
The Traits User’s Guide
Version 2.0
David C. Morrill

Enthought, Inc.
[image: image1.png]

4Introduction

6Defining Traits

6Defining Simple Traits

9Defining More Complex Traits

14Mapped Traits

17Trait Functions

18Digging Deeper

19Trait Handlers

19TheTraitHandler Class

20The TraitType Class

21The TraitCastType Class

22The TraitInstance Class

23The ThisClass Class

23The TraitFunction Class

24The TraitRange Class

25The TraitString Class

26The TraitEnum Class

26The TraitPrefixList Class

27The TraitMap Class

28The TraitPrefixMap Class

29The TraitList Class

29The TraitTuple Class

30The TraitDict Class

31The TraitCompound Class

32Defining Your Own Trait Handlers

34Trait Notification

37Trait Event

38Trait Delegation

38The Delegate Function

40The Undefined Object

41Reusing Trait Definitions

41Predefined Traits

46Creating Categories of Similar Traits for Objects

48HasStrictTraits and HasPrivateTraits Classes

49Per Object Traits

50Explicit Traits

51Type Checked Methods

52Trait Instance Methods

54Trait Class Methods

56Performance Considerations of Traits

57Creating Graphical User Interface Trait Editors

59The Standard Trait Editors

64Using and Overriding a Default Trait Editor

65Editing Traits

68Controlling Trait Editor Layout

74Creating a TraitEditor Subclass

76Creating a TraitSheetHandler Subclass

77Trait Editor Constructors

78Using Trait Editors in Non-GUI Applications

81Appendix A: The Trait Reference

81Appendix A-1: TraitHandler Reference

82Appendix A-2: Predefined Trait Reference

83Appendix A-3: Trait Factory Functions

Introduction

To begin, let’s start with a couple of simple questions and their answers:

· What is a trait?

· Why would we want to use traits?

What is a trait?

In the context of this document, a Python trait is simply a normal Python object attribute with some additional characteristics:

· A trait has a default value which is automatically set before its first use in a program.

· A trait is strongly typed. Only values which meet a programmer specified set of criteria can be assigned to a trait.

· The value of a trait can be contained either in the defining object or in another object delegated to by the trait.

· Setting the value of a trait can notify other parts of the program that the value of the trait has changed.

· User interfaces that allow a user to interactively modify the value of a trait can be automatically constructed using the trait’s definition.

These are commonly and succinctly characterized as:

· Initialization
· Validation
· Delegation
· Notification
· Visualization
A class can freely mix attributes with normal Python behavior with traits, or can opt to only allow the use of a fixed or open set of traits within the class. Traits defined by a class are automatically inherited by any subclass derived from the class.

Why would we want to use traits?

Python does not require that variables be of a declared type, which as any experienced Python programmer knows has both good and bad points. The main purpose of the traits package is to help address cases where not having declared variable types can lead to problems. In particular, the motivation for traits came as a direct result of work done on Chaco, an open source scientific plotting package.

Chaco provides a set of high-level plotting objects, each of which has a number of user settable attributes, such as line color, text font, relative location, and so on. To make the objects easy to use by scientists and engineers, the attributes attempt to accept a wide variety and style of values. For example, a color related attribute of a Chaco object might accept any of the following as legal values for the color red:

· ‘red’

· 0xFF0000

· (1.0, 0.0, 0.0, 1.0)

Thus, the user might write:

plotitem.color = ‘red’

In a predecessor to Chaco, providing such flexibility came at a cost:

· When the value of an attribute was used by an object internally (for example, setting the correct pen color when drawing a plot line), the code would often have to map the user supplied value to a suitable internal representation, a potentially expensive operation in some cases.

· If the user supplied a value outside the realm accepted by the object internals, it often caused disastrous or mysterious behavior on the part of the program. This behavior was often difficult to track down because the cause and effect were usually widely separated in terms of the logic flow of the program.

So one of the main goals of the traits package was to provide a form of type checking that would:

· Allow for flexibility in the set of values an attribute could have (for example, allowing ‘red’, 0xFF0000 and (1.0, 0.0, 0.0, 1.0) as equivalent ways of expressing the color red).

· Catch illegal value assignments at the point of error, and provide a meaningful and useful explanation of the error and the set of allowable values.

· Eliminate the need for an object’s implementation to map user supplied attribute values into a separate internal representation.

In the process of meeting these design goals, the traits package evolved into a useful component in its own right, satisfying all of the above requirements and introducing several additional, powerful features of its own.

Note that the traits described in this document work with version 2.2 and later of Python and are similar in some ways to the Python property language feature. Standard Python properties can be used to provide the same capabilities as the traits described here, but with more work on the part of the programmer.
Now, having setting the stage with the what and why of traits, let’s roll up our sleeves and get into the good stuff…defining and using traits.

Defining Traits

To add traits to a Python class:

1. Import the traits package.

2. Derive the class from the traits module’s HasTraits class or another class already derived from HasTraits.

3. Define the class’s instance traits by defining class level attributes whose values are traits.
The following example defines a class called Person that has a single trait weight that has a default value of 0.0, and can only have floating point values:

from traits import HasTraits, Float
class Person (HasTraits):

 weight = Float(0.0)
It is the value associated with each class level attribute that determines the characteristics of the instance trait identified by the attribute name. It is also possible to specify an entire subclass of trait names with similar properties using a special type of attribute name we shall describe later.
In the example above, the attribute named weight specifies that the class will have a corresponding trait called weight. The value associated with weight (i.e. Float(0.0)) specifies a simple predefined trait provided with the traits package. The value 0.0 specifies the default value of the trait.

The traits module allows creating a wide variety of trait types, ranging from very simple to very sophisticated. In all cases though, traits are defined in exactly the same manner: by defining class level attributes whose values are traits.
In the next section we will begin the study of trait definitions by expanding upon the simple type of trait definitions introduced by the preceding example.
Defining Simple Traits

The traits package provides two simple methods for defining attributes with traits:

· Using predefined traits

· Defining traits by example

Using a predefined trait was illustrated in the previous example when we used the Float function to create an attribute whose value must be a floating point value. The trait package includes a number of such predefined traits which cover most of the commonly used Python data types, such as ints, floats, strings, lists, dictionaries, tuples and so on.
The complete list of predefined traits is described in the Predefined Traits section of this document. We will also continue to use the predefined traits in many of the examples that follow, since the predefined traits are designed to simplify the task of defining and using traits.

The other form of simple trait definition is defining a trait by example. To define a trait by example, simply call the Trait function with the default value the trait is to have. The default value must be one of the basic Python data types, such as:

· A string

· An integer

· A floating point number

The trait will have the specified value as its default, and in addition will only allow values of the same type to be assigned to the trait.

Note, however, that if a value assigned to the trait is not the same type as the default value, but can be coerced to the same type, then the coerced value will be assigned to the trait. If the value cannot be coerced to the correct type, a TraitError exception will be generated.

For example:

from traits import HasTraits, Trait

class Person (HasTraits):

 name = Trait(‘’) # string value, default is ‘’

 age = Trait(0) # integer value, default is 0

 weight = Trait(0.0) # float value, default is 0.0

bill = Person()

print bill.name, bill.age, bill.weight

prints default values: ‘ 0 0.0’

bill.name = ‘William’# OK, string

bill.name = 5 # OK, integer coerced to string ‘5’

bill.age = 43 # OK, integer

bill.age = 45.7 # OK, float coerced to integer 45

bill.weight = 167.4 # OK, float

bill.weight = 172 # OK, integer coerced to 172.0

bill.weight = ‘medium’ # Error, string can’t be coerced

 # to float

Another simple type of trait definition occurs when the trait can only have values which are instances of a particular class. In this case, you can provide as the trait definition:

· the class

· an instance of the class

If you specify a class, then any value assigned to the trait must be an instance of the specified class (or one of its subclasses) and the trait has a default value of None. Note that although None is the default value, you cannot assign None as a value of the trait, since None is not an instance of the specified class. We will show you how to create a trait which allows None to be a legal, assignable value for the trait in a later section.
If you specify a class instance, then any value assigned to the trait must be an instance of the same class as the specified instance (or one of its subclasses), and the specified instance is the default value for the trait.

For example, continuing our previous example:

class Employee (HasTraits):

 worker = Trait(Person) # Must be a ‘Person’, no default

 manager = Trait(bill) # Must be a ‘Person’,

 # default is ‘bill’ instance

worker_bee = Employee()

print worker_bee.manager

prints out the current information for ‘bill’

print worker_bee.worker

prints ‘None’
worker_bee.worker = Person(name = ‘sam’, age = 23)

Assigns valid value to ‘worker’ trait

worker_bee.manager = Employee()

Error, value is not an instance of class ‘Person’

The third type of simple trait definition is to provide an exhaustive set of all possible values. The values should all be simple Python data types, such as strings, ints and floats, but do not all have to be of the same type.

A trait defined in this fashion can only have values that are contained in the list. The default value for the trait is the first value specified.

For example:

class InventoryItem (HasTraits):

 name = Trait(‘’) # String value, default is ‘’

 stock = Trait(None, 0, 1, 2, 3, ‘many’)
 # Enumerated list, default is ‘None’

hats = InventoryItem()

hats.name = ‘Stetson’
print ‘%s: %s’ % (hats.name, hats.stock)

prints: ‘Stetson: None’

hats.stock = 2 # OK

hats.stock = ‘many’ # OK

hats.stock = 4 # Error, value not in list

Defining More Complex Traits

Up to this point, we have only looked at the simplest forms of trait definition. While the predefined and trait by example forms are useful for many traits, the Trait function has several other forms that allow more powerful and flexible types of traits to be defined. The complete set of forms understood by the Trait function is shown below:
Trait(instance)

Trait(class)

Trait(default_value)

Trait(default_value, other_value2, other_value3, …)

Trait(type)

Trait(None, class)

Trait([default_value, other_value2, other_value3, …])

Trait(default_value, { type |

 constant_value |

 dictionary |

 class |

 function |

 trait_handler |

 trait }+)

Trait(trait_handler)

Note that in the description above, the { …|…|… }+ notation means a list of one or more of any of the items listed between the braces.

The Trait function also accepts arbitrary keyword arguments. The value of each keyword argument gets bound to the resulting trait object as the value of an attribute having the same name as the keyword. That is, Trait(…, foo = ‘bar’) will create a trait object with a foo attribute whose value is ‘bar’. This feature allows a programmer to associate additional application specific metadata with a trait.

There are currently several keywords which are used by various trait helper classes:

· desc: A string describing the intended meaning of the trait. It is used in exceptions and fly-over help in user interface trait sheets.

· label: A string providing a human readable name for the trait. It is used to label trait values in a user interface trait sheet.

· editor: Specifies the instance of a subclass of TraitEditor to use when creating a user interface editor for the trait.

Although the many options for the Trait function may appear daunting at first, in practice they are quite simple to use.

The first four forms:

Trait(instance)

Trait(class)

Trait(default_value)

Trait(default_value, other_value2, other_value3, …)

correspond to the trait by example cases we have already covered.

The next form:

Trait(type)

defines a trait whose value must be of the specified type. The default value of such a trait depends upon the type specified:

	Type
	Default Value

	int
	0

	long
	0L

	float
	0.0

	complex
	0+0j

	str
	‘’

	unicode
	u’’

	bool
	False

	list
	[]

	dict
	{}

Note that traits defined using this form of the Trait function do not attempt to coerce assigned values to the specified type. If the value assigned is not of the specified type, a TraitError exception is raised.

A variation of this type of trait definition is:

Trait(default_value, type)

which defines a trait whose default value is specified by default_value, and which can only be assigned values of the specified type. Note that the Trait function does not check to ensure that the default value specified is of the type specified.

The next form:

Trait(None, class)

is a variation of the form:

Trait(class)

The default value of the first form is None, just as it is for the second form. The difference is that None is also a legal, assignable value for the first form, but not for the second form (as we explained previously).
The next form:

Trait([default_value, other_value2, other_value3, …])

is identical to the previously described form:
Trait(default_value, other_value2, other_value3, …)

but makes the fact that legal values must be one of the values in the specified list more explicit.

The next form:

Trait(default_value, { type |

 constant_value |

 dictionary |

 class |

 function |

 trait_handler |

 trait }+)
is the most general case of a trait definition. You specify a default value for the trait followed by a list of one or more items describing legal values for the trait. Note that the default value should normally be included by at least one of the values in the list; otherwise it will not be a value that can be explicitly assigned to the trait.

The following describes each kind of value that can be included in the list in more detail:

	type
	Any of the following standard Python types:
· str or StringType

· unicode or UnicodeType

· int or IntType

· long or LongType

· float or FloatType

· complex or ComplexType
· bool or BooleanType
· list or ListType

· tuple or TupleType

· dict or DictType

· FunctionType

· MethodType

· ClassType

· InstanceType

· TypeType

· NoneType
Specifying one of these types means that the trait value must be of the corresponding Python type.

	constant_value
	Any constant belonging to one of the following standard Python types:
· NoneType
· int
· long
· float
· complex
· bool

· str
· unicode

Specifies that the trait can have the constant as a legal value.

	dictionary
	A trait that includes a dictionary in the list of legal values is referred to as a mapped trait. Each dictionary key defines a legal value for the trait, while its corresponding value specifies the value the key is mapped to. Mapped traits are explained in more detail below.

	class
	Specifies that the trait value can be an instance of the specified class or one of its subclasses.

	function
	Specifies a function that will validate values for the trait. More information about writing a trait function is provided later.

	trait_handler
	An instance of a TraitHandler class (or one of its subclasses). The TraitHandler class will be described in a later section.

	trait
	Another trait object. Any value that is a legal value for the specified trait is also a legal value for the trait referencing it.

Note that when more than one value from the above list is specified in the Trait function, any value which is acceptable to at least one of the items in the list is a valid value for the trait. For example:

from types import TupleType
class Nonsense (HasTraits):

 rubbish = Trait(0.0, 0.0, ‘stuff’, TupleType)
The Nonsense class has a rubbish trait which has a default value of 0.0 and can have any of the following three values:

· The float value 0.0.
· The string value ‘stuff’.
· Any Python tuple.
Note that in this case it was necessary to specify 0.0 twice: the first occurrence defines the default value, and the second occurrence specifies 0.0 as one of the trait’s legal values.

The following shows what would happen if we left the second 0.0 out of the Trait function:

from types import TupleType
class Nonsense (HasTraits):

 rubbish = Trait(0.0, ‘stuff’, TupleType)
foo = Nonsense()

dv = foo.rubbish # Sets dv to 0.0

foo.rubbish = 0.0 # Error, generates following exception:

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "traits.py", line 1073, in __getattr__

 raise TraitError, '%s %s' % (str(excp)[:-1],

traits.TraitError: The 'rubbish' trait of a Nonsense instance must be of type 'tuple' or 'stuff', but a value of 0.0 was specified.
foo.rubbish = (1, 2, 3) # OK, legal value

Notice also the descriptive text generated by the above exception. One of the side benefits of using the traits mechanism is the ability to automatically generate detailed exceptions when a program incorrectly sets a trait.

We can further improve the content of a generated exception by using the desc keyword when defining a trait:

from types import TupleType
class Nonsense (HasTraits):

 rubbish = Trait(0.0, ‘stuff’, TupleType,
 desc = ‘total rubbish’)

 }

foo = Nonsense()

foo.rubbish = 1 # Error, generates following exception:

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "traits.py", line 1090, in __setattr__

 raise TraitError, excp

traits.TraitError: The 'rubbish' trait of a Nonsense instance specifies total rubbish and must be of type 'tuple' or 'stuff', but a value of 1 was specified.

Mapped Traits

If a Trait function contains one or more dictionaries, then the resulting trait is called a mapped trait. In practice this means that the resulting object actually contains two attributes: one containing one of the dictionary keys representing the current value of the trait, and the other containing its corresponding value (i.e. the mapped value). The name of the mapped attribute is simply the base trait name with an underscore appended to the end.

The following illustrates a boolean trait defined as a mapped trait:

true_boolean = Trait(‘true’, { ‘true’: True,

 ‘t’: True,

 ‘yes’: True,

 ‘y’: True,

 1: True,

 ‘false’: False,

 ‘f’: False,

 ‘no’: False,

 ‘n’: False,

 0: False })

false_boolean = Trait(‘false’, true_boolean)

class Kid (HasTraits):

 likes_ice_cream = true_boolean
 likes_spiders = false_boolean
The Kid class has two traits: likes_ice_cream and likes_spiders. Because the true_boolean trait uses a dictionary, both likes_ice_cream and likes_spiders are mapped traits, which means that each Kid instance also has two mapped attributes: likes_ice_cream_ and likes_spiders_. Any time a new value is assigned to either likes_ice_cream or likes_spiders, the corresponding mapped attribute is updated with the value in the dictionary corresponding to the value assigned.

For example:

sally = Kid()

print sally.likes_ice_cream, sally.likes_spiders

prints: true false

print sally.likes_ice_cream_, sally.likes_spiders_

prints: True False
mikey = Kid()

mikey.likes_ice_cream = ‘no’

mikey.likes_spiders = ‘y’

print mikey.likes_ice_cream, mikey.likes_spiders

prints: no y

print mikey.likes_ice_cream_, mikey.likes_spiders_

prints: 0 1

This example illustrates how a mapped trait can be used to create a user friendly attribute (e.g. likes_ice_cream) and a corresponding program friendly mapped attribute (i.e. likes_ice_cream_). The mapped attribute is program friendly because it is usually in a form that can be directly used by program logic (in this case a bool value).

Another point illustrated by this example is the ability to create new traits from existing ones. In this case, the false_boolean trait is created by re-using the true_boolean trait and specifying a new default value. This is often an efficient way of reusing an existing trait because it shares most of the internal state of the existing trait without having to make a completely new copy of the trait description.

There are a couple of other points to keep in mind when creating a mapped trait:

· If not all values in the Trait constructor are dictionaries, the non-dictionary values are copied directly to the mapped attribute (i.e. the mapping used is the identity mapping).

· If only dictionaries are used in the Trait constructor and the composite mapping defined by the dictionaries is 1:1, the trait is a reversible mapped trait. This means that any value assigned to the mapped attribute (i.e. the attribute with the underscore appended) is reverse mapped back into the base trait’s corresponding value.

If the composite mapping is not 1:1, assigning to the mapped attribute has no effect on the base trait. In this case it is not recommended to assign values to the mapped attribute, since it is possible for the base trait and its mapped attribute to become inconsistent.

The first case is illustrated below:

class Balance (HasTraits):

 sign = Trait(‘positive’, -1, 0, 1,

 { ‘positive’: 1,

 ‘negative’: -1 })

In this example, the Balance class has a sign trait which has a default value of ‘positive’, and which can have -1, 0, 1, ‘positive’ and ‘negative’ as legal values. Its corresponding mapped attribute, sign_, can only have the values: 1, 0, -1. Assigning 1, 0 or -1 to the sign trait assigns the same value to the sign_ attribute. Assigning ‘positive’ or ‘negative’ to sign assigns the corresponding 1 or -1 value to sign_.

To illustrate the second case, we can refer back to our previous example using the true_boolean and false_boolean traits. As originally defined, these traits are not reverse mapped traits because the dictionary mapping is not 1:1 (i.e. several dictionary keys map to the value True, and several other keys map to the value False).

However, if we modify the true_boolean trait definition, we can make the likes_ice_cream and likes_spiders traits reverse mapped:

true_boolean = Trait(‘yes’, { ‘yes’: True,

 ‘no’: False })

Because this mapping is 1:1, the likes_ice_cream and likes_spiders traits are now reverse mapped traits:

mikey = Kid()

mikey.likes_ice_cream = ‘no’

mikey.likes_spiders_ = True
print mikey.likes_ice_cream, mikey.likes_spiders

prints: no yes

print mikey.likes_ice_cream_, mikey.likes_spiders_

prints: False True
Trait Functions

It is also possible to specify legal values for a trait by providing a function reference to the Trait function. A function used in this way must have the following prototype:

function (object, name, value)

where:

· object: the object whose trait is being assigned to.

· name: the name of the object trait being assigned to.

· value: the value being assigned to the object attribute.

The function is invoked whenever a value is assigned to the trait. Normally the function does not need to know the object or trait name being assigned to, but they are provided in case the testing performed by the function is context dependent.

The function indicates a value is valid by returning normally. The value returned by the function is used as the value of the object trait. That is, the function can return the original value passed to it or any other value, usually derived from the original value. In any case, the value returned is the value assigned to the object trait.

The function indicates that a value is not valid by throwing an exception. The type of exception thrown is immaterial because it is always caught by the trait mechanism and mapped into a TraitError exception.

To illustrate:

from types import StringType

def bounded_string (object, name, value):

 if type(value) != StringType:

 raise TypeError

 if len(value) < 50:

 return value

 return ‘%s…%s’ % (value[:24], value[-23:])

The bounded_string function can be used in a Trait constructor to define a trait whose value must be a string, and whose value will never exceed 50 characters in length. Long strings are shortened to 50 characters by removing excess characters from the middle of the string.

In order to allow the exceptions generated by traits based on functions be as descriptive as possible, you can attach a short string describing the values accepted by the function as the info attribute of the function.

For example, continuing our bounded_string example:

bounded_string.info = ‘a string no longer than 50 characters’

The string contained in the function’s info attribute will be merged with other information about the trait whenever an exception occurs assigning to the trait. If the info attribute is not defined, the string ‘a legal value’ will be used in its place.

Putting this all together:

class DataBaseRecord (HasTraits):

 part_desc = Trait(None, None, bounded_string)

sprocket = DataBaseRecord()

sprocket.part_desc = 0 # Generates this exception:

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "traits.py", line 1090, in __setattr__

 raise TraitError, excp

traits.TraitError: The 'part_desc' trait of a DataBaseRecord instance must be a string no longer than 50 characters or None, but a value of 0 was specified.

This illustrates how a function can be combined with other values in a Trait constructor to create a composite trait and how the function’s info attribute is used when generating a TraitError exception.

Digging Deeper
Up to this point, we’ve introduced the notion of traits as strongly typed Python object attributes, and we’ve shown how powerful a tool they can be, as well as how simple they can be to define and use. We’ll now continue our exploration of traits by digging deeper into more sophisticated methods of defining traits.

In essence, we’ll be taking traits far beyond the basics covered up till now, covering the full range of capabilities exposed by the traits package. So, having already rolled up our sleeves, it’s time to really get our hands dirty by digging into the inner workings of what makes traits tick.

Trait Handlers

As stated previously, a trait is defined by assigning a trait definition to a class level attribute:
from traits import HasTraits
class a_class (HasTraits):

 trait_name = trait_definition

Furthermore, although a trait definition can have several forms, the most general case is given by specifying a Trait call of the form:

Trait(default_value, { type |

 constant_value |

 dictionary |

 class |

 function |

 trait_handler |

 trait }+)

Previously, we deferred describing what a trait_handler is. But now the time has come to address that omission.

TheTraitHandler Class

A trait handler is an instance of the TraitHandler class (or a subclass), whose task is to verify the correctness of values assigned to object traits. In essence, trait handlers are very similar to the trait functions we described previously, but with several advantages over functions:

· Because they are objects, they can have constructors and state. This allows the creation of parameterized types, some concrete examples of which will be given shortly.

· Because they are class based, they can have multiple methods, as opposed to functions, which have only a single callable interface. This allows more flexibility in their implementation and allows them to handle a wider range of cases, such as interactions with other components, like the trait sheet user interface mechanism we will describe later.

Right out of the box, the traits package comes with a number of predefined TraitHandler subclasses which handle a wide variety of trait definitions. In fact, all of the trait definitions described so far ultimately rely on one or more of the TraitHandler subclasses described in the next few sections.

The TraitType Class

Let’s start our discussion of the predefined TraitHandler subclasses with a class which, under the covers, has been used extensively in all of the examples up to this point:

TraitType. An instance of TraitType basically ensures that a value assigned to a trait is of a specified Python type. Its constructor is of the form:

TraitType(a_type)

where a_type is either a Python type (e.g. str or types.StringType) or a Python value (e.g. ‘cat’). In the latter case, the Python value is mapped to its corresponding Python type. For example, the string ‘cat’ is automatically mapped to str (i.e. types.StringType).

Any trait which uses a TraitType instance in its definition will ensure that its value is of the type associated with the TraitType instance. This is an example of a parameterized type, since the single TraitType class allows creating instances which check for totally different sets of values.

For example:

class Person (HasTraits):

 name = Trait(‘’, TraitType(‘’))

 weight = Trait(0.0, TraitType(float))

In this example, the name trait must be of type str (i.e. string), while the weight trait must be of type float, although both are based on instances of the TraitType class. Note that this example is essentially the same as writing:

class Person (traits.HasTraits):

 name = Trait(‘’)
 weight = Trait(0.0)
This simpler form is automatically changed by the Traits function into the first form, based on TraitType instances, as the traits are defined.

One additional point about the TraitType class is that if the ultimate type of the argument supplied to the constructor is one of the following Python types:

· int (IntType)
· long (LongType)
· float (FloatType)
· complex (ComplexType)
· str (StringType)
· unicode (UnicodeType)
the instance automatically attempts to coerce any trait value to its corresponding type. For example, a TraitType(0) instance attempts to coerce any assigned trait value to an integer using the standard Python int function.

The only exception is str (i.e. StringType). Since nearly every Python value, including arbitrary Python objects, can be coerced to a string using the Python str function, only values of type str, unicode, int, long, float or complex are coerced using the standard Python str function. All other values are explicitly disallowed.

The TraitCastType Class

The TraitCastType is very similar to TraitType. The difference is that TraitCastType ensures that assigned values are of the specified Python type or can be cast to the specified type by calling the type with the value to be assigned as argument. When casting is performed, the result of the cast is the value assigned.

Its constructor has the form:

TraitCastType(a_type)

where, as with TraitType, a_type is either a Python type (e.g. str or types.StringType) or a Python value (e.g. ‘cat’). In the latter case, the Python value is mapped to its corresponding Python type. For example, the string ‘cat’ is automatically mapped to str (i.e. types.StringType).

As with TraitType, any trait which uses a TraitCastType instance in its definition will ensure that its value is of the type associated with the TraitCastType instance. For example:

class Person (HasTraits):

 name = Trait(‘’, TraitCastType(‘’))

 weight = Trait(0.0, TraitCastType(float))

In this example, the name trait must be of type str (i.e. string), while the weight trait must be of type float. Note that this example is essentially the same as writing:

class Person (traits.HasTraits):

 name = CStr
 weight = CFloat
To understand the difference between TraitType and TraitCastType (and also between Float and CFloat), consider the following example:

class Person (HasTraits):

 weight = Float

 cweight = CFloat

bill = Person()

bill.weight = 180 # OK, coerced to 180.0

bill.cweight = 180 # OK, cast to float(180)

bill.weight = ‘180’ # Error, invalid coercion

bill.cweight = ‘180’ # OK, cast to float(‘180’)

The TraitInstance Class

Closely related to TraitType is the TraitInstance class, which checks to ensure that trait values belong to a specified Python class (or type). The constructor for the TraitInstance class has the form:

TraitInstance (a_class_or_a_type, or_none = False)

where a_class_or_a_type is either a Python class, an instance of a Python class or a Python type. If it is an instance of a class, it is mapped to the class it is an instance of. If or_none is True (or non-zero), then None will be accepted as a valid value; otherwise it will not.

Any trait which uses a TraitInstance ensures that its values belong to the specified type or class (or one of its subclasses). For example:

class Employee (HasTraits):

 manager = Trait(None, TraitInstance(Employee, True))

defines a class Employee which has a manager trait which accepts either None or an instance of Employee as its value.

Note that both the TraitType and TraitInstance classes accept a type as argument, and both ensure that any values assigned to a trait are of the type specified. The difference is that TraitType attempts to coerce assigned values to the specified type, while TraitInstance does not. TraitInstance only ensures that assigned values are exactly of the type specified (i.e. no coercion is performed).
The ThisClass Class

Closely related to TraitInstance is the ThisClass class, which checks to ensure that trait values belong to the same class (or subclass) as the object containing the trait. The constructor for the ThisClass class has the form:

ThisClass (or_none = False)

If or_none is True (or non-zero), then None will also be accepted as a valid value; otherwise it will not.

For example:

class Employee (HasTraits):

 manager = Trait(ThisClass)

defines a class Employee which has a manager trait which only accepts other Employee instances as its value. It would perhaps be more intuitive to write:

class Employee (HasTraits):

 manager = Trait(Employee)

but unfortunately, the Employee class is not defined at the time that the manager trait is defined. Handling this common design pattern is the main reason for providing the ThisClass trait handler.

The TraitFunction Class

The TraitFunction class ensures that assigned trait values are acceptable to a specified validator function. The constructor for a TraitFunction instance has the form:

TraitFunction (a_function)

where a_function is the function that will validate whether a particular trait value is valid or not. Note that it is to this type of TraitHandler that the functions described previously are automatically mapped by the Trait function when they are encountered in a trait definition.

As with a trait function, the signature of the function specified in the TraitFunction constructor must be of the form:

function (object, name, value)

The function must verify that value is a legal value for the name trait of the specified object. If it is, the value returned by the function is the actual value assigned to the trait. If it is not, the function must raise a TraitError exception.
For example, we previously presented a trait defined using a trait function:

from types import StringType

def bounded_string (object, name, value):

 if type(value) != StringType:

 raise TraitError

 if len(value) < 50:

 return value

 return ‘%s…%s’ % (value[:24], value[-23:])

class DataBaseRecord (HasTraits):

 part_desc = Trait(None, None, bounded_string)

This could also be expressed using the following DataBaseRecord class definition:

class DataBaseRecord (HasTraits):

 part_desc = Trait(None, None,

 TraitFunction(bounded_string))

As with the preceding examples, the Trait function automatically maps the first definition of the part_desc trait into the second, equivalent, form.

The TraitRange Class

An instance of the TraitRange class ensures that a trait value lies within a specified numeric range. The constructor for the TraitRange class has the form:

TraitRange (low, high)

where low and high are the minimum and maximum values allowed for the trait’s value. Low and high should be of the same Python int or float numeric type. Alternatively, one of the values may be None to indicate that portion of the range is unbounded.

Note that any value assigned to a trait containing a TraitRange handler must be of the correct type and in the numeric range defined by the TraitRange instance. No automatic coercion takes place.

For example:

class Person (HasTraits):

 age = Trait(0, TraitRange(0, 150))

 weight = Trait(0.0, TraitRange(0.0, None))

defines a Person class which has an age trait which must be an integer in the range from 0 to 150, and a weight trait which must be a non-negative float value.

The TraitString Class

An instance of the TraitString class ensures that a trait value is a string that satisfies some additional, optional constraints. The constructor for the TraitString class has the form:

TraitString(minlen = 0, maxlen = sys.maxint, regex = ‘’)

where minlen and maxlen are the minimum and maximum lengths allowed for the trait’s string value. Regex is a string defining a Python regular expression that the string must match.

The TraitString handler will first coerce the value being assigned to a string, provided that the value is a Python int, long, float or complex. Other values of a non-string type will result in a TraitError being raised. The handler will then make sure that the resulting string is within the specified string length range and that it matches the regular expression specified.

For example:

class Person (HasTraits):

 name = Trait(‘’, TraitString(maxlen = 50,

 regex = r’^[A-Za-z]*$’)

)

defines a Person class which has an name trait which must be a string from 0 to 50 characters in length that consists only of upper and lower case letters.
The TraitEnum Class

Instances of the TraitEnum class verify that a trait’s value is a member of a specified list of values. The constructor for a TraitEnum instance has the form:

TraitEnum (legal_values)

where legal_values is a list or tuple enumerating all legal values for the trait. Note that the list can also be provided as a list of values to the constructor (i.e. TraitEnum([1, 2, 3]) and TraitEnum(1, 2, 3) are equivalent).

For example:

class Flower (HasTraits):

 color = Trait(‘white’, TraitEnum([

 ‘white’, ‘yellow’, ‘red’]))

 kind = Trait(‘annual’, TraitEnum(

 ‘annual’, ‘perennial’))

defines a Flower class which has a color trait which can have one of the three strings ‘white’, ‘yellow’ or ‘red’ as its value, and a kind trait which can either have the string ‘annual’ or ‘perennial’ as its value. As with several preceding examples, this is equivalent to the following class definition:

class Flower (HasTraits):

 color = Trait([‘white’, ‘yellow’, ‘red’])
 kind = Trait(‘annual’, ‘perennial’)

The Trait function automatically maps traits of the form shown in this example to the form shown in the preceding example whenever it encounters them in a trait definition.

The TraitPrefixList Class

The TraitPrefixList class is a variation on the TraitEnum class. Its constructor has the form:

TraitPrefixList (legal_value_strings)

where legal_value_strings is a list or tuple of strings. As with the TraitEnum class, the set of strings can also be enumerated directly in the constructor argument list.

The values that can be assigned to a trait defined using a TraitPrefixList is the set of all strings supplied to the TraitPrefixList constructor as well as any unique prefix. That is, if the set of strings supplied to the TraitPrefixList constructor is described by [s1, s2, …, sn], then the string v is a valid value for the trait if:

v == si[:j] for one and only one pair of values (i,j).

If v is a valid value, then the actual value assigned to the trait is the corresponding si value that v matched. For example:

class Person (HasTraits)

 married = Trait(‘no’, TraitPrefixList(‘yes’, ‘no’))
The Person class has a married trait which accepts any of the strings: ‘y’, ‘ye’, ‘yes’, ‘n’, or ‘no’ as valid values. The actual values assigned as the value of the trait however are limited to either ‘yes’ or ‘no’. That is, if the value ‘y’ is assigned to the married trait, the actual value assigned will be ‘yes’.

As another example, consider:

class Alien (HasTraits)

 heads = Trait(‘one’, TraitPrefixList(

 [‘one’, ‘two’, ‘three’]))
In this case, it is valid to assign either ‘tw’ (i.e. ‘two’) or ‘th’ (i.e. ‘three’) as the value of the heads trait, but not ‘t’, since ‘t’ is not a unique prefix and so it is ambiguous which of the root values, ‘two’ or ‘three’, is meant.

Note that the algorithm used by the TraitPrefixList in determining if a string is a valid value is fairly efficient in terms of both time and space, and is not based on a brute force set of comparisons.

The TraitMap Class

The TraitMap class implements the mapped traits described earlier. The constructor for TraitMap instances has the form:

TraitMap (mapping)

where mapping is a dictionary whose keys are the valid values for the trait, and whose corresponding values are the values the keys are mapped into. Refer back to the earlier section for a more detailed discussion of mapped traits.
For example, we previously defined the following trait:

true_boolean = Trait(‘yes’, { ‘yes’: 1,

 ‘no’: 0 })

This definition is equivalent to the following:

true_boolean = Trait(‘yes’, TraitMap({ ‘yes’: 1,

 ‘no’: 0 }))

The Trait function automatically converts the first form to the second form whenever it encounters it.

The TraitPrefixMap Class

The TraitPrefixMap is a cross between the TraitPrefixList and TraitMap classes. Its constructor has the form:

TraitPrefixMap (mapping)

where mapping is a dictionary similar to TraitMap. The one difference is that each key in mapping must be a string (which is not a requirement for TraitMap instances). As with TraitPrefixList instances, a string v is a valid value for the trait if it is a prefix of one, and only one, key k in mapping. The actual value assigned to the trait is k, and its corresponding mapped attribute is assigned mapping[k].

Earlier, we created the following definition for a boolean trait:

true_boolean = Trait(‘true’, { ‘true’: 1,

 ‘t’: 1,

 ‘yes’: 1,

 ‘y’: 1,

 1: 1,

 ‘false’: 0,

 ‘f’: 0,

 ‘no’: 0,

 ‘n’: 0,

 0: 0 })

We can create a similar definition, which actually allows more freedom in the set of acceptable values, using a TraitPrefixMap:

true_boolean = Trait(‘true’, TraitPrefixMap({

 ‘true’: 1,

 ‘yes’: 1,

 ‘false’: 0,

 ‘no’: 0 }),

 { 1: 1, 0: 0 })

This definition allows any prefix of ‘true’, ‘yes’, ‘false’, or ‘no’ to be assigned as a valid value, as well as the integer values 0 and 1. As in the previous example, the mapped attribute for the trait will only have 0 or 1 as its value.

Note also the use a simple dictionary (converted to a TraitMap internally by the Trait function) to handle the set of legal, non-string mapped values (i.e. 0 and 1).

The TraitList Class

The TraitList class ensures that values assigned to a trait are lists containing elements of a certain type, and that the length of the list is also within a specified range. Furthermore, it makes sure that any changes made to the list after being assigned to the trait do not violate the list’s type and length constraints.

Its constructor has the form:

TraitList(trait = None, minlen = 0, maxlen = sys.maxint)
where trait specifies the type of items the list can contain. If trait is None, or omitted, then no type checking is performed on any items in the list; otherwise, trait must either be a trait, or a value that can be converted to a trait using the Trait function. Min_items and max_items specify the minimum and maximum length that the list may have, respectively. If min_items is None or omitted, then the list has a minimum length of 0. If max_items is None or omitted, the maximum length of the list is unbounded, up to the maximum length supported by Python.
For example:

class Card (HasTraits):

 …

class Hand (HasTraits):

 cards = Trait([], TraitList(Trait(Card),

 max_items = 52))
defines a Hand class that has a cards trait that is a list of Card objects that may have from 0 to 52 items in the list.

The TraitTuple Class

The TraitTuple class ensures that values assigned to a trait are tuples of a specified length with elements that are of specified types.

Its constructor has the form:

TraitList([trait1, trait2, …, traitn])
where traiti specifies the type that the ith element of a tuple must be. Each traiti must either be a trait, or a value that can be converted to a trait using the Trait function. The resulting handler accepts values which are tuples of length n and whose ith element is of the type specified by traiti for each 0 <= i < n.
For example:

rank = Range(1, 13)

suit = Trait(‘Hearts’, ‘Diamonds’, ‘Spades’, ‘Clubs’)

class Card (HasTraits):

 value = Trait(TraitTuple(rank, suit))

defines a Card class that has a value trait that must be a tuple of two elements. The first element must be an integer in the range from 1 to 13, and the second element must be one of the four strings: ‘Hearts’, ‘Diamonds’, ‘Spades’ or ‘Clubs’.
The TraitDict Class
The TraitDict class ensures that values assigned to a trait are dictionaries whose keys and values are of specified types. Furthermore, it checks to make sure that any key or value changes made to the dictionary after being assigned to the trait satisfy the type constraints specified. Its constructor is of the form:
TraitDict(key_trait = None, value_trait = None)
where key_trait specifies the type of items that may be used as keys in the dictionary, and value_trait specifies the type of items that may be used as values assigned to keys in the dictionary.

If key_trait is None or omitted, the keys in the dictionary may be of any type. Otherwise, key_trait must either be a trait, or a value that can be converted to a trait using the Trait function. In this case, all dictionary keys will be checked to ensure that they are of the type specified by key_trait.

If value_trait is None or omitted, the values assigned to keys in the dictionary may be of any type. Otherwise, value_trait must either be a trait, or a value that can be converted to a trait using the Trait function. In this case, all dictionary values will be checked to ensure that they are of the type specified by value_trait.

As an example, consider:

class WorkoutClass (HasTraits):

 member_weights = Trait({}, TraitDict(str, float))
which defines a WorkoutClass class containing a member_weights trait whose value must be a dictionary containing keys which are strings (i.e. the member’s names) and whose associated values must be floats (i.e. their most recently recorded weight).
The TraitCompound Class

The TraitCompound class provides a logical or combination of other trait handlers. Its constructor has the form:

TraitCompound (handlers)

where handlers is a list or tuple of TraitHandler or trait objects. Alternatively, all of the TraitHandler or trait objects can be provided directly as arguments to the constructor.

A value is a valid value for a trait based on a TraitCompound instance if it is a valid value for at least one of the TraitHandler or trait objects supplied to the constructor. In addition, if at least one of the TraitHandler or trait objects is mapped (e.g. based on a TraitMap or TraitPrefixMap instance), then the TraitCompound instance is also mapped. In this case, any non-mapped traits or TraitHandlers will use the identity mapping.

The TraitCompound class provides a means of creating more complex trait definitions by combining several simpler trait definitions, and has been used implicitly in many of the preceding examples.

For instance, the last example of the preceding section can be rewritten as:

true_boolean = Trait(‘true’,

 TraitCompound(

 TraitPrefixMap({

 ‘true’: 1,

 ‘yes’: 1,

 ‘false’: 0,

 ‘no’: 0 }),

 TraitMap({ 1: 1, 0: 0 })))

In fact, this is exactly the rewriting internally performed by the Trait function when it encounters the original example.

Defining Your Own Trait Handlers

If you need a trait that cannot be defined using the standard set of trait handling classes, you can create your own subclass of TraitHandler. The constructor (i.e. __init__ method) for your TraitHandler subclass can accept whatever additional information, if any, needed to completely specify your trait. The constructor does not need to call the TraitHandler base class’s constructor.

The only method that your trait handler must implement is:

validate (self, object, name, value)

which is called whenever a new value is assigned to a trait defined using your trait handler. The meanings of the parameters passed to the validate method are:

· object: The object whose trait is being assigned.

· name: The name of the trait being assigned.

· value: The proposed new value for the trait.

Your method should verify that the new value being assigned is valid. If it is, your validate method should either return the original value passed to it, or an alternate value you want assigned in place of the original value. Whatever value validate returns is the actual value assigned to object.name.
If the value received by validate is not valid for the trait, the error method should be called to raise a TraitError exception. The signature for error is:
error (self, object, name, value)

where object, name and value are the same values passed to the validate method. The error method will raise a TraitError exception to either notify the user of the problem or, in the case of complex traits, allow another trait handler a chance to validate the value.

In many cases, it will also be necessary to override one or more of the following methods in your TraitHandler subclass:

info (self)

is_mapped (self)

post_setattr (self, object, name, value)

get_editor (self, trait)

The info method should return a string describing the type of value accepted by your trait handler. It should be a phrase describing the type defined by your TraitHandler rather than a complete sentence (e.g. “a square sprocket” instead of “The value must be a square sprocket.”). The value returned by info will be combined with other information whenever an error occurs and will make more sense to the user if the result is a phrase.

Note that the result may include information specific to the particular trait handler instance. For example, TraitRange instances return a string indicating the range of values acceptable to the handler (e.g. “an integer in the range from 1 to 9”).

If the info method is not overridden, the default method returns the string “a legal value”.

The is_mapped method only needs to be overridden if your trait maps its values to a shadow trait, like the TraitMap trait handlers. In this case, your is_mapped method should return 1 to indicate that your trait is mapped. Alternatively, you can subclass from TraitMap, whose is_mapped method already returns 1.

The post_setattr method only needs to be implemented if your TraitHandler needs to perform additional processing after a new value is assigned to object.name. The value passed is the value returned by your validate method. For example, a post_setattr method is defined by the TraitMap class to perform the assignment to the shadow attribute after a new value is assigned to the base attribute. Note that the TraitHandler base class does not defined a post_setattr method, since the absence of the method indicates that no post processing needs to be performed.

The get_editor method only needs to be specified if traits defined using your trait handler require a non-default trait editor in interactive traits sheets created using the traits package’s trait sheet support. This topic will be addressed more completely in a later section. The default get_editor method returns a trait editor that allows the user to type in an arbitrary string as the value for the trait.

To illustrate the process of creating a TraitHandler subclass, the following is a definition of a trait handler that only allows positive, odd integers as legal values:

import types, traits
class TraitOddInteger (traits.TraitHandler):

 def validate (self, object, name, value):

 if ((type(value) is types.IntType) and

 (value > 0) and ((value % 2) == 1)):

 return value

 self.error(object, name, value)

 def info (self):

 return ‘a positive odd integer’

An application could use this new trait handler to define traits such as the following:

class AnOddClass (HasTraits):

 oddball = Trait(1, TraitOddInteger()),

 very_odd = Trait(-1, TraitOddInteger(),

 TraitRange(-10, -1))

The reason the info method returns a phrase rather than a complete sentence is illustrated by the following erroneous use of the very_odd trait:

odd_stuff = AnOddClass()

odd_stuff.very_odd = 0

Traceback (most recent call last):

 File "test.py", line 25, in ?

 odd_stuff.very_odd = 0

 File "C:\cvsroot\traits\traits.py", line 1119, in validate
 raise TraitError, excp

traits.traits.TraitError: The 'very_odd' trait of a AnOddClass instance must be a positive odd integer or an integer in the range from -10 to -1, but a value of 0 was specified.
Note the highlighted result returned by the info method embedded in the exception generated by the invalid assignment.

Trait Notification

Whenever the value of a trait changes, it is possible to receive a notification that a modification has taken place. This opens up the possibility of writing programs using the same, powerful event-driven model used in writing user interfaces and other problem domains.

Requesting trait change notifications is done in one of two ways:

· Statically, by writing methods using a special naming convention in the class defining the trait whose change notification is to be handled.
· Dynamically, by calling either the on_trait_change or on_trait_event methods to set up (or tear down) change notification handlers.

The static method is the most convenient, but it is not always possible to use it. Writing a static change notification handler is simply a matter of writing a method with a special name in the same class (or subclass) defining the trait whose value changes we are interested in.
There are actually two kinds of special method names associated with static trait change notifications, both of which are illustrated in the following example:

class Person (HasTraits):

 weight = Trait(0.0)

 age = Trait(0)

 def _weight_changed (self, old, new):

 print ‘weight changed from %s to %s’ % (old, new)

 def _anytrait_changed (self, name, old, new):
 print ‘The %s trait changed from %s to %s’ % (

 name, old, new)

bob = Person()

bob.weight = 185.0
prints:

weight changed from 0.0 to 185.0
The weight trait changed from 0.0 to 185.0
bob.age = 32

prints:

The age trait changed from 0 to 32

The first type of static change notification handler is trait specific and occurs whenever a class defines a trait called name and a corresponding method called _name_changed or _name_fired (the latter case is normally used with methods that handle events, which are described in the next section). In the example, this is illustrated by the trait called weight and the method called _weight_changed. Whenever the value of the weight trait changes, the corresponding _weight_changed method is called.

The second type of static change notification handler is not trait specific and applies to all traits defined by the class. This type of handler always has the name _anytrait_changed, and it is called whenever the value of any trait defined the class is modified.

Note that the methods are required to have a leading underscore to indicate that the handler is a private method of the class, and not part of the class’s public API.

The arguments passed to the trait change notification method depend upon the method signature and which type of static notification handler it is.

In the case of a trait specific notification handler, the method signatures supported are:

_name_changed_name_fired (self)

_name_changed/_name_fired (self, new)

_name_changed/_name_fired (self, old, new)

_name_changed/_name_fired (self, name, old, new)

where:

· new: New value assigned to the trait.

· old: Old value assigned to the trait.

· name: Name of the trait.

In other words, you are free to choose whatever method signature from the above list is most convenient to use.

In the case of a non-trait specific handler, the method signatures supported are:

_anytrait_changed (self)

_anytrait_changed (self, name)

_anytrait_changed (self, name, new)

_anytrait_changed (self, name, old, new)

with identical meanings for name, new and old.

Dynamic trait change notification handlers are defined using either the on_trait_change or on_trait_event methods:
obj.on_trait_change(handler, name = None,

 remove = False)

obj.on_trait_event (handler, name = None,

 remove = False)
Handler specifies the function or bound method which will be called whenever the name trait of obj is modified. If name is None or omitted, handler will be called whenever any trait of obj is modified. If remove is True (or non-zero), then handler will no longer be called when the name (or any) trait of obj is modified.

Setting up a dynamic trait change notification handler is illustrated in the following example:

class Part (HasTraits):
 cost = Trait(0.0)

class Widget (HasTraits):

 part1 = Trait(Part)

 part2 = Trait(Part)

 cost = Float(0.0)

 def __init__(self):

 self.part1 = Part()

 self.part2 = Part()

 self.part1.on_trait_change(self.update_cost, ‘cost’)

 self.part2.on_trait_change(self.update_cost, ‘cost’)

 def update_cost (self):

 self.cost = self.part1.cost + self.part2.cost

w = Widget()

w.part1.cost = 2.25

w.part2.cost = 5.31

print w.cost

prints: 5.56
In this example, the Widget constructor sets up a dynamic trait change notification so that its update_cost method is called whenever the cost of either its part1 or part2 attributes is modified.

The handler passed to on_trait_change or on_trait_event can have any one of the following signatures:
handler ()

handler (new)

handler (name, new)

handler (object, name, new)

handler (object, name, old, new)
Unlike the static trait change notification handlers, the signature of a dynamic handler does not depend upon whether the handler is trait specific or not.

Note that on_trait_event is simply a synonym for on_trait_change. Use of on_trait_event makes for slightly more readable code in the case where the trait being monitored is an event, which is described in the next section.
Trait Event

The trait package defines a special type of trait called an event. Events are created using the Event function, which accepts all of the same arguments as the Trait function.
There are two major differences between a normal trait and an event:

· All notification handlers associated with the event are called whenever any value is assigned to the event. A normal trait only calls its associated notification handlers when the previous value of the trait is different from the new value being assigned to it.

· An event does not use any storage, and in fact does not store the values assigned to it. Any value assigned to an event is reported as the new value to all associated notification handlers, and then promptly forgotten. Because events do not retain a value, the old argument to a trait notification handler associated with an event is always the special Undefined object. Similarly, attempting to read the value of an event results in a TraitError exception being raised, since an event has no value.
As an example of an event, consider the trait_added event defined by the HasTraits class:

class HasTraits (CHasTraits):

 trait_added = Event(str)

Whenever the HasTraits class’s add_trait method is called to add a dynamic trait to an object, the trait_added event is assigned the name of the new trait added. This allows any interested parties, such as an external tool, to be notified when traits are added to an object dynamically.
Trait Delegation

One of interesting capabilities of the traits package is its ability to delegate the definition and default value of a trait to another object. This has use in many applications, especially in cases where objects are logically contained within other objects and may wish to inherit, or derive, some attributes from the object they are contained in or associated with. Delegation leverages the common has a relationship between objects, rather than the is a relationship that class inheritance provides. Traits based on delegation are defined using the Delegate function.

The Delegate Function
The signature of the Delegate function is:

Delegate(delegate, prefix = ‘’, modify = False)

The delegate parameter is a string that specifies the name of the object attribute that defines the trait’s delegate. The current value of the trait defined by delegate is used as the delegate whenever the delegate is needed. The prefix and modify parameters to the Delegate function specify additional information about how to do the delegation.

If prefix is the empty string or omitted, the delegation is to an attribute of the delegate object with the same name as the trait. Consider the following example:

class Parent (HasTraits):

 first_name = Str

 last_name = Str

class Child (HasTraits):

 first_name = Str
 last_name = Delegate(‘father’)
 father = Trait(Parent)
 mother = Trait(Parent)
tony = Parent(first_name = ‘Anthony’,

 last_name = ‘Jones’)

alice = Parent(first_name = ‘Alice’,

 last_name = ‘Smith’)

sally = Child(first_name = ‘Sally’,

 father = tony,

 mother = alice)

print sally.last_name

prints: Jones
sally.last_name = sally.mother.last_name

print sally.last_name

prints: Smith
sally.last_name = sally.mother # Error: string expected
A Child object delegates its last_name trait to its father attribute’s last_name trait. Because the prefix parameter was not specified in the Delegate function used to define the last_name trait, the trait name of the delegate is the same as the original trait name. Thus, by default, the last_name of a Child is the same as the last_name of its father.

Note however that once we explicitly assign a value to the last_name trait of a Child, it takes on the assigned value, as illustrated in the example when we explicitly set Sally’s last name to be the same as her mother’s last name. However, delegation still affects the type of values that can be assigned to the last_name trait, as illustrated in the example when we attempted to assign Sally’s mother as her last name. The last_name trait delegates the assignment to the father trait, whose last_name trait specifies that the only legal values are strings.

When the prefix parameter to the Delegate function is a non-empty string, the rule we just described for performing trait look-up in the delegated to object is modified, with the modification depending on the format of the prefix string:

· If prefix is a valid Python attribute name, then the original trait name is replaced by prefix when performing the delegate object trait look-up.

· If prefix ends with an asterisk (‘*”), and is longer than one character, then prefix, minus the trailing asterisk, is added to the front of the original trait name when performing the delegate object trait look-up.

· If prefix is equal to a single asterisk (‘*’), the value of the object class’s __prefix__ attribute is added to the front of the original trait name when performing the delegate object trait look-up.

Each of these three possibilities is illustrated in the following example:

class Parent (HasTraits):

 first_name = Str
 family_name = Str
 favorite_first_name = Str

 child_allowance = Float(1.00)

class Child (HasTraits):

 __prefix__ = ‘child_’
 first_name = Delegate(‘mother’, ‘favorite_*’)
 last_name = Delegate(‘father’, ‘family_name’)
 allowance = Delegate(‘father’, ‘*’)
 father = Trait(Parent)
 mother = Trait(Parent)
In this example, instances of the Child class have three delegated traits:

· first_name, which delegates to the favorite_first_name trait of its mother trait.

· last_name, which delegates to the family_name trait of its father trait.

· allowance, which delegates to the child_allowance trait of its father trait.

The final form of delegation occurs when the modify argument to the Delegate function is True. In this case, the trait delegates to the trait specified by the delegate and prefix arguments as before, but any changes to the trait are made to the delegate object’s trait value, not to the object delegating the trait. This form is useful when the object using delegation is really a proxy to another object.
Note that when using delegation, the attribute being delegated to (e.g. family_name in the Parent class example above), need not be defined by a trait. That is, the delegated to value can be just a standard Python attribute.

The Undefined Object
Python defines a special, singleton object called None. The traits package introduces an additional special, singleton object called Undefined.

The Undefined object is used to indicate that a trait has not yet had a value set (i.e. its values is undefined). Undefined is used instead of None because None is often used to mean other things, such as that the value is not used. In particular, when a trait is first assigned a value and its associated trait notification handlers are called, Undefined is passed as the value of the old parameter to each handler to indicate that the trait previously had no value.
Reusing Trait Definitions
All of the traits defined so far have applied to a single attribute of a class. Because a trait object only describes the characteristics of a trait, and not the current value of a trait, it can be used in the definition of any number of traits. For example:

coefficient = Trait(0.0, TraitRange(-1.0, 1.0))

class quadratic (HasTraits):

 c2 = coefficient
 c1 = coefficient

 c0 = coefficient

 x = Range(-100.0, 100.0, 0.0)

In this example the traits c2, c1 and c0 are defined in terms of a common coefficient trait.

Predefined Traits

Because traits are reusable, the traits package includes a number of pre-defined traits designed to avoid the need to constantly redefine commonly used traits using the low-level traits machinery explained in the preceding sections.

The following table lists the predefined traits and trait factory functions provided by the traits package:

	Trait
	Description

	Constant(value)
	Defines a read-only trait whose value is value. Note that traits of this type are very space efficient (and fast) because value is not stored in each instance using the trait, but only in the trait itself. The value cannot be a list or dictionary, since they have mutable values.

	Range(

 low = None,
 high = None,

 default = None)
	Defines a trait that only allows values such that low <= value <= high. If low or high is omitted, that end of the range is not checked. Both low and high must be of the same int or float type. The default value is default. If default is None or omitted, the default value is low, unless low is None or omitted, in which case the default value is high.

	Any[(value)]
	Allows any value to be assigned (i.e. no type checking is performed). The default value is value if it is specified; otherwise it is None. This is different than a normal Python attribute since it will return the default value if referenced before assignment rather than generate an exception.

	Int[(value)]
	Only allows values of type int to be assigned. The default value is value if it is specified; otherwise it is 0.

	Long[(value)]
	Only allows values of type long to be assigned. The default value is value if it is specified; otherwise it is 0L.

	Float[(value)]
	Only allows values of type float to be assigned. The default value is value if it is specified; otherwise it is 0.0.

	Complex[(value)]
	Only allows values of type complex to be assigned. The default value is value if it is specified; otherwise it is 0+0j.

	Str[(value)]
	Only allows values of type str (i.e. string) to be assigned. The default value is value if it is specified; otherwise it is ‘’.

	Unicode[(value)]
	Only allows values of type unicode to be assigned. The default value is value if it is specified; otherwise it is u’’.

	Bool[(value)]
	Only allows values of type bool (i.e. True and False) to be assigned. The default value is value if it is specified; otherwise it is False.

	CInt[(value)]
	Only allows values that can be cast to type int to be assigned. The default value is value if it is specified; otherwise it is 0.

	CLong[(value)]
	Only allows values that can be cast to type long to be assigned. The default value is value if it is specified; otherwise it is 0L.

	CFloat[(value)]
	Only allows values that can be cast to type float to be assigned. The default value is value if it is specified; otherwise it is 0.0.

	CComplex[(value)]
	Only allows values that can be cast to type complex to be assigned. The default value is value if it is specified; otherwise it is 0+0j.

	CStr[(value)]
	Only allows values that can be cast to type str (i.e. string) to be assigned. The default value is value if it is specified; otherwise it is ‘’.

	CUnicode[(value)]
	Only allows values that can be cast to type unicode to be assigned. The default value is value if it is specified; otherwise it is u’’.

	CBool[(value)]
	Only allows values that can be cast to type bool (i.e. True and False) to be assigned. The default value is value if it is specified; otherwise it is False.

	true
	Only allows values of type bool (i.e. True and False) to be assigned. The default value is True.

	false
	Only allows values of type bool (i.e. True and False) to be assigned. The default value is False. This is a synonym for Bool.

	List[(

 value = [],

 trait = Any,

 minlen = 0,

 maxlen = sys.maxint)]
	Only allows values of type list. The default value is value if it is specified; otherwise it is []. If trait is not specified, then assigned lists can contain any type of value; otherwise the list can only contain items of the type specified by trait, which can either be a trait, or a value that can be converted into a trait using the Trait function. If minlen or maxlen is specified, then the length of the list must be such that minlen <= len(value) <= maxlen; otherwise the length of the list is not checked. If positional arguments are specified, value and trait can be specified in either order.

	Tuple[(value

 [,trait1,…,traitn])}
	Only allows values of type tuple. The default value is value if it is specified; otherwise it is the tuple consisting of the default values associated with each of the specified traiti values, if any. If no value or traiti values are specified, the default value is (). If any trait values are specified, then assigned values must be tuples with the same number of elements as types specified, and each element i of the assigned value must be of the corresponding traiti. Each traiti value must either be a trait, or a value that can be converted to a trait using the Trait function.

	Dict[(

 key_trait = Any,

 value_trait = Any,

 value = {})
	Only allows values of type dict (i.e. dictionaries). The default value is {}. If key_trait is specified, then any key values assigned must be of the type specified by key_trait. If value_trait is specified, then any values specified must be of the type specified by value_trait. If key_trait or value_trait is not specified, then any value can be assigned to the corresponding value. Both key_trait and value_trait must either be a trait, or a value that can be converted to a trait using the Trait function.

	Instance(type

 [, args = None]

 [, kw = None])
	Only allows values of the specified type (which may be a class) to be assigned. If args (a tuple) or kw (a dictionary) is not specified, None is an allowed value, and is the default value. Otherwise, None is not an allowed value and the default value is obtained by calling type(*args, **kw). Note that the constructor call is performed each time a default value is assigned, so each default value assigned is a unique instance. If Instance is used by itself (i.e. not called), then only values of type types.InstanceType (i.e. old style class instances) are allowed. In this case the default value is None.

	Function
	Only allows values of type types.FunctionType (i.e. functions). The default value is None.

	Method
	Only allows values of type types.MethodType (i.e. methods). The default value is None.

	Class
	Only allows values of type types.ClassType (i.e. old style classes). The default value is None.

	Type
	Only allows values of type types.TypeType (i.e. types). The default value is None.

	Module
	Only allows values of type types.ModuleType (i.e. modules). The default value is None.

	This
	Only allows values of the same class (or subclass) as the object containing the trait. The default value is None..

	self
	Only allows values of the same class (or subclass) as the object containing the trait. The default value is the object containing the trait.

	Python
	This trait provides behavior identical to a standard Python attribute. That is, it allows any value to be assigned and raises a ValueError if an attempt is made to get the value before a value has been assigned. This trait is often used in conjunction with the wildcard naming rule described in the next section to provide standard Python behavior to an entire category of object attributes.

	Disallow
	Does not allow any value to be assigned or read. That is, any attempt to set or get the value of the associated attribute will raise an exception. This trait is most often used in conjunction with the wildcard naming rule explained in the next section, and can be used, for example, to catch attribute spelling mistakes made by users. See the description of the HasStrictTraits class for an example of its use.

	ReadOnly
	The associated attribute is read only. That is, any attempt to set the value of the attribute will raise an exception. Actually, the attribute is write once. That is, the default value of the trait is the special, singleton Undefined object. The trait allows any value to be assigned to the attribute if the current value of the attribute is the Undefined object. Once any other value is assigned, no further assignment to the attribute is allowed. Normally, the initial assignment to the attribute is performed in the class constructor, based on information passed to the constructor. If the read-only value is known ahead of time, use the Constant function instead of ReadOnly to define the trait.

	undefined
	Allows any value to be assigned (i.e. no type checking is performed). The default value is the special, singleton Undefined object.

	missing
	Allows any value to be assigned (i.e. no type checking is performed). The default value is the special, singleton Missing object.

	ListInt
	Only allows lists containing int values to be assigned. In addition, only int values may be added or inserted into the current list value. The default value is [].

	ListFloat
	Only allows lists containing float values to be assigned. In addition, only float values may be added or inserted into the current list value. The default value is [].

	ListStr
	Only allows lists containing str (i.e. string) values to be assigned. In addition, only str values may be added or inserted into the current list value. The default value is [].

	ListUnicode
	Only allows lists containing unicode values to be assigned. In addition, only unicode values may be added or inserted into the current list value. The default value is [].

	ListComplex
	Only allows lists containing complex values to be assigned. In addition, only complex values may be added or inserted into the current list value. The default value is [].

	ListBool
	Only allows lists containing bool (i.e. True or False) values to be assigned. In addition, only bool values may be added or inserted into the current list value. The default value is [].

	ListFunction
	Only allows lists containing types.Function (i.e. function) values to be assigned. In addition, only function values may be added or inserted into the current list value. The default value is [].

	ListMethod
	Only allows lists containing types.MethodType (i.e. method) values to be assigned. In addition, only method values may be added or inserted into the current list value. The default value is [].

	ListClass
	Only allows lists containing types.ClassType (i.e. old style class) values to be assigned. In addition, only class values may be added or inserted into the current list value. The default value is [].

	ListInstance
	Only allows lists containing types.InstanceType (i.e. old style class instance) values to be assigned. In addition, only instance values may be added or inserted into the current list value. The default value is [].

	ListThis
	Only allows lists containing values of the same class (or subclass) of the object containing the trait to be assigned. In addition, only objects of the same class (or subclass) may be added or inserted into the current list value. The default value is [].

	DictStrAny
	Only allows dictionaries whose keys are strings, but whose values can be of any type, to be assigned. In addition, only string keys may be inserted into the current dictionary value. The default value is {}.

	DictStrStr
	Only allows dictionaries whose keys and values are strings to be assigned. In addition, only string keys with string values may be inserted into the current dictionary value. The default value is {}.

	DictStrInt
	Only allows dictionaries whose keys are strings and values are integers to be assigned. In addition, only string keys with integer values may be inserted into the current dictionary value. The default value is {}.

	DictStrLong
	Only allows dictionaries whose keys are strings and values are long integers to be assigned. In addition, only string keys with long integer values may be inserted into the current dictionary value. The default value is {}.

	DictStrFloat
	Only allows dictionaries whose keys are strings and values are floats to be assigned. In addition, only string keys with float values may be inserted into the current dictionary value. The default value is {}.

	DictStrBool
	Only allows dictionaries whose keys are strings and values are booleans (i.e. True or False) to be assigned. In addition, only string keys with boolean values may be inserted into the current dictionary value. The default value is {}.

	DictStrList
	Only allows dictionaries whose keys are strings and values are lists to be assigned. In addition, only string keys with list values may be inserted into the current dictionary value. The default value is {}.

The following is an example using some predefined traits:

class Person (HasTraits):

 children = ListStr # List of strings (default=[])
 favorite_thing = Any
 _ = Disallow # See next section

me = Person()

me.children.append(‘Mikey’) # OK

me.children = ‘no way’ # Illegal, must be a list

me.favorite_thing = ‘fudge’ # OK

me.favoritething = ‘fudge’ # Illegal, misspelled and

 # caught by ‘Disallow’ rule

Creating Categories of Similar Traits for Objects

Up until now, all trait definitions have bound a single object attribute to a specified trait definition. However, there are cases where it might be useful to associate an entire category of object attributes with a particular trait definition. The traits package allows you to do this by including the wildcard character (i.e. ‘_’) at the end of a trait attribute name.

For example:

class Person (HasTraits):

 temp_ = Any

defines a class Person with an entire category of attributes with names beginning with ‘temp’ that have the Any trait (i.e. they have None as their default value and allow any value to be assigned to them). Thus anyone using a Person instance can reference attributes tempCount, temp_name or temp_whatever without having to explicitly declare them as trait attributes, and each attribute will have None assigned as the default value and allow assignment of any value.

It is even possible to give all object attributes a default trait by specifying only the wildcard character in the trait definition:

class Person (HasTraits):

 _ = Any
In this case, all Person instance attributes will have the Any trait.

When using wildcard characters in trait names, the following two rules are used to determine what trait an attribute has:

1. If an attribute name exactly matches a name without a wildcard character, that definition applies.

2. Otherwise, if an attribute name matches one or more names with wildcard characters, the definition with the longest name applies.

Note that all possible attribute names are covered by one of the two preceding rules, since the base HasTraits class implicitly contains the trait definition: _ = Python. This rule guarantees that, by default, all attributes have standard Python language semantics.
These rules are illustrated in the following class definition:

class Person (HasTraits):

 temp_count = Int(-1)
 temp_ = Any

 _ = Python

In this case, the Person class has a temp_count trait which must be an integer and has a default value of -1. Any other attribute name starting with ‘temp_’ will have a default value of None and allow any value to be assigned. All other object attributes will behave like normal Python attributes (i.e. they will allow any value to be assigned, but must have a value assigned to them before their first reference).

One final example is:

class Person (HasTraits):

 name = Str
 age = Int
 weight = Float
 _ = Disallow
In this example, a Person instance has three traits:

· name (must be a string, default is ‘’)

· age (must be an integer, default is 0)

· weight (must be a float, default is 0.0)

All other object attributes are explicitly disallowed. That is, any attempt to read or set any object attribute other than name, age or weight will cause an exception.
HasStrictTraits and HasPrivateTraits Classes
As mentioned in the previous section, the HasTraits base class implicitly contains the trait definition:

class HasTraits (object):

 _ = Python
This trait definition ensures that subclasses of HasTraits by default have standard Python attribute behavior for any attribute not explicitly defined as a trait. In other words, a subclass of HasTraits by default has very Python-like attribute behavior.
However, the wildcard trait definition rule makes it very easy to create subclasses with very non-standard attribute behavior. Two such pre-defined subclasses are included with the traits package:
· HasStrictTraits
· HasPrivateTraits
Both of these subclasses have very simple definitions:

class HasStrictTraits (HasTraits):

 _ = Disallow

class HasPrivateTraits (HasTraits):

 __ = Any

 _ = Disallow
In essence, subclassing from HasStrictTraits guarantees that access to any object attribute which does not have an explicit (or wildcard) trait definition will result in an exception being raised. This can be useful in cases where a more rigorous software engineering approach to development is being employed. It also helps eliminate accidental attribute spelling mistakes or typos going unnoticed, since a misspelled attribute name will typically raise an exception when executed.
For example, HasStrictTraits can be used to create type checked data structures, as illustrated below:

class TreeNode (HasStrictTraits):

 left = This

 right = This

 name = Str

class PersonNode (TreeNode):

 name = Str

which defines a PersonNode class that has three attributes: left, right and name. The left and right attributes can only be references to other PersonNodes (or subclasses), while the name attribute must be a string. Attempting to set other types of values will generate an exception, as will attempting to set an attribute that is not one of the three defined attributes. In essence, PersonNode behaves like a strongly-type data structure.

The HasPrivateTraits subclass is similar, but allows attributes beginning with ‘_’ to have a default value of None and not be type checked. This is often useful in cases where a class needs private attributes used to keep track of internal object state that are not part of the class’s public API. Such attributes often do not need type checking since they are only manipulated by the (presumably correct) methods of the class itself.

These subclasses of HasTraits are provided as a convenience, and their use is completely optional. However, they do illustrate how easy it is to create subclasses with custom, default attribute behavior if desired.

Per Object Traits

The traits package also allows you to define dynamic traits that are object, rather than class, specific. This is accomplished using the add_trait method of the HasTraits class:
object.add_trait(name, trait)

For example:

rock = HasTraits()

rock.add_trait(‘density’, Trait(1.2))
creates an object called rock with a trait called density which has an initial, default value of 1.2 and only accepts floating point values. Note that although the object only has a single trait defined, the object can still have normal Python attributes defined on it, such as:

rock.weight = 5.4

If we want to restrict the object so that only the density trait is available, we can create the object as follows, using the HasStrictTraits class described in the preceding section:

rock = HasStrictTraits()

rock.add_trait(‘density’, Trait(1.2))

which explicitly prevents access to undefined traits or attributes.
Explicit Traits

Each attribute of a HasTraits subclass is a trait defined using one of the following mechanisms:

1. The class (or one of its superclasses) contains an explicit definition of the trait (e.g. name = Trait(str)).

2. The trait was added to an instance using the add_trait method (e.g. obj.add_trait(‘name’, Trait(str)).

3. The trait is implicitly defined using a trait wildcard definition (e.g. name_ = Trait(str)).

Some of the methods available on objects derived from HasTraits provide access to the set of traits defined on an object. In general, these methods default to working with the explicit traits defined on an object. Explicit traits are those for which an explicit trait definition is provided (i.e. traits defined using rule 1 above). Keep this in mind when reading the description of these methods.
For example, consider the following code:

class Person (HasTraits):

 name = Str

 age = Int

 temp_ = Any

bob = Person()

bob.add_trait(‘favorite_sport’, Str(‘football’))

print bob.trait_names()

prints [‘trait_added’, ‘age’, ‘name’]

In this example we can see that only the age and name traits defined by the Person class are returned by the trait_names method (trait_added is an explicit event trait defined by the HasTraits base class).
Type Checked Methods
In addition to providing type checked attributes, the traits package also provides the ability to create type checked methods.

A type checked method is created by writing a normal method definition within a class preceded by a method signature function call, as shown in the following example:

Color = TupleOf(int, int, int, int)

class Palette (HasTraits):

 method(Color, color1 = Color, color2 = Color)

 def blend (self, color1, color2):

 return ((color1[0] + color2[0]) / 2,

 (color1[1] + color2[1]) / 2,

 (color1[2] + color2[2]) / 2,

 (color1[3] + color2[3]) / 2)

 method(Color, Color, Color)

 def max (self, color1, color2):

 return (max(color1[0], color2[0]),

 max(color1[1], color2[1]),

 max(color1[2], color2[2]),

 max(color1[3], color2[3]))

In this example, Color is defined to be a trait which accepts tuples of four integer values. The method signature function appearing before the definition of the blend method ensures that the two arguments to blend both match the Color trait definition, as does the result returned by blend. The method signature appearing before the max method does exactly the same thing, but uses positional rather than keyword arguments.
The general form of the method signature function is:

method(return_type = Any,

 [, ptrait1, …, ptraitm]
 [, keyword1 = ktrait1, …, keywordn = ktraitn])
where return_type specifies the type of the result returned by the following method definition. Return_type must either be a trait, or a value that can be converted to a trait using the Trait function. If omitted, return_type defaults to Any, meaning the result of the following method is not type checked.

Each of the optional, positional ptraiti arguments specifies the type of the corresponding positional method argument (ignoring the method’s self argument, whose type is implied). Each ptraiti value must either be a trait or a value that can be converted to a trait using the Trait function.

Alternatively, you can use keywordi = traiti pairs to specify the type of the keywordi argument of the following method definition. Each traiti value must either be a trait or a value that can be converted to a trait using the Trait function. Note that it is an error to specify both a positional and keyword trait definition for the same method argument.
Whenever the method following the method signature definition is called, the method will ensure that each parameter passed to the method is of the type specified either by ptraiti or ktraiti.
If an argument defined by the following method is not referenced in the method signature call preceding it, the argument is not type checked (i.e. its type is implicitly set to Any). If the method signature contains a ptraiti or ktraiti that does not correspond to an argument in the following method definition, a TraitError exception is raised.

Use of the method signature function is optional. Methods not preceded by a method function have standard Python behavior (i.e. no type checking of arguments or results is performed). Also, the method function can be used in classes that do not subclass from HasTraits since the resulting method performs the type checking directly. And finally, when the method function is used, it must immediately precede the definition of the method whose type signature it defines. If it does not, a TraitError is raised.
Trait Instance Methods

Creating a subclass of HasTraits gives any Python class the ability to have traits defined on it. In addition, it provides a set of useful instance methods described below:
 set (self, **traits)

Treats each keyword argument to the method as a trait name and sets the corresponding trait to the value specified. This is a useful shorthand when a number of traits need to be set on an object, or a trait value needs to be set in a lambda function. For example, you can write person.set(name = ‘Bill’, age = 27) instead of person.name = ‘Bill’; person.age = 27.
add_trait (self, name, *trait)

Adds the trait specified by trait as a new trait called name. Trait may either be a trait or a value that can be converted to a trait using the Trait function. Note that trait can actually be a list of traits or values. If more than one value is specified, it is equivalent to passing the entire list of values to the Trait function.
on_trait_change (self, handler, name = None, remove = False)

Invokes the specified handler whenever the object trait called name is modified. If remove is not False, then handler will no longer be invoked when the trait is modified (i.e. the handler is removed). Multiple handlers can be defined on the same object, or even for the same trait on the object. If name is not specified or None, handler is invoked when any trait on the object is changed.

on_trait_event (self, handler, name = None, remove = False)

This is a synonym for on_trait_change. This form is intended for use with trait events.

reset_traits (self, names = None)

Resets each of the traits whose names are specified in the names list to their default value. If names is None or omitted, the method resets all explicitly defined object traits to their default values.

clone_traits (self, other, names = None)

Assigns trait values from the other object to the corresponding trait defined on self. If names is None (the default), then all explicit traits defined for self are cloned; otherwise traits should be a list of the names of the traits to be cloned from other to self. The result is a (hopefully empty) list of trait names that generated an exception when the trait value was copied from other to self.

print_traits (self, show_help = False)
Pretty prints the values of all explicitly defined, non-event traits. If show_help is True (or non-zero), additional descriptive information about the type of each trait is also displayed.

sync_trait (self, name, object, alias = None, mutual = True)
Synchronizes the value of a specified trait on self and object. If alias is None or omitted, then the name string is used as the name of the trait on both objects; otherwise alias is a string that specifies the name of the trait on other that is to be synchronized with self.name. If mutual is True (or non-zero) the synchronization is two-way. That is, any change to the specified trait value of either object results in the same value being assigned to the corresponding trait of the other. If mutual is False (or 0), then any change to self.name causes the corresponding trait of object to be updated, but not vice versa.

trait (self, name, force = False)
Returns the trait definition for the trait whose name is specified by the string name. If force is False (the default) and name is the name of an implicitly defined trait which has never been referenced explicitly (i.e. has not yet been defined), the result is None. In all other cases, the result is the trait definition object associated with name.
base_trait (self, name)
Returns the base trait definition for the trait whose name is specified by the string name. This is similar to the trait method, and only returns a different result in the case where the trait defined by name is a delegate. In this case, the base_trait method follows the delegation chain until a non-delegated trait is reached, and returns the definition of that trait as the result.
traits (self, **metadata)
Returns a dictionary containing all of the trait definitions which match the set of metadata criteria specified. The keys of the dictionary returned are the trait names, and the values their corresponding trait definition objects.

If no metadata information is specified, then all explicitly defined traits defined for the object are returned.
Otherwise, the metadata keyword dictionary is assumed to define a set of search criteria for selecting traits of interest. The metadata dictionary keys correspond to the names of trait metadata attributes to examine, and the values correspond to the values the metadata attribute must have in order to be included in the search results.
The metadata values may either be simple Python values like strings or ints, or may be lambda expressions or functions which return True if the trait is to be included in the result. A lambda expression or function will receive a single argument which is the value of the trait metadata attribute being tested. If more than one metadata keyword is specified, a trait must match the metadata values of all keywords to be included in the result.
trait_names (self, **metadata)
Returns a list of the names of all traits whose definitions match the set of metadata criteria specified. The is the same as the traits method described above, but only returns the names of the matching traits.

Trait Class Methods

In addition to the instance methods described in the previous section, HasTraits also defines several class methods:
add_class_trait (cls, name, *trait)

Adds the trait specified by trait as a new trait called name. Trait may either be a trait or a value that can be converted to a trait using the Trait function. Note that trait can actually be a list of traits or values. If more than one value is specified, it is equivalent to passing the entire list of values to the Trait function.

Note that this method is very similar to the add_trait instance method described previously. The difference is that adding a trait using add_class_trait is the same as having declared the trait as part of the class definition. That is, any trait added using add_class_trait is defined in every subsequent instance of the class created, and in any subclasses of the class defined after the add_class_trait method is called. This is in contrast to the add_trait method, which only adds the specified trait to the object instance it is applied to.

In addition, if name ends with a ‘_’ (i.e. underscore character), then a new (or replacement) prefix rule is added to the class definition, just as if the prefix rule had been specified statically in the class definition. It is not possible to define new prefix rules using the add_trait method.

One of the main uses of the add_class_trait method is to add trait definitions to a class that could not be defined statically as part of the body of the class definition. This often occurs, for example, when two classes with traits are being defined and each class has a trait that should contain a reference to the other. It will not be possible to define the trait in the first class in lexical order, since the class it needs to refer to has not yet been defined. This is illustrated in the following example:
class Chicken (HasTraits):

 hatched_from = Trait(Egg)

 …

class Egg (HasTraits):

 created_by = Trait(Chicken)

 …

As it stands, this example will not run correctly because the hatched_from trait references the Egg class, which has not yet been defined. Reversing the order of the classes does not fix the problem, because then the created_by trait references the Chicken class, which has not yet been defined.

The problem can be solved using the add_class_trait method, as shown in the following code:

class Chicken (HasTraits):

 …

class Egg (HasTraits):

 created_by = Trait(Chicken)

 …

Chicken.add_class_trait(‘hatched_from’, Egg)
trait_monitor (cls, handler, remove = False)
Adds or removes the specified handler from the list of active monitors. If remove is omitted or False, the specified handler is added to the list of active handlers. If remove is True, the specified handler is removed from the active monitor list.
Handler must be callable, with a signature of:

def handler (object)
Once a handler is added to the list of active monitors, then each time an instance of cls (or one of its subclasses) is created, the handler is called with the newly created instance as its argument.

The main purpose of the trait_monitor method is to make it possible to create tools, such as debuggers, that can monitor instances of trait based classes.

Performance Considerations of Traits

Using traits can potentially impose a performance penalty on attribute access over and above that of normal Python attributes. For the most part, this penalty, if any, is small, since the core of the traits package is written in C, just like the Python interpreter. In fact, for some common cases, subclasses of HasTraits can actually have the same or better performance than old or new style Python classes.

However, there are a couple of performance related factors to keep in mind when defining classes and attributes based on traits:
· Whether a trait delegates or not.

· The complexity of a trait definition.

If a trait does not delegate, the performance penalty can be characterized as follows:

· Getting: No penalty (i.e. standard Python attribute access speed or faster).

· Setting: Depends upon the complexity of the validation tests performed by the trait definition. Many of the pre-defined trait handlers defined as part of the traits package support fast C-level validation. For most of these, the cost of validation is usually negligible. For other trait handlers, with Python-level validation methods, the cost can be quite a bit higher. Refer to the appendix on trait performance for more information about which trait handlers support fast, C-level validation.
If a trait does delegate, the cases to be considered are:

· Getting the default value: Cost of following the delegation chain. The chain is resolved at the C-level, and is quite fast, but its cost is linear with the number of delegation links that must be followed to find the default value for the trait.
· Getting an explicitly assigned value: No penalty (i.e. standard Python attribute access speed or faster).

· Setting: Cost of following the delegation chain plus the cost of performing the validation of the new value. The preceding discussions about delegation chain following and fast versus slow validation apply here as well.
Note that in the case where delegation modifies the delegate object, the cost of getting an attribute always includes the cost of following the delegation chain.

In a typical application scenario, where attributes are read more often than they are written, and delegation is not used, the impact of using traits is often minimal, since the only impact occurs when attributes are assigned and validated.

The worst case scenario occurs when delegation is used heavily to provide attributes with default values that are seldom changed. In this case, the cost of constantly following delegation chains may impose a measurable performance impact on the application. Of course, this is offset by the convenience and flexibility provided by the delegation model. As with any powerful tool, it is best to understand its strengths and weaknesses and use that understanding in determining when its use is justified and appropriate.
Creating Graphical User Interface Trait Editors

Up to this point, traits have all been set or modified programmatically, using standard Python object attribute assignment statements or the set method. However, the traits package also provides a way to modify the value of traits using visual trait editors.
An example is shown in the following figure, which shows part of an editor for one of the traits-based objects from the Chaco package:

[image: image2.png]
Trait editors are GUI toolkit specific. The traits package supports both the wxPython and Tkinter GUI toolkits.
Every trait has a trait editor associated with it, either the default one associated with a specific TraitHandler subclass, or an explicitly specified one assigned to the trait’s editor property.

There are a number of trait editors defined by the traits package, and new user-defined editors can be added as needed. Each editor supports up to five different presentation styles:

simple
A minimal editor that, when combined with other editors of the same style, can be used to create a simple, tabular, two column name, value editor arrangement, reminiscent of a Visual Basic style property editor.

custom
A more sophisticated visual editor. In general, this style of editor tends to require more display space, but may be more intuitive or visually appealing to the user. All of the trait editors shown in the previous figure use the custom style.

text

A simple, text entry field editor. The text entered by a user can be optionally evaluated as a Python expression if the associated trait type is not a string value.

readonly

A text output field that does not allow for user input. This style is used for displaying the current value of traits, rather than for editing them.

popup
A pop-up dialog form of editor. This style of editor cannot be combined with other trait editors. It always appears by itself imbedded in a dialog window along with controls that allow accepting or canceling any changes made to the trait. It sometimes is combined with the simple style in such a way that the pop-up dialog appears when the user clicks on the simple editor control.
The Standard Trait Editors

The standard trait editors included with the traits package are:
TraitEditorText
A simple, single-line text entry control based editor that allows the user to enter a string of text. The simple, custom and text styles are the same and typically look something like:
[image: image3.png]
TraitEditorEnum
An editor that allows the user to select a single value from a finite set of possible values. The simple style uses a drop-down combobox type of control, and typically looks something like:

[image: image4.png]
The custom style uses radio buttons and typically looks something like:

[image: image5.png]
TraitEditorImageEnum
This editor is very similar to a TraitEditorEnum in that it allows the user to select a single value from a finite set of possible values. However, the choices are represented by developer supplied icons rather than text.

The simple style displays the icon corresponding to the current value of the trait, and typically looks something like:

[image: image6.png]
When the user clicks on the icon, the popup style of the editor is displayed, which allows the user to select a new value from the available choices. This typically looks something like:

[image: image7.png]
The custom style shows the icons for all available choices. Clicking any of the icons sets the value associated with the icon as the new value of the trait. This typically looks something like:

[image: image8.png]
TraitEditorList
An editor that allows the user to select zero, one or more values from a finite set of possible values. From a Python data structure point of view, this typically corresponds to a set of values expressed as a list.

The simple style uses a drop-down combobox type of control, and is limited because it only allows the user to select a single value from among the available choices. It typically looks something like:

[image: image9.png]
The custom style uses check boxes, allowing the user to make multiple selections, and typically looks something like:

[image: image10.png]
TraitEditorBoolean
An editor that allows the user to select a True or False value or. The simple and custom styles are identical, using a check box to allow the user to set the true/false value of the trait. It typically looks something like:

[image: image11.png]
TraitEditorRange
An editor that allows the user to select a numeric integer or float value in a specified range. For floating point and larger integer ranges, the simple and custom styles are the same, a slider control that typically looks something like:

[image: image12.png]
For an integer range, the simple style uses a spin control if the total range is <= 100, as shown below:
[image: image13.png]
If the range is > 100, a slider is used, as for a floating point range.

The custom style for an integer range > 15 is the same as the simple style. If the range <= 15, the custom style uses a grid of radio buttons, which typically looks something like:

[image: image14.png]
TraitEditorComplex
An editor of this type is one which groups a collection of other trait editors into a single composite trait editor. It does this by instantiating and arranging the individual trait editors it is comprised of, and then coordinating their user input events so that all of the individual editors stay synchronized. Note that this only applies to the custom style, which typically looks something like:
[image: image15.png]
The simple style uses a single text entry control and does not create a composite editor from the individual trait editors. It typically looks something like:
[image: image16.png]
TraitEditorFile
An editor that allows the user to select or enter a file name. The simple and custom style are the same: a text entry field for typing or editing the file name, and a Browse… button that pops up a file dialog that allows the user to select the file from a hierarchical tree view. It typically looks something like:

[image: image17.png]
The file dialog that appears when the user clicks the Browse… button is platform and GUI toolkit specific, but typically looks something like:
[image: image18.png]
TraitEditorColor
An editor that allows the user to select a color. The simple style displays a read-only text field that shows the current trait color value. It typically looks something like:
[image: image19.png]
Clicking on the text field displays a pop-up color selection dialog that allows the user to interactively select the desired color. The dialog is platform and GUI toolkit specific, but typically looks something like:
[image: image20.png]
The custom style displays a large color sample showing the current trait color value, and a number of smaller color chips the user can click on to select a new color. It typically looks something like:

[image: image21.png]
Clicking on the large color swatch displays the same pop-up color selection dialog used by the simple style.

TraitEditorFont
An editor that allows the user to select a font. The simple style displays a read-only text field that shows the current trait font value. It typically looks something like:
[image: image22.png]
Clicking on the text field displays a pop-up font selection dialog that allows the user to interactively select the desired font. The dialog is platform and GUI toolkit specific, but typically looks something like:

[image: image23.png]
The custom style displays a read only text field showing the current trait font value, as well as two drop-down comboboxes for selecting a new font family name or point size. It typically looks something like:

[image: image24.png]
Clicking on the read-only text field at the top displays the same pop-up font selection dialog used by the simple style.

Using and Overriding a Default Trait Editor
As mentioned previously, every trait handler has a default trait editor associated with it. Therefore you only need to specify an explicit trait editor if the default editor does not meet your needs. The default trait editor associated with each trait handler supplied with the traits package is shown in the following table:

	TraitHandler
	Default TraitEditor

	TraitRange
	TraitEditorRange

	TraitEnum
	TraitEditorEnum

	TraitPrefixList
	TraitEditorEnum

	TraitMap
	TraitEditorEnum

	TraitPrefixMap
	TraitEditorEnum

	TraitCompound
	TraitEditorCompound

	TraitType
	TraitEditorText

	TraitInstance
	TraitEditorText

	TraitFunction
	TraitEditorText

The simplest way to override the default trait editor is to set the editor metadata property of the trait to the appropriate trait editor in the Trait function call.
For example, the following code shows how we might override the default trait editor when defining a trait representing a color based on a wxPython wxColour object:
from traits import *

from traits.wxtrait_sheet import TraitEditorColor

from wxPython import wx

class polygon (HasTraits):

 line_color = Trait(wx.wxColour(0, 0, 0),

 editor = TraitEditorColor())

This example defines a trait whose value must be an instance of wxColour, with a default value of wxColour(0, 0, 0). The wxColour class is the wxPython class used to represent colors. By setting the editor property of the Trait in the constructor call, we specify that we want to use a TraitEditorColor color editor instead of the default TraitEditorText text editor, which is the default trait editor for the TraitInstance trait handler class used by the trait.
Note that a single trait editor instance can be used by any number of traits, so it is not necessary to instantiate a new copy of a trait editor for every trait that uses it. For example, the next example shares a common color editor between two different color trait definitions:
from traits import *

from traits.wxtrait_sheet import TraitEditorColor

from wxPython import wx

color_editor = TraitEditorColor()

class polygon (HasTraits):

 line_color = Trait(wx.wxColour(0, 0, 0),

 editor = color_editor),

 fill_color = Trait(wx.wxColour(255, 255, 255),

 editor = color_editor)

Editing Traits
You allow a user to edit the traits of an object by invoking the edit_traits method on the object:

edit_traits(traits = None)
The traits argument specifies which of the objects traits you want to allow the user to edit.

If traits is omitted or None, the object’s editable_traits method is called to determine what traits should be edited. The default implementation of editable_traits:

· Checks to see if the object has an __editable_traits__ attribute defined. If it does, its value is used to determine what object traits are to be edited.
· If __editable_traits__ is not defined, then a sorted list of all object trait names is used to determine the set of traits to be edited.

If the traits argument is not omitted or None, it can be any of the following:

· A string specifying the name of a single object trait to be edited.

· A list or tuple of strings specifying the names of object traits to be edited.

· A list or tuple of trait descriptors specifying the object traits to be edited.

· A TraitGroup instance.

· A list or tuple of TraitGroup instances.

TraitGroups and trait descriptors are described in more detail in the next section. They basically allow you to have more control over the visual appearance and organization of the trait editor created to edit the object’s traits.

The following is a simple example of using the edit_traits method:

class Person (HasTraits):

 name = Str
 age = Int
 weight = Float
bill = Person()

bill.edit_traits()

In this example, no arguments were supplied to the edit_traits method. As a result, the editable_traits method is invoked internally to determine which traits are to be edited. Since the Person class and bill instance have no __editable_traits__ property defined, the traits to be edited are determined from a sorted list of the object’s trait names: [‘age’, ‘name’, ‘weight’]. Therefore, the trait editor constructed would like something like the following:

[image: image25.png]
If we modify the above example as follows:

class Person (HasTraits):

 __editable_traits__ = [‘name’, ‘weight’]

 name = Str
 age = Int
 weight = Float
bill = Person()

bill.edit_traits()

the resulting trait editor would now look something like:

[image: image26.png]
We could achieve exactly the same results using the following code:

class Person (HasTraits):

 name = Str
 age = Int
 weight = Float
bill = Person()

bill.edit_traits([‘name’, ‘weight’])

If we modify just the last line of the preceding example to:

bill.edit_traits(‘name’)

we would end up with a trait editor that looks something like the following:

[image: image27.png]
So far we have looked at some of the simpler ways of using the edit_traits method. While easy to set up and use, in some cases these techniques may not provide as much control over the layout and labeling of the resulting trait editor as we would like. In the next section we will describe more sophisticated ways of creating a traits editor.
Controlling Trait Editor Layout

In the previous section, you saw how easy it is to create a trait editor for an object either completely automatically, or by simply enumerating the names of the traits you want to edit. The only down side of this approach is the relatively small degree of control you have over the layout and labeling of the resulting trait editor.

The traits package provides a way for you to exert more control over the look and feel of a trait editor through the use of TraitGroup objects. Using TraitGroup objects allows you to specify such things as:

· The exact label to use for a trait, in cases where the trait name may not be a suitable label.

· The horizontal and vertical layout of individual trait editor fields.

· The division of large sets of traits into notebook pages containing related traits.
· The specific style of editor (i.e. simple or custom) to use, either globally, or by group or individual traits.

A TraitGroup, or a list or tuple of TraitGroups, can be used in place of trait names when specifying traits to be edited. Therefore they can be used as the traits argument to the edit_traits method, as the result of the editable_traits method, or as the value of the __editable_traits__ property.
The constructor for a TraitGroup object has the form:

TraitGroup(value, value, …, [trait = value, trait = value, …])
Creates an instance of the TraitGroup class. The contents of the TraitGroup are determined by the values specified as arguments. Each value can be one of the following:

· Another TraitGroup instance.

· A string specifying a trait name to be edited.

· A trait descriptor describing a trait to be edited.

In addition, any of the TraitGroup’s traits can be initialized by specifying the appropriate trait = value information.
A TraitGroup object controls the layout and other aspects of it content items. The order in which the content items are specified determines the order they are displayed in the resulting trait editor. TraitGroups can be nested to provide additional control over the layout of multiple groups of related traits.

A trait descriptor is a tuple or list of up to four items that describes a single trait to be edited, and provides more information than just the trait name. The format of a trait descriptor is:

(name, label, style, editor)
where:

name
The name of the trait to be edited.

label
The label to use for the trait in the trait editor.

style
The style of trait editor to use for the trait (i.e. ‘simple’ or ‘custom’).

editor
The trait editor to use for editing the trait.

The name, label and style elements are all strings. The elements are positional, but only the name element must be specified. The editor element must be an instance of a subclass of TraitEditor, but is optional and may be specified at any position in the list or tuple.

Note that there are also a few special case types of values that can be specified to visually separate consecutive items in the trait editor:
‘-‘

A string consisting of a single dash means that a horizontal separator line should be added to the trait editor at the point where the dash occurs.

‘ ‘

A string consisting of a single space means that a small amount of additional blank space should be inserted into the trait editor at the point where the space occurs.

‘nnn’

A string consisting solely of decimal digits means that nnn pixels of white space should be added to the trait editor at the point where the numeric string occurs.

The traits defined for a TraitGroup instance are:

label
A label to be applied to the entire contents of the TraitGroup. Normally a groupbox is drawn around the entire contents of the TraitGroup. Label is used as the label for the groupbox. Its value may be None or a string. The default value is None, which means that the groupbox surrounding the TraitGroup will not have a label.

style
Specifies the default trait editor style to use for each item in the TraitGroup. The value can be None, ‘simple’ or ‘custom’ (or any unique prefix). The default value is None, which means that the default style is inherited from the TraitGroup the TraitGroup is contained in, or ‘simple’ if the TraitGroup is not contained in another TraitGroup.

Note that the style only applies to items in the TraitGroup which do not have an explicit editor style defined.
orientation
Specifies whether the contents of the TraitGroup should be laid out horizontally or vertically. The value must be either ‘vertical’ or ‘horizontal’ (or any unique prefix), with the default value being ‘vertical’.

show_border
Specifies whether or not a groupbox border should be drawn around the contents of the TraitGroup. The value can be ‘true', 't', 'yes', 'y', 'on' or 1, all of which mean the border should be drawn; or ‘false’, ‘f’, ‘no’, ‘n’, ‘off’ or 0, all of which mean that the border should not be drawn. The default value is that the border should be drawn.

show_labels
Specifies whether or not labels should appear to the left of each trait editor contained in the TraitGroup. The legal values are the same as for the show_border trait, with true values indicating that labels should appear, and false values indicating that they should not. The default value is that labels should appear.

object
Specifies the object whose traits are to be edited. The value may be None or any object having traits. The default value is None, which means that all of the TraitGroup’s contents are assumed to be traits of the original object being edited.
Setting the object trait to a different object is useful in cases where you wish to make a group of objects appear to be a single logical object from the point of view of the user. Thus setting this trait allows a single trait editor window to edit the traits of several objects at the same time.

One additional feature of TraitGroups and the edit_traits method has to do with whether the traits to be edited consist of a single TraitGroup or a list or tuple of TraitGroup instances.

If a single TraitGroup is specified, the trait editor will consist of a single canvas containing the trait editors for all of the TraitGroup’s contents.

If a list or tuple of TraitGroup’s is specified, the trait editor will be a notebook containing a separate page for each TraitGroup in the list or tuple. Each notebook page will contain all of the trait editors for the contents of the page’s associated TraitGroup object.

At this point, perhaps a few simple examples of how TraitGroups can be used would help clarify things a little more. We’ll start with a variation of the example we used previously:
class Person (HasTraits):

 name = Str
 marital_status = Trait(‘single’, ‘married’, ‘divorced’)
 children = Range(0, 11)
 age = Range(0, 120)

 weight = Range(0.0, 400.0)
 __editable_traits__ = TraitGroup(

 TraitGroup(‘name’),

 TraitGroup(‘marital_status’, ‘children’),

 TraitGroup(‘age’, ‘weight’))

bill = Person()

bill.edit_traits()

With these changes, the resulting trait editor would look something like:

[image: image28.png]
In this example you should notice:

· The object’s traits have been organized into three separate groups.

· Each group has, by default, a groupbox border drawn around it.

· Each group is, by default, laid out vertically.

We’ll now change just the __editable_traits__ definition to try another variation:

__editable_traits__ = TraitGroup(

 TraitGroup(‘name’),

 TraitGroup(

 TraitGroup(‘marital_status’, ‘children’,

 label = ‘Family’),

 TraitGroup(‘age’, ‘weight’,

 label = ‘Personal’),
 orientation = ‘horizontal’,

 show_border = ‘no’))
Having made these changes, the resulting trait editor should now look something like:
[image: image29.png]
In this case we have:

· Added another level of TraitGroup with a horizontal orientation.

· Added labels to two of the TraitGroup’s groupbox borders.

If we simply change the outermost TraitGroup’s style trait to ‘custom’:

__editable_traits__ = TraitGroup(

 TraitGroup(‘name’),

 TraitGroup(

 TraitGroup(‘marital_status’, ‘children’,

 label = ‘Family’),

 TraitGroup(‘age’, ‘weight’,

 label = ‘Personal’),

 orientation = ‘horizontal’,

 show_border = ‘no’),

 style = ‘custom’)

we end up with the following trait editor:

[image: image30.png]
In this case we have specified that all trait editors contained within the TraitGroup should, by default, use the trait editor’s custom style.

Finally, we’ll illustrate creating a multi-page notebook editor:

__editable_traits__ = [

 TraitGroup(‘name’,

 label = ‘Name’),

 TraitGroup(‘marital_status’, ‘children’,

 label = ‘Family’),

 TraitGroup(‘age’, ‘weight’,

 label = ‘Personal’)]

which creates a trait editor which looks something like the following, which shows just one of the editor’s three notebook pages:

[image: image31.png]
Creating a TraitEditor Subclass

In addition to the trait editors supplied with the traits package, it is also possible to create your own editors by subclassing from TraitEditor or one of its subclasses. In practice, you normally subclass from either wxTraitEditor, which is a wxPython specific subclass of TraitEditor, or tkTraitEditor, which is a Tkinter specific subclass of TraitEditor.
One thing to keep in mind when writing a trait editor is that a trait editor instance is typically associated with a trait definition, and more than one object trait may share the same trait definition. As a direct consequence of this, it is possible to use the same trait editor to edit several traits at once. Therefore a trait editor should only maintain state related to the trait it is associated with, and not the object or individual traits using it. State information associated with a particular object and trait is usually stored in the widgets or controls used to implement the editor. These widgets are passed as arguments to various TraitEditor methods, either directly or indirectly as part of a user interface event object.
In creating a trait editor subclass, there are a number of methods you need to be aware of; some provide assistance in creating n editor, and others need to be overridden in order to create a new editor.

The helper methods supplied by the base TraitEditor, wxTraitEditor or tkTraitEditor classes are:

set (object, trait_name, value, handler)

Sets the trait_name trait of object to value. This is the method your trait editor should call whenever you want to change the value of an object trait being edited. It is logically equivalent to performing setattr(object, trait_name, value), but allows the specified handler object to be notified of the change to the object’s trait value. Handler is an instance of TraitSheetHandler, or one of its subclasses, that is used to coordinate trait editor actions with the underlying application, and is provided to your trait editor as part of its editing context.
error (description, excp, parent)

Displays an error dialog shown after the user attempts to set an invalid value for an object trait. Description is a string describing the editing context. Parent is a GUI toolkit specific widget specifying the parent window to use when displaying the error dialog. Excp is a Python exception that contains information about why the trait assignment was invalid, and usually results from wrapping a try/except block around a call to the set method described above.

Both description and parent are normally supplied as part of the context in which the trait editor is called, and so only need to be passed through to the error method.
str (object, trait_name)

Return the string representation of the trait_name trait of object.

The methods you need to define or override are:

simple_editor (object, trait_name, description, handler, parent)

Create the simple style of editor defined by your trait editor. Unless you are subclassing an existing concrete trait editor (i.e. not TraitEditor), you must implement this method.
The result returned should be a GUI toolkit specific widget or control that represents your trait editor. If your editor requires several widgets to accomplish its task, then you should return the top-level container widget the other widgets are imbedded in.
Object and trait_name specify the object and trait to be edited. Description is the label associated with the object trait. Handler is the instance of TraitSheetHandler that coordinates the actions of the trait editor with the underlying application. Parent is the container widget the returned widget should be added to.
Note that your trait editor does not normally need to do anything with the description and handler arguments. The caller of the method automatically assigns object, trait_name, description and handler to attributes of the returned widget with the same name (i.e. result.object, result.trait_name, result.description and result.handler). This allows the trait editor to retrieve these values in other method calls that receive the returned widget, or an event object that can yield the widget, as an argument.
In addition to creating the editor widget, your trait editor should also set-up any event handling mechanisms it needs to handle user interface events associated with the editor.

custom_editor (object, trait_name, description, handler, parent)

Create the custom style of editor defined by your trait editor. The default implementation of this method simply returns the result of calling the simple_editor method described above. All of the arguments are the same as for the simple_editor method.
popup_editor (object, trait_name, description, handler, parent)

Create the popup style of editor defined by your trait editor. Implementing this method is optional, and is only needed in cases where either your simple or custom editor use it.

For example, the simple_editor method implemented by the wxTraitEditor and tkTraitEditor classes create a read-only text control containing the current value of the associated trait. Clicking the text control displays the editor’s popup editor if the popup_editor method is defined. All of the arguments to popup_editor have the same meaning as for the simple_editor method.
Unlike the simple_editor and custom_editor methods, the editor created by the popup_editor method must be a complete, self-contained dialog. Also, it is the responsibility of the method to save any or all of its arguments in the created dialog for later use by its event handling routines.

Creating a TraitSheetHandler Subclass
If you are writing an application that makes use of the trait editing capabilities of the traits package, there are several parts of the trait editing process that you may want to control, such as specifying the initial position of a trait editor dialog, being notified when one of your object’s traits is modified, and so on.

The traits package allows you to interact with the editing process by providing a TraitSheetHandler instance when editing begins. A TraitSheetHandler object defines a number of callback methods that are invoked at appropriate times in the editing cycle.
Note that it is not required to provide a TraitSheetHandler, since a default handler will be used if one is not specified.

In cases when you do want to provide a handler, create a new subclass of TraitSheetHandler and override any or all of the following methods:

init (trait_sheet, object)

Optionally create additional application specific content to add to the trait editor window specified by trait_sheet. Object is the object the trait editor is editing.

This method is called after the trait sheet window has been constructed, but before its contents have been laid out or shown to the user. You are free to add additional application specific content to the window, such as icons or buttons.

The result should either be None, if you added no additional content to the window, or the widget you added. If you need to add several widgets, imbed them in a container widget, then return the container widget as the result. The default implement simply returns None to indicate that no additional content was added.

position (trait_sheet, object)

Set the initial position of the trait editor window specified by trait_sheet. This method is called after the trait editor window has been created, but before it has been displayed to the user. Object is the object the trait editor is editing, and may be useful in determining the position of the editor in cases where object has a visual representation (i.e. you may wish to position the editor so that it does not obscure object).

The result should be 1 if trait_sheet was positioned successfully; and 0 if you want the caller to determine the initial position of the editor window. The default implementation simply returns 0, which causes the caller to position the editor in the center of the display.

close (trait_sheet, object)

Notifies your application that the user is attempting to close the trait editor window specified by trait_sheet. Object is the object the trait editor is editing. Return 1 if you want the editor window to close; and 0 otherwise. The default implementation simply returns 1.

changed (object, trait_name, new_value, old_value, is_set)
Notification that the trait editor has modified the trait_name trait of object. New_value is the new value assigned to the trait, and old_value is the previous value. If is_set is 1, the trait changed as a result of user editing. If is_set is 0, the trait changed as a result of the user restoring the original value of the trait. There is no result returned by the method. The default implementation does nothing.
The TraitSheetHandler base class does not have a constructor method, so you are free to define whatever type of constructor you need for your subclass.

Trait Editor Constructors
In addition to invoking the edit_traits and configure_traits method on an object with traits, the traits package also provides constructors for explicitly creating trait editors:

TraitSheetDialog(object, traits = None, handler = default_trait_sheet_handler,

 parent = None, title = None)

Creates a self contained trait editor dialog for editing the specified traits of object. The result is the trait editor dialog created. If traits is omitted or None, the result returned by object’s editable_traits method is used to define the set of traits to be edited, as described previously. This is the constructor used by the object’s edit_traits method to create the object’s trait editor.
Handler is an instance of TraitSheetHandler used to provide application callbacks from the editor, as described in the Creating a TraitSheetHandler Subclass section. If omitted, the default trait sheet handler provided by the traits package is used.

Parent is the application window to be used as the parent window for the created dialog window. It may be omitted or None.

Title is the string to use as the title for the trait editor window. If omitted or None, the title is set to object_classname Traits, where object_classname is the name of object’s class.

TraitSheet (parent, object, traits = None, handler = default_trait_sheet_handler)

Creates an imbedded trait editor for editing the specified traits of object. The result is the trait editor widget created. If traits is omitted or None, the result returned by object’s editable_traits method is used to define the set of traits to be edited, as described previously.
This constructor is useful for creating a trait editor that can be imbedded within a larger application window, as shown in the following figure which shows a trait editor created using TraitSheet (outlined in red) alongside a hierarchical view of an application’s editable objects:

[image: image32.png]
Parent is widget the trait editor is to be imbedded in.
Handler is an instance of TraitSheetHandler used to provide application callbacks from the editor, as described in the Creating a TraitSheetHandler Subclass section. If omitted, the default trait sheet handler provided by the traits package is used.

Using Trait Editors in Non-GUI Applications

Up until now, it has been assumed that a trait editor is being used in an application that already has a graphical user interface, of which the trait editor is simply one component. However, it is also possible to create and use trait editors in applications which do not normally have a graphical user interface by using the configure_traits method defined on every object that has traits:
configure_traits(filename = None, edit = 1, traits = None)
Creates, displays and runs a modal trait editor dialog for editing the specified traits of the receiving object as if it were a complete, self-contained, graphical user interface application. Control does not resume in the calling application until the trait editor has been closed. If traits is omitted or None, the result returned by the receiving object’s editable_traits method is used to define the set of traits to be edited, as described previously.

Filename is the name of a file containing a (possibly) previously pickled representation of the receiving object. The method will attempt to open and unpickle filename’s contents into the object before editing begins.
When editing is complete, the method will attempt to pickle the updated contents of the object back to filename. If filename does not exist, the object is not modified before editing begins.
If filename is omitted or None, no unpickling or pickling of the receiving object is performed before or after editing the object.

If edit is non-zero (the default), a trait editor for editing the receiving object’s traits is created and display. If edit is 0, then no trait editor is created. Specifying edit as 0 may be useful in cases where you simply want the receiving object to be restored from the contents of filename, if it exists.

A scenario for using the configure_traits method might be something like the following:
· You are creating some type of client/server application.

· Both the client and the server have a number of configuration parameters.

· You decide to represent each configuration parameter as a trait. This will help ensure that each parameter has a reasonable default and that invalid values are not set by mistake.

· You further bundle the configuration parameters (represented by traits) into separate ClientConfig and ServerConfig objects.

· Now all you have to do to configure the client or server is create a simple script that creates a ClientConfig or ServerConfig instance and then invokes the object’s configure_traits method to allow the user to visually edit each configuration parameter and automatically save the result to a pickled configuration file.

· When the client or server program starts up, it also creates an appropriate instance of either the ClientConfig or ServerConfig object and invokes the configure_traits method on it, specifying the same filename used by the configure script, but specifying the edit parameter as 0.

This will attempt to load the current configuration from the specified file, but with the fallback of using the configuration defaults if the configuration script has not been run yet. And since the edit parameter is 0, no trait editor is created.

A partial implementation of the server elements of such a scenario using the Python modules:
· server_config.py

· server.py

might look something like:

server_config.py:

from traits import *

class ServerConfig (HasTraits):

 …server configuration trait definitions…

 __editable_traits__ = …optional TraitGroup definitions…

if __name__ == ‘__main__’:

 ServerConfig().configure_traits(‘server_config.save’)
and:

server.py:

from server_config import ServerConfig

…

server_config = ServerConfig()

server_config.configure_traits(‘server_config.save’, 0)

…

…server code using ‘server_config’ trait values…

A trait editor created using the configure_traits method is similar to trait editor dialogs shown previously, with the addition of buttons to save, or cancel saving, the object’s contents to the specified file. For example, modifying one of the previous examples:

class Person (HasTraits):

 name = Str
 age = Int

 weight = Float
bill = Person()

bill.configure_traits(‘bill.save’)

results in a trait editor looking something like:

[image: image33.png]
One final note about the configure_traits method is that since it is designed for use by applications that otherwise do not have a graphical user interface, it will automatically use whatever GUI toolkit (wxPython or Tkinter) is available. If both are installed, it will choose wxPython. If neither is installed, an exception will be raised.
Appendix A: The Trait Reference
The purpose of this appendix is to summarize the information presented in this document in a concise set of tables, as a handy reference for developers already familiar with the traits package.
Appendix A-1: TraitHandler Reference
	TraitHandler
	Description

	TraitType
	TraitType(type_or_instance)

	TraitInstance
	TraitInstance(type_class_or_instance, or_none = False)

	ThisClass
	ThisClass(or_none = False)

	TraitFunction
	TraitFunction(function)

	TraitRange
	TraitRange(low, high)

	TraitString
	TraitString(minlen = 0, maxlen = sys.maxint, regex = ‘’)

	TraitEnum
	TraitEnum(value1 [, value2, …, valuen])

TraitEnum(list_of_values)

	TraitPrefixList
	TraitPrefixList(value1 [, value2, …, valuen])

TraitPrefixList(list_of_values)

	TraitMap
	TraitMap(mapping)

	TraitPrefixMap
	TraitPrefixMap(mapping)

	TraitList
	TraitList(trait = None, minlen = 0, maxlen = sys.maxint)

	TraitDict
	TraitDict(key_trait = None, value_trait = None)

	TraitCompound
	TraitCompound (handler1 [, handler2, …, handlern])

Appendix A-2: Predefined Trait Reference

	Trait
	Description

	Any
	Allows any value (default = None).

	Int
	Allows integer values (default = 0).

	Long
	Allows long integer values (default = 0L).

	Float
	Allows floating point values (default = 0.0).

	Complex
	Allows complex number values (default = 0+0j).

	Str
	Allows strings values (default = ‘’).

	Unicode
	Allows Unicode string values (default = u’’).

	Bool
	Allows Boolean true/false values (default = False).

	true
	Allows Boolean true/false values (default =True).

	false
	Allows Boolean true/false values (default = False).

	List
	Allows list values (default = []).

	Tuple
	Allows tuple values (default = ()).

	Dict
	Allows dictionary values (default = {}).

	Function
	Allows function (i.e. callable) values (default = None).

	Method
	Allows bound or unbound method values (default = None).

	Class
	Allows old style class values (default = None).

	Instance
	Allows old style instance values (default = None).

	Type
	Allows type values (default = None).

	Module
	Allows module values (default = None)

	This
	Allows values of same class or subclass (default = None).

	self
	Allows values of same class or subclass (default = containing object).

	Python
	Allows standard Python attribute behavior (no default).

	Disallow
	Prevents access to associated attribute name.

	ReadOnly
	Allows read-only access (default = Undefined).

	undefined
	Allows any value to be assigned (default = Undefined).

	missing
	Allows any value to be assigned (default = Missing).

	ListInt
	Allows lists containing integer values (default = []).

	ListFloat
	Allows lists containing floating point values (default = []).

	ListStr
	Allows lists containing string values (default = []).

	ListUnicode
	Allows lists containing unicode string values (default = []).

	ListComplex
	Allows lists containing complex number values (default = []).

	ListBool
	Allows lists containing boolean true/false values (default =[]).

	ListFunction
	Allows lists containing function (callable) values (default = []).

	ListMethod
	Allows lists containing bound/unbound method values (default = []).

	ListClass
	Allows lists containing old style class values (default = []).

	ListInstance
	Allows lists containing old style instance values (default = []).

	ListThis
	Allows lists containing same class or subclass values (default = []).

	DictStrAny
	Allows dictionary with arbitrary key and value types (default= {}).

	DictStrStr
	Allows dictionaries with string keys and values (default = {}).

	DictStrInt
	Allows dictionaries with string keys and integer values (default = {}).

	DictStrLong
	Allows dictionaries with string keys and long values (default = {}).

	DictStrFloat
	Allows dictionaries with string keys and float values (default = {}).

	DictStrBool
	Allows dictionaries with string keys and boolean values (default = {}).

	DictStrList
	Allows dictionaries with string keys and list values (default = {}).

Appendix A-3: Trait Factory Functions
	Trait Function
	Description

	Trait(…)
	Base trait factory function.

	Constant(value)
	Constant trait with value = value.

	Any(value)
	Any valued trait with default = value

	Int(value)
	Integer valued trait with default = value.

	Long(value)
	Long integer valued trait with default = value.

	Float(value)
	Float valued trait with default = value.

	Complex(value)
	Complex number valued trait with default = value.

	Str(value)
	String valued trait with default = value.

	Unicode(value)
	Unicode string valued trait with default = value.

	Bool(value)
	Boolean valued trait with default = value.

	Range(low, high, value)
	int/float in range low<=value<=high, default=value

	Tuple([value,][t1, …, tn])
	Tuple of length n with elements of type ti.,default=value

	List(value, trait, minlen, maxlen)
	List of type trait, minlen<=len(list)<=maxlen, default = default

	Dict(key_trait, value_trait, value)
	Dictionary with keys of type key_trait and values of type value_trait with default = value

