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Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

* Although CORBA was available from a variety of vendors, it was rarely
possible to find a single vendor that could provide an implementation for all of

1
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the environments in a heterogeneous network. Despite much standardization
effort, lack of interoperability between different CORBA implementations
continued to cause problems, and source code compatibility for languages
such as C or C++ was never fully achieved, usually due to vendor-specific
extensions and CORBA'’s lack of a specification for multi-threaded environ-
ments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:



* SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

* While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

* The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

® There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

* Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

® Choose .NET/WCF

The most serious drawback is that it supports only a limited number of
languages and platforms.

® Choose Java RMI
This is a Java-only solution and so does not qualify as middleware.
® Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

* Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can choose a platform
that will run only with limited languages or platforms, you can choose a platform
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1.2

that is complex and suffering from gradual abandonment, or you can choose a
platform that is inefficient and, due to the lack of standardization, proprietary.

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a
middleware platform that is more powerful than CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* “Part I: Ice Overview” provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Objective-C, Python, and Ruby.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.



1.3 Organization of this Book

NOTE:

® “Part II: Slice” explains the Slice definition language. After reading this part,

you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

“Part III: Language Mappings” contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

“Part IV: Advanced Ice” presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

“Part V: Ice Services” covers the services provided with Ice, such as IceGrid
(a sophisticated deployment tool), Glacier2 (the Ice firewall solution),
IceStorm (the Ice messaging service), and IcePatch2 (a software patching
service).2

The Appendixes contain Ice reference material and explain the feature differ-
ences between Ice and Ice-E (the version of Ice for embedded systems).

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/Ice-3.3.1/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/Ice-3.3.1/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that

software developers are still inveterate punsters.


http://www.zeroc.com/doc/Ice-3.3.1/manual
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.3.1/reference
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Slice-Reference.html

Introduction

1.4

Typographical Conventions

1.5

This book uses the following typographical conventions:
¢ Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
* File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.


mailto:icebook@zeroc.com

1.7 Ice Support

1.7 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.


http://www.zeroc.com/forums
http://www.zeroc.com/forums
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Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate

11
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2.2.2

using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:
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An Ice object is an entity in the local or a remote address space that can
respond to client requests.

A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 35.

Proxies

Fo

r a client to be able to contact an Ice object, the client must hold a proxy for the

Ice object.1 A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1.

A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.
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ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
* Addressing information that allows the client-side run time to contact the
correct server
* An object identity that identifies which particular object in the server is the
target of a request
* An optional facet identifier that determines which particular facet of an object
the proxy refers to
Section 32.11 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)
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® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 32.18). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used for direct proxies, and
indirect binding is used for indirect proxies.
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The main advantage of indirect binding is that it allows us to move servers
around (that is, change their address) without invalidating existing proxies that are
held by clients. In other words, direct proxies avoid the extra lookup to locate the
server but no longer work if a server is moved to a different machine. On the other
hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of
containing addressing information or an adapter name, the proxy contains a
connection handle. The connection handle stays valid only for as long as the
connection stays open so, once the connection is closed, the proxy no longer
works (and will never work again). Fixed proxies cannot be marshaled, that is,
they cannot be passed as parameters on operation invocations. Fixed proxies are
used to allow bidirectional communication, so a server can make callbacks to a
client without having to open a new connection (see Section 37.7).

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object,
instead of sending invocations directly to the actual target. Routed proxies are
useful to implement services such as Glacier2, which enables clients to communi-
cate with servers that are behind a firewall (see Chapter 43).

Replication

In Ice, replication involves making object adapters (and their objects) available at
multiple addresses. The goal of replication is usually to provide redundancy by
running the same server on several computers. If one of the computers should
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple
addresses for an object. The Ice run time selects one of the addresses at random
for its initial connection attempt (see Section 32.11) and tries all of them in the
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 10001l:tcp -h server2 -p 10002
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The proxy states that the object with identity SimplePrinter is available
using TCP at two addresses, one on the host serverl and another on the host
server2. The burden falls to users or system administrators to ensure that the
servers are actually running on these computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 32.18).

A replica group has a unique identifier and consists of any number of object
adapters. An object adapter may be a member of at most one replica group; such
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.”
The behavior of the location service when resolving an indirect proxy containing a
replica group id is an implementation detail. For example, the location service
could decide to return the addresses of all object adapters in the group, in which
case the client’s Ice run time would select one of the addresses at random using
the limited form of replication discussed earlier. Another possibility is for the
location service to return only one address, which it decided upon using some
heuristic.

Regardless of the way in which a location service resolves a replica group, the
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 12, an Ice object is a conceptual entity that has a type,
identity, and addressing information. However, client requests ultimately must end
up with a concrete server-side processing entity that can provide the behavior for
an operation invocation. To put this differently, a client request must ultimately
end up executing code inside the server, with that code written in a specific
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is
known as a servant. A servant provides substance for (or incarnates) one or more
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Ice objects. In practice, a servant is simply an instance of a class that is written by
the server developer and that is registered with the server-side run time as the
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice
objects simultaneously. If the former, the identity of the Ice object incarnated by
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we
might choose to create a proxy for an Ice object with two different addresses for
different machines. In that case, we will have two servers, with each server
containing a servant for the same Ice object. When a client invokes an operation
on such an Ice object, the client-side run time sends the request to exactly one
server. In other words, multiple servants for a single Ice object allow you to build
redundant systems: the client-side run time attempts to send the request to one
server and, if that attempt fails, sends the request to the second server. An error is
reported back to the client-side application code only if that second attempt fails
as well.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver
a request to the correct destination and, depending on the exact circumstances,
may retry a failed request. Ice guarantees that it will either deliver the request, or,
if it cannot deliver the request, inform the client with an appropriate exception;
under no circumstances is a request delivered twice, that is, retries are attempted
only if it is known that a previous attempt definitely failed.

At-most-once semantics are important because they guarantee that operations
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example,
x = 1; is an idempotent operation: if we execute the operation twice, the end
result is the same as if we had executed it once. On the other hand, x++ ; is not
idempotent: if we execute the operation twice, the end result is not the same as if
we had executed it once.

2. One exception to this rule are datagram invocations over UDP transports. For these, duplicated
UDP packets can lead to a violation of at-most-once semantics.
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Without at-most-once semantics, we can build distributed systems that are
more robust in the presence of network failures. However, realistic systems
require non-idempotent operations, so at-most-once semantics are a necessity,
even though they make the system less robust in the presence of network failures.
Ice permits you to mark individual operations as idempotent. For such operations,
the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the
client thread is suspended for the duration of the call and resumes when the call
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback
object and the client invocation returns immediately. Once the operation
completes, the client-side run time invokes a method on the callback object passed
initially, passing the results of the operation to the callback object (or, in case of
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous
one—either way, the server simply sees that a client has invoked an operation on
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is
informed of the arrival of an operation invocation. However, instead of being
forced to process the request immediately, the server-side application can choose
to delay processing of the request and, in doing so, releases the execution thread
for the request. The server-side application code is now free to do whatever it
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likes. Eventually, once the results of the operation are available, the server-side
application code makes an API call to inform the server-side Ice run time that a
request that was dispatched previously is now complete; at that point, the results
of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available.
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen
clients. With asynchronous dispatch, hundreds or thousands of clients can be
blocked in the same operation invocation without tying up any threads in the
server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This
allows you to continue processing after results have been returned to the client, for
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client,
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has
“best effort” semantics. For a oneway invocation, the client-side run time hands
the invocation to the local transport, and the invocation completes on the client
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not
reply to oneway invocations, that is, traffic flows only from client to server, but not
vice versa.

Oneway invocations are unreliable. For example, the target object may not
exist, in which case the invocation is simply lost. Similarly, the operation may be
dispatched to a servant in the server, but the operation may fail (for example,
because parameter values are invalid); if so, the client receives no notification that
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return
value, do not have out-parameters, and do not throw user exceptions (see
Chapter 4).
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To the application code on the server-side, oneway invocations are transparent,
that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.

Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented
transport, they may be processed out of order in the server. This can happen
because each invocation may be dispatched in its own thread: even though the
invocations are initiated in the order in which the invocations arrive at the server,
this does not mean that they will be processed in that order—the vagaries of
thread scheduling can result in a oneway invocation to complete before other
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the
oneway invocations you want to send, you make a separate API call to send all the
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single
message. This avoids the overhead of repeatedly trapping into the kernel for both
client and server, and is much easier on the network between them because one
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in
order in the server.

Batched oneway invocations are particularly useful for messaging services,
such as IceStorm (see Chapter 45), and for fine-grained interfaces that offer set
operations for small attributes.
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Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations.
However, datagram invocations require the object to offer UDP as a transport
(whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A datagram
invocation uses UDP to invoke the operation. The operation returns as soon as the
local UDP stack has accepted the message; the actual operation invocation is sent
asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not
exist in the server, the server may not be running, or the operation may be invoked
in the server but fail due to invalid parameters sent by the client. As for oneway
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of
additional error scenarios:

¢ Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you
invoke three operations in sequence, the middle invocation may be lost. (The
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be
lost.)

¢ Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is
sent as a separate datagram, and individual datagrams can take different paths
through the network, it can happen that invocations arrive in an order that
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the
likelihood of loss is small. They are also suited to situations in which low latency
is more important than reliability, such as for fast, interactive internet applications.
Finally, datagram invocations can be used to multicast messages to multiple
servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to
accumulate a number of invocations in a buffer and then send the entire buffer as a
single datagram by making an API call to flush the buffer. Batched datagrams
reduce the overhead of repeated system calls and allow the underlying network to



2.2 The Ice Architecture 23

223

operate more efficiently. However, batched datagram invocations are useful only
for batched messages whose total size does not substantially exceed the PDU limit
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the
loss of the entire batched message. However, you are guaranteed that either all
invocations in a batch will be delivered, or none will be delivered. It is impossible
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual
invocations in a batch. This guarantees that the invocations are made in the order
in which they were queued—invocations cannot appear to be reordered in the
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are
pre-defined by the Ice run time and cover common error conditions, such as
connection failure, connection timeout, or resource allocation failure. Run-time
exceptions are presented to the application as native exceptions and so integrate
neatly with the native exception handling capabilities of languages that support
exception handling.

User Exceptions

User exceptions are used to indicate application-specific error conditions to
clients. User exceptions can carry an arbitrary amount of complex data and can be
arranged into inheritance hierarchies, which makes it easy for clients to handle
categories of errors generically, by catching an exception that is further up the
inheritance hierarchy. Like run-time exceptions, user exceptions map to native
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name—value
pairs, such as Ice.Default .Protocol=tcp. Properties are typically stored
in text files and parsed by the Ice run time to configure various options, such as the
thread pool size, the level of tracing, and various other configuration parameters.

Slice (Specification Language for Ice)

As mentioned on page 13, each Ice object has an interface with a number of oper-
ations. Interfaces, operations, and the types of data that are exchanged between
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client and server are defined using the Slice language. Slice allows you to define
the client-server contract in a way that is independent of a specific programming
language, such as C++, Java, or C#. The Slice definitions are compiled by a
compiler into an API for a specific programming language, that is, the part of the
API that is specific to the interfaces and types you have defined consists of gener-
ated code.

Language Mappings

The rules that govern how each Slice construct is translated into a specific
programming language are known as language mappings. For example, for the
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector,
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks
like, you only need the Slice definition and knowledge of the language mapping
rules. The rules are simple and regular enough to make it unnecessary to read the
generated code to work out how to use the generated APL

Of course, you are free to peruse the generated code. However, as a rule, that is
inefficient because the generated code is not necessarily suitable for human
consumption. We recommend that you familiarize yourself with the language
mapping rules; that way, you can mostly ignore the generated code and need to
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objec-
tive-C, and, for the client side, PHP and Ruby.
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2.2.5 Client and Server Structure

Ice clients and servers have the logical internal structure shown in Figure 2.1

Client Application Server Application
A A A A A
\/ \J \i \i \
Proxy Ice API Ice API Skeleton Object
Code Adapter
Client Ice Core ‘/\ Server Ice Core
Network

Ice AP
BZ Generated Code

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and
code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote
communication. Much of this code is concerned with the details of
networking, threading, byte ordering, and many other networking-related
issues that we want to keep away from application code. The Ice core is
provided as a number of libraries that client and server use.

* The generic part of the Ice core (that is, the part that is independent of the
specific types you have defined in Slice) is accessed through the Ice API. You
use the Ice API to take care of administrative chores, such as initializing and
finalizing the Ice run time. The Ice API is identical for clients and servers
(although servers use a larger part of the API than clients).

* The proxy code is generated from your Slice definitions and, therefore,
specific to the types of objects and data you have defined in Slice. The proxy
code has two major functions:

* It provides a down-call interface for the client. Calling a function in the
generated proxy API ultimately ends up sending an RPC message to the
server that invokes a corresponding function on the target object.
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* It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that
arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

* The skeleton code is also generated from your Slice definition and, therefore,
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it
provides an up-call interface that permits the Ice run time to transfer the thread
of control to the application code you write. The skeleton also contains
marshaling and unmarshaling code, so the server can receive parameters sent
by the client, and return parameters and exceptions to the client.

* The object adapter is a part of the Ice API that is specific to the server side:
only servers use object adapters. An object adapter has several functions:

* The object adapter maps incoming requests from clients to specific methods
on programming-language objects. In other words, the object adapter tracks
which servants with what object identity are in memory.

* The object adapter is associated with one or more transport endpoints. If
more than one transport endpoint is associated with an adapter, the servants
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint
with an adapter, to provide alternate quality-of-service and performance
characteristics.

* The object adapter is responsible for the creation of proxies that can be
passed to clients. The object adapter knows about the type, identity, and
transport details of each of its objects and embeds the correct details when
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve
proxies to transport endpoints.)
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2.2.6

2.3

The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server is encrypted.

The Ice protocol defines:
* a number of message types, such as request and reply message types,

* a protocol state machine that determines in what sequence different message
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

* encoding rules that determine how each type of data is represented on the
wire,

* a header for each message type that contains details such as the message type,
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter,
you can arrange for all network traffic to be compressed to conserve bandwidth.
This is useful if your application exchanges large amounts of data between client
and server.

The Ice protocol is suitable for building highly-efficient event forwarding
mechanisms because it permits forwarding of a message without knowledge of the
details of the information inside a message. This means that messaging switches
need not do any unmarshaling and remarshaling of messages—they can forward a
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to
send a message to a callback object provided by the client, the callback can be
made over the connection that was originally created by the client. This feature is
especially important when the client is behind a firewall that permits outgoing
connections, but not incoming connections.

Ice Services

The Ice core provides a sophisticated client—server platform for distributed appli-
cation development. However, realistic applications usually require more than just
a remoting capability: typically, you also need a way to start servers on demand,
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.
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2.3.1

2.3.2

Ice ships with a number of services that provide these and other features. The
services are implemented as Ice servers to which your application acts as a client.
None of the services use Ice-internal features that are hidden from application
developers so, in theory, you could develop equivalent services yourself. However,
having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first.
Moreover, building such services is not a trivial effort, so it pays to know what is
available and use it instead of reinventing your own wheel.

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it
easy to store object state in a database: you define the state stored by your objects
in Slice, and the Freeze compiler generates code that stores and retrieves object
state to and from a database. Freeze uses Berkeley DB [18] as its database. We
discuss Freeze in detail in Chapter 40.

Ice also offers a tool called FreezeScript that makes it easier to maintain data-
bases and to migrate the contents of existing databases to a new schema if the type
definitions of objects change. We discuss FreezeScript in Chapter 41.

lceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic
information in an indirect proxy to a protocol-address pair for indirect binding. A
location service is only the beginning of IceGrid’s capabilities:

* IceGrid allows you to register servers for automatic start-up: instead of
requiring a server to be running at the time a client issues a request, IceGrid
starts servers on demand, when the first client request arrives.

* IceGrid provides tools that make it easy to configure complex applications
containing several servers.

* IceGrid supports replication and load-balancing.

¢ JceGrid automates the distribution and patching of server executables and
dependent files.

* IceGrid provides a simple query service that allows clients to obtain proxies
for objects they are interested in.
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2.3.3

2.3.4

2.3.5

lceBox

IceBox is a simple application server that can orchestrate the starting and stopping
of a number of application components. Application components can be deployed
as a dynamic library instead of as a process. This reduces overall system load, for
example, by allowing you to run several application components in a single Java
virtual machine instead of having multiple processes, each with its own virtual
machine.

IlceStorm

IceStorm is a publish—subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events
to the service, which, in turn, passes the events to subscribers. In this way, a single
event published by a publisher can be sent to multiple subscribers. Events are cate-
gorized by topic, and subscribers specify the topics they are interested in. Only
events that match a subscriber’s topic are sent to that subscriber. The service
permits selection of a number of quality-of-service criteria to allow applications to
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to
large numbers of application components. (A typical example is a stock ticker
application with a large number of subscribers.) IceStorm decouples the
publishers of information from subscribers and takes care of the redistribution of
the published events. In addition, IceStorm can be run as a federated service, that
is, multiple instances of the service can be run on different machines to spread the
processing load over a number of CPUs.

IcePatch2

IcePatch2? is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch?2 server and request
updates for a particular application. The service automatically checks the version
of the client’s software and downloads any updated application components in a
compressed format to conserve bandwidth. Software patches can be secured using
the Glacier2 service, so only authorized clients can download software updates.

3. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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2.3.6 Glacier2

24

Glacier2* is the Ice firewall traversal service: it allows clients and servers to
securely communicate through a firewall without compromising security. Client-
server traffic is SSL-encrypted using public key certificates and is bidirectional.
Glacier?2 offers support for mutual authentication as well as secure session
management.

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

® Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is
chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and
dispatch, as well as publish—subscribe messaging via IceStorm. This allows
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining
a single object identity across these interfaces. This provides great flexibility,
particularly as an application evolves but needs to remain compatible with
older, already deployed clients.

Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying
machine architecture. Issues such as byte ordering and padding are hidden
from application code.

Language independence

Client and server can be developed independently and in different program-
ming languages (currently C++, Java, C#, and, for the client side, PHP). The

4. Glacier2 supersedes Glacier, which was a previous version of this service.
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Slice definition used by both client and server establishes the interface
contract between them and is the only thing they need to agree on.

¢ Implementation independence

Clients are unaware of how servers implement their objects. This means that
the implementation of a server can be changed after clients are deployed, for
example, to use a different persistence mechanism or even a different
programming language.

® Operating system independence

The Ice APIs are fully portable, so the same source code compiles and runs
under both Windows and Unix.

* Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond
synchronizing access to shared data) is required on part of the application
developer to develop threaded, high-performance clients and servers.

® Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither
client nor server code are aware of the underlying transport. (The desired
transport can be chosen by a configuration parameter.)

® Location and server transparency

The Ice run time takes care of locating objects and managing the underlying
transport mechanism, such as opening and closing connections. Interactions
between client and server appear connection-less. Via IceGrid, you can
arrange for servers to be started on demand if they are not running at the time
a client invokes an operation. Servers can be migrated to different physical
addresses without breaking proxies held by clients, and clients are completely
unaware how object implementations are distributed over server processes.

* Security

Communications between client and server can be fully secured with strong
encryption over SSL, so applications can use unsecured public networks to
communicate securely. Via Glacier2, you can implement secure forwarding of
requests through a firewall, with full support for callbacks.

* Built-in persistence

With Freeze, creating persistent object implementations becomes trivial. Ice
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.
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2.5

* Source code availability

The source code for Ice is available. While it is not necessary to have access to
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment
for distributed computing that is more complete than any other platform we are
aware of.

A Comparison with CORBA

2.5.1

Obviously, Ice uses many ideas that can be found in CORBA and earlier distrib-
uted computing platforms, such as DCE [14]. In some areas, Ice is remarkably
close to CORBA whereas, in others, the differences are profound and have far-
reaching architectural implications. If you have used CORBA in the past, it is
important to be aware of these differences.

Differences in the Object Model

The Ice object model, even though superficially the same, differs in a number of
important points from the CORBA object model.

Type System

An Ice object, like a CORBA object, has exactly one most derived main interface.
However, an Ice object can provide other interfaces as facets. It is important to
notice that all facets of an Ice object share the same object identity, that is, the
client sees a single object with multiple interfaces instead of several objects, each
with a different interface.

Facets provide great architectural flexibility. In particular, they offer an
approach to the versioning problem: it is easy to extend functionality in a server
without breaking existing, already deployed clients by simply adding a new facet
to an already existing object.

Proxy Semantics

Ice proxies (the equivalent of CORBA object references) are not opaque. Clients
can always create a proxy without support from any other system component, as
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long as they know the type and identity of the object. (For indirect binding, it is
not necessary to be aware of the transport address of the object.)
Allowing clients to create proxies on demand has a number of advantages:

¢ Clients can create proxies without the need to consult an external look-up
service, such as a naming service. In effect, the object identity and the object’s
name are considered to be one and the same. This eliminates the problems that
can arise from having the contents of the naming service go out of sync with
reality, and reduces the number of system components that must be functional
for clients and servers to work correctly.

* Clients can easily bootstrap themselves by creating proxies to the initial
objects they need. This eliminates the need for a separate bootstrap service.

® There is no need for different encodings of stringified proxies. A single,
uniform representation is sufficient, and that representation is readable to
humans. This avoids the complexities introduced by CORBA’s three different
object reference encodings (IOR, corbaloc, and corbaname).

Experience over many years with CORBA has shown that, pragmatically, opacity
of object references is problematic: not only does it require more complex APIs
and run-time support, it also gets in the way of building realistic systems. For that
reason, mechanisms such as corbaloc and corbaname were added, as well as
the (ill-defined) is_equivalent and hash operations for reference comparison.
All of these mechanisms compromise the opacity of object references, but other
parts of the CORBA platform still try to maintain the illusion of opaque refer-
ences. As a result, the developer gets the worst of both worlds: references are
neither fully opaque nor fully transparent—the resulting confusion and
complexity are considerable.

Object Identity

The Ice object model assumes that object identities are universally unique (but
without imposing this requirement on the application developer). The main advan-
tage of universally unique object identities is that they permit you to migrate
servers and to combine the objects in multiple separate servers into a single server
without concerns about name collisions: if each Ice object has a unique identity, it
is impossible for that identity to clash with the identity of another object in a
different domain.

The Ice object model also uses strong object identity: it is possible to deter-
mine whether two proxies denote the same object as a local, client-side operation.
(With CORBA, you must invoke operations on the remote objects to get reliable
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25.2

identity comparison.) Local identity comparison is far more efficient and crucial
for some application domains, such as a distributed transaction service.

Differences in Platform Support

CORBA, depending on which specification you choose to read, provides many of
the services provided by Ice. For example, CORBA supports asynchronous
method invocation and, with the component model, a form of multiple interfaces.
However, the problem is that it is typically impossible to find these features in a
single implementation. Too many CORBA specifications are either optional or not
widely implemented so, as a developer, you are typically faced with having to
choose which feature to do without.

Other features of Ice do not have direct CORBA equivalents:
* Asynchronous Method Dispatch (AMD)

The CORBA APIs do not provide any mechanism to suspend processing of an
operation in the server, freeing the thread of control, and resuming processing
of the operation later.

* Security

While there are many pages of specifications relating to security, most of them
remain unimplemented to date. In particular, CORBA to date offers no prac-
tical solution that allows CORBA to coexist with firewalls.

* Protocol Features

The Ice protocol offers bidirectional support, which is a fundamental require-
ment for allowing callbacks through firewalls. (CORBA specified a bidirec-
tional protocol at one point, but the specification was technically flawed and,
to the best of our knowledge, never implemented.) In addition, Ice allows you
to use UDP (both unicast and multicast) as well as TCP, so event distribution
on reliable (local) networks can be made extremely efficient and light-weight.
CORBA provides no support for UDP as a transport.

Another important feature of the Ice protocol is that all messages and data are
fully encapsulated on the wire. This allows Ice to implement services such as
IceStorm extremely efficiently because, to forward data, no unmarshaling and
remarshaling is necessary. Encapsulation is also important for the deployment
of protocol bridges, such as Glacier2, because the bridge does not need to be

configured with type-specific information.
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2.5.3

* Language Mappings

CORBA does not specify a language mapping for C#, Objective-C, Ruby, or
PHP.

Differences in Complexity

CORBA is known as a platform that is large and complex. This is largely a result
of the way CORBA is standardized: decisions are reached by consensus and
majority vote. In practice, this means that, when a new technology is being stan-
dardized, the only way to reach agreement is to accommodate the pet features of
all interested parties. The result are specifications that are large, complex, and
burdened with redundant or useless features. In turn, all this complexity leads to
implementations that are large and inefficient. The complexity of the specifica-
tions is reflected in the complexity of the CORBA APIs: even experts with years
of experience still need to work with a reference manual close at hand, and, due to
this complexity, applications are frequently plagued with latent bugs that do not
show up until after deployment.

CORBA'’s object model adds further to CORBA’s complexity. For example,
opaque object references force the specification of a naming service because
clients must have some way to access object references. In turn, this requires the
developer to learn yet another API, and to configure and deploy yet another
service when, as with the Ice object model, no naming service is necessary in the
first place.

One of the most infamous areas of complexity in CORBA is the C++
mapping. The CORBA C++ API is arcane in the extreme; in particular, the
memory management issues of this mapping are more than what many developers
are willing to endure. Yet, the code required to implement the C++ mapping is
neither particularly small nor efficient, leading to binaries that are larger and
require more memory at run time than they should. If you have used CORBA with
C++ in the past, you will appreciate the simplicity, efficiency, and neat integration
with STL of the Ice C++ mapping.

In contrast to CORBA, Ice is first and foremost a simple platform. The
designers of Ice took great care to pick a feature set that is both sufficient and
minimal: you can do everything you want, and you can do it with the smallest and
simplest possible APIL. As you start to use Ice, you will appreciate this simplicity.
It makes it easy to learn and understand the platform, and it leads to shorter devel-
opment time with lower defect counts in deployed applications. At the same time,
Ice does not compromise on features: with Ice, you can achieve everything you
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can achieve with CORBA and do so with less effort, less code, and less
complexity. We see this as the most compelling advantage of Ice over any other
middleware platform: things are simple, so simple, in fact, that you will be devel-
oping industrial-strength distributed applications after only a few days exposure to
Ice.



Chapter 3
A Hello World Application

3.1

Chapter Overview

In this chapter, we will see how to create a very simple client—server application in
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic

(Section 3.6), Objective-C (Section 3.7), Python (Section 3.8), and Ruby
(Section 3.9). Rather than reading the entire chapter, we suggest that you read
Section 3.2 and then skip to the section that deals with the programming language
of your choice.

The application enables remote printing: a client sends the text to be printed to
a server, which in turn sends that text to a printer. For simplicity (and because we
do not want to concern ourselves with the idiosyncrasies of print spoolers for
various platforms), our printer will simply print to a terminal instead of a real
printer. This is no great loss: the purpose of the exercise is to show how a client
can communicate with a server; once the thread of control has reached the server
application code, that code can of course do anything it likes (including sending
the text to a real printer). How to do this is independent of Ice and therefore not
relevant here.

Note that much of the detail of the source code will remain unexplained for
now. The intent is to show you how to get started and give you a feel for what the
development environment looks like; we will provide all the detail throughout the
remainder of this book.

37
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3.2

Writing a Slice Definition

3.3

The first step in writing any Ice application is to write a Slice definition containing
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo {
interface Printer {
void printString(string s);
1
};

We save this text in a file called Printer.ice.

Our Slice definitions consist of the module Demo containing a single interface
called Printer. For now, the interface is very simple and provides only a single
operation, called printString. The printString operation accepts a string as its
sole input parameter; the text of that string is what appears on the (possibly
remote) printer.

Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to
generate C++ proxies and skeletons. Under Unix, you can compile the definition
as follows:

S slice2cpp Printer.ice
The slice2cpp compiler produces two C++ source files from this definition,
Printer.hand Printer.cpp.

®* Printer.h

The Printer.h header file contains C++ type definitions that correspond to
the Slice definitions for our Printer interface. This header file must be
included in both the client and the server source code.

®* Printer.cpp

The Printer. cpp file contains the source code for our Printer interface.
The generated source contains type-specific run-time support for both clients
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and servers. For example, it contains code that marshals parameter data (the
string passed to the printString operation) on the client side and unmarshals
that data on the server side.

The Printer. cpp file must be compiled and linked into both client and
server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer ({
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

void
PrinterI::
printString(const string& s, const Ice::Currenté&)

{
}

cout << s << endl;

int
main (int argc, char* argv[])
{
int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice: :0ObjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add (object,
ic->stringTolIdentity ("SimplePrinter")) ;
adapter->activate() ;
ic->waitForShutdown () ;
} catch (const Ice::Exception& e) {
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cerr << e << endl;
status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Exception& e) ({
cerr << e << endl;
status = 1;
}
}

return status;

}

There appears to be a lot of code here for something as simple as a server that just
prints a string. Do not be concerned by this: most of the preceding code is boiler
plate that never changes. For this very simple server, the code is dominated by this
boiler plate.

Every Ice source file starts with an include directive for Ice . h, which
contains the definitions for the Ice run time. We also include Printer . h, which
was generated by the Slice compiler and contains the C++ definitions for our
printer interface, and we import the contents of the std and Demo namespaces
for brevity in the code that follows:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type PrinterI. Looking at
the generated code in Printer.h, we find the following (tidied up a little to get
rid of irrelevant detail):

namespace Demo {
class Printer : virtual public Ice::Object
public:
virtual void printString(const std::stringé&,
const Ice::Currenté&
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= Ice::Current ()
) = 0;
}i
}i
The Printer skeleton class definition is generated by the Slice compiler. (Note
that the printString method is pure virtual so the skeleton class cannot be
instantiated.) Our servant class inherits from the skeleton class to provide an
implementation of the pure virtual print String method. (By convention, we
use an I-suffix to indicate that the class implements an interface.)

class PrinterI : public Printer ({
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

The implementation of the print String method is trivial: it simply writes its
string argument to stdout:

void

PrinterI::
printString(const string& s, const Ice::Currenté&)

{
}

Note that printString has a second parameter of type Ice: : Current. As
you can see from the definition of Printer: :printString, the Slice
compiler generates a default argument for this parameter, so we can leave it
unused in our implementation. (We will examine the purpose of the
Ice: :Current parameter in Section 32.6.)

What follows is the server main program. Note the general structure of the
code:

cout << s << endl;

int

main (int argc, char* argv[])
int status = 0;
Ice: :CommunicatorPtr ic;

try {
// Server implementation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
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status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Exception& e)
cerr << e << endl;
status = 1;
}
}

return status;

}

The body of main contains the declaration of two variables, status and ic.
The status variable contains the exit status of the program and the ic variable,
of type Ice: : CommunicatorPtr, contains the main handle to the Ice run
time.

Following these declarations is a try block in which we place all the server
code, followed by two catch handlers. The first handler catches all exceptions
that may be thrown by the Ice run time; the intent is that, if the code encounters an
unexpected Ice run-time exception anywhere, the stack is unwound all the way
back to main, which prints the exception and then returns failure to the operating
system. The second handler catches string constants; the intent is that, if we
encounter a fatal error condition somewhere in our code, we can simply throw a
string literal with an error message. Again, this unwinds the stack all the way back
to main, which prints the error message and then returns failure to the operating
system.

Following the t ry block, we see a bit of cleanup code that calls the destroy
method on the communicator (provided that the communicator was initialized).
The cleanup call is outside the first t ry block for a reason: we must ensure that
the Ice run time is finalized whether the code terminates normally or terminates
due to an exception.!

The body of the first try block contains the actual server code:

1. Failure to call destroy on the communicator before the program exits results in undefined
behavior.
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ic = Ice::initialize(argc, argv);
Ice: :0bjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add(object, ic->stringTolIdentity ("SimplePrinter")

adapter->activate() ;
ic->waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice: :initialize. (We pass
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not
require any command-line arguments.) The call to initialize returns a
smart pointer to an Ice: : Communicator object, which is the main handle to
the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter" is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.) The server starts to process incoming
requests from clients as soon as the adapter is activated.

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice: :Application—see Section 8.3.1.) As far as actual application code is
concerned, the server contains only a few lines: six lines for the definition of the
PrinterT class, plus three? lines to instantiate a PrinterI object and register
it with the object adapter.

Assuming that we have the server code in a file called Server. cpp, we can
compile it as follows:

$ c++ -I. -I$ICE HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you
may have to add additional include directives or other options to the compiler
(such as an include directive for the STLport headers, or to control template
instantiation); please see the demo programs that ship with Ice for the details.
Finally, we need to link the server into an executable:

S c++ -0 server Printer.o Server.o \
-L$ICE HOME/lib -1Ice -1lIceUtil

Again, depending on the platform, the actual list of libraries you need to link
against may be longer. The demo programs that ship with Ice contain all the detail.
The important point to note here is that the Ice run time is shipped in two libraries,
libIce and 1ibIceUtil.

Writing and Compiling a Client
The client code looks very similar to the server. Here it is in full:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int

2. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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main (int argc, char* argv(])

{

}

int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice: :0bjectPrx base = ic->stringToProxy (

"SimplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base) ;
if (!printer)
throw "Invalid proxy";

printer-s>printString("Hello World!") ;
} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;
} catch (const char* msg)
cerr << msg << endl;
status = 1;
}
if (ic)
ic->destroy () ;
return status;

Note that the overall code layout is the same as for the server: we include the
headers for the Ice run time and the header generated by the Slice compiler, and
we use the same try block and catch handlers to deal with errors.

The code in the t ry block does the following:

. As for the server, we initialize the Ice run time by calling

Ice::initialize.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

. The proxy returned by stringToProxy is of type Ice: :ObjectPrx,

which is at the root of the inheritance tree for interfaces and classes. But to
actually talk to our printer, we need a proxy for a Printer interface, not an
Object interface. To do this, we need to do a down-cast by calling
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PrinterPrx: :checkedCast. A checked cast sends a message to the
server, effectively asking “is this a proxy for a Printer interface?” If so, the
call returns a proxy to a Printer; otherwise, if the proxy denotes an interface
of some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -ISICE HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -L$ICE HOME/lib -1lIce -1IceUtil

Running Client and Server
To run client and server, we first start the server in a separate window:
$ ./server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Section 8.3.1.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some plat-
form-dependent environment variables. For example, under Linux, you need to
add the Ice library directory to your LD LIBRARY PATH. Please have a look at
the demo applications that ship with Ice for the details for your platform.
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3.4 Writing an Ice Application with Java

This section shows how to create an Ice application with Java.

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to
generate Java proxies and skeletons. Under Unix, you can compile the definition
as follows:>

$ mkdir generated
$ slice2java --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The slice2java compiler produces a number of Java
source files from this definition. The exact contents of these files do not concern
us for now—they contain the generated code that corresponds to the Printer
interface we defined in Printer. ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file PrinterI.java:

public class PrinterI extends Demo. PrinterDisp {
public void
printString(String s, Ice.Current current)

{
}

System.out.println(s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2java compiler. The base class is abstract and
contains a printString method that accepts a string for the printer to print and
a parameter of type Ice.Current. (For now we will ignore the
Ice.Current parameter. We will see its purpose in detail in Section 32.6.) Our

3. Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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implementation of the print String method simply writes its argument to the
terminal.

The remainder of the server code is in a source file called Server. java,
shown in full here:

public class Server {
public static void
main (String[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Ice.LocalException e)
e.printStackTrace() ;
status = 1;
} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;
}
if (ic != null) {
// Clean up
//
try {
ic.destroy () ;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
}

System.exit (status) ;

Note the general structure of the code:
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public class Server {
public static void
main(String[] args) {
int status = 0;
Ice.Communicator ic = null;

try {
// Server implementation here...

} catch (Ice.LocalException e)
e.printStackTrace () ;
status = 1;

} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;

1
if (ic != null) {
// Clean up

//

try {
ic.destroy () ;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}
}

System.exit (status) ;

}

The body of main contains a try block in which we place all the server code,
followed by two catch blocks. The first block catches all exceptions that may be
thrown by the Ice run time; the intent is that, if the code encounters an unexpected
Ice run-time exception anywhere, the stack is unwound all the way back to main,
which prints the exception and then returns failure to the operating system. The
second block catches Except ion exceptions; the intent is that, if we encounter a
fatal error condition somewhere in our code, we can simply throw an exception
with an error message. Again, this unwinds the stack all the way back to main,
which prints the error message and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.
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The body of our try block contains the actual server code:

ic = Ice.Util.initialize(args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an

Ice: :Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 12.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterT class, plus four* lines to instantiate a PrinterI object and
register it with the object adapter.

We can compile the server code as follows:

S mkdir classes
$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICEJ HOME environment variable is set to
the top-level directory containing the Ice run time. (For example, if you have
installed Ice in /opt/Ice], set ICEJ HOME to that path.) Note that Ice for Java
uses the ant build environment to control building of source code. (ant is
similar to make, but more flexible for Java applications.) You can have a look at
the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client
The client code, in Client . java, looks very similar to the server. Here it is in
full:

public class Client ({
public static wvoid
main (String[] args)

int status = 0;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(args) ;
Ice.ObjectPrx base = ic.stringToProxy (
"SimplePrinter:default -p 10000") ;
Demo.PrinterPrx printer
= Demo.PrinterPrxHelper.checkedCast (base) ;
if (printer == null)
throw new Error ("Invalid proxy") ;

4. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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}

printer.printString("Hello World!") ;

} catch (Ice.LocalException e)
e.printStackTrace() ;
status = 1;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}

if (ic != null) {

// Clean up

//

try {
ic.destroy () ;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}
}

System.exit (status) ;

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the t ry block does the
following:

1. As for the server, we initialize the Ice run time by calling

Ice.Util.initialize.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is

at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
PrinterPrxHelper.checkedCast. A checked cast sends a message to
the server, effectively asking “is this a proxy for a Printer interface?” If so,
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the call returns a proxy of type Demo: : Printer; otherwise, if the proxy
denotes an interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Client.java PrinterI.java generated/Demo/*.java

Running Client and Server
To run client and server, we first start the server in a separate window:

$ java Server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ java Client

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World!r thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 12.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectFailedException

at IceInternal.Network.doConnect (Network.java:201)

at IcelInternal.TcpConnector.connect (TcpConnector.java:26)

at
IceInternal.OutgoingConnectionFactory.create (OutgoingConnectionFac
tory.java:80)

at Ice. ObjectDelM.setup( ObjectDelM.java:251)

at Ice.ObjectPrxHelper. getDelegate (ObjectPrxHelper.java:
642)

at Ice.ObjectPrxHelper.ice isA(ObjectPrxHelper.java:41)

at Ice.ObjectPrxHelper.ice isA(ObjectPrxHelper.java:30)

at Demo.PrinterPrxHelper.checkedCast (Unknown Source)

at Client.main (Unknown Source)
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3.5

Caused by: java.net.ConnectException: Connection refused

at sun.nio.ch.SocketChannelImpl.checkConnect (Native Method
)

at
sun.nio.ch.SocketChannelImpl.finishConnect (SocketChannelImpl.java:
518)

at IcelInternal.Network.doConnect (Network.java:173)

8 more

Note that, to successfully run client and server, your CLASSPATH must include
the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH:./classes:$ICEJ HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for
your platform.

Writing an Ice Application with C#

This section shows how to create an Ice application with C#.

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to
generate C# proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1ice2cs compiler produces a single source file,
Printer.cs, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer
interface we defined in Printer. ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file Server. cs:
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using System;

public class PrinterI : Demo.PrinterDisp

{

public override void printString(string s, Ice.Current current)

{
}

Console.WriteLine (s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2cs compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the ITce . Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server. cs and is shown in full
here:

public class Server

{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(ref args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (

"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (

obj,

ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Exception e) {
Console.Error.WriteLine (e) ;
status = 1;

}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;
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}

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

Environment .Exit (status) ;

Note the general structure of the code:

public class Server

{

}

public static void Main(string[] args)

{

int status = 0;
Ice.Communicator ic = null;
try {

// Server implementation here...

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}

if (ic != null) {

// Clean up

//

try {
ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

The body of Main contains a try block in which we place all the server code,
followed by a catch block. The catch block catches all exceptions that may be
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created

successfully). Doing this is essential in order to correctly finalize the Ice run time:
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the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.Util.initialize(ref args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (
obj,
ic.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an

Ice: :Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
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down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterT class, plus four’ lines to instantiate a PrinterI object and
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Server.cs \
generated\Printer.cs

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Ice in C: \opt\Ice, set ICE_HOME to that path.)

Writing and Compiling a Client
The client code, in Client . cs, looks very similar to the server. Here it is in full:
using System;

using Demo;

public class Client

{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(ref args);
Ice.ObjectPrx obj = ic.stringToProxy (

"SimplePrinter:default -p 10000") ;
PrinterPrx printer
= PrinterPrxHelper.checkedCast (obj) ;
if (printer == null)
throw new ApplicationException("Invalid proxy") ;

5. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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printer.printString("Hello World!") ;
} catch (Exception e) {

Console.Error.WriteLine (e) ;

status = 1;

1
if (ic != null) {
// Clean up

//

try {
ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

}

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the t ry block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
PrinterPrxHelper.checkedCast. A checked cast sends a message to
the server, effectively asking “is this a proxy for a Printer interface?” If so,
the call returns a proxy of type Demo: : Printer; otherwise, if the proxy
denotes an interface of some other type, the call returns null.
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4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Client.cs \
generated\Printer.cs

Running Client and Server
To run client and server, we first start the server in a separate window:

S server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectionRefusedException
error = 0

at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichi\src\ice\cs\src\Ice\ProxyFactory.cs:line 167

at Ice.ObjectPrxHelperBase.handleException (ObjectDel delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hil\src\ice\cs\src\Ice\Proxy.cs:1line 970

at Ice.ObjectPrxHelperBase.ice isA(String id , Dictionary~2 co
ntext , Boolean explicitContext ) in c:\cygwin\home)\
michi\src\ice\cs\src\Ice\Proxy.cs:line 201

at Ice.ObjectPrxHelperBase.ice isA(String id ) in c:\cygwin\ho

me\michi\src\ice\cs\src\Ice\Proxy.cs:1line 170

at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b) in C:\cygwin)\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:line 140
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at Client.Main(String[] args) in C:\cygwin\home\michil\src\ice\c
s\demo\book\printer\Client.cs:line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
1d be made because the target machine actively refused

it

Note that, to successfully run client and server, the C# run time must be able to
locate the Ice.d11 library. (Under Windows, one way to ensure this is to copy
the library into the current directory. Please consult the documentation for your
C# run time to see how it locates libraries.)

Writing an Ice Application with Visual Basic

This section shows how to create an Ice application with Visual Basic.

Overview

As of version 3.3, Ice no longer includes a separate compiler to create Visual
Basic source code from Slice definitions. Instead, you need to use the Slice-to-C#
compiler slice2cs to create C# source code and compile the generated C#
source code with a C# compiler into a DLL that contains the compiled generated
code for your Slice definitions. Your Visual Basic application then links with this
DLL and the Ice-for-NET DLL (Ice.d11).

6. This approach works not only with Visual Basic, but with any language that targets the .NET run
time. However, ZeroC does not provide support for languages other than C# and Visual Basic.
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Figure 3.1 illustrates this development process.

Slice . ) Slice-to-C# ) C#
Printer.ice > . > Printer.cs L .
Developer Compiler Compiler
\_/\ \_/—\
Y
Client Client .vb _ | Visual Basic - Client -
Developer ’ | Compiler " | Executable Stub &
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DLL
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) . Run-Time
Server Visual Basic Server
Server.vb - . - DLL
Developer Compiler Executable <
\_/—\

Figure 3.1. Developing a Visual Basic application with Ice.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to
generate proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1lice2cs compiler produces a single source file,
Printer. cs, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer
interface we defined in Printer. ice.

We now need to compile this generated code into a DLL:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin /t:library
/out:Printer.dll generated\Printer.cs

This creates a DLL called Printer.d1l1 that contains the code we generated
from the Slice definitions.
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Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file Server. vb:

Imports System
Imports Demo

Public Class PrinterI
Inherits PrinterDisp

Public Overloads Overrides Sub printString( _
ByVal s As String,
ByVal current As Ice.Current)
Console.WritelLine (s)
End Sub

End Class

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2cs compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Tce . Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server . vb and is shown in full
here:

Module Server

Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing
Try

ic = Ice.Util.initialize(args)

Dim adapter As Ice.ObjectAdapter = _
ic.createObjectAdapterWithEndpoints( _
"SimplePrinterAdapter", "default -p 10000")
Dim obj As Ice.Object = New PrinterI
adapter.add(obj, ic.stringToIdentity( _
"SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()
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Catch e As Exception
Console.Error.WriteLine (e)
status =1

End Try

If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If
Environment .Exit (status)
End Sub

End module
Note the general structure of the code:
Module Server
Public Sub Main(ByVal args() As String)

Dim status As Integer = 0

Dim ic As Ice.Communicator = Nothing

Try

' Server implementation here...

Catch e As Exception
Console.Error.WriteLine (e)

status = 1
End Try
If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If
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Environment .Exit (status)
End Sub

End module

The body of Main contains a Try block in which we place all the server code,
followed by a Catch block. The catch block catches all exceptions that may be
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our Try block contains the actual server code:

ic = Ice.Util.initialize(args)
Dim adapter As Ice.ObjectAdapter = _
ic.createObjectAdapterWithEndpoints( _
"SimplePrinterAdapter", "default -p 10000")
Dim obj As Ice.Object = New PrinterI
adapter.add(obj, ic.stringToIdentity(
"SimplePrinter"))
adapter.activate()
ic.waitForShutdown ()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice: :Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000, which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,
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plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act ivate method. (The adapter
is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: ten lines for the definition of the
PrinterT class, plus three” lines to instantiate a PrinterI object and register
it with the object adapter.

We can compile the server code as follows:

$ vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin
/reference:Printer.dll /out:server.exe Server.vb

This compiles our application code and links it with the Ice-for-.NET run time and
the DLL we generated earlier. We assume that the ICE_HOME environment vari-
able is set to the top-level directory containing the Ice run time. (For example, if
you have installed Ice in C: \opt\Ice, set ICE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client . vb, looks very similar to the server. Here it is in full:

Imports System
Imports Demo

Module Client

7. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing
Try

ic = Ice.Util.initialize(args)

Dim obj As Ice.ObjectPrx = ic.stringToProxy( _
"SimplePrinter:default -p 10000")
Dim printer As PrinterPrx = _
PrinterPrxHelper.checkedCast (obj)
If printer Is Nothing Then
Throw New ApplicationException ("Invalid proxy")
End If

printer.printString("Hello World!")
Catch e As Exception
Console.Error.WriteLine (e)

status = 1
End Try
If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()
Catch e As Exception
Console.Error.WritelLine (e)

status =1
End Try
End If
Environment .Exit (status)
End Sub
End Module

Note that the overall code layout is the same as for the server: we use the same
Try and Catch blocks to deal with errors. The code in the Try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
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bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
PrinterPrxHelper.checkedCast. A checked cast sends a message to
the server, effectively asking “is this a proxy for a Printer interface?” If so,
the call returns a proxy of type Demo: : Printer; otherwise, if the proxy
denotes an interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World! string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ vbe /reference:Ice.dll /libpath:%ICE_HOME%\bin
/reference:Printer.dll /out:client.exe Client.vb

Running Client and Server
To run client and server, we first start the server in a separate window:

S server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

S client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:
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3.7

Ice.ConnectionRefusedException
error = 0

at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichi\src\ice\cs\src\Ice\ProxyFactory.cs:line 167

at Ice.ObjectPrxHelperBase.handleException (ObjectDel delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hil\src\ice\cs\src\Ice\Proxy.cs:1line 970

at Ice.ObjectPrxHelperBase.ice isA(String id , Dictionary~2 co
ntext , Boolean explicitContext ) in c:\cygwin\home)\
michi\src\ice\cs\src\Ice\Proxy.cs:line 201

at Ice.ObjectPrxHelperBase.ice isA(String id ) in c:\cygwin\ho

me\michi\src\ice\cs\src\Ice\Proxy.cs:1line 170

at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b) in C:\cygwin)\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:line 140

at Client.Main(String[] args) in C:\cygwin\home\michi\src\ice\c
s\demo\book\printer\Client.cs:1line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
1d be made because the target machine actively refused

it

Note that, to successfully run client and server, the VB run time must be able to

locate the Tce.d11 library. (Under Windows, one way to ensure this is to copy
the library into the current directory. Please consult the documentation for your

VB run time to see how it locates libraries.)

Writing an Ice Application with Objective-C

This section shows how to create an Ice application with Objective-C.

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice defi-
nition to generate Objective-C proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ slice2objc Printer.ice

The s1lice2objc compiler produces two Objective-C source files from this
definition, Printer.h and Printer.m.
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® Printer.h

The Printer.h header file contains Objective-C type definitions that corre-
spond to the Slice definitions for our Printer interface. This header file must
be included in both the client and the server source code.

* Printer.m

The Printer.m file contains the source code for our Printer interface. The
generated source contains type-specific run-time support for both clients and
servers. For example, it contains code that marshals parameter data (the string
passed to the printString operation) on the client side and unmarshals that
data on the server side.

The Printer.m file must be compiled and linked into both client and server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
- (void) printString: (NSMutableString *)s
current: (ICECurrent *)current

printf ("$s\n", [s UTF8String]);
@end
int
main (int argc, char* argv[])
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int status = 1;
id<ICECommunicator> communicator = nil;
etry
communicator =

[ICEUtil createCommunicator:&argc argv:argv];
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1d<ICEObjectAdapter> adapter =
[communicator createObjectAdapterWithEndpoints:
@"SimplePrinterAdapter"
endpoints:@"default -p 10000"];

ICEObject *object = [[[PrinterI alloc] init] autorelease];
[adapter add:object identity: [communicator

stringToIdentity:@"SimplePrinter"]];
[adapter activate];

[communicator waitForShutdown] ;

status = 0;

} @catch (NSException* ex) {
NSLog (@"%@", ex) ;

}

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
}

[pool releasel;
return status;

There appears to be a lot of code here for something as simple as a server that just
prints a string. Do not be concerned by this: most of the preceding code is boiler
plate that never changes. For this very simple server, the code is dominated by this
boiler plate.

Every Ice source file starts with an include directive for Ice . h, which
contains the definitions for the Ice run time. We also include Printexr.h, which
was generated by the Slice compiler and contains the Objective-C definitions for
our printer interface. We also import headers to allow us to use an autorelease pool
and to produce output:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.hs
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Our server implements a single printer servant, of type PrinterI. Looking at
the generated code in Printer.h, we find the following (tidied up a little to get
rid of irrelevant detail):

@protocol DemoPrinter <ICEObjects
- (void) printString: (NSMutableString *)s

current: (ICECurrent *)current;
@end

@interface DemoPrinter : ICEObject

/7

@end

The DemoPrinter protocol and class definitions are generated by the Slice
compiler. The protocol defines the print St ring method, which we must
implement in our servant. The DemoPrinter class contains methods that are
internal to the mapping, so we are not concerned with these. However, our servant
must derive from this skeleton class:

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
- (void) printString: (NSMutableString *)s
current: (ICECurrent *)current

}

@end

printf ("$s\n", [s UTF8Stringl) ;

As you can see, the implementation of the print String method is trivial: it
simply writes its string argument to stdout.

Note that print St ring has a second parameter of type ICECurrent. The
Ice run time passes additional information about an incoming request to the
servant in this parameter. For now, we will ignore it. (See Section 32.6 for more
information about this parameter.)

What follows is the server main program. Note the general structure of the
code:
int
main (int argc, char* argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int status = 1;
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id<ICECommunicator> communicator = nil;
etry
communicator =
[ICEUtil createCommunicator:&argc argv:argv];

// Server implementation here...

status = 0;

} @catch (NSException* ex) {
NSLog (@"%@", ex);

1

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
1

[pool releasel];
return status;

}

The body of main instantiates an autorelease pool, which it releases before
returning to ensure that the program does not leak memory. main contains the
declaration of two variables, status and communicator. The status vari-
able contains the exit status of the program and the communicator variable, of
type 1d<ICECommunicators, contains the main handle to the Ice run time.

Following these declarations is a try block in which we place all the server
code, followed by a catch handler that logs any unhandled exceptions.

Before returning, main executes a bit of cleanup code that calls the destroy
method on the communicator. The cleanup call is outside the first t ry block for a
reason: we must ensure that the Ice run time is finalized whether the code termi-
nates normally or terminates due to an exception.8

The body of the first try block contains the actual server code:

communicator =
[ICEUtil createCommunicator:&argc argv:argv] ;

1d<ICEObjectAdapter> adapter =

8. Failure to call destroy on the communicator before the program exits results in undefined
behavior.
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[communicator createObjectAdapterWithEndpoints:
@"SimplePrinterAdapter"
endpoints:@"default -p 10000"];

ICEObject *object = [[[PrinterI alloc] init] autorelease];
[adapter add:object identity: [communicator

stringToIdentity:@"SimplePrinter"]];
[adapter activatel];

[communicator waitForShutdown] ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling createCommunicator. (We pass
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not
require any command-line arguments.) The call to createCommunicator
returns a pointer to an Ice: : Communicator object, which is the main handle
to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter" (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterTI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.) The server starts to process incoming
requests from clients as soon as the adapter is activated.

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. As far as actual application code is concerned, the
server contains only a few lines: nine lines for the definition of the PrinterI
class, plus three” lines to instantiate a PrinterT object and register it with the
object adapter.

Assuming that we have the server code in a file called Server .m, we can
compile it as follows:

$ cc -c -I. -I$ICE HOME/include Printer.m Server.m

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you
may have to add additional include directives or other options to the compiler;
please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

S c++ Printer.o Server.o -o server \
-L$ICE HOME/lib -1IceObjC -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link
against may be longer. The demo programs that ship with Ice contain all the detail.

Writing and Compiling a Client
The client code looks very similar to the server. Here it is in full:

#import <Ice/Ice.h>
#import <Printer.hs>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

int
main (int argc, char* argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

9. Well, fewer lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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}

int status = 1;
id<ICECommunicator> communicator = nil;
etry
communicator =
[ICEUtil createCommunicator:&argc argv:argv] ;
1d<ICEObjectPrx> base = [communicator
stringToProxy:@"SimplePrinter:default -p 10000"];
id<DemoPrinterPrx> printer =
[DemoPrinterPrx checkedCast:base];
if (!printer)
[NSException raise:@"Invalid proxy" format:nil];

[printer printString:@"Hello World!"];

status = 0;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;

etry
[communicator destroyl] ;
} @catch (NSException* ex) {
NSLog (@"%@", ex) ;
!

[pool releasel;
return status;

Note that the overall code layout is the same as for the server: we include the
headers for the Ice run time and the header generated by the Slice compiler, and
we use the same try block and catch handlers to deal with errors.

The code in the try block does the following:

. As for the server, we initialize the Ice run time by calling createCommuni -

cator.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)
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3. The proxy returned by stringToProxy is of type 1d<ICEObjectPrx>,
which is at the root of the inheritance tree for interfaces and classes. But to
actually talk to our printer, we need a proxy for a Printer interface, not an
Object interface. To do this, we need to do a down-cast by calling the
checkedCast class method on the DemoPrinterPrx class. A checked
cast sends a message to the server, effectively asking “is this a proxy for a
Printer interface?” If so, the call returns a proxy to a Printer; otherwise, if
the proxy denotes an interface of some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:
$ cc -c -I. -I$ICE HOME/include Printer.m Client.m

$ c++ Printer.o Client.o -o client \

-L$ICE HOME/lib -1IceObjC -framework Foundation

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get:

Network.cpp:1218: Ice::ConnectionRefusedException:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set
DYLD LIBRARY PATH to include the Ice library directory. Please see the instal-
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3.8

lation instructructions and the demo applications that ship with Ice Touch for
details.

Writing an Ice Application with Python

This section shows how to create an Ice application with Python.

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition
to generate Python proxies and skeletons. You can compile the definition as
follows:'©

$ slice2py Printer.ice

The s1lice2py compiler produces a single source file, Printer ice.py,
from this definition. The compiler also creates a Python package for the Demo
module, resulting in a subdirectory named Demo. The exact contents of the source
file do not concern us for now—it contains the generated code that corresponds to
the Printer interface we defined in Printer.ice.

Writing a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI:

class PrinterI (Demo.Printer) :
def printString(self, s, current=None) :
print s

The PrinterTI class inherits from a base class called Demo . Printexr, which
is generated by the s1ice2py compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Tce . Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the
printString method simply writes its argument to the terminal.

10.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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The remainder of the server code, in Server. py, follows our servant class
and is shown in full here:

import sys, traceback, Ice
import Demo

class PrinterI (Demo.Printer) :
def printString(self, s, current=None) :
print s

status = 0
ic = None
try:
ic = Ice.initialize(sys.argv)
adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")
object = PrinterI()
adapter.add(object, ic.stringToIdentity ("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()
except:
traceback.print exc()
status = 1

if ic:
# Clean up
try:
ic.destroy ()
except:
traceback.print exc()
status = 1

sys.exit (status)

Note the general structure of the code:

status = 0
ic = None
try:

# Server implementation here...
except:
traceback.print exc()

status = 1

if dic:
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# Clean up

try:
ic.destroy ()

except:
traceback.print exc()
status =1

sys.exit (status)

The body of the main program contains a try block in which we place all the
server code, followed by an except block. The except block catches all excep-
tions that may be thrown by the code; the intent is that, if the code encounters an
unexpected run-time exception anywhere, the stack is unwound all the way back
to the main program, which prints the exception and then returns failure to the
operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.initialize(sys.argv)

adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")

object = PrinterI()

adapter.add(object, ic.stringToldentity ("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.initialize. (We pass
sys.argv to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter" (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.
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Not

We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

e that, even though there is quite a bit of code here, that code is essentially the

same for all servers. You can put that code into a helper class and, thereafter, will

not

have to bother with it again. (Ice ships with such a helper class, called

Ice.Application—see Section 24.3.1.) As far as actual application code is
concerned, the server contains only a few lines: three lines for the definition of the
PrinterT class, plus two lines to instantiate a PrintexrI object and register it
with the object adapter.

Writing a Client

The client code, in Client . py, looks very similar to the server. Here it is in full:

imp
imp
sta
ic

try:

exc

ort sys, traceback, Ice
ort Demo
tus = 0
= None

ic = Ice.initialize(sys.argv)

base = ic.stringToProxy ("SimplePrinter:default -p 10000")
printer = Demo.PrinterPrx.checkedCast (base)
if not printer:

raise RuntimeError ("Invalid proxy")

printer.printString("Hello World!")
ept:

traceback.print exc()
status =1
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if dic:
# Clean up
try:
ic.destroy()
except:
traceback.print exc()
status =1

sys.exit (status)

Note that the overall code layout is the same as for the server: we use the same
try and except blocks to deal with errors. The code in the try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

3. The proxy returned by stringToProxy is of type Ice::0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: :Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
Demo.PrinterPrx.checkedCast. A checked cast sends a message to
the server, effectively asking “is this a proxy for a Demo: : Printer interface?”
If so, the call returns a proxy of type Demo . PrinterPrx; otherwise, if the
proxy denotes an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Running Client and Server
To run client and server, we first start the server in a separate window:

$ python Server.py
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At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Traceback (most recent call last):
File "Client.py", line 10, in ?
printer = Demo.PrinterPrx.checkedCast (base)
File "Printer ice.py", line 43, in checkedCast
return Demo.PrinterPrx.ice checkedCast (proxy, '::Demo::Printer
', facet)
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be
able to locate the Ice extension for Python. See the Ice for Python installation
instructions for more information.

Writing an Ice Application with Ruby

This section shows how to create an Ice client application with Ruby.

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to
generate Ruby proxies. You can compile the definition as follows:!!

S slice2rb Printer.ice

11.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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The slice2rb compiler produces a single source file, Printer. rb, from this
definition. The exact contents of the source file do not concern us for now—it
contains the generated code that corresponds to the Printer interface we defined
in Printer.ice.

Writing a Client
The client code, in Client . rb, is shown below in full:

require 'Printer.rb'

status = 0
ic = nil
begin
ic = Ice::initialize (ARGV)
base = ic.stringToProxy ("SimplePrinter:default -p 10000")
printer = Demo: :PrinterPrx: :checkedCast (base)
if not printer
raise "Invalid proxy"
end

printer.printString("Hello World!™")

rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
if ic
# Clean up
begin
ic.destroy ()
rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
end

exit (status)

The program begins with a require statement, which loads the Ruby code we
generated from our Slice definition in the previous section. It is not necessary for
the client to explicitly load the Ice module because Printer . rb already does
that.
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The body of the main program contains a begin block in which we place all
the client code, followed by a rescue block. The rescue block catches all
exceptions that may be thrown by the code; the intent is that, if the code encoun-
ters an unexpected run-time exception anywhere, the stack is unwound all the way
back to the main program, which prints the exception and then returns failure to
the operating system.

The body of our begin block goes through the following steps:

1. We initialize the Ice run time by calling Ice: :initialize. (We pass
ARGV to this call because the client may have command-line arguments that
are of interest to the run time; for this example, the client does not require any
command-line arguments.) The call to initialize returns an
Ice: :Communicator reference, which is the main handle to the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 39.)

3. The proxy returned by stringToProxy is of type Ice::0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: :Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling
Demo: : PrinterPrx: :checkedCast. A checked cast sends a message
to the server, effectively asking “is this a proxy for a Demo: :Printer
interface?” If so, the call returns a proxy of type Demo: : PrinterPrx;
otherwise, if the proxy denotes an interface of some other type, the call returns
nil.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created success-
fully). Doing this is essential in order to correctly finalize the Ice run time: the
program must call destroy on any communicator it has created; otherwise,
undefined behavior results.
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Running the Client
The server must be started before the client. Since Ice for Ruby does not support
server-side behavior, we need to use a server from another language mapping. In
this case, we will use the C++ server (see Chapter 9):
$ server
At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:
$ ruby Client.rb
$
The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! » thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice: :ConnectionRefusedException
(eval) :46:in “ice_checkedCast'
(eval) :46:in “checkedCast'
Client.rb:8
Note that, to successfully run the client, the Ruby interpreter must be able to
locate the Ice extension for Ruby. See the Ice for Ruby installation instructions for
more information.
3.10 Summary

This chapter presented a very simple (but complete) client and server. As we saw,
writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client,
you do not need to write the Slice definition, only compile it (and, obviously, you
do not need to write the server in that case).
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Do not be concerned if, at this point, much appears unclear. The intent of this
chapter is to give you an idea of the development process, not to explain the Ice
APIs in intricate detail. We will cover all the detail throughout the remainder of
this book.
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Chapter 4
The Slice Language

4.1

Chapter Overview

4.2

In this chapter we present the Slice language. We start by discussing the role and
purpose of Slice, explaining how language-independent specifications are
compiled for particular implementation languages to create actual implementa-
tions. Sections 4.10 and 4.11 cover the core Slice concepts of interfaces, opera-
tions, exceptions, and inheritance. These concepts have profound influence on the
behavior of a distributed system and should be read in detail.

This chapter also presents s1ice2docbook, which you can use to automate
generation of documentation for Slice definitions.

Introduction

Slice! (Specification Language for Ice) is the fundamental abstraction mechanism
for separating object interfaces from their implementations. Slice establishes a
contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation

1. Even though Slice is an acronym, it is pronounced as single syllable, like a slice of bread.
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language, so it does not matter whether the client is written in the same language
as the server.

Slice definitions are compiled for a particular implementation language by a
compiler. The compiler translates the language-independent definitions into
language-specific type definitions and APIs. These types and APIs are used by the
developer to provide application functionality and to interact with Ice. The trans-
lation algorithms for various implementation languages are known as language
mappings. Currently, Ice defines language mappings for C++, Java, C#, Python,
Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a
purely declarative language; there is no way to write executable statements in
Slice.

Slice definitions focus on object interfaces, the operations supported by those
interfaces, and exceptions that may be raised by operations. In addition, Slice
offers features for object persistence (see Chapter 40). This requires quite a bit of
supporting machinery; in particular, quite a bit of Slice is concerned with the defi-
nition of data types. This is because data can be exchanged between client and
server only if their types are defined in Slice. You cannot exchange arbitrary C++
data between client and server because it would destroy the language indepen-
dence of Ice. However, you can always create a Slice type definition that corre-
sponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice
is based on C++ and Java, we focus on those areas where Slice differs from C++
or Java or constrains the equivalent C++ or Java feature in some way. Slice
features that are identical to C++ and Java are mentioned mostly by example.

Compilation

A Slice compiler produces source files that must be combined with application
code to produce client and server executables.

The outcome of the development process is a client executable and a server
executable. These executables can be deployed anywhere, whether the target envi-
ronments use the same or different operating systems and whether the executables
are implemented using the same or different languages. The only constraint is that
the host machines must provide the necessary run-time environment, such as any
required dynamic libraries, and that connectivity can be established between
them.
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4.3.1

Single Development Environment for Client and Server

Figure 4.1 shows the situation when both client and server are developed in C++.
The Slice compiler generates two files from a Slice definition in a source file
Printer.ice: aheader file (Printer.h) and a source file (Printer. cpp).

Slice ) ) Slice-to-C++ Server
Printer.ice L .
Developer Compiler Developer
m
( P h L

NS

) C++ Ice
Client > Client.cpp Run-Time
Developer Library
- X
Yy

Client RPC Server
Executable [~ "™ Executable

-
-

Figure 4.1. Development process if client and server share the same development environment.

® The Printer.h header file contains definitions that correspond to the types
used in the Slice definition. It is included in the source code of both client and
server to ensure that client and server agree about the types and interfaces used
by the application.

® The Printer. cpp source file provides an API to the client for sending
messages to remote objects. The client source code (Client . cpp, written
by the client developer) contains the client-side application logic. The gener-
ated source code and the client code are compiled and linked into the client
executable.

The Printer. cpp source file also contains source code that provides an up-
call interface from the Ice run time into the server code written by the devel-
oper and provides the connection between the networking layer of Ice and the
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application code. The server implementation file (Server . cpp, written by
the server developer) contains the server-side application logic (the object
implementations, properly termed servants). The generated source code and
the implementation source code are compiled and linked into the server
executable.

Both client and server also link with an Ice library that provides the necessary run-
time support.

You are not limited to a single implementation of a client or server. For
example, you can build multiple servers, each of which implements the same
interfaces but uses different implementations (for example, with different perfor-
mance characteristics). Multiple such server implementations can coexist in the
same system. This arrangement provides one fundamental scalability mechanism
in Ice: if you find that a server process starts to bog down as the number of objects
increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed
over a number of processes on different machines. Each server in the federation
implements the same interfaces but hosts different object instances. (Of course,
federated servers must somehow ensure consistency of any databases they share
across the federation.)

Ice also provides support for replicated servers. Replication permits multiple
servers to each implement the same set of object instances. This improves perfor-
mance and scalability (because client load can be shared over a number of servers)
as well as redundancy (because each object is implemented in more than one
server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are devel-
oped in different languages. For example, a client written in Java cannot include a
C++ header file.

Figure 4.2 shows the situation when a client written in Java and the corre-
sponding server is written in C++. In this case, the client and server developers are
completely independent, and each uses his or her own development environment
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and language mapping. The only link between client and server developers is the
Slice definition each one uses.

Java C++
I
I
Client Slice-to-Java [ Slice-to-C++ Server
Developer Compiler I Compiler Developer
I
' T~
Y Y ! Y a ]
Client.java * . java : Printer.h Printer.cpp Eeicil
N !
I
I
I
Y : Y
ava Ice
Jav : Client RPC Server C++ I.ce
Run-Time > E tabl | E tabl -t Run-Time
Library xecutable | xecutable Library
I

Figure 4.2. Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on
the names of various Slice constructs. (These files are collectively referred to as
* . java in Figure 4.2.)

4.4 Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
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File Naming

Files containing Slice definitions must end in a . ice file extension, for example,
Clock. ice is a valid file name. Other file extensions are rejected by the
compilers.

For case-insensitive file systems (such as DOS), the file extension may be
written as uppercase or lowercase, so Clock . ICE is legal. For case-sensitive file
systems (such as Unix), Clock . ICE is illegal. (The extension must be in lower-
case.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab
stops, form feeds, and newline characters to lay out your code in any way you
wish. (White space characters are token separators). Slice does not attach seman-
tics to the layout of a definition. You may wish to follow the style we have used
for the Slice examples throughout this book.

Slice files use the (7-bit) ASCII character set.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual prepro-
cessor directives, such as #include and macro definitions. However, Slice permits
#incTlude directives only at the beginning of a file, before any Slice definitions.

If you use #include directives, it is a good idea to protect them with guards to
prevent double inclusion of a file:

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

#incTlude directives permit a Slice definition to use types defined in a different
source file. The Slice compilers parse all of the code in a source file, including the
code in #included files. However, the compilers generate code only for the top-
level file(s) nominated on the command line. You must separately compile
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#included files to obtain generated code for all the files that make up your Slice
definition.

Note that you should avoid #include with double quotes:

#include "Clock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to
locate the file can vary depending on the operating system, so the included file
may not always be found where you expect it. Instead, use angle brackets (<>);
you can control which directories are searched for the file with the - I option of
the Slice compiler (see page 183).

Also note that, if you include a path separator in a #include directive, you
must use a forward slash:

#include <SliceDefs/Clock.ice> // OK

You cannot use a backslash in #incTlude directives:

#include <STiceDefs\Clock.ice> // I1legal

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any
order you prefer. However, identifiers must be declared before they can be used.

Lexical Rules

4.5.1

Slice’s lexical rules are very similar to those of C++ and Java, except for some
differences for identifiers.

Comments

Slice definitions permit both the C and the C++ style of writing comments:

VES
% C-style comment.

:':/

// C++-style comment extending to the end of this Tine.
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Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For
example, class and dictionary are keywords and must be spelled as shown.
There are two exceptions to this lowercase rule: Object and LocalObject are
keywords and must be capitalized as shown. You can find a full list of Slice
keywords in Appendix A.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alpha-
betic characters or digits. Slice identifiers are restricted to the ASCII range of
alphabetic characters and cannot contain non-English letters, such as A.
(Supporting non-ASCII identifiers would make it very difficult to map Slice to
target languages that lack support for this feature.)

Unlike C++ identifiers, Slice identifiers cannot contain underscores. This
restriction may seem draconian at first but is necessary: by reserving underscores,
the various language mappings gain a namespace that cannot clash with legitimate
Slice identifiers. That namespace can then be used to hold language-native identi-
fiers that are derived from Slice identifiers without fear of clashing with another,
legitimate Slice identifier that happens to be the same as one of the derived identi-
fiers.

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example,
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming
scope. However, Slice enforces consistent capitalization. After you have intro-
duced an identifier, you must capitalize it consistently throughout; otherwise, the
compiler will reject it as illegal. This rule exists to permit mappings of Slice to
languages that ignore case in identifiers as well as to languages that treat differ-
ently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation
languages. For example, switch is a perfectly good Slice identifier but is a C++
and Java keyword. Each language mapping defines rules for dealing with such
identifiers. The solution typically involves using a prefix to map away from the
keyword. For example, the Slice identifier switch is mapped to _cpp_switch
in C++and _switch in Java.
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The rules for dealing with keywords can result in hard-to-read source code.
Identifiers such as native, throw, or export will clash with C++ or Java
keywords (or both). To make life easier for yourself and others, try to avoid Slice
identifiers that are implementation language keywords. Keep in mind that
mappings for new languages may be added to Ice in the future. While it is not
reasonable to expect you to compile a list of all keywords in all popular program-
ming languages, you should make an attempt to avoid at least common keywords.
Slice identifiers such as sel1f, import, and while are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with
a backslash, for example:

struct dictionary { // Error!
// ...

};

struct \dictionary { // OK
// ...

};

struct \foo { // Legal, same as "struct foo"
// ...

};

The backslash escapes the usual meaning of a keyword; in the preceding example,
\dictionary is treated as the identifier dictionary. The escape mechanism
exists to permit keywords to be added to the Slice language over time with
minimal disruption to existing specifications: if a pre-existing specification
happens to use a newly-introduced keyword, that specification can be fixed by
simply prepending a backslash to the new keyword. Note that, as a matter of style,
you should avoid using Slice keywords as identifiers (even though the backslash
escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword
with a backslash—the backslash is ignored in that case.

Reserved ldentifiers

Slice reserves the identifier Ice and all identifiers beginning with Ice (in any
capitalization) for the Ice implementation. For example, if you try to define a type
named Icecream, the Slice compiler will issue an error message.
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Slice identifiers ending in any of the suffixes Helper, Holder, Prx, and Ptr are
also reserved. These endings are used by the various language mappings and are
reserved to prevent name clashes in the generated code.

Modules

A common problem in large systems is pollution of the global namespace: over
time, as isolated systems are integrated, name clashes become quite likely. Slice
provides the module construct to alleviate this problem:

module ZeroC {
module Client {
// Definitions here...
};
module Server {
// Definitions here...
1
};

A module can contain any legal Slice construct, including other module defini-
tions. Using modules to group related definitions together avoids polluting the
global namespace and makes accidental name clashes quite unlikely. (You can use
a well-known name, such as a company or product name, as the name of the outer-
most module.)

Slice requires all definitions to be nested inside a module, that is, you cannot
define anything other than a module at global scope. For example, the following is
illegal:

interface I { // Error: only modules can appear at global scope
// ...
}s

Definitions at global scope are prohibited because they cause problems with some
implementation languages (such as Python, which does not have a true global
scope).

2. You can suppress this behavior by using the - - i ce compiler option, which enables definition of
identifiers beginning with Ice. However, do not use this option unless you are compiling the
Slice definitions for the Ice run time itself.
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Throughout the remainder of this book, you will occasionally see Slice definitions
that are not nested inside a module. This is to keep the examples short and free of
clutter. Whenever you see such a definition, assume that it is nested in a module.

Modules can be reopened:

module ZeroC {
// Definitions here...

};
// Possibly in a different source file:

module ZeroC { // OK, reopened module
// More definitions here...

}s

Reopened modules are useful for larger projects: they allow you to split the
contents of a module over several different source files. The advantage of doing
this is that, when a developer makes a change to one part of the module, only files
dependent on the changed part need be recompiled (instead of having to recompile
all files that use the module).

Modules map to a corresponding scoping construct in each programming
language. (For example, for C++ and C#, Slice modules map to namespaces
whereas, for Java, they map to packages.) This allows you to use an appropriate
C++ using or Java import declaration to avoid excessively long identifiers in
the source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls
that cannot be expressed in Ice, are defined in the Ice module. In other words,
most of the Ice API is actually expressed as Slice definitions. The advantage of
doing this is that a single Slice definition is sufficient to define the API for the Ice
run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the Ice module throughout the
remainder of this book.
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4.8 Basic Slice Types

Slice provides a number of built-in basic types, shown in Table 4.1.

Table 4.1. Slice basic types.

Type Range of Mapped Type Size of Mapped Type
bool false or true > 1bit
byte —128-1272 > 8 bits
short  [|-213t0 2151 > 16 bits
int 23110 2311 > 32 bits
Tong 26310 2931 > 64 bits
float IEEE single-precision > 32 bits
double ||IEEE double-precision > 64 bits
string || All Unicode characters, excluding | Variable-length
the character with all bits zero.

a. Or 0—255, depending on the language mapping

All the basic types (except byte) are subject to changes in representation as they
are transmitted between clients and servers. For example, a Tong value is byte-
swapped when sent from a little-endian to a big-endian machine. Similarly, strings
undergo translation in representation if they are sent, for example, from an
EBCDIC to an ASCII implementation, and the characters of a string may also
change in size. (Not all architectures use 8-bit characters). However, these
changes are transparent to the programmer and do exactly what is required.

4.8.1 Integer Types

Slice provides integer types short, int, and Tong, with 16-bit, 32-bit, and 64-bit
ranges, respectively. Note that, on some architectures, any of these types may be
mapped to a native type that is wider. Also note that no unsigned types are
provided. (This choice was made because unsigned types are difficult to map into
languages without native unsigned types, such as Java. In addition, the unsigned
integers add little value to a language. See [9] for a good treatment of the topic.)
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4.8.2

4.8.3

4.8.4

4.8.5

Floating-Point Types

These types follow the IEEE specification for single- and double-precision
floating-point representation [6]. If an implementation cannot support IEEE
format floating-point values, the Ice run time converts values into the native
floating-point representation (possibly at a loss of precision or even magnitude,
depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear
inside a string is the zero character.?

The Slice data model does not have the concept of a null string (in the sense of
a C++ null pointer). This decision was made because null strings are difficult to
map to languages without direct support for this concept (such as Python). Do not
design interfaces that depend on a null string to indicate “not there” semantics. If
you need the notion of an optional string, use a class (see Section 4.11), a
sequence of strings (see Section 4.9.3), or use an empty string to represent the idea
of a null string. (Of course, the latter assumes that the empty string is not other-
wise used as a legitimate string value by your application.)

Booleans

Boolean values can have only the values false and true. Language mappings use
the corresponding native boolean type if one is available.

Bytes

The Slice type byte is an (at least) 8-bit type that is guaranteed not to undergo any
changes in representation as it is transmitted between address spaces. This guar-
antee permits exchange of binary data such that it is not tampered with in transit.
All other Slice types are subject to changes in representation during transmission.

3. This decision was made as a concession to C++, with which it becomes impossibly difficult to
manipulate strings with embedded zero characters using standard library routines, such as
strlenor strcat.
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4.9 User-Defined Types

4.9.1

4.9.2

In addition to providing the built-in basic types, Slice allows you to define
complex types: enumerations, structures, sequences, and dictionaries.

Enumerations
A Slice enumerated type definition looks like the C++ version:

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fruit that becomes a new type in its own
right. Slice does not define how ordinal values are assigned to enumerators. For
example, you cannot assume that the enumerator Orange will have the value 2 in
different implementation languages. Slice guarantees only that the ordinal values
of enumerators increase from left to right, so Apple compares less than Pear in all
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of
enumerators (because many implementation languages do not support such a
feature):

enum Fruit { Apple = @, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you
do not transmit the ordinal value of an enumerator between address spaces. For
example, sending the value 0 to a server to mean Apple can cause problems
because the server may not use 0 to represent Apple. Instead, simply send the
value Apple itself. If Apple is represented by a different ordinal value in the
receiving address space, that value will be appropriately translated by the Ice run
time.

As with C++, Slice enumerators enter the enclosing namespace, so the
following is illegal:

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple redefined

Slice does not permit empty enumerations.

Structures

Slice supports structures containing one or more named members of arbitrary
type, including user-defined complex types. For example:
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struct TimeOfDay {

short hour; // @ - 23
short minute; // @ - 59
short second; // @ - 59

};

As in C++, this definition introduces a new type called TimeOfDay. Structure defi-
nitions form a namespace, so the names of the structure members need to be
unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can
appear inside a structure. It is impossible to, for example, define a structure inside
a structure:

struct TwoPoints {

struct Point { // ITlegal!
short x;
short y;

1

Point coordl;

Point coord?2;

}

This rule applies to Slice in general: type definitions cannot be nested (except for
modules, which do support nesting—see Section 4.6). The reason for this rule is
that nested type definitions can be difficult to implement for some target
languages and, even if implementable, greatly complicate the scope resolution
rules. For a specification language, such as Slice, nested type definitions are
unnecessary—you can always write the above definitions as follows (which is
stylistically cleaner as well):

struct Point {

short x;
short y;
3
struct TwoPoints { // Legal (and cleaner!)
Point coordl;
Point coord?2;
}
Sequences

Sequences are variable-length collections of elements:
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sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any
number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrange-
ment allows you to create lists of lists:

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues,
sets, bags, or trees. (It is up to the application to decide whether or not order is
important; by discarding order, a sequence serves as a set or bag.)

One particular use of sequences has become idiomatic, namely, the use of a
sequence to indicate an optional value. For example, we might have a Part struc-
ture that records the details of the parts that go into a car. The structure could
record things such as the name of the part, a description, weight, price, and other
details. Spare parts commonly have a serial number, which we can model as a
Tong value. However, some parts, such as simple screws, often do not have a serial
number, so what are we supposed to put into the serial number field of a screw?
There a number of options for dealing with this situation:

¢ Use a sentinel value, such as zero, to indicate the “no serial” number condi-
tion.

This approach is workable, provided that a sentinel value is actually available.
While it may seem unlikely that anyone would use a serial number of zero for
a part, it is not impossible. And, for other values, such as a temperature value,
all values in the range of their type can be legal, so no sentinel value is avail-
able.

* Change the type of the serial number from long to string.

Strings come with their own built-in sentinel value, namely, the empty string
S0 we can use an empty string to indicate the “no serial number” case. This is
workable, but leaves a bad taste in most people’s mouth: we should not have
to change the natural data type of something to string just so we get a
sentinel value.

* Add an indicator as to whether the contents of the serial number are valid:
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struct Part {
string name;
string description;
// ...

bool seriallIsvValid; // true if part has serial number
long serialNumber;

};

This is distasteful to most people and guaranteed to get you into trouble even-
tually: sooner or later, some programmer will forget to check whether the
serial number is valid before using it and create havoc.

* Use a sequence to model the optional field.

This technique uses the following convention:
sequence<long> SerialOpt;

struct Part {

string name;
string description;
/] ...

SerialOpt serialNumber; // optional: zero or one element

};

By convention, the Opt suffix is used to indicate that the sequence is used to
model an optional value. If the sequence is empty, the value is obviously not
there; if it contains a single element, that element is the value. The obvious
drawback of this scheme is that someone could put more than one element into
the sequence. This could be rectified by adding a special-purpose Slice
construct for optional values. However, optional values are not used
frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in Section 4.11, you can also use class hierarchies to
model optional fields.)

4.9.4 Dictionaries

A dictionary is a mapping from a key type to a value type. For example:
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struct Employee {
Tong  number;
string firstName;
string lastName;

};
dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named EmployeeMap that maps from an
employee number to a structure containing the details for an employee. Whether
or not the key type (the employee number, of type Tong in this example) is also
part of the value type (the EmpT1oyee structure in this example) is up to you—as far
as Slice is concerned, there is no need to include the key as part of the value.
Dictionaries can be used to implement sparse arrays, or any lookup data struc-
ture with non-integral key type. Even though a sequence of structures containing
key—value pairs could be used to model the same thing, a dictionary is more
appropriate:
* A dictionary clearly signals the intent of the designer, namely, to provide a
mapping from a domain of values to a range of values. (A sequence of struc-
tures of key—value pairs does not signal that same intent as clearly.)

* At the programming language level, sequences are implemented as vectors (or
possibly lists), that is, they are not well suited to model sparsely populated
domains and require a linear search to locate an element with a particular
value. On the other hand, dictionaries are implemented as a data structure
(typically a hash table or red-black tree) that supports efficient searching in
O(log n) average time or better.

The key type of a dictionary need not be an integral type. For example, we could
use the following definition to translate the names of the days of the week:

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key—
value pairs Monday-Montag, Tuesday-Dienstag, and so on.
The value type of a dictionary can be any user-defined type. However, the key
type of a dictionary is limited to one of the following types:
* Integral types (byte, short, int, Tong, boo1, and enumerated types)
® string
* structures containing only data members of integral type or string

Complex nested types, such as nested structures, sequences, or dictionaries, and
floating-point types (float and double) cannot be used as the key type. Complex
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4.9.5

nested types are disallowed because they complicate the language mappings for
dictionaries, and floating-point types are disallowed because representational
changes of values as they cross machine boundaries can lead to ill-defined seman-
tics for equality.

Constant Definitions and Literals

Slice allows you to define constants. Constant definitions must be of one of the
following types:

* An integral type (bool, byte, short, int, Tong, or an enumerated type)
¢ float or double
® string

Here are a few examples:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor excep-
tions):

* Boolean constants can only be initialized with the keywords false and true.
(You cannot use 0 and 1 to represent false and true.)

* As for C++, integer literals can be specified in decimal, octal, or hexadecimal
notation. For example:

const byte TheAnswer = 42;
const byte TheAnswerInOctal = 052;
const byte TheAnswerInHex = 0x2A; // or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you
may get different results in different languages. For example, for C++, byte
maps to unsigned char whereas, for Java, byte maps to byte, whichis a
signed type.

Note that suffixes to indicate long and unsigned constants (1, L, u, U, used by
C++) are illegal:
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const Tong Wrong = Qu; // Syntax error
const long WrongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as
shown in Table 4.1 on page 102; otherwise the compiler will issue a diag-
nostic.

Floating-point literals use C++ syntax, except that you cannot use an 1 or L
suffix to indicate an extended floating-point constant; however, f and F are
legal (but are ignored). Here are a few examples:

const float Pl = -3.14f; // Integer & fraction, with suffix
const float P2 = +3.1le-3; // Integer, fraction, and exponent
const float P3 = .1; // Fraction part only

const float P4 = 1.; // Integer part only

const float P5 = .9E5; // Fraction part and exponent
const float P6 = 5e2; // Integer part and exponent

Floating-point literals must be within the range of the constant type (fl1oat or
doub1e); otherwise, the compiler will issue a diagnostic.

String literals support the same escape sequences as C++. Here are some
examples:

const string AnOrdinaryString = "Hello World!";

const string DoubleQuote = "\"";

const string TwoSingleQuotes = "'\'"; // ' and \' are OK
const string Newline = "\n";

const string CarriageReturn = "\r";

const string HorizontalTab = "\t";

const string VerticalTab = "\v";

const string FormFeed = "\f";

const string Alert = "\a";

const string Backspace = "\b";

const string QuestionMark = "\?";

const string Backslash = "\\";

const string OctalEscape = "\007"; // Same as \a
const string HexEscape = "\x07"; // Ditto

const string UniversalCharName = "\u@3A9"; // Greek Omega

As for C++, adjacent string literals are concatenated:
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const string MSG1 "Hello World!";
const string MSG2 = "Hello" " " "World!"; // Same message

x Escape sequences are processed before concatenation,
« so the string below contains two characters,

# '"\xa' and 'c'.
*/

const string S = "\xa" "c";

Note that Slice has no concept of a null string:
const string nullString = 0; // Illegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal
value for a string anywhere in the Ice platform. The reason for this decision is
that null strings do not exist in many programming languages.4

4.10 Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

struct TimeOfDay {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // @ - 59

};

interface Clock {
TimeOfDay getTime();
void setTime(TimeOfDay time);

};

This definition defines an interface type called Clock. The interface supports two
operations: getTime and setTime. Clients access an object supporting the Clock
interface by invoking an operation on the proxy for the object: to read the current
time, the client invokes the getTime operation; to set the current time, the client
invokes the setTime operation, passing an argument of type TimeOfDay.

4. Many languages other than C and C++ use a byte array as the internal string representation. Null
strings do not exist (and would be very difficult to map) in such languages.
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Invoking an operation on a proxy instructs the Ice run time to send a message
to the target object. The target object can be in another address space or can be
collocated (in the same process) as the caller—the location of the target object is
transparent to the client. If the target object is in another (possibly remote) address
space, the Ice run time invokes the operation via a remote procedure call; if the
target is collocated with the client, the Ice run time uses an ordinary function call
instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a
C++ class definition or as the equivalent of a Java interface, and of operation defi-
nitions as (virtual) member functions. Note that nothing but operation definitions
are allowed to appear inside an interface definition. In particular, you cannot
define a type, an exception, or a data member inside an interface. This does not
mean that your object implementation cannot contain state—it can, but how that
state is implemented (in the form of data members or otherwise) is hidden from
the client and, therefore, need not appear in the object’s interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class
type—see Section 4.11). Of course, you can create multiple Ice objects that have
the same type; to draw the analogy with C++, a Slice interface corresponds to a
C++ class definition, whereas an Ice object corresponds to a C++ class instance
(but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets. We discuss
facets in detail in Chapter 34.

A Slice interface defines the smallest grain of distribution in Ice: each Ice
object has a unique identity (encapsulated in its proxy) that distinguishes it from
all other Ice objects; for communication to take place, you must invoke operations
on an object’s proxy. There is no other notion of an addressable entity in Ice. You
cannot, for example, instantiate a Slice structure and have clients manipulate that
structure remotely. To make the structure accessible, you must create an interface
that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence
on the overall architecture. Distribution boundaries must follow interface (or
class) boundaries; you can spread the implementation of interfaces over multiple
address spaces (and you can implement multiple interfaces in the same address
space), but you cannot implement parts of interfaces in different address spaces.
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4.10.1

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter
definitions. For example, the get Time operation on page 111 has a return type of
TimeOfDay and the setTime operation has a return type of void. You must use
void to indicate that an operation returns no value—there is no default return type
for Slice operations.

An operation can have one or more input parameters. For example, setTime
accepts a single input parameter of type TimeOfDay called time. Of course, you
can use multiple input parameters, for example:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
// ...

3

Note that the parameter name (as for Java) is mandatory. You cannot omit the
parameter name, so the following is in error:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay, TimeOfDay); // Error!

/) ...
};

By default, parameters are sent from the client to the server, that is, they are input
parameters. To pass a value from the server to the client, you can use an output
parameter, indicated by the out keyword. For example, an alternative way to
define the getTime operation on page 111 would be:

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return
value. As with input parameters, you can use multiple output parameters:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
void getSleepPeriod(out TimeOfDay startTime,
out TimeOfDay stopTime);
// ...
};

If you have both input and output parameters for an operation, the output parame-
ters must follow the input parameters:
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void changeSleepPeriod( TimeOfDay startTime, // OK
TimeOfDay stopTime,
out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime);
void changeSleepPeriod(out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime,
TimeOfDay startTime, // Error
TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call
by reference). The reason is that, for remote calls, reference parameters do not
result in the same savings that one can obtain for call by reference in program-
ming languages. (Data still needs to be copied in both directions and any gains in
marshaling efficiency are negligible.) Also, reference (or input—output) parame-
ters result in more complex language mappings, with concomitant increases in
code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition
you use in Slice: Slice return types map to programming language return types,
and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value
from the operation instead of using an out-parameter. This style maps naturally
into all programming languages. Note that, if you use an out-parameter instead,
you impose a different API style on the client: most programming languages
permit the return value of a function to be ignored whereas it is typically not
possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as
out-parameters and to use a return type of void. However, the rule is not all that
clear-cut because operations with multiple output values can have one particular
value that is considered more “important” than the remainder. A common example
of this is an iterator operation that returns items from a collection one-by-one:

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a
Boolean to indicate the end-of-collection condition. (If the return value is false,
the end of the collection has been reached and the parameter r has an undefined
value.) This style of definition can be useful because it naturally fits into the way
programmers write control structures. For example:
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while (next (record))
// Process record...

if (next (record))
// Got a valid record...

Overloading
Slice does not support any form of overloading of operations. For example:

interface CircadianRhythm {
void modify(TimeOfDay startTime,
TimeOfDay endTime);
void modify( TimeOfDay startTime, // Error
TimeOfDay endTime,
out timeOfDay prevStartTime,
out TimeOfDay prevEndTime);
};

Operations in the same interface must have different names, regardless of what
type and number of parameters they have. This restriction exists because over-
loaded functions cannot sensibly be mapped to languages without built-in support
for overloading.5

Idempotent Operations

Some operations, such as getTime on page 111, do not modify the state of the
object they operate on. They are the conceptual equivalent of C++ const
member functions. Similary, setTime does modify the state of the object, but is
idempotent. You can indicate this in Slice as follows:

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

This marks the getTime and setTime operations as idempotent. An operation is
idempotent if two successive invocations of the operation have the same effect as a
single invocation. For example, x = 1; is an idempotent operation because it
does not matter whether it is executed once or twice—either way, x ends up with

5. Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable
to humans.
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the value 1. On the other hand, x += 1; is not an idempotent operation because
executing it twice results in a different value for x than executing it once. Obvi-
ously, any read-only operation is idempotent.

The idempotent keyword is useful because it allows the Ice run time to
attempt more aggressive error recovery. Specifically, Ice guarantees at-most-once
semantics for operation invocations:

* For normal (not idempotent) operations, the Ice run time has to be conserva-
tive about how it deals with errors. For example, if a client sends an operation
invocation to a server and then loses connectivity, there is no way for the
client-side run time to find out whether the request it sent actually made it to
the server. This means that the run time cannot attempt to recover from the
error by re-establishing a connection and sending the request a second time
because that could cause the operation to be invoked a second time and violate
at-most-once semantics; the run time has no option but to report the error to
the application.

* For idempotent operations, on the other hand, the client-side run time can
attempt to re-establish a connection to the server and safely send the failed
request a second time. If the server can be reached on the second attempt,
everything is fine and the application never notices the (temporary) failure.
Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration
parameter.)

4.10.2 User Exceptions

Looking at the setTime operation on page 111, we find a potential problem: given
that the TimeOfDay structure uses short as the type of each field, what will
happen if a client invokes the setTime operation and passes a TimeOfDay value
with meaningless field values, such as -199 for the minute field, or 42 for the
hour? Obviously, it would be nice to provide some indication to the caller that this
is meaningless. Slice allows you to define user exceptions to indicate error condi-
tions to the client. For example:

exception Error {}; // Empty exceptions are Tegal

exception RangeError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

};
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A user exception is much like a structure in that it contains a number of data
members. However, unlike structures, exceptions can have zero data members,
that is, be empty. Exceptions allow you to return an arbitrary amount of error
information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions
that may be returned to the client:

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time)
throws RangeError, Error;

};

This definition indicates that the setTime operation may throw either a
RangeError or an Error user exception (and no other type of exception). If the
client receives a RangeError exception, the exception contains the TimeOfDay
value that was passed to setTime and caused the error (in the errorTime
member), as well as the minimum and maximum time values that can be used (in
the minTime and maxTime members). If setTime failed because of an error not
caused by an illegal parameter value, it throws Error. Obviously, because Error
does not have data members, the client will have no idea what exactly it was that
went wrong—it simply knows that the operation did not work.

An operation can throw only those user exceptions that are listed in its excep-
tion specification. If, at run time, the implementation of an operation throws an
exception that is not listed in its exception specification, the client receives a run-
time exception (see Section 4.10.4) to indicate that the operation did something
illegal. To indicate that an operation does not throw any user exception, simply
omit the exception specification. (There is no empty exception specification in
Slice.)

Exceptions are not first-class data types and first-class data types are not
exceptions:

* You cannot pass an exception as a parameter value.

* You cannot use an exception as the type of a data member.

* You cannot use an exception as the element type of a sequence.

* You cannot use an exception as the key or value type of a dictionary.

® You cannot throw a value of non-exception type (such as a value of type int
or string).

The reason for these restrictions is that some implementation languages use a
specific and separate type for exceptions (in the same way as Slice does). For such
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4103

languages, it would be difficult to map exceptions if they could be used as an ordi-
nary data type. (C++ is somewhat unusual among programming languages by
allowing arbitrary types to be used as exceptions.)

Exception Inheritance
Exceptions support inheritance. For example:

exception ErrorBase {
string reason;

};

enum RTError {
DivideByZero, NegativeRoot, IllegalNull /+ ... */
};

exception RuntimeError extends ErrorBase {
RTError err;

}s
enum LError { ValueOutOfRange, ValuesInconsistent, /* ... %/ };

exception LogicError extends ErrorBase {
LError err;

}s

exception RangeError extends LogicError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

}s
These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause
of the error.

® Derived from ErrorBase are RuntimeError and LogicError. Each of these
exceptions contains an enumerated value that further categorizes the error.

* Finally, RangeError is derived from LogicError and reports the details of the
specific error.

Setting up exception hierarchies such as this not only helps to create a more read-
able specification because errors are categorized, but also can be used at the
language level to good advantage. For example, the Slice C++ mapping preserves
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the exception hierarchy so you can catch exceptions generically as a base excep-
tion, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy on page 118, it is not clear whether, at run
time, the application will only throw most derived exceptions, such as
RangeError, or if it will also throw base exceptions, such as LogicError,
RuntimeError, and ErrorBase. If you want to indicate that a base exception,
interface, or class is abstract (will not be instantiated), you can add a comment to
that effect.

Note that, if the exception specification of an operation indicates a specific
exception type, at run time, the implementation of the operation may also throw
more derived exceptions. For example:

exception Base {
/] ...
};

exception Derived extends Base {
/] ...
}s

interface Example {
void op() throws Base; // May throw Base or Derived

};

In this example, op may throw a Base or a Derived exception, that is, any excep-
tion that is compatible with the exception types listed in the exception specifica-
tion can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be
added to an existing hierarchy. Assume that we initially construct clients and
server with the following definitions:

exception Error {
/] ...
};

interface Application {
void doSomething() throws Error;

};

Also assume that a large number of clients are deployed in field, that is, when you
upgrade the system, you cannot easily upgrade all the clients. As the application
evolves, a new exception is added to the system and the server is redeployed with
the new definition:
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exception Error {
// ...
};

exception FatalApplicationError extends Error {
/]
};

interface Application {
void doSomething() throws Error;

};

This raises the question of what should happen if the server throws a
FatalApplicationError from doSomething. The answer depends whether the
client was built using the old or the updated definition:

* If the client was built using the same definition as the server, it simply
receives a FatalApplicationError.

* If the client was built with the original definition, that client has no knowledge
that FatalApplicationError even exists. In this case, the Ice run time auto-
matically slices the exception to the most-derived type that is understood by
the receiver (Error, in this case) and discards the information that is specific
to the derived part of the exception. (This is exactly analogous to catching
C++ exceptions by value—the exception is sliced to the type used in the
catch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be diffi-
cult to map into many programming languages.)

Ice Run-Time Exceptions

As mentioned in Section 2.2.2, in addition to any user exceptions that are listed in
an operation’s exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-
related run-time errors. For example, if a networking error interrupts communica-
tion between client and server, the client is informed of this by a run-time excep-
tion, such as ConnectTimeoutException or SocketException.

The exception specification of an operation must not list any run-time excep-
tions. (It is understood that all operations can raise run-time exceptions and you
are not allowed to restate that.)
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Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy,
as shown in Figure 4.3.

Exception

Specific Run-Time Exceptions... "’_’_‘ ‘ Specific User Exceptions... "’_’_‘
I T
T T
T T

Figure 4.3. Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are
the (abstract) types Ice::LocalException and Ice: :UserException. In turn, all
run-time exceptions are derived from Ice: :LocalException, and all user excep-
tions are derived from Ice: :UserException.
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Figure 4.4 shows the complete hierarchy of the Ice run-time exceptions.6

Exception

LocalException UserException

A

RequestFailedException

SyscallException

UnknownException

SocketException ‘ ‘FiIeException |

_ _ ObjectNotExistException
UnknownLocalException ConnectFailedException OperationNotExistException
UnknownUserException ConnectionLostException FacetNotExistException

ConnectionRefusedException

TimeoutException

InitializationException
llegalldentityException

ProtocolException

IdentityParseException ConnectTimeoutException
PlugininitializationException ConnectionTimeoutException
DNSException CloseTimeoutException
ProxyParseException

NoEndpointException

ObjectAdapterDeactivatedException
ObjectAdapterNamelnUseException

ObjectAdapterldinUseException BadMagicException )
VersionMismatchException UnsupportedProtocolException

CommunicatorDestroyedException UnsupportedEncodingException

EndpointParseException UnknownMessageException

EndpointSelectionTypeParseException Connect|onNotVahdatedEx.ceptlon ProxyUnmarshalException
LocationForwardldentityException UnknownRequestldException UnmarshalOutOfBoundsException
PluginInitializationException UnknownReplyStatusException IllegalindirectionException
CollocationOptimizationException CloseConnectionException MemoryLimitException
AlreadyRegisteredException ForcedCIoseConnectlonExpepnon EncapsulationException
NotRegisteredException AbortBatchRequ.estExceptllon NoObjectFactoryException
TwowayOnlyException IIIegalMes§ageS|zeExceptlon UnexpectedObjectException
CloneNotimplementedException Compressanxceptpn EncapsulationException
SecurityException DatagramLimitException NegativeSizeException
FixedProxyException StringConversionException

FeatureNotSupportedException

Figure 4.4. Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

6. We use the Unified Modeling Language (UML) for the object model diagrams in this book
(see [1] and [13] for details).
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Note that Figure 4.4 groups several exceptions into a single box to save space
(which, strictly, is incorrect UML syntax). Also note that some run-time excep-
tions have data members, which, for brevity, we have omitted in Figure 4.4. These
data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as
MemoryLimitException. Others indicate problems in the Ice run time, such as
EncapsulationException. Still others can arise only through application
programming errors, such as TwowayOn1yException. In practice, you will likely
never see most of these exceptions. However, there are a few run-time exceptions
you will encounter and whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side. For example, if an attempt to
contact a server fails, the client-side run time raises a
ConnectTimeoutException. However, there are three specific error conditions
(shaded in Figure 4.4) that are detected by the server and made known explicitly
to the client-side run time via the Ice protocol:

® ObjectNotExistException

This exception indicates that a request was delivered to the server but the
server could not locate a servant with the identity that is embedded in the
proxy. In other words, the server could not find an object to dispatch the
request to.

An ObjectNotExistException is a death certificate: it indicates that the
target object in the server does not exist.” Most likely, this is the case because
the object existed some time in the past and has since been destroyed, but the
same exception is also raised if a client uses a proxy with the identity of an
object that has never been created. If you receive this exception, you are
expected to clean up whatever resources you might have allocated that relate
to the specific object for which you receive this exception.

®* FacetNotExistException

The client attempted to contact a non-existent facet of an object, that is, the
server has at least one servant with the given identity, but no servant with a
matching facet name. (See Chapter 34 for a discussion of facets.)

7. The Ice run time raises ObjectNotExistException only if there are no facets in existence
with a matching identity; otherwise, it raises FacetNotExistException (see Chapter 34).
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® OperationNotExistException

This exception is raised if the server could locate an object with the correct
identity but, on attempting to dispatch the client’s operation invocation, the
server found that the target object does not have such an operation. You will
see this exception in only two cases:

® You have used an unchecked down-cast on a proxy of the incorrect type.
(See page 222 and page 341 for unchecked down-casts.)

* Client and server have been built with Slice definitions for an interface that
disagree with each other, that is, the client was built with an interface defini-
tion for the object that indicates that an operation exists, but the server was
built with a different version of the interface definition in which the opera-
tion is absent.

Any error condition on the server side that is not described by one of the three
preceding exceptions is made known to the client as one of three generic excep-
tions (shaded in Figure 4.4):

® UnknownUserException

This exception indicates that an operation implementation has thrown a Slice
exception that is not declared in the operation’s exception specification (and is
not derived from one of the exceptions in the operation’s exception specifica-
tion).

UnknownLocaTlException

If an operation implementation raises a run-time exception other than
ObjectNotExistException, FacetNotExistException, or
OperationNotExistException (such as a NotRegisteredException), the
client receives an UnknownLocalException. In other words, the Ice protocol
does not transmit the exact exception that was encountered in the server, but
simply returns a bit to the client in the reply to indicate that the server encoun-
tered a run-time exception.

A common cause for a client receiving an UnknownLocalException is failure
to catch and handle all exceptions in the server. For example, if the implemen-
tation of an operation encounters an exception it does not handle, the excep-
tion propagates all the way up the call stack until the stack is unwound to the
point where the Ice run time invoked the operation. The Ice run time catches
all Ice exceptions that “escape” from an operation invocation and returns them
to the client as an UnknownlLocalException.
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® UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in
the server throws a C++ exception, such as a char *, or a Java exception,
such as a ClassCastException, the client receives an
UnknownException.

All other run-time exceptions (not shaded in Figure 4.4) are detected by the client-
side run time and are raised locally.

It is possible for the implementation of an operation to throw Ice run-time
exceptions (as well as user exceptions). For example, if a client holds a proxy to
an object that no longer exists in the server, your server application code is
required to throw an ObjectNotExistException. If you do throw run-time excep-
tions from your application code, you should take care to throw a run-time excep-
tion only if appropriate, that is, do not use run-time exceptions to indicate
something that really should be a user exception. Doing so can be very confusing
to the client: if the application “hijacks” some run-time exceptions for its own
purposes, the client can no longer decide whether the exception was thrown by the
Ice run time or by the server application code. This can make debugging very
difficult.

Interface Semantics and Proxies
Building on the Clock example, we can create definitions for a world-time server:

exception GenericError {
string reason;

};

struct TimeOfDay {
short hour; // 0 - 23
short minute; // @ - 59
short second; // @0 - 59

};
exception BadTimeVal extends GenericError {};

interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time) throws BadTimeVal;

}s

dictionary<string, Clockx> TimeMap; // Time zone name to clock map
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exception BadZoneName extends GenericError {};

interface WorldTime {
idempotent void addZone(string zoneName, Clockx zoneClock);
void removeZone(string zoneName) throws BadZoneName;
idempotent Clocks findZone(string zoneName)
throws BadZoneName;
idempotent TimeMap listZones();
idempotent void setZones(TimeMap zones);

};

The Wor1dTime interface acts as a collection manager for clocks, one for each
time zone. In other words, the Wor1dTime interface manages a collection of pairs.
The first member of each pair is a time zone name; the second member of the pair
is the clock that provides the time for that zone. The interface contains operations
that permit you to add or remove a clock from the map (addZone and remove-
Zone), to search for a particular time zone by name (findZone), and to read or
write the entire map (1istZones and setZones).

The Wor1dTime example illustrates an important Slice concept: note that
addZone accepts a parameter of type Clock+ and findZone returns a parameter of
type Clock=. In other words, interfaces are types in their own right and can be
passed as parameters. The = operator is known as the proxy operator. Its left-hand
argument must be an interface (or class—see Section 4.11) and its return type is a
proxy. A proxy is like a pointer that can denote an object. The semantics of
proxies are very much like those of C++ class instance pointers:

* A proxy can be null (see page 131).
* A proxy can dangle (point at an object that is no longer there)

® Operations dispatched via a proxy use late binding: if the actual run-time type
of the object denoted by the proxy is more derived than the proxy’s type, the
implementation of the most-derived interface will be invoked.

When a client passes a Clock proxy to the addZone operation, the proxy denotes
an actual Clock object in a server. The Clock Ice object denoted by that proxy
may be implemented in the same server process as the Wor1dTime interface, or in
a different server process. Where the Clock object is physically implemented
matters neither to the client nor to the server implementing the Wor1dTime
interface; if either invokes an operation on a particular clock, such as getTime, an
RPC call is sent to whatever server implements that particular clock. In other
words, a proxy acts as a local “ambassador” for the remote object; invoking an
operation on the proxy forwards the invocation to the actual object implementa-
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tion. If the object implementation is in a different address space, this results in a
remote procedure call; if the object implementation is collocated in the same
address space, the Ice run time uses an ordinary local function call from the proxy
to the object implementation.

Note that proxies also act very much like pointers in their sharing semantics: if
two clients have a proxy to the same object, a state change made by one client
(such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++
and Java). This means that you cannot pass something other than a Clock proxy to
the addZone operation; attempts to do so are rejected at compile time.

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time
server to support the concept of an alarm clock:

interface AlarmClock extends Clock {
idempotent TimeOfDay getAlarmTime();
idempotent void setAlarmTime(TimeOfDay alarmTime)
throws BadTimeVal;
};

The semantics of this are the same as for C++ or Java: AlarmClock is a subtype of
Clock and an ATarmClock proxy can be substituted wherever a Clock proxy is
expected. Obviously, an AlarmClock supports the same getTime and setTime
operations as a Clock but also supports the getAlarmTime and setAlarmTime
operations.

Multiple interface inheritance is also possible. For example, we can construct
a radio alarm clock as follows:

interface Radio {
void setFrequency(long hertz) throws GenericError;
void setVolume(long dB) throws GenericError;

};
enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
void setMode (ATarmMode mode);
AlarmMode getMode();

};
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RadioClock extends both Radio and AlarmClock and can therefore be passed
where a Radio, an AlarmClock, or a Clock is expected. The inheritance diagram
for this definition looks as follows:

Clock
«interface»

Radio AlarmClock
«interface» «interface»

RadioClock
«interface»

Figure 4.5. Inheritance diagram for RadioClock.

Interfaces that inherit from more than one base interface may share a common
base interface. For example, the following definition is legal:

interface B { /= ... %/ };

interface Il extends B { /* ... %/ };
interface I2 extends B { /+ ... =/ };
interface D extends I1, I2 { /+ ... x/ };

* .

This definition results in the familiar diamond shape:

B
«interface»
I1 12
«interface» «interface»
«interface»

Figure 4.6. Diamond-shaped inheritance.
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Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation
name from more than one base interface. For example, the following definition is

illegal:
interface Clock {
void set(TimeOfDay time); // set time
};
interface Radio {
void set(Tong hertz); // set frequency
};
interface RadioClock extends Radio, Clock { // Illegal!
// ...
};

This definition is illegal because RadioClock inherits two set operations,
Radio::set and Clock: :set. The Slice compiler makes this illegal because
(unlike C++) many programming languages do not have a built-in facility for
disambiguating the different operations. In Slice, the simple rule is that all inher-
ited operations must have unique names. (In practice, this is rarely a problem
because inheritance is rarely added to an interface hierarchy “after the fact”. To
avoid accidental clashes, we suggest that you use descriptive operation names,
such as setTime and setFrequency. This makes accidental name clashes less
likely.)
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Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Object. For example, the inherit-
ance hierarchy from Figure 4.5 would be shown more correctly as in Figure 4.7.

Object
«interface»
Clock
«interface»
Radio AlarmClock
«interface» «interface»
RadioClock
«interface»

Figure 4.7. Implicit inheritance from Object.

Because all interfaces have a common base interface, we can pass any type of
interface as that type. For example:

interface ProxyStore {
idempotent void putProxy(string name, Object* 0);
idempotent Objects getProxy(string name);

}s

Object is a Slice keyword (note the capitalization) that denotes the root type of
the inheritance hierarchy. The ProxyStore interface is a generic proxy storage
facility: the client can call putProxy to add a proxy of any type under a given
name and later retrieve that proxy again by calling getProxy and supplying that
name. The ability to generically store proxies in this fashion allows us to build
general-purpose facilities, such as a naming service that can store proxies and
deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers (see Chapter 39).

Inheritance from type Object is always implicit. For example, the following
Slice definition is illegal:

interface MyInterface extends Object { /* ... %/ }; // Error!



4.10 Interfaces, Operations, and Exceptions 131

It is understood that all interfaces inherit from type Object; you are not allowed to
restate that.

Type Object is mapped to an abstract type by the various language mappings,
S0 you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the ProxyStore interface once more, we notice that getProxy does
not have an exception specification. The question then is what should happen if a
client calls getProxy with a name under which no proxy is stored? Obviously, we
could add an exception to indicate this condition to getProxy. However, another
option is to return a null proxy. Ice has the built-in notion of a null proxy, which is
a proxy that “points nowhere”. When such a proxy is returned to the client, the
client can test the value of the returned proxy to check whether it is null or denotes
a valid object.

A more interesting question is: “which approach is more appropriate, throwing
an exception or returning a null proxy?” The answer depends on the expected
usage pattern of an interface. For example, if, in normal operation, you do not
expect clients to call getProxy with a non-existent name, it is better to throw an
exception. (This is probably the case for our ProxyStore interface: the fact that
there is no 11st operation makes it clear that clients are expected to know which
names are in use.)

On the other hand, if you expect that clients will occasionally try to look up
something that is not there, it is better to return a null proxy. The reason is that
throwing an exception breaks the normal flow of control in the client and requires
special handling code. This means that you should throw exceptions only in
exceptional circumstances. For example, throwing an exception if a database
lookup returns an empty result set is wrong; it is expected and normal that a result
set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that
get these details right are easier to use and easier to understand. Not only do such
interfaces make life easier for client developers, they also make it less likely that
latent bugs cause problems later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For
example:
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interface Link {
idempotent SomeType getValue();
idempotent Links next();

};

The Link interface contains a next operation that returns a proxy to a Link
interface. Obviously, this can be used to create a chain of interfaces; the final link
in the chain returns a null proxy from its next operation.

Empty Interfaces
The following Slice definition is legal:

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting
question is: “why would I need an empty interface?”” In most cases, empty inter-
faces are an indication of design errors. Here is one example:

interface ThingBase {};

interface Thingl extends ThingBase {
// Operations here...

}s

interface Thing2 extends ThingBase {
// Operations here...

¥
Looking at this definition, we can make two observations:

® Thingl and Thing2 have a common base and are therefore related.

* Whatever is common to Thingl and Thing2 can be found in interface Thing-
Base.

Of course, looking at ThingBase, we find that Thingl and Thing2 do not share
any operations at all because ThingBase is empty. Given that we are using an
object-oriented paradigm, this is definitely strange: in the object-oriented model,
the only way to communicate with an object is to send a message to the object.
But, to send a message, we need an operation. Given that ThingBase has no oper-
ations, we cannot send a message to it, and it follows that Thingl and Thing2 are
not related because they have no common operations. But of course, seeing that
Thingl and Thing2 have a common base, we conclude that they are related, other-
wise the common base would not exist. At this point, most programmers begin to
scratch their head and wonder what is going on here.
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One common use of the above design is a desire to treat Thingl and Thing2
polymorphically. For example, we might continue the previous definition as
follows:

interface ThingUser {
void putThing(ThingBasex thing);
b

Now the purpose of having the common base becomes clear: we want to be able to
pass both Thingl and Thing2 proxies to putThing. Does this justify the empty
base interface? To answer this question, we need to think about what happens in
the implementation of putThing. Obviously, putThing cannot possibly invoke an
operation on a ThingBase because there are no operations. This means that
putThing can do one of two things:

1. putThing can simply remember the value of thing.

2. putThing can try to down-cast to either Thingl or Thing2 and then invoke an
operation. The pseudo-code for the implementation of putThing would look
something like this:

void putThing (ThingBase thing)

{
if (is_a(Thingl, thing)) {
// Do something with Thingl...
} else if (is_a(Thing2, thing)) {
// Do something with Thing2...
} else {
// Might be a ThingBase?
//
1
!

The implementation tries to down-cast its argument to each possible type in
turn until it has found the actual run-time type of the argument. Of course, any
object-oriented text book worth its price will tell you that this is an abuse of
inheritance and leads to maintenance problems.

If you find yourself writing operations such as putThing that rely on artificial
base interfaces, ask yourself whether you really need to do things this way. For
example, a more appropriate design might be:

interface Thingl {
// Operations here...

};
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interface Thing2 {
// Operations here...
};

interface ThingUser {
void putThingl(Thinglx thing);
void putThing2(Thing2x thing);
b

With this design, Thingl and Thing2 are not related, and ThingUser offers a sepa-
rate operation for each type of proxy. The implementation of these operations does
not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:
interface PersistentObject {};

interface Thingl extends PersistentObject {
// Operations here...
b

interface Thing2 extends PersistentObject {
// Operations here...
b

Clearly, the intent of this design is to place persistence functionality into the
PersistentObject base implementation and require objects that want to have
persistent state to inherit from PersistentObject. On the face of things, this is
reasonable: after all, using inheritance in this way is a well-established design
pattern, so what can possibly be wrong with it? As it turns out, there are a number
of things that are wrong with this design:

* The above inheritance hierarchy is used to add behavior to Thingl and
Thing2. However, in a strict OO model, behavior can be invoked only by
sending messages. But, because PersistentObject has no operations, no
messages can be sent.

This raises the question of how the implementation of PersistentObject
actually goes about doing its job; presumably, it knows something about the
implementation (that is, the internal state) of Thingl and Thing2, so it can
write that state into a database. But, if so, PersistentObject, Thingl, and
Thing2 can no longer be implemented in different address spaces because, in
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that case, PersistentObject can no longer get at the state of Thingl and
Thing2.

Alternatively, Thingl and Thing2 use some functionality provided by
PersistentObject in order to make their internal state persistent. But
PersistentObject does not have any operations, so how would Thingl and
Thing2 actually go about achieving this? Again, the only way that can work is
if PersistentObject, Thingl, and Thing2 are implemented in a single
address space and share implementation state behind the scenes, meaning that
they cannot be implemented in different address spaces.

* The above inheritance hierarchy splits the world into two halves, one
containing persistent objects and one containing non-persistent ones. This has
far-reaching ramifications:

* Suppose you have an existing application with already implemented, non-
persistent objects. Requirements change over time and you find that you
now would like to make some of your objects persistent. With the above
design, you cannot do this unless you change the type of your objects
because they now must inherit from PersistentObject. Of course, this is
extremely bad news: not only do you have to change the implementation of
your objects in the server, you also need to locate and update all the clients
that are currently using your objects because they suddenly have a
completely new type. What is worse, there is no way to keep things back-
ward compatible: either all clients change with the server, or none of them
do. It is impossible for some clients to remain “unupgraded”.

® The design does not scale to multiple features. Imagine that we have a
number of additional behaviors that objects can inherit, such as serializa-
tion, fault-tolerance, persistence, and the ability to be searched by a search
engine. We quickly end up in a mess of multiple inheritance. What is worse,
each possible combination of features creates a completely separate type
hierarchy. This means that you can no longer write operations that generi-
cally operate on a number of object types. For example, you cannot pass a
persistent object to something that expects a non-persistent object, even if
the receiver of the object does not care about the persistence aspects of the
object. This quickly leads to fragmented and hard-to-maintain type systems.
Before long, you will either find yourself rewriting your application or end
up with something that is both difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface
definition language that has nothing to do with implementation (but empty inter-
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faces almost always indicate that implementation state is shared via mechanisms
other than defined interfaces). If you find yourself writing an empty interface defi-
nition, at least step back and think about the problem at hand; there may be a more
appropriate design that expresses your intent more cleanly. If you do decide to go
ahead with an empty interface regardless, be aware that, almost certainly, you will
lose the ability to later change the distribution of the object model over physical
server process because you cannot place an address space boundary between
interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In partic-
ular, if two interfaces are in an inheritance relationship, this in no way implies that
the implementations of those interfaces must also inherit from each other. You can
choose to use implementation inheritance when you implement your interfaces,
but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation
inheritance by default, and interface inheritance requires extra effort to imple-
ment.)

In summary, Slice inheritance simply establishes type compatibility. It says
nothing about how interfaces are implemented and, therefore, keeps implementa-
tion choices open to whatever is most appropriate for your application.

Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like
interfaces in that they can have operations and are like structures in that they can
have data members. This leads to hybrid objects that can be treated as interfaces
and passed by reference, or can be treated as values and passed by value. Classes
provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be imple-
mented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you
can pass a class instance to an operation as long as the actual class type is derived
from the formal parameter type in the operation’s signature. This also permits
classes to be used as type-safe unions, similarly to Pascal’s discriminated variant
records.
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4.11.2

Simple Classes

A Slice class definition is similar to a structure definition, but uses the class
keyword. For example:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59

};

Apart from the keyword class, this definition is identical to the structure defini-
tion we saw on page 105. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use
a class where a structure is sufficient). Unlike structures, classes can be empty:

class EmptyClass {}; // OK
struct EmptyStruct {}; // Error

Much the same design considerations as for empty interfaces (see page 132) apply
to empty classes: you should at least stop and rethink your approach before
committing yourself to an empty class.

Class Inheritance
Unlike structures, classes support inheritance. For example:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @0 - 59
};
class DateTime extends TimeOfDay {
short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

}s

This example illustrates one major reason for using a class: a class can be
extended by inheritance, whereas a structure is not extensible. The previous
example defines DateTime to extend the TimeOfDay class with a date ®

Classes only support single inheritance. The following is illegal:



138 The Slice Language
class TimeOfDay {
short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59
};
class Date {
short day;
short month;
short year;
};
class DateTime extends TimeOfDay, Date { // Error!
// ...
};
A derived class also cannot redefine a data member of its base class:
class Base {
int integer;
};
class Derived extends Base {
int integer; // Error, integer redefined
};
4.11.3 Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class
instance to an operation, the class and all its members are passed. The usual type
compatibility rules apply: you can pass a derived instance where a base instance is
expected. If the receiver has static type knowledge of the actual derived run-time
type, it receives the derived instance; otherwise, if the receiver does not have static
type knowledge of the derived type, the instance is sliced to the base type. For an
example, suppose we have the following definitions:

8. If you are puzzled by the comment about the year 1753, search the Web for “1752 date change”.
The intricacies of calendars for various countries prior to that year can keep you occupied for
months...
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// In file Clock.ice:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @0 - 59
short second; // @0 - 59

};
interface Clock {
TimeOfDay getTime();
void setTime(TimeOfDay time);
};
// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {

short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

};

Because DateTime is a sub-class of TimeOfDay, the server can return a DateTime
instance from getTime, and the client can pass a DateTime instance to setTime.
In this case, if both client and server are linked to include the code generated for
both Clock.ice and DateTime. ice, they each receive the actual derived
DateTime instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code
generated for both Clock.ice and DateTime. ice, but the client is linked
only with the code generated for Clock . ice. In other words, the server under-
stands the type DateTime and can return a DateTime instance from getTime, but
the client only understands TimeOfDay. In this case, the derived DateT1ime instance
returned by the server is sliced to its TimeOfDay base type in the client. (The infor-
mation in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of poly-
morphic interfaces). For example:

class Shape {
// Definitions for shapes, such as size, center, etc.

};

class Circle extends Shape {
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// Definitions for circles, such as radius...
}s
class Rectangle extends Shape {
// Definitions for rectangles, such as width and Tength...
};
sequence<Shape> ShapeSeq;
interface ShapeProcessor {
void processShapes(ShapeSeq ss);
};
Note the definition of ShapeSeq and its use as a parameter to the processShapes
operation: the class hierarchy allows us to pass a polymorphic sequence of shapes
(instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and
down-cast each element to its actual run-time type. (The receiver can also ask each
element for its type ID to determine its type—see Section 6.14.1 and
Section 10.11.2.)

4.11.4 Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By
deriving classes from a common base class, you can create the same effect as with
a union:

interface ShapeShifter {
Shape translate(Shape s, long xDistance, long yDistance);

};

The parameter s of the translate operation can be viewed as a union of two
members: a Circle and a Rectangle. The receiver of a Shape instance can use the
type ID (see Section 4.13) of the instance to decide whether it received a Circle
or a Rectangle. Alternatively, if you want something more along the lines of a
conventional discriminated union, you can use the following approach:

class UnionDiscriminator {
int d;
b

class Memberl extends UnionDiscriminator {
// d ==

string s;
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float f;
b
class Member2 extends UnionDiscriminator {
// d ==
byte b;
int i;

};

With this approach, the UnionDiscriminator class provides a discriminator
value. The “members” of the union are the classes that are derived from Union-
Discriminator. For each derived class, the discriminator takes on a distinct
value. The receiver of such a union uses the discriminator value in a switch
statement to select the active union member.

Self-Referential Classes
Classes can be self-referential. For example:

class Link {
SomeType value;
Link next;

}s

This looks very similar to the self-referential interface example on page 132, but
the semantics are very different. Note that value and next are data members, not
operations, and that the type of next is Link (nof Link=). As you would expect,
this forms the same linked list arrangement as the Link interface on page 132:
each instance of a Link class contains a next member that points at the next link
in the chain; the final link’s next member contains a null value. So, what looks
like a class including itself really expresses pointer semantics: the next data
member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the
Link interface on page 132 and the Link class on page 141. The difference is that
classes have value semantics, whereas proxies have reference semantics. To illus-
trate this, consider the Link interface from page 132 once more:

interface Link {
idempotent SomeType getValue();
idempotent Links next();

};
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Here, getValue and next are both operations and the return value of next is
Linksx, that is, next returns a proxy. A proxy has reference semantics, that is, it
denotes an object somewhere. If you invoke the getValue operation on a Link
proxy, a message is sent to the (possibly remote) servant for that proxy. In other
words, for proxies, the object stays put in its server process and we access the state
of the object via remote procedure calls. Compare this with the definition of our
Link class:

class Link {
SomeType value;
Link next;

}s

Here, value and next are data members and the type of next is Link, which has
value semantics. In particular, while next looks and feels like a pointer, it cannot
denote an instance in a different address space. This means that if we have a chain
of Link instances, all of the instances are in our local address space and, when we
read or write a value data member, we are performing local address space opera-
tions. This means that an operation that returns a L1ink instance, such as getHead,
does not just return the head of the chain, but the entire chain, as shown in
Figure 4.8.

Client Server Client Server

getHead

=T

Figure 4.8. Class version of Link before and after calling getHead.

On the other hand, for the interface version of Link, we do not know where all the
links are physically implemented. For example, a chain of four links could have
each object instance in its own physical server process; those server processes
could be each in a different continent. If you have a proxy to the head of this four-
link chain and traverse the chain by invoking the next operation on each link, you
will be sending four remote procedure calls, one to each object



4.11 Classes 143

4.11.6

Self-referential classes are particularly useful to model graphs. For example,
we can create a simple expression tree along the following lines:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
UnaryOp operator;
Node operand;

};

class BinaryOperator extends Node {
BinaryOp op;
Node operandl;
Node operand2;

};

class Operand extends Node {
Tong val;

};

The expression tree consists of leaf nodes of type Operand, and interior nodes of
type UnaryOperator and BinaryOperator, with one or two descendants, respec-
tively. All three of these classes are derived from a common base class Node. Note
that Node is an empty class. This is one of the few cases where an empty base class
is justified. (See the discussion on page 132; once we add operations to this class
hierarchy (see Section 4.11.7), the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing
that parameter results in transmission of the entire tree to the server:

interface Evaluator {
Tong eval(Node expression); // Send entire tree for evaluation

};

Self-referential classes are not limited to acyclic graphs; the Ice run time permits
loops: it ensures that no resources are leaked and that infinite loops are avoided
during marshaling.

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes,
when classes obviously can be used to model structures? The answer has to do
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4.11.7

with the cost of implementation: classes provide a number of features that are
absent for structures:

* Classes support inheritance.

* Classes can be self-referential.

* Classes can have operations (see Section 4.11.7).

* Classes can implement interfaces (see Section 4.11.9).

Obviously, an implementation cost is associated with the additional features of
classes, both in terms of the size of the generated code and the amount of memory
and CPU cycles consumed at run time. On the other hand, structures are simple
collections of values (“plain old structs”) and are implemented using very efficient
mechanisms. This means that, if you use structures, you can expect better perfor-
mance and smaller memory footprint than if you would use classes (especially for
languages with direct support for “plain old structures”, such as C++ and C#). Use
a class only if you need at least one of its more powerful features.

Classes with Operations

Classes, in addition to data members, can have operations. T