
CNF Satisfiability Problem

Andrew Makhorin <mao@gnu.org>

August 2011

1 Introduction

The Satisfiability Problem (SAT) is a classic combinatorial problem. Given
a Boolean formula of n variables

f(x1, x2, . . . , xn), (1.1)

this problem is to find such values of the variables, on which the formula
takes on the value true.

The CNF Satisfiability Problem (CNF-SAT) is a version of the Satisfia-
bility Problem, where the Boolean formula (1.1) is specified in the Conjunc-
tive Normal Form (CNF), that means that it is a conjunction of clauses,
where a clause is a disjunction of literals, and a literal is a variable or its
negation. For example:

(x1 ∨ x2) & (¬x2 ∨ x3 ∨ ¬x4) & (¬x1 ∨ x4). (1.2)

Here x1, x2, x3, x4 are Boolean variables to be assigned, ¬ means negation
(logical not), ∨ means disjunction (logical or), and & means conjunction
(logical and). One may note that the formula (1.2) is satisfiable, because on
x1 = true, x2 = false, x3 = false, and x4 = true it takes on the value true.
If a formula is not satisfiable, it is called unsatisfiable, that means that it
takes on the value false on any values of its variables.

Any CNF-SAT problem can be easily translated to a 0-1 programming
problem as follows. A Boolean variable x can be modeled by a binary
variable in a natural way: x = 1 means that x takes on the value true, and
x = 0 means that x takes on the value false. Then, if a literal is a negated
variable, i.e. t = ¬x, it can be expressed as t = 1 − x. Since a formula
in CNF is a conjunction of clauses, to provide its satisfiability we should

1



require all its clauses to take on the value true. A particular clause is a
disjunction of literals:

t ∨ t′ ∨ t′′ . . . , (1.3)

so it takes on the value true iff at least one of its literals takes on the value
true, that can be expressed as the following inequality constraint:

t+ t′ + t′′ + . . . ≥ 1. (1.4)

Note that no objective function is used in this case, because only a feasible
solution needs to be found.

For example, the formula (1.2) can be translated to the following con-
straints:

x1 + x2 ≥ 1
(1− x2) + x3 + (1− x4) ≥ 1

(1− x1) + x4 ≥ 1

x1, x2, x3, x4 ∈ {0, 1}

Carrying out all constant terms to the right-hand side gives corresponding
0-1 programming problem in the standard format:

x1 + x2 ≥ 1
− x2 + x3 − x4 ≥ −1

−x1 + x4 ≥ 0

x1, x2, x3, x4 ∈ {0, 1}

In general case translation of a CNF-SAT problem results in the following
0-1 programming problem:∑

j∈J+
i

xj −
∑
j∈J−

i

xj ≥ 1− |J−
i |, i = 1, . . . ,m (1.5)

xj ∈ {0, 1}, j = 1, . . . , n (1.6)

where n is the number of variables, m is the number of clauses (inequality
constraints), J+

i ⊆ {1, . . . , n} is a subset of variables, whose literals in i-th
clause do not have negation, and J−

i ⊆ {1, . . . , n} is a subset of variables,
whose literals in i-th clause are negations of that variables. It is assumed
that J+

i ∩ J−
i = ∅ for all i.

2



2 GLPK API Routines

2.1 glp read cnfsat—read CNF-SAT problem data in
DIMACS format

Synopsis

int glp_read_cnfsat(glp_prob *P, const char *fname);

Description

The routine glp_read_cnfsat reads the CNF-SAT problem data from a
text file in DIMACS format and automatically translates the data to corre-
sponding 0-1 programming problem instance (1.5)–(1.6).

The parameter P specifies the problem object, to which the 0-1 program-
ming problem instance should be stored. Note that before reading data the
current content of the problem object is completely erased with the routine
glp_erase_prob.

The character string fname specifies the name of a text file to be read
in. (If the file name ends with the suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

DIMACS CNF-SAT problem format1

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space.

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

1This material is based on the paper “Satisfiability Suggested Format”, which is pub-
licly available at http://dimacs.rutgers.edu/.

3



Problem line. There is one problem line per data file. The problem line
must appear before any clause lines. It has the following format:

p cnf VARIABLES CLAUSES

The lower-case character p signifies that this is a problem line. The three
character problem designator cnf identifies the file as containing specifica-
tion information for the CNF-SAT problem. The VARIABLES field contains
an integer value specifying n, the number of variables in the instance. The
CLAUSES field contains an integer value specifying m, the number of clauses
in the instance.

Clauses. The clauses appear immediately after the problem line. The
variables are assumed to be numbered from 1 up to n. It is not necessary
that every variable appears in the instance. Each clause is represented by a
sequence of numbers separated by either a space, tab, or new-line character.
The non-negated version of a variable j is represented by j; the negated ver-
sion is represented by −j. Each clause is terminated by the value 0. Unlike
many formats that represent the end of a clause by a new-line character,
this format allows clauses to be on multiple lines.

Example. Below here is an example of the data file in DIMACS format
corresponding to the CNF-SAT problem (1.2).

c sample.cnf

c

c This is an example of the CNF-SAT problem data

c in DIMACS format.

c

p cnf 4 3

1 2 0

-4 3

-2 0

-1 4 0

c

c eof

4



2.2 glp check cnfsat—check for CNF-SAT problem instance

Synopsis

int glp_check_cnfsat(glp_prob *P);

Description

The routine glp_check_cnfsat checks if the specified problem object P

contains a 0-1 programming problem instance in the format (1.5)–(1.6) and
therefore encodes a CNF-SAT problem instance.

Returns

If the specified problem object has the format (1.5)–(1.6), the routine returns
zero, otherwise non-zero.

2.3 glp write cnfsat—write CNF-SAT problem data in
DIMACS format

Synopsis

int glp_write_cnfsat(glp_prob *P, const char *fname);

Description

The routine glp_write_cnfsat automatically translates the specified 0-1
programming problem instance (1.5)–(1.6) to a CNF-SAT problem instance
and writes the problem data to a text file in DIMACS format.

The parameter P is the problem object, which should specify a 0-1 pro-
gramming problem instance in the format (1.5)–(1.6).

The character string fname specifies a name of the output text file to be
written. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing that file.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

5



2.4 glp minisat1—solve CNF-SAT problem instance with
MiniSat solver

Synopsis

int glp_minisat1(glp_prob *P);

Description

The routine glp_minisat1 is a driver to MiniSat, a CNF-SAT solver devel-
oped by Niklas Eén and Niklas Sörensson, Chalmers University of Technol-
ogy, Sweden.2

It is assumed that the specified problem object P contains a 0-1 pro-
gramming problem instance in the format (1.5)–(1.6) and therefore encodes
a CNF-SAT problem instance.

If the problem instance has been successfully solved to the end, the
routine glp_minisat1 returns 0. In this case the routine glp_mip_status

can be used to determine the solution status:
GLP_OPT means that the solver found an integer feasible solution and

therefore the corresponding CNF-SAT instance is satisfiable;
GLP_NOFEAS means that no integer feasible solution exists and therefore

the corresponding CNF-SAT instance is unsatisfiable.
If an integer feasible solution was found, corresponding values of binary

variables can be retrieved with the routine glp_mip_col_val.

Returns

0 The MIP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found feasible solution. It only means that the solution
process was successful.)

GLP_EDATA The specified problem object contains a MIP instance
which does not have the format (1.5)–(1.6).

GLP_EFAIL The solution process was unsuccessful because of the solver
failure.

2The MiniSat software module is not part of GLPK, but is used with GLPK and
included in the distribution.

6


