zeroc.com/languages.html

2.2 The Ice Architecture 25

2.2.5 Client and Server Structure

Ice clients and servers have the logical internal structure shown in Figure 2.1

Client Application Server Application
A A A A A
\/ \J \i \i \
Proxy Ice API Ice API Skeleton Object
Code Adapter
Client Ice Core ‘/\ Server Ice Core
Network

Ice AP
BZ Generated Code

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and
code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote
communication. Much of this code is concerned with the details of
networking, threading, byte ordering, and many other networking-related
issues that we want to keep away from application code. The Ice core is
provided as a number of libraries that client and server use.

* The generic part of the Ice core (that is, the part that is independent of the
specific types you have defined in Slice) is accessed through the Ice API. You
use the Ice API to take care of administrative chores, such as initializing and
finalizing the Ice run time. The Ice API is identical for clients and servers
(although servers use a larger part of the API than clients).

* The proxy code is generated from your Slice definitions and, therefore,
specific to the types of objects and data you have defined in Slice. The proxy
code has two major functions:

* It provides a down-call interface for the client. Calling a function in the
generated proxy API ultimately ends up sending an RPC message to the
server that invokes a corresponding function on the target object.

26

Ice Overview

* It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that
arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

* The skeleton code is also generated from your Slice definition and, therefore,
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it
provides an up-call interface that permits the Ice run time to transfer the thread
of control to the application code you write. The skeleton also contains
marshaling and unmarshaling code, so the server can receive parameters sent
by the client, and return parameters and exceptions to the client.

* The object adapter is a part of the Ice API that is specific to the server side:
only servers use object adapters. An object adapter has several functions:

* The object adapter maps incoming requests from clients to specific methods
on programming-language objects. In other words, the object adapter tracks
which servants with what object identity are in memory.

* The object adapter is associated with one or more transport endpoints. If
more than one transport endpoint is associated with an adapter, the servants
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint
with an adapter, to provide alternate quality-of-service and performance
characteristics.

* The object adapter is responsible for the creation of proxies that can be
passed to clients. The object adapter knows about the type, identity, and
transport details of each of its objects and embeds the correct details when
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve
proxies to transport endpoints.)

2.3 Ice Services 27

2.2.6

2.3

The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server is encrypted.

The Ice protocol defines:
* a number of message types, such as request and reply message types,

* a protocol state machine that determines in what sequence different message
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

* encoding rules that determine how each type of data is represented on the
wire,

* a header for each message type that contains details such as the message type,
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter,
you can arrange for all network traffic to be compressed to conserve bandwidth.
This is useful if your application exchanges large amounts of data between client
and server.

The Ice protocol is suitable for building highly-efficient event forwarding
mechanisms because it permits forwarding of a message without knowledge of the
details of the information inside a message. This means that messaging switches
need not do any unmarshaling and remarshaling of messages—they can forward a
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to
send a message to a callback object provided by the client, the callback can be
made over the connection that was originally created by the client. This feature is
especially important when the client is behind a firewall that permits outgoing
connections, but not incoming connections.

Ice Services

The Ice core provides a sophisticated client—server platform for distributed appli-
cation development. However, realistic applications usually require more than just
a remoting capability: typically, you also need a way to start servers on demand,
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.

28

Ice Overview

2.3.1

2.3.2

Ice ships with a number of services that provide these and other features. The
services are implemented as Ice servers to which your application acts as a client.
None of the services use Ice-internal features that are hidden from application
developers so, in theory, you could develop equivalent services yourself. However,
having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first.
Moreover, building such services is not a trivial effort, so it pays to know what is
available and use it instead of reinventing your own wheel.

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it
easy to store object state in a database: you define the state stored by your objects
in Slice, and the Freeze compiler generates code that stores and retrieves object
state to and from a database. Freeze uses Berkeley DB [18] as its database. We
discuss Freeze in detail in Chapter 36.

Ice also offers a tool called FreezeScript that makes it easier to maintain data-
bases and to migrate the contents of existing databases to a new schema if the type
definitions of objects change. We discuss FreezeScript in Chapter 37.

lceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic
information in an indirect proxy to a protocol-address pair for indirect binding. A
location service is only the beginning of IceGrid’s capabilities:

* IceGrid allows you to register servers for automatic start-up: instead of
requiring a server to be running at the time a client issues a request, IceGrid
starts servers on demand, when the first client request arrives.

* IceGrid provides tools that make it easy to configure complex applications
containing several servers.

* IceGrid supports replication and load-balancing.

¢ JceGrid automates the distribution and patching of server executables and
dependent files.

* IceGrid provides a simple query service that allows clients to obtain proxies
for objects they are interested in.

2.3 Ice Services 29

2.3.3

2.3.4

2.3.5

lceBox

IceBox is a simple application server that can orchestrate the starting and stopping
of a number of application components. Application components can be deployed
as a dynamic library instead of as a process. This reduces overall system load, for
example, by allowing you to run several application components in a single Java
virtual machine instead of having multiple processes, each with its own virtual
machine.

IlceStorm

IceStorm is a publish—subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events
to the service, which, in turn, passes the events to subscribers. In this way, a single
event published by a publisher can be sent to multiple subscribers. Events are cate-
gorized by topic, and subscribers specify the topics they are interested in. Only
events that match a subscriber’s topic are sent to that subscriber. The service
permits selection of a number of quality-of-service criteria to allow applications to
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to
large numbers of application components. (A typical example is a stock ticker
application with a large number of subscribers.) IceStorm decouples the
publishers of information from subscribers and takes care of the redistribution of
the published events. In addition, IceStorm can be run as a federated service, that
is, multiple instances of the service can be run on different machines to spread the
processing load over a number of CPUs.

IcePatch2

IcePatch2? is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch?2 server and request
updates for a particular application. The service automatically checks the version
of the client’s software and downloads any updated application components in a
compressed format to conserve bandwidth. Software patches can be secured using
the Glacier2 service, so only authorized clients can download software updates.

3. IcePatch2 supersedes IcePatch, which was a previous version of this service.

30

Ice Overview

2.3.6 Glacier2

24

Glacier2* is the Ice firewall traversal service: it allows clients and servers to
securely communicate through a firewall without compromising security. Client-
server traffic is SSL-encrypted using public key certificates and is bidirectional.
Glacier?2 offers support for mutual authentication as well as secure session
management.

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

® Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is
chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and
dispatch, as well as publish—subscribe messaging via IceStorm. This allows
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining
a single object identity across these interfaces. This provides great flexibility,
particularly as an application evolves but needs to remain compatible with
older, already deployed clients.

Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying
machine architecture. Issues such as byte ordering and padding are hidden
from application code.

Language independence

Client and server can be developed independently and in different program-
ming languages (currently C++, Java, C#, and, for the client side, PHP). The

4. Glacier2 supersedes Glacier, which was a previous version of this service.

2.4 Architectural Benefits of Ice 31

Slice definition used by both client and server establishes the interface
contract between them and is the only thing they need to agree on.

¢ Implementation independence

Clients are unaware of how servers implement their objects. This means that
the implementation of a server can be changed after clients are deployed, for
example, to use a different persistence mechanism or even a different
programming language.

® Operating system independence

The Ice APIs are fully portable, so the same source code compiles and runs
under both Windows and Unix.

* Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond
synchronizing access to shared data) is required on part of the application
developer to develop threaded, high-performance clients and servers.

® Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither
client nor server code are aware of the underlying transport. (The desired
transport can be chosen by a configuration parameter.)

® Location and server transparency

The Ice run time takes care of locating objects and managing the underlying
transport mechanism, such as opening and closing connections. Interactions
between client and server appear connection-less. Via IceGrid, you can
arrange for servers to be started on demand if they are not running at the time
a client invokes an operation. Servers can be migrated to different physical
addresses without breaking proxies held by clients, and clients are completely
unaware how object implementations are distributed over server processes.

* Security

Communications between client and server can be fully secured with strong
encryption over SSL, so applications can use unsecured public networks to
communicate securely. Via Glacier2, you can implement secure forwarding of
requests through a firewall, with full support for callbacks.

* Built-in persistence

With Freeze, creating persistent object implementations becomes trivial. Ice
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.

32

Ice Overview

2.5

* Source code availability

The source code for Ice is available. While it is not necessary to have access to
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment
for distributed computing that is more complete than any other platform we are
aware of.

A Comparison with CORBA

2.5.1

Obviously, Ice uses many ideas that can be found in CORBA and earlier distrib-
uted computing platforms, such as DCE [14]. In some areas, Ice is remarkably
close to CORBA whereas, in others, the differences are profound and have far-
reaching architectural implications. If you have used CORBA in the past, it is
important to be aware of these differences.

Differences in the Object Model

The Ice object model, even though superficially the same, differs in a number of
important points from the CORBA object model.

Type System

An Ice object, like a CORBA object, has exactly one most derived main interface.
However, an Ice object can provide other interfaces as facets. It is important to
notice that all facets of an Ice object share the same object identity, that is, the
client sees a single object with multiple interfaces instead of several objects, each
with a different interface.

Facets provide great architectural flexibility. In particular, they offer an
approach to the versioning problem: it is easy to extend functionality in a server
without breaking existing, already deployed clients by simply adding a new facet
to an already existing object.

Proxy Semantics

Ice proxies (the equivalent of CORBA object references) are not opaque. Clients
can always create a proxy without support from any other system component, as

2.5 A Comparison with CORBA 33

long as they know the type and identity of the object. (For indirect binding, it is
not necessary to be aware of the transport address of the object.)
Allowing clients to create proxies on demand has a number of advantages:

¢ Clients can create proxies without the need to consult an external look-up
service, such as a naming service. In effect, the object identity and the object’s
name are considered to be one and the same. This eliminates the problems that
can arise from having the contents of the naming service go out of sync with
reality, and reduces the number of system components that must be functional
for clients and servers to work correctly.

* Clients can easily bootstrap themselves by creating proxies to the initial
objects they need. This eliminates the need for a separate bootstrap service.

® There is no need for different encodings of stringified proxies. A single,
uniform representation is sufficient, and that representation is readable to
humans. This avoids the complexities introduced by CORBA’s three different
object reference encodings (IOR, corbaloc, and corbaname).

Experience over many years with CORBA has shown that, pragmatically, opacity
of object references is problematic: not only does it require more complex APIs
and run-time support, it also gets in the way of building realistic systems. For that
reason, mechanisms such as corbaloc and corbaname were added, as well as
the (ill-defined) is_equivalent and hash operations for reference comparison.
All of these mechanisms compromise the opacity of object references, but other
parts of the CORBA platform still try to maintain the illusion of opaque refer-
ences. As a result, the developer gets the worst of both worlds: references are
neither fully opaque nor fully transparent—the resulting confusion and
complexity are considerable.

Object Identity

The Ice object model assumes that object identities are universally unique (but
without imposing this requirement on the application developer). The main advan-
tage of universally unique object identities is that they permit you to migrate
servers and to combine the objects in multiple separate servers into a single server
without concerns about name collisions: if each Ice object has a unique identity, it
is impossible for that identity to clash with the identity of another object in a
different domain.

The Ice object model also uses strong object identity: it is possible to deter-
mine whether two proxies denote the same object as a local, client-side operation.
(With CORBA, you must invoke operations on the remote objects to get reliable

34

Ice Overview

25.2

identity comparison.) Local identity comparison is far more efficient and crucial
for some application domains, such as a distributed transaction service.

Differences in Platform Support

CORBA, depending on which specification you choose to read, provides many of
the services provided by Ice. For example, CORBA supports asynchronous
method invocation and, with the component model, a form of multiple interfaces.
However, the problem is that it is typically impossible to find these features in a
single implementation. Too many CORBA specifications are either optional or not
widely implemented so, as a developer, you are typically faced with having to
choose which feature to do without.

Other features of Ice do not have direct CORBA equivalents:
* Asynchronous Method Dispatch (AMD)

The CORBA APIs do not provide any mechanism to suspend processing of an
operation in the server, freeing the thread of control, and resuming processing
of the operation later.

* Security

While there are many pages of specifications relating to security, most of them
remain unimplemented to date. In particular, CORBA to date offers no prac-
tical solution that allows CORBA to coexist with firewalls.

* Protocol Features

The Ice protocol offers bidirectional support, which is a fundamental require-
ment for allowing callbacks through firewalls. (CORBA specified a bidirec-
tional protocol at one point, but the specification was technically flawed and,
to the best of our knowledge, never implemented.) In addition, Ice allows you
to use UDP (both unicast and multicast) as well as TCP, so event distribution
on reliable (local) networks can be made extremely efficient and light-weight.
CORBA provides no support for UDP as a transport.

Another important feature of the Ice protocol is that all messages and data are
fully encapsulated on the wire. This allows Ice to implement services such as
IceStorm extremely efficiently because, to forward data, no unmarshaling and
remarshaling is necessary. Encapsulation is also important for the deployment
of protocol bridges, such as Glacier2, because the bridge does not need to be

configured with type-specific information.

2.5 A Comparison with CORBA 35

2.5.3

* Language Mappings
CORBA does not specify a language mapping for C#, Ruby, or PHP.

Differences in Complexity

CORBA is known as a platform that is large and complex. This is largely a result
of the way CORBA is standardized: decisions are reached by consensus and
majority vote. In practice, this means that, when a new technology is being stan-
dardized, the only way to reach agreement is to accommodate the pet features of
all interested parties. The result are specifications that are large, complex, and
burdened with redundant or useless features. In turn, all this complexity leads to
implementations that are large and inefficient. The complexity of the specifica-
tions is reflected in the complexity of the CORBA APIs: even experts with years
of experience still need to work with a reference manual close at hand, and, due to
this complexity, applications are frequently plagued with latent bugs that do not
show up until after deployment.

CORBA'’s object model adds further to CORBA’s complexity. For example,
opaque object references force the specification of a naming service because
clients must have some way to access object references. In turn, this requires the
developer to learn yet another API, and to configure and deploy yet another
service when, as with the Ice object model, no naming service is necessary in the
first place.

One of the most infamous areas of complexity in CORBA is the C++
mapping. The CORBA C++ API is arcane in the extreme; in particular, the
memory management issues of this mapping are more than what many developers
are willing to endure. Yet, the code required to implement the C++ mapping is
neither particularly small nor efficient, leading to binaries that are larger and
require more memory at run time than they should. If you have used CORBA with
C++ in the past, you will appreciate the simplicity, efficiency, and neat integration
with STL of the Ice C++ mapping.

In contrast to CORBA, Ice is first and foremost a simple platform. The
designers of Ice took great care to pick a feature set that is both sufficient and
minimal: you can do everything you want, and you can do it with the smallest and
simplest possible API. As you start to use Ice, you will appreciate this simplicity.
It makes it easy to learn and understand the platform, and it leads to shorter devel-
opment time with lower defect counts in deployed applications. At the same time,
Ice does not compromise on features: with Ice, you can achieve everything you
can achieve with CORBA and do so with less effort, less code, and less

36

Ice Overview

complexity. We see this as the most compelling advantage of Ice over any other
middleware platform: things are simple, so simple, in fact, that you will be devel-
oping industrial-strength distributed applications after only a few days exposure to
Ice.

Chapter 3
A Hello World Application

3.1

Chapter Overview

In this chapter, we will see how to create a very simple client—server application in
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic

(Section 3.6), Python (Section 3.7), and Ruby (Section 3.8). Rather than reading
the entire chapter, we suggest that you read Section 3.2 and then skip to the
section that deals with the programming language of your choice.

The application enables remote printing: a client sends the text to be printed to
a server, which in turn sends that text to a printer. For simplicity (and because we
do not want to concern ourselves with the idiosyncrasies of print spoolers for
various platforms), our printer will simply print to a terminal instead of a real
printer. This is no great loss: the purpose of the exercise is to show how a client
can communicate with a server; once the thread of control has reached the server
application code, that code can of course do anything it likes (including sending
the text to a real printer). How to do this is independent of Ice and therefore not
relevant here.

Note that much of the detail of the source code will remain unexplained for
now. The intent is to show you how to get started and give you a feel for what the
development environment looks like; we will provide all the detail throughout the
remainder of this book.

37

38

A Hello World Application

3.2

Writing a Slice Definition

3.3

The first step in writing any Ice application is to write a Slice definition containing
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo {
interface Printer {
void printString(string s);
1
};

We save this text in a file called Printer.ice.

Our Slice definitions consist of the module Demo containing a single interface
called Printer. For now, the interface is very simple and provides only a single
operation, called printString. The printString operation accepts a string as its
sole input parameter; the text of that string is what appears on the (possibly
remote) printer.

Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to
generate C++ proxies and skeletons. Under Unix, you can compile the definition
as follows:

S slice2cpp Printer.ice
The slice2cpp compiler produces two C++ source files from this definition,
Printer.hand Printer.cpp.

®* Printer.h

The Printer.h header file contains C++ type definitions that correspond to
the Slice definitions for our Printer interface. This header file must be
included in both the client and the server source code.

®* Printer.cpp

The Printer. cpp file contains the source code for our Printer interface.
The generated source contains type-specific run-time support for both clients

3.3 Writing an Ice Application with C++ 39

and servers. For example, it contains code that marshals parameter data (the
string passed to the printString operation) on the client side and unmarshals
that data on the server side.

The Printer. cpp file must be compiled and linked into both client and
server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer ({
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

void
PrinterI::
printString(const string& s, const Ice::Currenté&)

{
}

cout << s << endl;

int
main (int argc, char* argv[])
{
int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice: :0ObjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add (object,
ic->stringTolIdentity ("SimplePrinter")) ;
adapter->activate() ;
ic->waitForShutdown () ;
} catch (const Ice::Exception& e) {

A Hello World Application

cerr << e << endl;
status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Ex