GNU Linear Programming Kit

Reference Manual

Version 4.40

(DRAFT, November 2009)

The GLPK package is part of the GNU Project released under the aegis of
GNU.

Copyright (© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Andrew Makhorin, Department for Applied Informatics, Moscow Aviation
Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Contents

1 Introduction

2

1.1 LP problem

1.2 MIP problem
1.3 Using the package
Brief exampleo
Compiling L L
Linking oo

1.3.1
1.3.2
1.3.3

Basic API Routines
2.1 Problem object L

2.2 Problem creating and modifying routines

2.2.1
2.2.2
2.2.3

2.24

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11

2.2.12

2.2.13

glp_create_prob—create problem object
glp_set_prob_name—assign (change) problem name . .
glp_set_obj_name—assign (change) objective function
NAME .« . o o oo e e e e e
glp_set_obj_dir—set (change) optimization direction
flag
glp_add_rows—add new rows to problem object
glp_add_cols—add new columns to problem object
glp_set_row_name—assign (change) row name
glp_set_col_name—assign (change) column name
glp_set_row_bnds—set (change) row bounds
glp_set_col_bnds—set (change) column bounds.
glp_set_obj_coef—set (change) objective coefficient or
constant termo Lo oo L L
glp_set_mat_row—set (replace) row of the constraint
matrix
glp_set_mat_col—set (replace) column of the constr-
aint matrixo

13
13
14
15
15
18
18

20
21
25
25
25

25

2.3

2.4

2.5

2.2.14

2.2.15
2.2.16
2.2.17
2.2.18
2.2.19

glp_load_matrix—load (replace) the whole constraint
matrix
glp_del_rows—delete rows from problem object
glp_del_cols—delete columns from problem object . . .
glp_copy_prob—copy problem object content
glp_erase_prob—erase problem object content
glp_delete_prob—delete problem object

Problem retrieving routines

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14

2.3.15

2.3.16
2.3.17

glp_get_prob_name—retrieve problem name
glp_get_obj_name—retrieve objective function name
glp_get_obj_dir—retrieve optimization direction flag
glp_get_num_rows—retrieve number of rows
glp_get_num_cols—retrieve number of columns
glp_get_row_name—retrieve row name
glp_get_col_name—retrieve column name
glp_get_row_type—retrieve row type
glp_get_row_lb—retrieve row lower bound
glp_get_row_ub—retrieve row upper bound
glp_get_col_type—retrieve column type
glp_get_col_lb—retrieve column lower bound
glp_get_col_ub—retrieve column upper bound
glp_get_obj_coef—retrieve objective coefficient or
constant termo Lo o000
glp_get_num_nz—retrieve number of constraint coeffi-
clents
glp_get_mat_row—retrieve row of the constraint matrix
glp_get_mat_col—retrieve column of the constraint
matrix

Row and column searching routines

24.1
2.4.2
2.4.3
244

glp_create_index—create the name index
glp_find_row—find row by its name
glp_find_col—find column by its name
glp_delete_index—delete the name index

Problem scaling routines,

2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

Background L
glp_set_rii—set (change) row scale factor
glp_set_sjj—set (change) column scale factor
glp_get_rii—retrieve row scale factor
glp_get_sjj—retrieve column scale factor
glp_scale_prob—scale problem data

31
32
32
32
33
34
34
34

35
35
35
35
36
36
36
37
37
37

38

38
38

2.5.7 glp_unscale_prob—unscale problem data 44
2.6 LP basis constructing routines 45
2.6.1 Background oL 45
2.6.2 glp_set_row_stat—set (change) row status 45
2.6.3 glp_set_col_stat—set (change) column status 46
2.6.4 glp_std_basis—construct standard initial LP basis. . . 46
2.6.5 glp_adv_basis—construct advanced initial LP basis . . 47
2.6.6 glp_cpx_basis—construct Bixby’s initial LP basis . . . 47
2.7 Simplex method routines 48
2.7.1 glp_simplex—solve LP problem with the primal or dual
simplex method oL 49
2.7.2 glp_exact—solve LP problem in exact arithmetic . . . 56
2.7.3 glp_init_smcp—initialize simplex solver control param-
eters 97
2.7.4 glp_get_status—determine generic status of basic so-
lution 57
2.7.5 glp_get_prim_stat—retrieve status of primal basic so-
lution o 58
2.7.6 glp_get_dual stat—retrieve status of dual basic solution 58
2.7.7 glp_get_obj_val—retrieve objective value 58
2.7.8 glp_get_row_stat—retrieve row status 59
2.7.9 glp_get_row_prim—retrieve row primal value 59
2.7.10 glp_get_row_dual—retrieve row dual value 59
2.7.11 glp_get_col_stat—retrieve column status 60
2.7.12 glp_get_col_prim—retrieve column primal value 60
2.7.13 glp_get_col_dual—retrieve column dual value 60
2.7.14 glp_get_unbnd_ray—determine variable causing
unboundedness L Lo oL 61
2.8 Interior-point method routines 62
2.8.1 glp_interior—solve LP problem with the interior-point
method Lo 63
2.8.2 glp_init_iptcp—initialize interior-point solver control
parameters Lo 67
2.8.3 glp_ipt_status—determine solution status 68
2.8.4 glp_ipt_obj_val—retrieve objective value 68
2.8.5 glp_ipt_row_prim—retrieve row primal value 68
2.8.6 glp_ipt_row_dual—retrieve row dual value 69
2.8.7 glp_ipt_col_prim—retrieve column primal value 69
2.8.8 glp_ipt_col_dual—retrieve column dual value 69
2.9 Mixed integer programming routines 70

2.9.1
2.9.2
2.9.3
2.94
2.9.5

2.9.6

2.9.7
2.9.8
2.9.9
2.9.10

glp_set_col_kind—set (change) column kind
glp_get_col_kind—retrieve column kind
glp_get_num_int—retrieve number of integer columns .
glp_get_num_bin—retrieve number of binary columns .
glp_intopt—solve MIP problem with the branch-and-
cut method oo
glp_init_iocp—initialize integer optimizer control pa-
rameters Lo
glp_mip_status—determine status of MIP solution
glp_mip_obj_val—retrieve objective value
glp_mip_row_val—retrieve row value
glp_mip_col_val—retrieve column value

2.10 Additional routines

2.10.1

Ipx_check_kkt—check Karush-Kuhn-Tucker optimality
conditionso Lo

3 Utility API routines
3.1 Problem data reading/writing routines

3.2

3.3

3.1.1
3.1.2
3.1.3

3.1.4 glp_write_lp—write problem data in CPLEX LP format

glp_read_mps—read problem data in MPS format . . .
glp_write_mps—write problem data in MPS format . .
glp_read_lp—read problem data in CPLEX LP format

Routines for processing MathProg models

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6

3.2.7
3.2.8

Introduction
glp_mpl_alloc_wksp—allocate the translator workspace
glp_mpl_read_model—read and translate model section
glp_mpl_read_data—read and translate data section . .
glp_mpl_generate—generate the model
glp_mpl_build_prob—build problem instance from the

model
glp_mpl_postsolve—postsolve the model
glp_mpl_free_wksp—free the translator workspace . . .

Problem solution reading/writing routines

3.3.1
3.3.2
3.3.3
3.3.4

3.3.5

glp_print_sol—write basic solution in printable format
glp_read_sol—read basic solution from text file
glp_write_sol—write basic solution to text file
lpx_print_sens_bnds—write bounds sensitivity informa-
tion
glp_print_ipt—write interior-point solution in print-
able format, .

71

76
76
77
7
7
78

78

3.3.6 glp_read_ipt—read interior-point solution from text file 97
3.3.7 glp_write_ipt—write interior-point solution to text file 97
3.3.8 glp_print_mip—write MIP solution in printable format 98
3.3.9 glp_read_mip—read MIP solution from text file 99
3.3.10 glp_write_mip—write MIP solution to text file 99
4 Advanced API Routines 101
4.1 Background L oo 101
4.2 LP basisroutineso oL 108
4.2.1 glp_bf_exists—check if the basis factorization exists . . 108
4.2.2 glp_factorize—compute the basis factorization 109
4.2.3 glp_bf updated—check if the basis factorization has
been updatedo 110
4.2.4 glp_get_bfcp—retrieve basis factorization control pa-
rameters Lo 111
4.2.5 glp_set_bfcp—change basis factorization control param-
eters L 111
4.2.6 glp_get_bhead—retrieve the basis header information . 115
4.2.7 glp_get_row_bind—retrieve row index in the basis
header 116
4.2.8 glp_get_col_bind—retrieve column index in the basis
header 116
4.2.9 glp_ftran—perform forward transformation 117
4.2.10 glp_btran—perform backward transformation 117
4.2.11 glp_-warm_up—“warm up” LP basis. 118
4.3 Simplex tableau routines L oL 119
4.3.1 glp_eval_tab_row—compute row of the tableau 119
4.3.2 glp_eval_tab_col-—compute column of the tableau . . . 120
4.3.3 lpx_transform_row—transform explicitly specified
TOW ¢ v o v e e e e e e e e e e e 122
4.3.4 lpx_transform_col—transform explicitly specified
column 123
4.3.5 lpx_prim_ratio_test—perform primal ratio test 124
4.3.6 lpx_dual_ratio_test—perform dual ratio test 125
5 Branch-and-Cut API Routines 127
5.1 Imtroduction 127
5.1.1 Using the callback routine 127
5.1.2 Branch-and-cut algorithm 129
5.1.3 Thesearchtree 130

5.2

5.3

5.4

5.1.4 Current subproblem
5.1.5 Thecutpool
5.1.6 Reasons for calling the callback routine
Basicroutines Lo oo
5.2.1 glp_ios_reason—determine reason for calling the call-
back routineo oo
5.2.2 glp_ios_get_prob—access the problem object
5.2.3 glp_ios_row_attr—determine additional row attributes
5.2.4 glp_ios_mip_gap—compute relative MIP gap
5.2.5 glp_ios_node_data—access application-specific data . .
5.2.6 glp_ios_select_node—select subproblem to continue the
search
5.2.7 glp_ios_heur_sol—provide solution found by heuristic .
5.2.8 glp_ios_can_branch—check if can branch upon speci-
fied variableo
5.2.9 glp_ios_branch_upon—choose variable to branch upon
5.2.10 glp_ios_terminate—terminate the solution process . . .
The search tree exploring routines
5.3.1 glp_ios_tree_size—determine size of the search tree
5.3.2 glp_ios_curr_-node—determine current active subprob-
lem
5.3.3 glp_ios_next_node—determine next active subproblem
5.3.4 glp_ios_prev_node—determine previous active subprob-
lem
5.3.5 glp_ios_up_node—determine parent subproblem
5.3.6 glp_ios_node_level—determine subproblem level . . .
5.3.7 glp_ios_node_bound-—determine subproblem local
bound
5.3.8 glp_ios_best_ node—find active subproblem with best
local boundo
The cut pool routines
5.4.1 glp_ios_pool_size—determine current size of the cut
pool . .o
5.4.2 glp_ios_add_row—add constraint to the cut pool
5.4.3 glp_ios_del_row—remove constraint from the cut pool .
5.4.4 glp_ios_clear_pool—remove all constraints from the cut
poolo

140
141
142
143

. 143

143
144

144
145

. 145

145

146
147

147
147
149

6 Graph and Network API Routines 151

6.1

6.2

6.3

6.4

6.5

6.6

Introduction o 151
6.1.1 Graph program object 151
Basic graph routineso oo 154
6.2.1 glp_create_graph—create graph 154
6.2.2 glp_set_graph_name—assign (change) graph name . . . 154
6.2.3 glp_add_vertices—add new vertices to graph 155
6.2.4 glp_set_vertex_name—assign (change) vertex name . . 155
6.2.5 glp.add_arc—add new arc tograph 156
6.2.6 glp_del_vertices—delete vertices from graph 156
6.2.7 glp_del_arc—delete arc from graph 156
6.2.8 glp_erase_graph—erase graph content 157
6.2.9 glp_delete_graph—delete graph 157
Graph searching routines 158
6.3.1 glp_create_v_index—create vertex name index 158
6.3.2 glp_find_vertex—find vertex by its name 158
6.3.3 glp_delete_v_index—delete vertex name index 158
Graph reading/writing routines 159
6.4.1 glp_read_graph—read graph from plain text file 159
6.4.2 glp_write_graph—write graph to plain text file 159
6.4.3 glp_read_ccdata—read graph from text file in DIMACS

clique/coloring format 160
6.4.4 glp_write_ccdata—write graph to text file in DIMACS

clique/coloring format 163
Graph analysis routines L. 164
6.5.1 glp-weak_comp—find all weakly connected components

ofgraph 164
6.5.2 glp_strong_comp—find all strongly connected compo-

nents of graph oL oL 164
Minimum cost flow problem 167
6.6.1 Background oL 167
6.6.2 glp_read_mincost—read minimum cost flow problem

data in DIMACS format 168
6.6.3 glp_write_mincost—write minimum cost flow problem

data in DIMACS format 172
6.6.4 glp_mincost_lp—convert minimum cost flow problem

toLP . .o 173
6.6.5 glp_mincost_okalg—solve minimum cost flow problem

with out-of-kilter algorithm 175

6.6.6 glp_netgen—Klingman’s network problem generator . 179

6.6.7 glp_gridgen—grid-like network problem generator . . . 180

6.7 Maximum flow problem 000000 183
6.7.1 Background L oL 183
6.7.2 glp_read_maxflow—read maximum flow problem data

in DIMACS format 184
6.7.3 glp_write_maxflow—write maximum flow problem data
in DIMACS format 187

6.7.4 glp_maxflow_lp—convert maximum flow problem to LP 188
6.7.5 glp_maxflow_ffalg—solve maximum flow problem with

Ford-Fulkerson algorithm 190
6.7.6 glp_rmfgen—Goldfarb’s maximum flow problem gen-
erator L L. 193
6.8 Assignment problem L. 195
6.8.1 Background oL 195
6.8.2 glp_read_asnprob—read assignment problem data in
DIMACS format 197
6.8.3 glp_write_asnprob—write assignment problem data in
DIMACS format 201
6.8.4 glp_check_asnprob—check correctness of assignment prob-
lemdata. 202

6.8.5 glp_asnprob_lp—convert assignment problem to LP . . 202
6.8.6 glp_asnprob_okalg—solve assignment problem with out-

of-kilter algorithm 205
6.8.7 glp_asnprob_hall—find bipartite matching of maximum
cardinality Lo 209
6.9 Maximum clique problem L. 212
6.9.1 Backgroundo L oL 212
6.9.2 glp_wclique_exact—find maximum weight clique with
exact algorithm o0 213
7 Miscellaneous API Routines 216
7.1 Library environment routines 216
7.1.1 glp_long—64-bit integer data type 216
7.1.2 glp_version—determine library version 216
7.1.3 glp_printf—write formatted output to terminal 217
7.1.4 glp_vprintf—write formatted output to terminal . . . 217
7.1.5 glp_term_out—enable/disable terminal output 218
7.1.6 glp_term_hook—intercept terminal output 218
7.1.7 glp-malloc—allocate memory block 219
7.1.8 glp_calloc—allocate memory block 220

10

7.1.9

7.1.10
7.1.11
7.1.12
7.1.13

glp_free—free memory block
glp_mem_usage—get memory usage information
glp_mem_limit—set memory usage limit
glp_assert—check logical condition
glp_free_env—free GLPK library environment

7.2 Plain data file reading routines

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11

Introduction Lo
glp_sdf_open_file—open plain data file
glp_sdf_set_jump—set up error handling
glp_sdf_error—print error message
glp_sdf_warning—print warning message
glp_sdf_read_int—read integer number
glp_sdf_read_num—read floating-point number
glp_sdf_read_item—read data item
glp_sdf read_text—read text until end of line
glp_sdf_line—determine current line number
glp_sdf_close_file—close plain data file

A Installing GLPK on Your Computer
A.1 Downloading the distribution tarball
A.2 Unpacking the distribution tarball
A.3 Configuring the package
A.4 Compiling the package
A.5 Checking the package
A.6 Installing the package
A.7 Uninstalling the package

B MPS Format
B.1 Fixed MPS Format
B.2 Free MPS Format.
B.3 NAME indicator card
B.4 ROWSsection
B.5 COLUMNS section
B.6 RHSsection
B.7 RANGES section
B.8 BOUNDS section
B.9 ENDATA indicator card
B.10 Specifying objective function
B.11 Example of MPSfile
B.12 MIP features

221
221
222
222
223
223
225
226
226
227
227

. 228

228
229
229
229

230
230
230
231
233
234
234
235

C CPLEX LP Format
C.1 Prelude
C.2 Objective function definition
C.3 Constraints section
C.4 Boundssection
C.5 General, integer, and binary sections
C.6 End keyword
C.7 Example of CPLEX LP file

D Stand-alone LP/MIP Solver

E External Software Modules Used In GLPK
E.1 AMD . . .
E.2 COLAMD/SYMAMD

GNU General Public License

12

249
249
251
252
253
254
255
255

257

261
261
262

264

Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the
ANSI C programming language and organized in the form of a callable
library. It is intended for solving linear programming (LP), mixed integer
programming (MIP), and other related problems.

1.1

LP problem

GLPK assumes the following formulation of linear programming (LP) prob-

lem:

minimize (or maximize)
Z=C1Tm+1 T C2Tmy2 + ... + CnTm4n + Co
subject to linear constraints

T1 = 011Tm+1 + A12Tm+2 + .-+ AnPmin
T2 = G21Tm+1 T 022Tm+2 + ...+ A2nTm4n

Tm = Om1Tm+1 + Am2Tm+2 +...+ AmnTm+n
and bounds of variables

h< 21 <y
o< x93 <wo

13

(1.1)

(1.2)

where: x1,x9,...,%, are auxiliary variables; Zp41,Tm+42,...,Tmtn are
structural variables; z is the objective function; ci,co,...,c, are objec-
tive coefficients; ¢ is the constant term (“shift”) of the objective function;
a11,0a12, - - . , Amp are constraint coeflicients; l1,lo, . .., {4y are lower bounds
of variables; u1, ug, . .., Umiyn are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows
of the constraint matrix (i.e. a matrix built of the constraint coefficients).
Similarly, structural variables are also called columns, because they corre-
spond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and
upper bounds can be equal to each other. Thus, the following types of
variables are possible:

Bounds of variable Type of variable
—00 <z < 00 Free (unbounded) variable
Iy <z < 400 Variable with lower bound

—00 < T < ug Variable with upper bound
I < xp < uy Double-bounded variable
lp, = xp, = ug Fixed variable

Note that the types of variables shown above are applicable to structural as
well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all struc-
tural and auxiliary variables, which:

e satisfy to all the linear constraints (1.2), and

e are within their bounds (1.3), and

e provide the smallest (in case of minimization) or the largest (in case
of maximization) value of the objective function (1.1).

1.2 MIP problem

Mized integer linear programming (MIP) problem is LP problem in which
some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordi-
nary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural
variables, which may have lower and/or upper bounds. However, in case of
MIP problem some variables may be required to be integer. This additional
constraint means that a value of each integer variable must be only integer
number. (Should note that GLPK allows only structural variables to be of
integer kind.)

14

1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider
the following simple LP problem:

maximize
z = 10zx1 + 622 + 4x3

subject to
1+ x2+ 3 <100
10x1 + 429 + 5x3 < 600
2x1 + 2x9 + 623 < 300

where all variables are non-negative
xlzoa ;UQZOa .%'320

At first this LP problem should be transformed to the standard form
(1.1)——(1.3). This can be easily done by introducing auxiliary variables,
by one for each original inequality constraint. Thus, the problem can be
reformulated as follows:

maximize
z =10z1 + 625 + 4z3

subject to
p= 1+ 22+ I3
q = 10x1 4 429 + dx3
r= 2x1 4+ 2x9 + 623

and bounds of variables

—oo0 < p <100 0<2 <+
—00 < ¢ <600 0<zo <+
—o0 < r <300 0< 23 <+

where p, ¢, r are auxiliary variables (rows), and x1, x2, x3 are structural vari-
ables (columns).

The example C program shown below uses GLPK API routines in order
to solve this LP problem.!

'If you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP
format and then use the GLPK stand-alone solver to obtain a solution. This is much less
time-consuming than programming in C with GLPK API routines.

15

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *1p;
int ia[1+1000], ja[1+1000];
double ar[1+1000], =z, x1, x2, x3;
sl: 1lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
sb: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);

s12: glp_set_col_name(lp, 1, "x1");

s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);

sl4: glp_set_obj_coef(lp, 1, 10.0);

s16: glp_set_col_name(lp, 2, "x2");

s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);

s17: glp_set_obj_coef(lp, 2, 6.0);

s18: glp_set_col_name(lp, 3, "x3");

s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);

s20: glp_set_obj_coef(1lp, 3, 4.0);

s21: iaf1] =1, jal1]l =1, ar[1] = 1.0; /* al1,1] =
s22: ia[2] =1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] =
s23: ial3] =1, jal3] = 3, ar[3] = 1.0; /* al[1,3] =
s24: ial4] = 2, jal4] = 1, ar[4] = 10.0; /* al[2,1]
s26: ia[5] = 3, jalb] =1, ar[5] = 2.0; /* al3,1] =
s26: ial6] = 2, jal6] = 2, ar[6] = 4.0; /* al[2,2] =
s27: ial7] = 3, jal7] = 2, ar[7] = 2.0; /* al3,2] =
s28: ial8] = 2, jal8] = 3, ar[8] = 5.0; /* a[2,3] =
s29: ial9] = 3, jal9] = 3, ar[9] = 6.0; /* al3,3]

s30: glp_load_matrix(lp, 9, ia, ja, ar);

16

=

o 0NN

s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);

s33: x1 = glp_get_col_prim(lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);

s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = Jg\n",
z, x1, x2, x3);
s37: glp_delete_prob(lp);
return O;

/* eof x/

The statement s1 creates a problem object. Being created the object is
initially empty. The statement s2 assigns a symbolic name to the problem
object.

The statement s3 calls the routine glp_set_obj_dir in order to set the
optimization direction flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and
the statement s6 sets the type and bounds of the first row, where GLP_UP
means that the row has an upper bound. The statements s7, s8, s9, s10
are used in the same way in order to assign the symbolic names ‘q’ and ‘r’
to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column,
the statement s13 sets the type and bounds of the first column, where
GLP_LO means that the column has an lower bound, and the statement s14
sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’
to the second and third columns and set their types, bounds, and objective
coeflicients.

The statements s21—s29 prepare non-zero elements of the constraint
matrix (i.e. constraint coefficients). Row indices of each element are stored
in the array ia, column indices are stored in the array ja, and numerical
values of corresponding elements are stored in the array ar. Then the state-
ment s30 calls the routine glp_load_matrix, which loads information from
these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore
the statement s31 calls the routine glp_simplex, which is a driver to the

17

simplex method, in order to solve the LP problem. This routine finds an
optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function,
and the statements s33—s35 obtain computed values of structural variables
(columns), which correspond to the optimal basic solution found by the
solver.

The statement s36 writes the optimal solution to the standard output.
The printout may look like follows:

0.000000000e+00 (0)

* 0: objval = 0.000000000e+00 infeas
= 0.000000000e+00 (0)

* 2: objval = 7.333333333e+02 infeas
OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which
frees all the memory allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be avail-
able on compiling a C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include,
the following typical command may be used to compile, say, the example C
program described above with the GNU C compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory
containing it should be made known to the C compiler through -I option,
for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c
In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file 1ibglpk.a. (On systems which sup-
port shared libraries there may be also a shared version of the library
libglpk.so.)

18

If the library is installed in the default location /usr/local/lib, the
following typical command may be used to link, say, the example C program
described above against with the library:

$ gcc sample.o -1glpk -1m

If the GLPK library is not in the default location, the corresponding
directory containing it should be made known to the linker through -L
option, for example:

$ gcc -L/foo/bar/glpk-4.15 sample.o -1lglpk -1m

Depending on configuration of the package linking against with the
GLPK library may require the following optional libraries:

-lgmp the GNU MP bignum library;
-1z the zlib data compression library;
-11tdl the GNU Itdl shared support library.

in which case corresponding libraries should be also made known to the
linker, for example:

$ gcc sample.o -1glpk -1z -11tdl -1m

For more details about configuration options of the GLPK package see
Appendix A, page 230.

19

Chapter 2

Basic APl Routines

This chapter describes GLPK API routines intended for using in application
programs.

Library header

All GLPK API data types and routines are defined in the header file glpk.h.
It should be included in all source files which use GLPK API, either directly
or indirectly through some other header file as follows:

#include <glpk.h>

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to the
terminal and then abnormally terminates the application program. In most
practical cases this allows to simplify programming by avoiding numerous
checks of return codes. Thus, in order to prevent crashing the application
program should check all data, which are suspected to be incorrect, before
calling GLPK API routines.

Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the ap-
plication program calls some GLPK API routine to read data from an input
file and these data are incorrect, the GLPK API routine reports about error
in the usual way by means of the return code.

20

Thread safety

Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.

Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that if some
vector x of the length n is passed as an array to some GLPK API routine,
the latter expects vector components to be placed in locations x[1], x[2],
.., x[n], and the location x[0] normally is not used.
In order to avoid indexing errors it is most convenient and most reliable
to declare the array x as follows:

double x[1+n];
or to allocate it as follows:

double *x;
x = calloc(1l+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the
array to GLPK routines in a usual way.

2.1 Problem object

All GLPK API routines deal with so called problem object, which is a pro-
gram object of type glp_prob and intended to represent a particular LP or
MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h
as follows:

typedef struct { ... } glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allo-
cated and managed internally by the GLPK API routines. The application
program should never use any members of the glp_prob structure directly
and should deal only with pointers to these objects (that is, glp_prob *
values).

21

The problem object consists of five segments, which are:
e problem segment,

e basis segment,

e interior point segment,

e MIP segment, and

e control parameters and statistics segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (1.1)—(1.3) (see Section 1.1, page 13). It includes
the following components:

e rows (auxiliary variables),

e columns (structural variables),

e objective function, and

e constraint matrix.

Rows and columns have the same set of the following attributes:

e ordinal number,

e symbolic name (1 up to 255 arbitrary graphic characters),

e type (free, lower bound, upper bound, double bound, fixed),

e numerical values of lower and upper bounds,

e scale factor.

Ordinal numbers are intended for referencing rows and columns. Row
ordinal numbers are integers 1,2,...,m, and column ordinal numbers are
integers 1,2,...,n, where m and n are, respectively, the current number of
rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can
be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural
variables) are explained above (see Section 1.1, page 13).

Scale factors are used internally for scaling rows and columns of the
constraint matrix.

Information about the objective function includes numerical values of
objective coefficients and a flag, which defines the optimization direction
(i.e. minimization or maximization).

The constraint matriz is a m X n rectangular matrix built of constraint
coefficients a;;, which defines the system of linear constraints (1.2) (see Sec-
tion 1.1, page 13). This matrix is stored in the problem object in both
row-wise and column-wise sparse formats.

22

Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.

Basis segment

The basis segment of the problem object keeps information related to the
current basic solution. It includes:

e row and column statuses,

e basic solution statuses,

e factorization of the current basis matrix, and

e basic solution components.

The row and column statuses define which rows and columns are basic
and which are non-basic. These statuses may be assigned either by the
application program of by some API routines. Note that these statuses are
always defined independently on whether the corresponding basis is valid or
not.

The basic solution statuses include the primal status and the dual sta-
tus, which are set by the simplex-based solver once the problem has been
solved. The primal status shows whether a primal basic solution is feasible,
infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matriz is some factorized form (like LU-
factorization) of the current basis matrix (defined by the current row and
column statuses). The factorization is used by the simplex-based solver
and kept when the solver terminates the search. This feature allows ef-
ficiently reoptimizing the problem after some modifications (for example,
after changing some bounds or objective coefficients). It also allows per-
forming the post-optimal analysis (for example, computing components of
the simplex table, etc.).

The basic solution components include primal and dual values of all aux-
iliary and structural variables for the most recently obtained basic solution.

Interior point segment

The interior point segment is automatically allocated after the problem has
been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values
of all auxiliary and structural variables.

23

MIP segment

The MIP segment is used only for MIP problems. This segment includes:

e column kinds,

e MIP solution status, and

e MIP solution components.

The column kinds define which columns (i.e. structural variables) are
integer and which are continuous.

The MIP solution status is set by the MIP solver and shows whether a
MIP solution is integer optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and in-
clude primal values of all auxiliary and structural variables for the most
recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the
optimal solution of LP relaxation, which is also available to the application
program.

Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.

24

2.2 Problem creating and modifying routines

2.2.1 glp_create_prob—-create problem object
Synopsis

glp_prob *glp_create_prob(void);

Description

The routine glp_create_prob creates a new problem object, which initially
is “empty”, i.e. has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used
in any subsequent operations on this object.

2.2.2 glp_set_prob_name—assign (change) problem name
Synopsis

void glp_set_prob_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255
characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the problem object.

2.2.3 glp_set_obj name—assign (change) objective function
name

Synopsis

void glp_set_obj_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255
characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the objective function.

25

2.2.4 glp set_obj_dir—set (change) optimization direction
flag

Synopsis

void glp_set_obj_dir(glp_prob *1lp, int dir);

Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag
(i.e. “sense” of the objective function) as specified by the parameter dir:
GLP_MIN minimization;
GLP_MAX maximization.
(Note that by default the problem is minimization.)

2.2.5 glp_add_rows—add new rows to problem object

Synopsis

int glp_add_rows(glp_prob *1lp, int nrs);

Description

The routine glp_add_rows adds nrs rows (constraints) to the specified prob-
lem object. New rows are always added to the end of the row list, so the
ordinal numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row
added to the problem object.

26

2.2.6 glp_add_cols—add new columns to problem object
Synopsis

int glp_add_cols(glp_prob *1lp, int ncs);

Description

The routine glp_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the
column list, so the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new col-
umn added to the problem object.

2.2.7 glp_set_row_name—assign (change) row name

Synopsis

void glp_set_row_name(glp_prob *1lp, int i, const char *name);

Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255

characters) to i-th row (auxiliary variable) of the specified problem object.
If the parameter name is NULL or empty string, the routine erases an

existing name of i-th row.

2.2.8 glp_set_col_ name—assign (change) column name

Synopsis

void glp_set_col_name(glp_prob *1lp, int j, const char #*name);

Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255
characters) to j-th column (structural variable) of the specified problem
object.

27

If the parameter name is NULL or empty string, the routine erases an
existing name of j-th column.

2.2.9 glp_set_row_bnds—set (change) row bounds
Synopsis

void glp_set_row_bnds(glp_prob *1lp, int i, int type,
double 1b, double ub);

Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —o0o < z < +oo Free (unbounded) variable
GLP_LO Ib<x < +oo Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB b<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the auxiliary variable associated with i-th row.

If the row has no lower bound, the parameter 1b is ignored. If the row
has no upper bound, the parameter ub is ignored. If the row is an equality
constraint (i.e. the corresponding auxiliary variable is of fixed type), only
the parameter 1b is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type
is GLP_FR.

28

2.2.10 glp_set_col bnds—set (change) column bounds
Synopsis

void glp_set_col_bnds(glp_prob *1lp, int j, int type,
double 1b, double ub);

Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —oo < z < 400 Free (unbounded) variable
GLP_LO Ib<x < +4+oo Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB Ib<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the structural variable associated with j-th column.

If the column has no lower bound, the parameter 1b is ignored. If the
column has no upper bound, the parameter ub is ignored. If the column
is of fixed type, only the parameter 1b is used while the parameter ub is
ignored.

Being added to the problem object each column is initially fixed at zero,
i.e. its type is GLP_FX and both bounds are 0.

2.2.11 glp_set_obj_coef—set (change) objective coefficient or
constant term

Synopsis

void glp_set_obj_coef(glp_prob *1lp, int j, double coef);

Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient
is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term
(“shift”) of the objective function.

29

2.2.12 glp_set_mat_row—set (replace) row of the constraint
matrix

Synopsis

void glp_set_mat_row(glp_prob *1p, int i, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of
the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < n is the new length of i-th row, n is the current number
of columns in the problem object. Elements with identical column indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.13 glp_set_mat_col—set (replace) column of the constr-
aint matrix

Synopsis

void glp_set_mat_col(glp_prob *1lp, int j, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column
of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < m is the new length of j-th column, m is the current
number of rows in the problem object. Elements with identical row indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

30

2.2.14 glp_load _matrix—Iload (replace) the whole constraint
matrix

Synopsis

void glp_load_matrix(glp_prob *1lp, int ne, const int iall,
const int ja[l, const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the
current contents of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be spec-
ified as triplets (ial[k], jalk]l, ar[k]) for & = 1,...,ne, where ialk] is
the row index, jalk] is the column index, and ar[k] is a numeric value of
corresponding constraint coefficient. The parameter ne specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients with
identical indices are not allowed. Zero coefficients are allowed, however, they
are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be spec-
ified as NULL.

2.2.15 glp_del rows—delete rows from problem object
Synopsis

void glp_del_rows(glp_prob *lp, int nrs, const int num[]);

Description

The routine glp_del_rows deletes rows from the specified problem ob-
ject. Ordinal numbers of rows to be deleted should be placed in locations
num[1], ..., num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows
remaining in the problem object. New ordinal numbers of the remaining
rows are assigned under the assumption that the original order of rows is
not changed. Let, for example, before deletion there be five rows a, b, ¢, d,
e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted.
Then after deletion the remaining rows a, ¢, e are assigned new oridinal
numbers 1, 2, 3.

31

2.2.16 glp_del_cols—delete columns from problem object
Synopsis

void glp_del_cols(glp_prob *1p, int ncs, const int num[]);

Description

The routine glp_del_cols deletes columns from the specified problem ob-
ject. Ordinal numbers of columns to be deleted should be placed in locations
num([1], ..., num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original order
of columns is not changed. Let, for example, before deletion there be six
columns p, q, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns
P, ¢, s have been deleted. Then after deletion the remaining columns r, t, u
are assigned new ordinal numbers 1, 2, 3.

2.2.17 glp_copy_prob—copy problem object content

Synopsis

void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);

Description

The routine glp_copy_prob copies the content of the problem object prob
to the problem object dest.

The parameter names is a flag. If it is GLP_ON, the routine also copies all
symbolic names; otherwise, if it is GLP_OFF, no symbolic names are copied.

2.2.18 glp_erase_prob—erase problem object content

Synopsis
void glp_erase_prob(glp_prob *1lp);

Description

The routine glp_erase_prob erases the content of the specified problem
object. The effect of this operation is the same as if the problem object
would be deleted with the routine glp_delete_prob and then created anew

32

with the routine glp_create_prob, with the only exception that the handle
(pointer) to the problem object remains valid.

2.2.19 glp_delete_prob—delete problem object

Synopsis

void glp_delete_prob(glp_prob *1p);

Description

The routine glp_delete_prob deletes a problem object, which the param-
eter 1p points to, freeing all the memory allocated to this object.

33

2.3 Problem retrieving routines

2.3.1 glp_get_prob_name—retrieve problem name
Synopsis

const char *glp_get_prob_name(glp_prob *lp);

Returns

The routine glp_get_prob_name returns a pointer to an internal buffer,
which contains symbolic name of the problem. However, if the problem has
no assigned name, the routine returns NULL.

2.3.2 glp_get_obj_name—retrieve objective function name

Synopsis

const char *glp_get_obj_name(glp_prob *1p);

Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the
objective function has no assigned name, the routine returns NULL.

2.3.3 glp_get_obj_dir—retrieve optimization direction flag

Synopsis

int glp_get_obj_dir(glp_prob *1p);

Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

GLP_MIN minimization;

GLP_MAX maximization.

34

2.3.4 glp_get num rows—retrieve number of rows
Synopsis

int glp_get_num_rows(glp_prob *1p);

Returns

The routine glp_get_num_rows returns the current number of rows in the
specified problem object.

2.3.5 glp_get_ num _cols—retrieve number of columns
Synopsis

int glp_get_num_cols(glp_prob *1lp);

Returns

The routine glp_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 glp_get_row_name—retrieve row name

Synopsis

const char *glp_get_row_name(glp_prob *lp, int i);

Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no
assigned name, the routine returns NULL.

2.3.7 glp_get_col name—retrieve column name

Synopsis

const char *glp_get_col_name(glp_prob *1lp, int j);

Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column
has no assigned name, the routine returns NULL.

35

2.3.8 glp_get_row_type—retrieve row type
Synopsis

int glp_get_row_type(glp_prob *1lp, int i);

Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type
of corresponding auxiliary variable, as follows:
GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.
2.3.9 glp_get row_lb—retrieve row lower bound
Synopsis

double glp_get_row_lb(glp_prob *1lp, int i);

Returns

The routine glp_get_row_1b returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no
lower bound, the routine returns -DBL_MAX.

2.3.10 glp_get_ row_ub—retrieve row upper bound

Synopsis

double glp_get_row_ub(glp_prob *1p, int i);

Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has
no upper bound, the routine returns +DBL_MAX.

36

2.3.11 glp_get_col type—retrieve column type
Synopsis
int glp_get_col_type(glp_prob *1lp, int j);

Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the
type of corresponding structural variable, as follows:

GLP_FR free (unbounded) variable;

GLP_LO variable with lower bound;

GLP_UP variable with upper bound;

GLP_DB double-bounded variable;

GLP_FX fixed variable.
2.3.12 glp_get_col_lb—retrieve column lower bound
Synopsis

double glp_get_col_lb(glp_prob *1p, int j);

Returns

The routine glp_get_col_1b returns the lower bound of j-th column, i.e.
the lower bound of corresponding structural variable. However, if the column
has no lower bound, the routine returns -DBL_MAX.

2.3.13 glp_get_col ub—retrieve column upper bound
Synopsis

double glp_get_col_ub(glp_prob *1p, int j);

Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e.
the upper bound of corresponding structural variable. However, if the col-
umn has no upper bound, the routine returns +DBL_MAX.

37

2.3.14 glp_get_obj_coef—retrieve objective coefficient or
constant term

Synopsis

double glp_get_obj_coef (glp_prob *1lp, int j);

Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th
structural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”)
of the objective function.

2.3.15 glp_get num nz—retrieve number of constraint coef-
ficients

Synopsis

int glp_get_num_nz(glp_prob *1p);

Returns

The routine glp_get_num_nz returns the number of non-zero elements in
the constraint matrix of the specified problem object.

2.3.16 glp_get_mat row—retrieve row of the constraint ma-
trix

Synopsis

int glp_get_mat_row(glp_prob *1lp, int i, int ind[],
double valll);

Description

The routine glp_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column
indices and numeric values to locations ind[1], ..., ind[len] and val[1],
.., val[len], respectively, where 0 < len < n is the number of elements
in i-th row, n is the number of columns.
The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

38

Returns

The routine glp_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 glp_get_mat_col—retrieve column of the constraint
matrix

Synopsis

int glp_get_mat_col(glp_prob *1p, int j, int ind[],
double valll);

Description

The routine glp_get_mat_col scans (non-zero) elements of j-th column of
the constraint matrix of the specified problem object and stores their row
indices and numeric values to locations ind[1], ..., ind[1len] and vall[1],
.., val[len], respectively, where 0 < len < m is the number of elements
in j-th column, m is the number of rows.
The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

Returns

The routine glp_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.

39

2.4 Row and column searching routines

2.4.1 glp_create_index—create the name index
Synopsis

void glp_create_index(glp_prob *1p);

Description

The routine glp_create_index creates the name index for the specified
problem object. The name index is an auxiliary data structure, which is
intended to quickly (i.e. for logarithmic time) find rows and columns by
their names.

This routine can be called at any time. If the name index already exists,
the routine does nothing.

2.4.2 glp_find_row—find row by its name

Synopsis

int glp_find_row(glp_prob *1lp, const char *name);

Returns

The routine glp_find_row returns the ordinal number of a row, which is
assigned (by the routine glp_set_row_name) the specified symbolic name.
If no such row exists, the routine returns 0.

2.4.3 glp_find _col—find column by its name

Synopsis

int glp_find_col(glp_prob *1p, const char *name);

Returns

The routine glp_find_col returns the ordinal number of a column, which
is assigned (by the routine glp_set_col_name) the specified symbolic name.
If no such column exists, the routine returns 0.

40

2.4.4 glp_delete_index—delete the name index
Synopsis

void glp_delete_index(glp_prob *1p);

Description

The routine glp_delete_index deletes the name index previously created
by the routine glp_create_index and frees the memory allocated to this
auxiliary data structure.

This routine can be called at any time. If the name index does not exist,
the routine does nothing.

41

2.5 Problem scaling routines

2.5.1 Background

In GLPK the scaling means a linear transformation applied to the constraint
matrix to improve its numerical properties.’
The main equality is the following:

A = RAS, (2.1)

where A = (a;;) is the original constraint matrix, R = (r;) > 0 is a diagonal
matrix used to scale rows (constraints), S = (s;;) > 0 is a diagonal matrix
used to scale columns (variables), A is the scaled constraint matrix.

From (2.1) it follows that in the scaled problem instance each original
constraint coefficient a;; is replaced by corresponding scaled constraint co-
efficient:

Ziij = TiiQ5555- (2.2)

Note that the scaling is performed internally and therefore transparently
to the user. This means that on API level the user always deal with unscaled
data.

Scale factors r; and s;; can be set or changed at any time either directly
by the application program in a problem specific way (with the routines
glp_set_rii and glp_set_sjj), or by some API routines intended for au-
tomatic scaling.

2.5.2 glp_set_rii—set (change) row scale factor

Synopsis

void glp_set_rii(glp_prob *1lp, int i, double rii);

Description

The routine glp_set_rii sets (changes) the scale factor ry; for i-th row of
the specified problem object.

In many cases a proper scaling allows making the constraint matrix to be better
conditioned, i.e. decreasing its condition number, that makes computations numerically
more stable.

42

2.5.3 glp_set_sjj—set (change) column scale factor
Synopsis

void glp_set_sjj(glp_prob *lp, int j, double sjj);

Description

The routine glp_set_sjj sets (changes) the scale factor s;; for j-th column
of the specified problem object.

2.5.4 glp_get _rii—retrieve row scale factor

Synopsis

double glp_get_rii(glp_prob *1lp, int i);

Returns

The routine glp_get_rii returns current scale factor ry; for i-th row of the
specified problem object.

2.5.5 glp_get_sjj—retrieve column scale factor

Synopsis

double glp_get_sjj(glp_prob *lp, int j);

Returns

The routine glp_get_sjj returns current scale factor s;; for j-th column of
the specified problem object.

2.5.6 glp_scale_prob—scale problem data

Synopsis

void glp_scale_prob(glp_prob *1lp, int flags);

Description

The routine glp_scale_prob performs automatic scaling of problem data
for the specified problem object.

43

The parameter flags specifies scaling options used by the routine. The
options can be combined with the bitwise OR operator and may be the

following;:
GLP_SF_GM perform geometric mean scaling;
GLP_SF_EQ perform equilibration scaling;
GLP_SF_2N round scale factors to nearest power of two;

GLP_SF_SKIP skip scaling, if the problem is well scaled.

The parameter flags may be specified as GLP_SF_AUTO, in which case
the routine chooses the scaling options automatically.
2.5.7 glp_unscale_prob—unscale problem data
Synopsis
void glp_unscale_prob(glp_prob *1p);

The routine glp_unscale_prob performs unscaling of problem data for
the specified problem object.

“Unscaling” means replacing the current scaling matrices R and S by
unity matrices that cancels the scaling effect.

44

2.6 LP basis constructing routines

2.6.1 Background

To start the search the simplex method needs a valid initial basis. In GLPK
the basis is completely defined by a set of statuses assigned to all (auxiliary
and structural) variables, where the status may be one of the following:

GLP_BS basic variable;

GLP_NL non-basic variable having active lower bound;

GLP_NU non-basic variable having active upper bound;

GLP_NF non-basic free variable;

GLP_NS non-basic fixed variable.

The basis is valid, if the basis matrix, which is a matrix built of columns
of the augmented constraint matrix (I|—A) corresponding to basic variables,
is non-singular. This, in particular, means that the number of basic variables
must be the same as the number of rows in the problem object. (For more
details see Section 4.2, page 108.)

Any initial basis may be constructed (or restored) with the API rou-
tines glp_set_row_stat and glp_set_col_stat by assigning appropriate
statuses to auxiliary and structural variables. Another way to construct an
initial basis is to use API routines like glp_adv_basis, which implement
so called crashing.? Note that on normal exit the simplex solver remains
the basis valid, so in case of reoptimization there is no need to construct an
initial basis from scratch.

2.6.2 glp_set_row_stat—set (change) row status

Synopsis

void glp_set_row_stat(glp_prob *1lp, int i, int stat);

Description

The routine glp_set_row_stat sets (changes) the current status of i-th row
(auxiliary variable) as specified by the parameter stat:

GLP_BS make the row basic (make the constraint inactive);

GLP_NL make the row non-basic (make the constraint active);

2This term is from early linear programming systems and means a heuristic to construct
a valid initial basis.

45

GLP_NU make the row non-basic and set it to the upper bound; if the
row is not double-bounded, this status is equivalent to GLP_NL
(only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);

GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.3 glp_set_col stat—set (change) column status
Synopsis

void glp_set_col_stat(glp_prob *1lp, int j, int stat);

Description

The routine glp_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:
GLP_BS make the column basic;
GLP_NL make the column non-basic;
GLP_NU make the column non-basic and set it to the upper bound; if
the column is not double-bounded, this status is equivalent to
GLP_NL (only in the case of this routine);
GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.4 glp_std_basis——construct standard initial LP basis

Synopsis

void glp_std_basis(glp_prob *1p);

Description

The routine glp_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and
all structural variables (columns) are non-basic (so the corresponding basis
matrix is unity).

46

2.6.5 glp_adv_basis—construct advanced initial LP basis
Synopsis

void glp_adv_basis(glp_prob *1lp, int flags);

Description

The routine glp_adv_basis constructs an advanced initial LP basis for the
specified problem object.

The parameter flags is reserved for use in the future and must be spec-
ified as zero.

In order to construct the advanced initial LP basis the routine does the
following;:

1) includes in the basis all non-fixed auxiliary variables;

2) includes in the basis as many non-fixed structural variables as possible
keeping the triangular form of the basis matrix;

3) includes in the basis appropriate (fixed) auxiliary variables to complete
the basis.

As a result the initial LP basis has as few fixed variables as possible and
the corresponding basis matrix is triangular.

2.6.6 glp_cpx_basis—construct Bixby’s initial LP basis

Synopsis

void glp_cpx_basis(glp_prob *1p);

Description

The routine glp_cpx_basis constructs an initial basis for the specified prob-
lem object with the algorithm proposed by R. Bixby.?

3Robert E. Bixby, “Implementing the Simplex Method: The Initial Basis.” ORSA
Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84.

47

2.7 Simplex method routines

The simplexr method is a well known efficient numerical procedure to solve
LP problems.

On each iteration the simplex method transforms the original system of
equaility constraints (1.2) resolving them through different sets of variables
to an equivalent system called the simplex table (or sometimes the simplex
tableau), which has the following form:

(zn)1+ E22(zN)2 ++ §on (TN)n (2.3)

($B)m = §m1 (xN)l + €m2(-73N)2 +...+ gmn(xN)n

where: (zp)1, (B)2,. .., (zB)m are basic variables; (xn)1, (N)2, .-, (TN)n
are non-basic variables; dy,ds, ..., d, are reduced costs; £11,&12, - - - , Emn are
coefficients of the simplex table. (May note that the original LP problem
(1.1)——(1.3) also has the form of a simplex table, where all equalities are
resolved through auxiliary variables.)

From the linear programming theory it is known that if an optimal so-
lution of the LP problem (1.1)—(1.3) exists, it can always be written in the
form (2.3), where non-basic variables are set on their bounds while values
of the objective function and basic variables are determined by the corre-
sponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the
simplex table is called basic solution. If all basic variables are within their
bounds, the basic solution is called (primal) feasible, otherwise it is called
(primal) infeasible. A feasible basic solution, which provides a smallest (in
case of minimization) or a largest (in case of maximization) value of the
objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking
if all basic variables are within their bounds. Basic solution is optimal if
additionally the following optimality conditions are satisfied for all non-basic
variables:

Status of (zy); Minimization Maximization
(xN); is free d; =0 d; =0
(zn); is on its lower bound d; >0 dj <0
(xn); is on its upper bound dj <0 d; >0

48

In other words, basic solution is optimal if there is no non-basic variable,
which changing in the feasible direction (i.e. increasing if it is free or on its
lower bound, or decreasing if it is free or on its upper bound) can improve
(i.e. decrease in case of minimization or increase in case of maximization)
the objective function.

If all non-basic variables satisfy to the optimality conditions shown above
(independently on whether basic variables are within their bounds or not),
the basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution
due to incorrect formulation—this means that its constraints conflict with
each other. It also may happen that some LP problem has unbounded
solution again due to incorrect formulation—this means that some non-basic
variable can improve the objective function, i.e. the optimality conditions
are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that
in the latter case the LP problem has no dual feasible solution.)

2.7.1 glp_simplex—solve LP problem with the primal or dual
simplex method

Synopsis

int glp_simplex(glp_prob *1p, const glp_smcp *parm);

Description

The routine glp_simplex is a driver to the LP solver based on the simplex
method. This routine retrieves problem data from the specified problem
object, calls the solver to solve the problem instance, and stores results of
computations back into the problem object.

The simplex solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_smcp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_smcp by default
values of all control parameters using the routine glp_init_smcp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_smcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

49

Returns
0

GLP_EBADB

GLP_ESING

GLP_ECOND

GLP_EBOUND

GLP_EFAIL

GLP_EOBJLL

GLP_EOBJUL

GLP_EITLIM

GLP_ETMLIM

GLP_ENOPFS

GLP_ENODFS

The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

Unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working
precision.

Unable to start the search, because the basis matrix cor-
responding to the initial basis is ill-conditioned, i.e. its
condition number is too large.

Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.
The search was prematurely terminated due to the solver
failure.

The search was prematurely terminated, because the ob-
jective function being maximized has reached its lower
limit and continues decreasing (the dual simplex only).
The search was prematurely terminated, because the ob-
jective function being minimized has reached its upper
limit and continues increasing (the dual simplex only).
The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

The search was prematurely terminated, because the time
limit has been exceeded.

The LP problem instance has no primal feasible solution
(only if the LP presolver is used).

The LP problem instance has no dual feasible solution
(only if the LP presolver is used).

Built-in LP presolver

The simplex solver has built-in LP presolver. It is a subprogram that trans-
forms the original LP problem specified in the problem object to an equiva-
lent LP problem, which may be easier for solving with the simplex method
than the original one. This is attained mainly due to reducing the prob-

50

lem size and improving its numeric properties (for example, by removing
some inactive constraints or by fixing some non-basic variables). Once the
transformed LP problem has been solved, the presolver transforms its basic
solution back to the corresponding basic solution of the original problem.

Presolving is an optional feature of the routine glp_simplex, and by de-
fault it is disabled. In order to enable the LP presolver the control parameter
presolve should be set to GLP_ON (see paragraph “Control parameters” be-
low). Presolving may be used when the problem instance is solved for the
first time. However, on performing re-optimization the presolver should be
disabled.

The presolving procedure is transparent to the API user in the sense
that all necessary processing is performed internally, and a basic solution
of the original problem recovered by the presolver is the same as if it were
computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a
computed solution is infeasible or non-optimal, the corresponding solution of
the original problem cannot be recovered and therefore remains undefined.
If you need to know a basic solution even if it is infeasible or non-optimal,
the presolver should be disabled.

Terminal output

Solving large problem instances may take a long time, so the solver reports
some information about the current basic solution, which is sent to the
terminal. This information has the following format:

nnn: obj = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objec-
tive function (it is is unscaled and has correct sign); ‘yyy’ is the current sum
of primal or dual infeasibilities (it is scaled and therefore may be used only
for visual estimating), ‘ddd’ is the current number of fixed basic variables.

The symbol preceding the iteration number indicates which phase of the
simplex method is in effect:

Blank means that the solver is searching for primal feasible solution using
the primal simplex or for dual feasible solution using the dual simplex;

Asterisk () means that the solver is searching for optimal solution using
the primal simplex;

Vertical dash (1) means that the solver is searching for optimal solution
using the dual simplex.

o1

Control parameters

This paragraph describes all control parameters currently used in the sim-
plex solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_smcp.

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_QOFF—mo output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int meth (default: GLP_PRIMAL)
Simplex method option:
GLP_PRIMAL—use two-phase primal simplex;
GLP_DUAL —use two-phase dual simplex;
GLP_DUALP —use two-phase dual simplex, and if it fails, switch to the
primal simplex.

int pricing (default: GLP_PT_PSE)
Pricing technique:
GLP_PT_STD—standard (textbook);
GLP_PT_PSE—projected steepest edge.

int r_test (default: GLP_RT_HAR)
Ratio test technique:
GLP_RT_STD—standard (textbook);
GLP_RT_HAR—Harris’ two-pass ratio test.

double tol_bnd (default: 1e-7)
Tolerance used to check if the basic solution is primal feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol.dj (default: 1e-7)
Tolerance used to check if the basic solution is dual feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol piv (default: 1e-10)
Tolerance used to choose elighle pivotal elements of the simplex table.
(Do not change this parameter without detailed understanding its pur-
pose.)

52

double obj_11 (default: -DBL_MAX)
Lower limit of the objective function. If the objective function reaches
this limit and continues decreasing, the solver terminates the search.
(Used in the dual simplex only.)

double obj_ul (default: +DBL_MAX)
Upper limit of the objective function. If the objective function reaches
this limit and continues increasing, the solver terminates the search.
(Used in the dual simplex only.)

int it_lim (default: INT_MAX)
Simplex iteration limit.

int tm_lim (default: INT_MAX)
Searching time limit, in milliseconds.

int out_frq (default: 200)
Output frequency, in iterations. This parameter specifies how frequently
the solver sends information about the solution process to the terminal.

int out_dly (default: 0)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about the solution process to
the terminal.

int presolve (default: GLP_OFF)
LP presolver option:
GLP_ON —enable using the LP presolver;
GLP_OFF—disable using the LP presolver.

Example 1

The following main program reads LP problem instance in fixed MPS format
from file 25fv47 .mps,? constructs an advanced initial basis, solves the in-
stance with the primal simplex method (by default), and writes the solution
to file 25fv47.txt.

4This instance in fixed MPS format can be found in the Netlib LP collection; see
ftp://ftp.netlib.org/lp/data/.

93

/* spxsampl.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_adv_basis(P, NULL);
glp_simplex (P, NULL);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

Crashing. ..

Size of triangular part = 799

0: obj = 1.627307307e+04 infeas = 5.194e+04 (23)

200: obj = 1.474901610e+04 infeas = 1.233e+04 (19)
400: obj = 1.343909995e+04 infeas = 3.648e+03 (13)
600: obj = 1.756052217e+04 infeas = 4.179e+02 (7)

* T775: obj = 1.789251591e+04 infeas = 4.982e-14 (1)
* 800: obj = 1.663354510e+04 infeas = 2.857e-14 (1)
* 1000: obj = 1.024935068e+04 infeas = 1.958e-12 (1)
* 1200: obj = 7.860174791e+03 infeas = 2.810e-29 (1)
* 1400: obj = 6.642378184e+03 infeas = 2.036e-16 (1)
* 1600: obj = 6.037014568e+03 infeas = 0.000e+00 (1)
* 1800: obj = 5.662171307e+03 infeas = 6.447e-15 (1)
* 2000: obj = 5.528146165e+03 infeas = 9.764e-13 (1)
* 2125: obj = 5.501845888e+03 infeas = 0.000e+00 (1)

OPTIMAL SOLUTION FOUND
Writing basic solution to ‘25fv47.txt’...

o4

Example 2

The following main program solves the same LP problem instance as in
Example 1 above, however, it uses the dual simplex method, which starts
from the standard initial basis.

/* spxsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
glp_smcp parm;
P = glp_create_prob();
glp_read_mps (P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_init_smcp(&parm) ;
parm.meth = GLP_DUAL;
glp_simplex (P, &parm);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: RO000

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

0: infeas = 1.223e+03 (516)

200: infeas = 7.000e+00 (471)
240: infeas = 1.106e-14 (461)

| 400: obj = -5.394267152e+03 infeas = 5.571e-16 (391)
| 600: obj = -4.586395752e+03 infeas = 1.389e-15 (340)
| 800: obj = -4.158268146e+03 infeas = 1.640e-15 (264)
| 1000: obj = =-3.725320045e+03 infeas = 5.181le-15 (245)
| 1200: obj = -3.104802163e+03 infeas = 1.019e-14 (210)
| 1400: obj = -2.584190499e+03 infeas = 8.865e-15 (178)
| 1600: obj = =-2.073852927e+03 infeas = 7.867e-15 (142)
| 1800: obj = -1.164037407e+03 infeas = 8.792e-15 (109)
| 2000: obj = -4.370590250e+02 infeas = 2.591e-14 (85)
| 2200: obj = 1.068240144e+03 infeas = 1.025e-13 (70)
| 2400: obj = 1.607481126e+03 infeas = 3.272e-14 (67)

95

| 2600:
| 2800:
| 3000:
| 3060:
OPTIMAL

obj
obj
obj
obj

3.038230551e+03 infeas = 4.850e-14 (52)
4.316238187e+03 infeas = 2.622e-14 (36)
5.443842629e+03 infeas = 3.976e-15 (11)
5.501845888e+03 infeas = 8.806e-15 (2)

SOLUTION FOUND

Writing basic solution to ‘25fv47.txt’...

2.7.2 glp_exact—solve LP problem in exact arithmetic

Synopsis

int glp_exact(glp_prob *lp, const glp_smcp *parm);

Description

The routine glp_exact is a tentative implementation of the primal two-
phase simplex method based on exact (rational) arithmetic. It is similar
to the routine glp_simplex, however, for all internal computations it uses
arithmetic of rational numbers, which is exact in mathematical sense, i.e.
free of round-off errors unlike floating-point arithmetic.

Note that the routine glp_exact uses only two control parameters passed
in the structure glp_smcp, namely, it_lim and tm_lim.

Returns
0

GLP_EBADB

GLP_ESING

GLP_EBOUND

GLP_EFAIL
GLP_EITLIM

GLP_ETMLIM

The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

Unable to start the search, because the basis matrix cor-
responding to the initial basis is exactly singular.

Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.
The problem instance has no rows/columns.

The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

The search was prematurely terminated, because the time
limit has been exceeded.

56

Comments

Computations in exact arithmetic are very time consuming, so solving LP
problem with the routine glp_exact from the very beginning is not a good
idea. It is much better at first to find an optimal basis with the routine
glp_simplex and only then to call glp_exact, in which case only a few
simplex iterations need to be performed in exact arithmetic.

2.7.3 glp_init_smcp—initialize simplex solver control param-
eters

Synopsis

int glp_init_smcp(glp_smcp *parm);

Description

The routine glp_init_smcp initializes control parameters, which are used
by the simplex solver, with default values.

Default values of the control parameters are stored in a glp_smcp struc-
ture, which the parameter parm points to.

2.7.4 glp_get_status—determine generic status of basic solu-
tion

Synopsis
int glp_get_status(glp_prob *1p);

Returns

The routine glp_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

GLP_QPT solution is optimal;

GLP_FEAS solution is feasible;

GLP_INFEAS solution is infeasible;

GLP_NOFEAS problem has no feasible solution;

GLP_UNBND problem has unbounded solution;

GLP_UNDEF solution is undefined.

More detailed information about the status of basic solution can be re-
trieved with the routines glp_get_prim_stat and glp_get_dual_stat.

o7

2.7.5 glp_get_prim stat—retrieve status of primal basic so-
lution

Synopsis

int glp_get_prim_stat(glp_prob *lp);

Returns

The routine glp_get_prim_stat reports the status of the primal basic so-
lution for the specified problem object as follows:

GLP_UNDEF primal solution is undefined;

GLP_FEAS primal solution is feasible;

GLP_INFEAS primal solution is infeasible;

GLP_NOFEAS no primal feasible solution exists.

2.7.6 glp_get_dual stat—retrieve status of dual basic solu-
tion
Synopsis

int glp_get_dual_stat(glp_prob *1lp);

Returns

The routine glp_get_dual_stat reports the status of the dual basic solution
for the specified problem object as follows:
GLP_UNDEF dual solution is undefined;
GLP_FEAS dual solution is feasible;
GLP_INFEAS dual solution is infeasible;
GLP_NOFEAS no dual feasible solution exists.
2.7.7 glp_get_obj val—retrieve objective value
Synopsis

double glp_get_obj_val(glp_prob *1p);

Returns

The routine glp_get_obj_val returns current value of the objective func-
tion.

o8

2.7.8 glp_get row_stat—retrieve row status
Synopsis

int glp_get_row_stat(glp_prob *1lp, int i);

Returns

The routine glp_get_row_stat returns current status assigned to the aux-
iliary variable associated with i-th row as follows:
GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
2.7.9 glp_get row _prim—retrieve row primal value
Synopsis

double glp_get_row_prim(glp_prob *1lp, int i);

Returns

The routine glp_get_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.7.10 glp_get_row_dual—retrieve row dual value

Synopsis

double glp_get_row_dual(glp_prob *lp, int i);

Returns

The routine glp_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

99

2.7.11 glp_get_col stat—retrieve column status
Synopsis

int glp_get_col_stat(glp_prob *1lp, int j);

Returns

The routine glp_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

GLP_BS basic variable;

GLP_NL non-basic variable on its lower bound;

GLP_NU non-basic variable on its upper bound;

GLP_NF non-basic free (unbounded) variable;

GLP_NS non-basic fixed variable.
2.7.12 glp_get_col prim—retrieve column primal value
Synopsis

double glp_get_col_prim(glp_prob *1lp, int j);

Returns

The routine glp_get_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.7.13 glp_get_col dual—retrieve column dual value
Synopsis

double glp_get_col_dual(glp_prob *1lp, int j);

Returns

The routine glp_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

60

2.7.14 glp_get_unbnd_ray—determine variable causing
unboundedness

Synopsis
int glp_get_unbnd_ray(glp_prob *lp);

Returns

The routine glp_get_unbnd_ray returns the number k of a variable, which
causes primal or dual unboundedness. If 1 < k < m, it is k-th auxiliary
variable, and if m +1 < k < m + n, it is (kK — m)-th structural variable,
where m is the number of rows, n is the number of columns in the problem
object. If such variable is not defined, the routine returns 0.

Comments

If it is not exactly known which version of the simplex solver detected un-
boundedness, i.e. whether the unboundedness is primal or dual, it is suffi-
cient to check the status of the variable with the routine glp_get_row_stat
or glp_get_col_stat. If the variable is non-basic, the unboundedness is
primal, otherwise, if the variable is basic, the unboundedness is dual (the
latter case means that the problem has no primal feasible dolution).

61

2.8 Interior-point method routines

Interior-point methods (also known as barrier methods) are more modern
and powerful numerical methods for large-scale linear programming. Such
methods are especially efficient for very sparse LP problems and allow solv-
ing such problems much faster than the simplex method.

In brief, the GLPK interior-point solver works as follows.

At first, the solver transforms the original LP to a working LP in the
standard format:

minimize
Z=C1Tmi1 + C2Tmao + ... + CpTman + Co (2.4)
subject to linear constraints

A1 Tm41 + @12Tm42 + ...+ ApTmgn = b1
A21Tm41 + 22Tmy2 + ...+ A2 Tpn = b2 (2.5)

Am1Tm+1 + Om2Tm42 + ..« + ApTmtn = bm

and non-negative variables

x1>0, 29>0, ..., 2, >0 (2.6)
where: z is the objective function; x1, ..., x, are variables; c1, ..., ¢,
are objective coefficients; ¢y is a constant term of the objective function;
aii, - - -, Gmp are constraint coefficients; by, ..., by, are right-hand sides.

Using vector and matrix notations the working LP (2.4)—(2.6) can be
written as follows:

z=c'z 4+ ¢y — min, (2.7)
Az = b, (2.8)
x>0, (2.9)

where: © = (x;) is n-vector of variables, ¢ = (c¢;) is n-vector of objective
coefficients, A = (a;;) is m x n-matrix of constraint coefficients, and b = (b;)
is m~vector of right-hand sides.

Karush-Kuhn—Tucker optimality conditions for LP (2.7)—(2.9) are the
following:

62

Az =b, (2.10)
ATr +)\ =, (2.11)
Mz =0, (2.12)
x>0, A>0, (2.13)

where: 7 is m-vector of Lagrange multipliers (dual variables) for equality
constraints (2.8), A is n-vector of Lagrange multipliers (dual variables) for
non-negativity constraints (2.9), (2.10) is the primal feasibility condition,
(2.11) is the dual feasibility condition, (2.12) is the primal-dual complemen-
tarity condition, and (2.13) is the non-negativity conditions.

The main idea of the primal-dual interior-point method is based on find-
ing a point in the primal-dual space (i.e. in the space of all primal and dual
variables z, 7, and \), which satisfies to all optimality conditions (2.10)—
(2.13). Obviously, z-component of such point then provides an optimal
solution to the working LP (2.7)—(2.9).

To find the optimal point (z*, 7%, A*) the interior-point method attempts
to solve the system of equations (2.10)—(2.12), which is closed in the sense
that the number of variables z;, 7;, and A; and the number equations are the
same and equal to m + 2n. Due to condition (2.12) this system of equations
is non-linear, so it can be solved with a version of Newton’s method provided
with additional rules to keep the current point within the positive orthant
as required by the non-negativity conditions (2.13).

Finally, once the optimal point (z*,7*, *) has been found, the solver
performs inverse transformations to recover corresponding solution to the
original LP passed to the solver from the application program.

2.8.1 glp_interior—solve LP problem with the interior-point
method
Synopsis

int glp_interior(glp_prob *P, const glp_iptcp *parm);

Description

The routine glp_interior is a driver to the LP solver based on the primal-
dual interior-point method. This routine retrieves problem data from the
specified problem object, calls the solver to solve the problem instance, and
stores results of computations back into the problem object.

63

The interior-point solver has a set of control parameters. Values of the
control parameters can be passed in the structure glp_iptcp, which the pa-
rameter parm points to. For detailed description of this structure see para-
graph “Control parameters” below. Before specifying some control parame-
ters the application program should initialize the structure glp_iptcp by de-
fault values of all control parameters using the routine glp_init_iptcp (see
the next subsection). This is needed for backward compatibility, because in
the future there may appear new members in the structure glp_iptcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EFAIL The problem has no rows/columns.

GLP_ENOCVG Very slow convergence or divergence.

GLP_EITLIM Tteration limit exceeded.
GLP_EINSTAB Numerical instability on solving Newtonian system.

Comments

The routine glp_interior implements an easy version of the primal-dual
interior-point method based on Mehrotra’s technique.”

Note that currently the GLPK interior-point solver does not include
many important features, in particular:

e it is not able to process dense columns. Thus, if the constraint matrix
of the LP problem has dense columns, the solving process may be inefficient;

e it has no features against numerical instability. For some LP problems
premature termination may happen if the matrix ADA” becomes singular
or ill-conditioned;

e it is not able to identify the optimal basis, which corresponds to the
interior-point solution found.

5S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
J. on Optim., 2(4), pp. 575-601, 1992.

64

Terminal output

Solving large LP problems may take a long time, so the solver reports some
information about every interior-point iteration,® which is sent to the ter-
minal. This information has the following format:

nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg

where: nnn is iteration number, ££ff is the current value of the objective
function (in the case of maximization it has wrong sign), ppp is the current

relative primal infeasibility (cf. (2.10)):
1Az™®) — b
_ (2.14)

1+ |[bll

ddd is the current relative dual infeasibility (cf. (2.11)):

|AT7E) 4 AE) —¢||

: (2.15)
L+l

ggg is the current primal-dual gap (cf. (2.12)):

|cT k) — pT (k)|

2.16
14 |cTz®)| 7 ()

and [z 7(®) A\(F)] is the current point on k-th iteration, k = 0,1,2,... .
Note that all solution components are internally scaled, so information sent
to the terminal is suitable only for visual inspection.

Control parameters

This paragraph describes all control parameters currently used in the interior-
point solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_iptcp.

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_OFF—mno output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

SUnlike the simplex method the interior point method usually needs 30—50 iterations
(independently on the problem size) in order to find an optimal solution.

65

int ord_alg (default: GLP_ORD_AMD)
Ordering algorithm used prior to Cholesky factorization:
GLP_ORD_NONE —use natural (original) ordering;
GLP_ORD_QMD —quotient minimum degree (QMD);
GLP_ORD_AMD —approximate minimum degree (AMD);
GLP_ORD_SYMAMD—approximate minimum degree (SYMAMD).

Example

The following main program reads LP problem instance in fixed MPS format
from file 25£v47 .mps,” solves it with the interior-point solver, and writes the
solution to file 25fv47.txt.

/* iptsamp.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_interior(P, NULL);
glp_print_ipt(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...

Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros

6919 records were read

Original LP has 822 row(s), 1571 column(s), and 11127 non-zero(s)
Working LP has 821 row(s), 1876 column(s), and 10705 non-zero(s)
Matrix A has 10705 non-zeros

Matrix S = AxA’ has 11895 non-zeros (upper triangle)

Minimal degree ordering...

Computing Cholesky factorization S = L’x*L...

"This instance in fixed MPS format can be found in the Netlib LP collection; see
ftp://ftp.netlib.org/lp/data/

66

Matrix L has 35411 non-zeros
Guessing initial point...
Optimization begins...

0: obj = 1.823377629e+05; rpi = 1.3e+01; rdi = 1.4e+01; gap = 9.3e-01
1: obj = 9.260045192e+04; rpi = 5.3e+00; rdi = 5.6e+00; gap = 6.8e+00
2: obj = 3.596999742e+04; rpi = 1.5e+00; rdi = 1.2e+00; gap = 1.8e+01
3: obj = 1.989627568e+04; rpi = 4.7e-01; rdi = 3.0e-01; gap = 1.9e+01
4: obj = 1.430215557e+04; rpi = 1.1e-01; rdi = 8.6e-02; gap = 1.4e+01
5: obj = 1.155716505e+04; rpi = 2.3e-02; rdi = 2.4e-02; gap = 6.8e+00
6: obj = 9.660273208e+03; rpi = 6.7e-03; rdi = 4.6e-03; gap = 3.9e+00
7: obj = 8.694348283e+03; rpi = 3.7e-03; rdi = 1.7e-03; gap = 2.0e+00
8: obj = 8.019543639e+03; rpi = 2.4e-03; rdi = 3.9e-04; gap = 1.0e+00
9: obj = 7.122676293e+03; rpi = 1.2e-03; rdi = 1.5e-04; gap = 6.6e-01
10: obj = 6.514534518e+03; rpi = 6.1e-04; rdi = 4.3e-05; gap = 4.1e-01
11: obj = 6.361572203e+03; rpi = 4.8e-04; rdi = 2.2e-05; gap = 3.0e-01
12: obj = 6.203355508e+03; rpi = 3.2e-04; rdi = 1.7e-05; gap = 2.6e-01
13: obj = 6.032943411e+03; rpi = 2.0e-04; rdi = 9.3e-06; gap = 2.1e-01
14: obj = 5.796553021e+03; rpi = 9.8e-05; rdi = 3.2e-06; gap = 1.0e-01
15: obj = 5.667032431e+03; rpi = 4.4e-05; rdi = 1.1e-06; gap = 5.6e-02
16: obj = 5.613911867e+03; rpi = 2.5e-05; rdi = 4.1e-07; gap = 3.5e-02
17: obj = 5.560572626e+03; rpi = 9.9e-06; rdi = 2.3e-07; gap = 2.1e-02
18: obj = 5.537276001e+03; rpi = 5.5e-06; rdi = 8.4e-08; gap = 1.1e-02
19: obj = 5.522746942e+03; rpi = 2.2e-06; rdi = 4.0e-08; gap = 6.7e-03
20: obj = 5.509956679e+03; rpi = 7.5e-07; rdi = 1.8e-08; gap = 2.9e-03
21: obj = 5.504571733e+03; rpi = 1.6e-07; rdi = 5.8e-09; gap = 1.1e-03
22: obj = 5.502576367e+03; rpi = 3.4e-08; rdi = 1.0e-09; gap = 2.5e-04
23: obj = 5.502057119e+03; rpi = 8.1e-09; rdi = 3.0e-10; gap = 7.7e-05
24: obj = 5.501885996e+03; rpi = 9.4e-10; rdi = 1.2e-10; gap = 2.4e-05
25: obj = 5.501852464e+03; rpi = 1.4e-10; rdi = 1.2e-11; gap = 3.0e-06
26: obj = 5.501846549e+03; rpi = 1.4e-11; rdi = 1.2e-12; gap = 3.0e-07
27: obj = 5.501845954e+03; rpi = 1.4e-12; rdi = 1.2e-13; gap = 3.0e-08
28: obj = 5.501845895e+03; rpi = 1.5e-13; rdi = 1.2e-14; gap = 3.0e-09

OPTIMAL SOLUTION FOUND
Writing interior-point solution to ‘25fv47.txt’...

2.8.2 glp_init_iptcp—initialize interior-point solver control pa-
rameters
Synopsis

int glp_init_iptcp(glp_iptcp *parm);

Description

The routine glp_init_iptcp initializes control parameters, which are used
by the interior-point solver, with default values.

67

Default values of the control parameters are stored in the structure
glp_iptcp, which the parameter parm points to.
2.8.3 glp_ipt_status—determine solution status
Synopsis

int glp_ipt_status(glp_prob *1p);

Returns

The routine glp_ipt_status reports the status of a solution found by the
interior-point solver as follows:
GLP_UNDEF interior-point solution is undefined.
GLP_OPT interior-point solution is optimal.
GLP_INFEAS interior-point solution is infeasible.
GLP_NOFEAS no feasible primal-dual solution exists.
2.8.4 glp_ipt_obj val—retrieve objective value
Synopsis

double glp_ipt_obj_val(glp_prob *lp);

Returns

The routine glp_ipt_obj_val returns value of the objective function for
interior-point solution.

2.8.5 glp_ipt_row_prim—retrieve row primal value

Synopsis

double glp_ipt_row_prim(glp_prob *1lp, int i);

Returns

The routine glp_ipt_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

68

2.8.6 glp_ipt_row_dual—retrieve row dual value
Synopsis

double glp_ipt_row_dual(glp_prob *lp, int i);

Returns

The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.8.7 glp_ipt_col_prim—retrieve column primal value
Synopsis

double glp_ipt_col_prim(glp_prob *1lp, int j);

Returns

The routine glp_ipt_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.8.8 glp_ipt_col_dual—retrieve column dual value

Synopsis

double glp_ipt_col_dual(glp_prob *1lp, int j);

Returns

The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

69

2.9 Mixed integer programming routines

2.9.1 glp_set_col kind—set (change) column kind
Synopsis

void glp_set_col_kind(glp_prob *mip, int j, int kind);

Description

The routine glp_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

GLP_CV continuous variable;

GLP_IV integer variable;

GLP_BV binary variable.

Setting a column to GLP_BV has the same effect as if it were set to GLP_IV,
its lower bound were set 0, and its upper bound were set to 1.

2.9.2 glp_get_col kind—retrieve column kind
Synopsis

int glp_get_col_kind(glp_prob *mip, int j);

Returns

The routine glp_get_col_kind returns the kind of j-th column (structural
variable) as follows:

GLP_CV continuous variable;

GLP_IV integer variable;

GLP_BV binary variable.
2.9.3 glp_get_num_int—retrieve number of integer columns
Synopsis

int glp_get_num_int(glp_prob *mip);

Returns

The routine glp_get_num_int returns the number of columns (structural
variables), which are marked as integer. Note that this number does include
binary columns.

70

2.9.4 glp_get num _bin—retrieve number of binary columns
Synopsis

int glp_get_num_bin(glp_prob *mip) ;

Returns

The routine glp_get_num_bin returns the number of columns (structural
variables), which are marked as integer and whose lower bound is zero and
upper bound is one.

2.9.5 glp_intopt—solve MIP problem with the branch-and-
cut method

Synopsis

int glp_intopt(glp_prob #*mip, const glp_iocp *parm);

Description

The routine glp_intopt is a driver to the MIP solver based on the branch-
and-cut method, which is a hybrid of branch-and-bound and cutting plane
methods.

If the presolver is disabled (see paragraph “Control parameters” below),
on entry to the routine glp_intopt the problem object, which the parameter
mip points to, should contain optimal solution to LP relaxation (it can be
obtained, for example, with the routine glp_simplex). Otherwise, if the
presolver is enabled, it is not necessary.

The MIP solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_iocp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_iocp by default
values of all control parameters using the routine glp_init_iocp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_iocp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Note that the GLPK branch-and-cut solver is not perfect, so it is unable
to solve hard or very large scale MIP instances for a reasonable time.

71

Returns
0

GLP_EBOUND

GLP_EROOT

GLP_ENOPFS

GLP_ENODFS

GLP_EFAIL

GLP_EMIPGAP

GLP_ETMLIM

GLP_ESTOP

The MIP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

Unable to start the search, because some double-bounded
variables have incorrect bounds or some integer variables
have non-integer (fractional) bounds.

Unable to start the search, because optimal basis for initial
LP relaxation is not provided. (This code may appear only
if the presolver is disabled.)

Unable to start the search, because LP relaxation of the
MIP problem instance has no primal feasible solution.
(This code may appear only if the presolver is enabled.)
Unable to start the search, because LP relaxation of the
MIP problem instance has no dual feasible solution. In
other word, this code means that if the LP relaxation has
at least one primal feasible solution, its optimal solution is
unbounded, so if the MIP problem has at least one integer
feasible solution, its (integer) optimal solution is also un-
bounded. (This code may appear only if the presolver is
enabled.)

The search was prematurely terminated due to the solver
failure.

The search was prematurely terminated, because the rela-
tive mip gap tolerance has been reached.

The search was prematurely terminated, because the time
limit has been exceeded.

The search was prematurely terminated by application.
(This code may appear only if the advanced solver inter-
face is used.)

Built-in MIP presolver

The branch-and-cut solver has built-in MIP presolver. It is a subprogram
that transforms the original MIP problem specified in the problem object
to an equivalent MIP problem, which may be easier for solving with the
branch-and-cut method than the original one. For example, the presolver
can remove redundant constraints and variables, whose optimal values are
known, perform bound and coefficient reduction, etc. Once the transformed

72

MIP problem has been solved, the presolver transforms its solution back to
corresponding solution of the original problem.

Presolving is an optional feature of the routine glp_intopt, and by de-
fault it is disabled. In order to enable the MIP presolver, the control param-
eter presolve should be set to GLP_ON (see paragraph “Control parameters”
below).

Advanced solver interface

The routine glp_intopt allows the user to control the branch-and-cut search
by passing to the solver a user-defined callback routine. For more details
see Chapter “Branch-and-Cut API Routines”.

Terminal output

Solving a MIP problem may take a long time, so the solver reports some
information about best known solutions, which is sent to the terminal. This
information has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; 99q)

where: ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective
function for the best known integer feasible solution (if no integer feasible
solution has been found yet, ‘xxx’ is the text ‘not found yet’); ‘rho’ is the
string ‘>=’ (in case of minimization) or ‘<=’ (in case of maximization); ‘yyy’
is a global bound for exact integer optimum (i.e. the exact integer optimum
is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative mip gap,
in percents, computed as gap = |zxzz — yyy|/(|]zxx| + DBL_EPSILON) - 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of
subproblems in the active list, ‘qqq’ is the number of subproblems which
have been already fathomed and therefore removed from the branch-and-
bound search tree.

Control parameters

This paragraph describes all control parameters currently used in the MIP
solver. Symbolic names of control parameters are names of corresponding
members in the structure glp_iocp.

73

int msg_lev (default: GLP_MSG_ALL)
Message level for terminal output:
GLP_MSG_OFF—mno output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int br_tech (default: GLP_BR_DTH)
Branching technique option:
GLP_BR_FFV—first fractional variable;
GLP_BR_LFV—Ilast fractional variable;
GLP_BR_MFV—most fractional variable;
GLP_BR_DTH—heuristic by Driebeck and Tomlin;
GLP_BR_PCH—hybrid pseudocost heuristic.

int bt_tech (default: GLP_BT_BLB)
Backtracking technique option:
GLP_BT_DFS—depth first search;
GLP_BT_BFS—breadth first search;
GLP_BT_BLB—best local bound,;
GLP_BT_BPH—best projection heuristic.

int pp_tech (default: GLP_PP_ALL)
Preprocessing technique option:
GLP_PP_NONE—disable preprocessing;
GLP_PP_ROOT—perform preprocessing only on the root level,
GLP_PP_ALL —perform preprocessing on all levels.

int fp_heur (default: GLP_OFF)
Feasibility pump heuristic option:
GLP_ON —enable applying the feasibility pump heuristic;
GLP_OFF—disable applying the feasibility pump heuristic.

int gmi_cuts (default: GLP_OFF)
Gomory’s mixed integer cut option:
GLP_ON —enable generating Gomory’s cuts;
GLP_OFF—disable generating Gomory’s cuts.

int mir_cuts (default: GLP_OFF)
Mixed integer rounding (MIR) cut option:
GLP_ON —enable generating MIR cuts;
GLP_OFF—disable generating MIR cuts.

74

int cov_cuts (default: GLP_OFF)
Mixed cover cut option:
GLP_ON —enable generating mixed cover cuts;
GLP_OFF—disable generating mixed cover cuts.

int clqg_cuts (default: GLP_OFF)
Clique cut option:
GLP_ON —enable generating clique cuts;
GLP_OFF—disable generating clique cuts.

double tol_int (default: 1e-5)
Absolute tolerance used to check if optimal solution to the current LP
relaxation is integer feasible. (Do not change this parameter without
detailed understanding its purpose.)

double tol obj (default: 1e-7)
Relative tolerance used to check if the objective value in optimal solution
to the current LP relaxation is not better than in the best known inte-
ger feasible solution. (Do not change this parameter without detailed
understanding its purpose.)

double mip_gap (default: 0.0)
The relative mip gap tolerance. If the relative mip gap for currently
known best integer feasible solution falls below this tolerance, the solver
terminates the search. This allows obtainig suboptimal integer feasible
solutions if solving the problem to optimality takes too long time.

int tm_lim (default: INT_MAX)
Searching time limit, in milliseconds.

int out_frq (default: 5000)
Output frequency, in milliseconds. This parameter specifies how fre-
quently the solver sends information about the solution process to the
terminal.

int out_dly (default: 10000)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about solution of the current
LP relaxation with the simplex method to the terminal.

void (*cb_func) (glp_tree *tree, void *info) (default: NULL)
Entry point to the user-defined callback routine. NULL means the ad-
vanced solver interface is not used. For more details see Chapter
“Branch-and-Cut API Routines”.

75

void *cb_info (default: NULL)
Transit pointer passed to the routine cb_func (see above).

int cb_size (default: 0)
The number of extra (up to 256) bytes allocated for each node of the
branch-and-bound tree to store application-specific data. On creating a
node these bytes are initialized by binary zeros.

int presolve (default: GLP_OFF)
MIP presolver option:
GLP_ON —enable using the MIP presolver;
GLP_OFF—disable using the MIP presolver.

int binarize (default: GLP_OFF)
Binarization option (used only if the presolver is enabled):
GLP_ON —replace general integer variables by binary ones;
GLP_OFF—do not use binarization.

2.9.6 glp_init_iocp—initialize integer optimizer control pa-
rameters
Synopsis

void glp_init_iocp(glp_iocp *parm);

Description

The routine glp_init_iocp initializes control parameters, which are used
by the branch-and-cut solver, with default values.

Default values of the control parameters are stored in a glp_iocp struc-
ture, which the parameter parm points to.

2.9.7 glp_mip_status—determine status of MIP solution
Synopsis

int glp_mip_status(glp_prob *mip);

Returns

The routine glp_mip_status reports the status of a MIP solution found by
the MIP solver as follows:

76

GLP_UNDEF MIP solution is undefined.

GLP_OPT MIP solution is integer optimal.

GLP_FEAS MIP solution is integer feasible, however, its optimality
(or non-optimality) has not been proven, perhaps due
to premature termination of the search.

GLP_NOFEAS problem has no integer feasible solution (proven by the
solver).

2.9.8 glp_mip_obj_val—retrieve objective value
Synopsis

double glp_mip_obj_val(glp_prob *mip);

Returns

The routine glp_mip_obj_val returns value of the objective function for
MIP solution.

2.9.9 glp mip_row_val—retrieve row value

Synopsis

double glp_mip_row_val(glp_prob *mip, int i);

Returns

The routine glp_mip_row_val returns value of the auxiliary variable asso-
ciated with i-th row for MIP solution.

2.9.10 glp_mip_col val—retrieve column value

Synopsis

double glp_mip_col_val(glp_prob *mip, int j);

Returns

The routine glp_mip_col_val returns value of the structural variable asso-
ciated with j-th column for MIP solution.

7

2.10 Additional routines

2.10.1 1px_check_kkt—check Karush-Kuhn-Tucker optimal-
ity conditions

Synopsis

void lpx_check_kkt(glp_prob *1p, int scaled, LPXKKT *kkt);

Description

The routine 1px_check_kkt checks Karush-Kuhn-Tucker optimality condi-
tions for basic solution. It is assumed that both primal and dual components
of basic solution are valid.

If the parameter scaled is zero, the optimality conditions are checked
for the original, unscaled LP problem. Otherwise, if the parameter scaled
is non-zero, the routine checks the conditions for an internally scaled LP
problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the
routine stores results of the check. Members of this structure are shown in
the table below.

The routine performs all computations using only components of the
given LP problem and the current basic solution.

Background

The first condition checked by the routine is:
xR — Axg =0, (KKT.PE)

where z is the subvector of auxiliary variables (rows), xg is the subvector
of structural variables (columns), A is the constraint matrix. This condition
expresses the requirement that all primal variables must satisfy to the system
of equality constraints of the original LP problem. In case of exact arithmetic
this condition would be satisfied for any basic solution; however, in case of
inexact (floating-point) arithmetic, this condition shows how accurate the
primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

Iy <ap<wu, forallk=1,...,m+n, (KKT.PB)

78

Condition

Member

Comment

(KKT.PE) | pe_ae_max | Largest absolute error
pe_ae_row | Number of row with largest absolute error
pe_re_max | Largest relative error
pe_re_row | Number of row with largest relative error
pe_quality | Quality of primal solution

(KKT.PB) | pb_ae_max | Largest absolute error
pb_ae_ind | Number of variable with largest absolute error
pb_re_max | Largest relative error
pb_re_ind | Number of variable with largest relative error
pb_quality | Quality of primal feasibility

(KKT.DE) | de_ae_max | Largest absolute error
de_ae_col | Number of column with largest absolute error
de_re_max Largest relative error
de_re_col | Number of column with largest relative error
de_quality | Quality of dual solution

(KKT.DB) | db_ae_max | Largest absolute error
db_ae_ind | Number of variable with largest absolute error
db_re_max | Largest relative error
db_re_ind | Number of variable with largest relative error
db_quality | Quality of dual feasibility

where xy, is auxiliary (1 < k& < m) or structural (m+1 < k < m+n) variable,
lr, and wy are, respectively, lower and upper bounds of the variable xy, (in-
cluding cases of infinite bounds). This condition expresses the requirement
that all primal variables must satisfy to bound constraints of the original LP
problem. Since in case of basic solution all non-basic variables are placed
on their bounds, actually the condition (KKT.PB) needs to be checked for
basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = ¢ = (A)Tr + d,

where Z is the objective function, c¢ is the vector of objective coefficients,
(A)T is a matrix transposed to the expanded constraint matrix A = (I|—A),
m is a vector of Lagrange multipliers that correspond to equality constraints
of the original LP problem, d is a vector of Lagrange multipliers that cor-
respond to bound constraints for all (auxiliary and structural) variables of

79

the original LP problem. Geometrically the third condition expresses the
requirement that the gradient of the objective function must belong to the
orthogonal complement of a linear subspace defined by the equality and ac-
tive bound constraints, i.e. that the gradient must be a linear combination
of normals to the constraint planes, where Lagrange multipliers 7 and d are
coeflicients of that linear combination.

To eliminate the vector 7 the third condition can be rewritten as:

()= ()« (2)

T+ dr = cpg,
—ATx +dg = cg.

or, equivalently:

Then substituting the vector m from the first equation into the second one
we have:
AT(dR — cg) + (ds — ¢cs) = 0, (KKT.DE)

where dp is the subvector of reduced costs of auxiliary variables (rows),
dg is the subvector of reduced costs of structural variables (columns), cp
and cg are subvectors of objective coefficients at, respectively, auxiliary and
structural variables, A7 is a matrix transposed to the constraint matrix of
the original LP problem. In case of exact arithmetic this condition would be
satisfied for any basic solution; however, in case of inexact (floating-point)
arithmetic, this condition shows how accurate the dual basic solution is,
that depends on accuracy of a representation of the basis matrix used by
the simplex method routines.
The last, fourth condition checked by the routine is (KKT.DB):

di =0, if x}, is basic or free non-basic variable
0 < di < 400 if z is non-basic on its lower (minimization)
or upper (maximization) bound
—oo < dp <0 if xj, is non-basic on its upper (minimization)
or lower (maximization) bound
—00 < di, < +oo if x is non-basic fixed variable

for all k = 1,...,m + n, where d is a reduced cost (Lagrange multiplier)
of auxiliary (1 < k < m) or structural (m + 1 < k < m + n) variable xy.
Geometrically this condition expresses the requirement that constraints of
the original problem must "hold” the point preventing its movement along
the anti-gradient (in case of minimization) or the gradient (in case of maxi-
mization) of the objective function. Since in case of basic solution reduced

80

costs of all basic variables are placed on their (zero) bounds, actually the
condition (KKT.DB) needs to be checked for non-basic variables only. If
the dual basic solution has sufficient accuracy, this condition shows dual
feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality
conditions also includes the fifth, so called complementary slackness condi-
tion, which expresses the requirement that at least either a primal variable
xy, or its dual counterpart di must be on its bound for all k =1,..., m+n.
However, being always satisfied by definition for any basic solution that
condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of
residuals:

g =zg — Azxg,

determines component of this vector that correspond to largest absolute and
relative errors:

e_ae_maxXx = Imnax 1
P max. |93

pe_re_max = max %,
1<i<m 1+ [(zR)il
and stores these quantities and corresponding row indices to the structure
LPXKKT.
To check the second condition (KKT.PB) the routine computes a vector
of residuals:
0, if lk S T S Ul
h = T — g, if xp <l
T — Uk, if Tk > Uk

for all k = 1,...,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

pb_ae_max = max |k,
1<k<m+n

||

pb_re_max = ax)
1<k<m4n 1 + ‘l’k|

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.
To check the third condition (KKT.DE) the routine computes a vector
of residuals:
u=A"(dg — cg) + (dg — cs),

81

determines components of this vector that correspond to largest absolute
and relative errors:

de_ae_max = max |ujl,
1<j<n

s]

1<j<n 1+ [(ds); — (cs);l’

and stores these quantities and corresponding column indices to the struc-
ture LPXKKT.

To check the fourth condition (KKT.DB) the routine computes a vector
of residuals:

de_re_max =

o — 0, if dj has correct sign
¥\ dg, if dy, has wrong sign

for all k = 1,...,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

db_ae_max = max |vgl,
1<k<m+n
_ |vk|
db_re_max = max ———,
1<k<m+n 1 + |di — cg|

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

Using the relative errors for all the four conditions listed above the rou-
tine 1px_check_kkt also estimates a ”quality” of the basic solution from the
standpoint of these conditions and stores corresponding quality indicators
to the structure LPXKKT:

pe_quality—quality of primal solution;

pb_quality—quality of primal feasibility;

de_quality—quality of dual solution;

db_quality—quality of dual feasibility.

Each of these indicators is assigned to one of the following four values:

’H’ means high quality,

"M’ means medium quality,

’L’° means low quality, or

7’ means wrong or infeasible solution.

If all the indicators show high or medium quality (for an internally
scaled LP problem, i.e. when the parameter scaled in a call to the routine
1px_check_kkt is non-zero), the user can be sure that the obtained basic
solution is quite accurate.

82

If some of the indicators show low quality, the solution can still be con-
sidered as relevant, though an additional analysis is needed depending on
which indicator shows low quality.

If the indicator pe_quality is assigned to ’7’, the primal solution is
wrong. If the indicator de_quality is assigned to ’7’, the dual solution is
wrong.

If the indicator db_quality is assigned to ’7’ while other indicators
show a good quality, this means that the current basic solution being primal
feasible is not dual feasible. Similarly, if the indicator pb_quality is assigned
to ’?’ while other indicators are not, this means that the current basic
solution being dual feasible is not primal feasible.

83

Chapter 3

Utility API routines

3.1 Problem data reading/writing routines

3.1.1 glp_read mps—read problem data in MPS format
Synopsis

int glp_read_mps(glp_prob *1p, int fmt, const void *parm,
const char *fname);

Description

The routine glp_read_mps reads problem data in MPS format from a text
file. (The MPS format is described in Appendix B, page 236.)

The parameter fmt specifies the MPS format version as follows:

GLP_MPS_DECK fixed (ancient) MPS format;

GLP_MPS_FILE free (modern) MPS format.

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘. gz’, the file is assumed to be compressed,
in which case the routine glp_read_mps decompresses it “on the fly”.)

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_mps returns zero. Oth-
erwise, it prints an error message and returns non-zero.

84

3.1.2 glp_write_mps—write problem data in MPS format
Synopsis

int glp_write_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_write_mps writes problem data in MPS format to a text
file. (The MPS format is described in Appendix B, page 236.)

The parameter fmt specifies the MPS format version as follows:

GLP_MPS_DECK fixed (ancient) MPS format;

GLP_MPS_FILE free (modern) MPS format.

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_mps performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_mps returns zero.
Otherwise, it prints an error message and returns non-zero.

3.1.3 glp_read lp—read problem data in CPLEX LP format
Synopsis

int glp_read_lp(glp_prob *1lp, const void *parm,
const char *fname);

Description

The routine glp_read_lp reads problem data in CPLEX LP format from a
text file. (The CPLEX LP format is described in Appendix C, page 249.)
The parameter parm is reserved for use in the future and must be speci-
fied as NULL.
The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘. gz’, the file is assumed to be compressed,
in which case the routine glp_read_lp decompresses it “on the fly”.)

85

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_1p returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.4 glp_write lp—write problem data in CPLEX LP for-
mat

Synopsis

int glp_write_lp(glp_prob *1p, const void *parm,
const char *fname);

Description

The routine glp_write_lp writes problem data in CPLEX LP format to a
text file. (The CPLEX LP format is described in Appendix C, page 249.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_lp performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_1p returns zero. Oth-
erwise, it prints an error message and returns non-zero.

86

3.2 Routines for processing MathProg models

3.2.1 Introduction

GLPK supports the GNU MathProg modeling language. As a rule, models
written in MathProg are solved with the GLPK LP/MIP stand-alone solver
glpsol (see Appendix D) and do not need any programming with API rou-
tines. However, for various reasons the user may need to process MathProg
models directly in his/her application program, in which case he/she may
use API routines described in this section. These routines provide an inter-
face to the MathProg translator, a component of GLPK, which translates
MathProg models into an internal code and then interprets (executes) this
code.

The processing of a model written in GNU MathProg includes several
steps, which should be performed in the following order:

1. Allocating the workspace. The translator allocates the workspace, an
internal data structure used on all subsequent steps.

2. Reading model section. The translator reads model section and, op-
tionally, data section from a specified text file and translates them
into the internal code. If necessary, on this step data section may be
ignored.

3. Reading data section(s). The translator reads one or more data sec-
tions from specified text file(s) and translates them into the internal
code.

4. Generating the model. The translator executes the internal code to
evaluate the content of the model objects such as sets, parameters,
variables, constraints, and objectives. On this step the execution is
suspended at the solve statement.

5. Building the problem object. The translator obtains all necessary in-
formation from the workspace and builds the standard problem object
(that is, the program object of type glp_prob).

6. Solving the problem. On this step the problem object built on the
previous step is passed to a solver, which solves the problem instance
and stores its solution back to the problem object.

!The GNU MathProg modeling language is a subset of the AMPL language. For its
detailed description see the document “Modeling Language GNU MathProg: Language
Reference” included in the GLPK distribution.

87

7. Postsolving the model. The translator copies the solution from the
problem object to the workspace and then executes the internal code
from the solve statement to the end of the model. (If model has no
solve statement, the translator does nothing on this step.)

8. Freeing the workspace. The translator frees all the memory allocated
to the workspace.

Note that the MathProg translator performs no error correction, so if
any of steps 2 to 7 fails (due to errors in the model), the application program
should terminate processing and go to step 8.

Example 1

In this example the program reads model and data sections from input file
egypt.mod? and writes the model to output file egypt.mps in free MPS
format (see Appendix B). No solution is performed.

/* mplsampl.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob xlp;
glp_tran *tran;
int ret;
lp = glp_create_prob();
tran = glp_mpl_alloc_wksp();
ret = glp_mpl_read_model(tran, "egypt.mod", 0);
if (ret '= 0)
{ fprintf(stderr, "Error on translating model\n");
goto skip;
}
ret = glp_mpl_generate(tran, NULL);
if (ret '= 0)
{ fprintf(stderr, "Error on generating model\n");
goto skip;
}
glp_mpl_build_prob(tran, 1p);
ret = glp_write_mps(lp, GLP_MPS_FILE, NULL, "egypt.mps");

2This is an example model included in the GLPK distribution.

88

if (ret != 0)
fprintf (stderr, "Error on writing MPS file\n");
skip: glp_mpl_free_wksp(tran);
glp_delete_prob(lp);
return O;

3

/* eof x/

Example 2

In this example the program reads model section from file sudoku.mod?
ignoring data section in this file, reads alternative data section from file
sudoku.dat, solves the problem instance and passes the solution found back
to the model.

/* mplsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *mip;

glp_tran *tran;

int ret;

mip = glp_create_prob();

tran = glp_mpl_alloc_wksp();

ret = glp_mpl_read_model(tran, "sudoku.mod", 1);

if (ret != 0)

{ fprintf(stderr, "Error on translating model\n");
goto skip;

}

ret = glp_mpl_read_data(tran, "sudoku.dat");

if (ret != 0)

{ fprintf(stderr, "Error on translating data\n");
goto skip;

}

ret = glp_mpl_generate(tran, NULL);

if (ret != 0)

{ fprintf(stderr, "Error on generating model\n");
goto skip;

3This is an example model which is included in the GLPK distribution along with
alternative data file sudoku.dat.

89

}

glp_mpl_build_prob(tran, mip);

glp_simplex(mip, NULL);

glp_intopt (mip, NULL);

ret = glp_mpl_postsolve(tran, mip, GLP_MIP);

if (ret != 0)

fprintf (stderr, "Error on postsolving model\n") ;

skip: glp_mpl_free_wksp(tran);

glp_delete_prob(mip);

return O;

}

/* eof x/

3.2.2 glp_mpl alloc_wksp—allocate the translator workspace
Synopsis

glp_tran *glp_mpl_alloc_wksp(void);

Description

The routine glp_mpl_alloc_wksp allocates the MathProg translator work-
space. (Note that multiple instances of the workspace may be allocated, if
necessary.)

Returns

The routine returns a pointer to the workspace, which should be used in all
subsequent operations.

3.2.3 glp_mpl read model—read and translate model section
Synopsis
int glp_mpl_read _model(glp_tran *tran, const char *fname,
int skip);
Description

The routine glp_mpl_read_model reads model section and, optionally, data
section, which may follow the model section, from a text file, whose name
is the character string fname, performs translation of model statements and
data blocks, and stores all the information in the workspace.

90

The parameter skip is a flag. If the input file contains the data section
and this flag is non-zero, the data section is not read as if there were no
data section and a warning message is printed. This allows reading data
section(s) from other file(s).

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.4 glp_mpl_read_data—read and translate data section
Synopsis

int glp_mpl_read_data(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_read_data reads data section from a text file, whose
name is the character string fname, performs translation of data blocks, and
stores the data read in the translator workspace. If necessary, this routine
may be called more than once.

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.5 glp_mpl generate—generate the model
Synopsis

int glp_mpl_generate(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_generate generates the model using its description
stored in the translator workspace. This operation means generating all
variables, constraints, and objectives, executing check and display state-
ments, which precede the solve statement (if it is presented).

The character string fname specifies the name of an output text file, to
which output produced by display statements should be written. If fname
is NULL, the output is sent to the terminal.

91

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.6 glp_mpl build _prob—build problem instance from the
model
Synopsis

void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);

Description

The routine glp_mpl_build_prob obtains all necessary information from
the translator workspace and stores it in the specified problem object prob.
Note that before building the current content of the problem object is erased
with the routine glp_erase_prob.

3.2.7 glp_mpl postsolve—postsolve the model
Synopsis

int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob,
int sol);

Description

The routine glp_mpl_postsolve copies the solution from the specified prob-
lem object prob to the translator workspace and the