
Traits User Manual

David C. Morrill
Janet M. Swisher

Version 1.3

12-Sep-2007

©2005, 2006, 2007 Enthought, Inc.

All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source or derived format (for example, Portable Document Format or
Hypertext Markup Language) must retain the above copyright notice, this list of
conditions and the following disclaimer.

Neither the name of Enthought, Inc., nor the names of contributors may be used to
endorse or promote products derived from this document without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.
515 Congress Avenue
Suite 2100
Austin TX 78701
1.512.536.1057 (voice)
1.512.536.1059 (fax)
http://www.enthought.com
info@enthought.com

mailto:info@enthought.com
http://www.enthought.com/

Table of Contents

1 Introduction ... 1
1.1 What Are Traits? ... 1
1.2 Background .. 3

2 Defining Traits: Initialization and Validation 5
2.1 Simple Trait Definitions ... 6

2.1.1 Predefined Traits .. 6
2.1.2 Defining By Example ... 15
2.1.3 List of Possible Values ... 15

2.2 The Trait() Function .. 16
2.2.1 Compound Trait Parameters .. 18
2.2.2 Keywords .. 20

2.3 Mapped Traits ... 21
2.4 Trait Handlers ... 24

2.4.1 TraitString ... 25
2.4.2 TraitPrefixList ... 26
2.4.3 TraitPrefixMap ... 27

3 Advanced Topics ... 28
3.1 Custom Trait Handlers ... 28

3.1.1 Example Custom Trait Handler 28
3.2 Trait Notification ... 29

3.2.1 Static Notification .. 30
3.2.2 Dynamic Notification ... 32
3.2.3 Trait Events ... 33
3.2.4 Undefined Object .. 35

3.3 Trait Delegation ... 35
3.3.1 Delegate() Function ... 35

3.4 Initialization and Validation Revisited 38
3.4.1 Dynamic Initialization ... 38
3.4.2 Overriding Default Values in a Subclass 39
3.4.3 Reusing Trait Definitions .. 39
3.4.4 Trait Attribute Definition Strategies 40
3.4.5 Type-Checked Methods .. 45

3.5 Useful Methods on HasTraits ... 46
3.5.1 add_trait() .. 46

12-Sep-2007 i

Traits User Manual

3.5.2 clone_traits() ... 46
3.5.3 set() ... 46
3.5.4 add_class_trait() ... 47

3.6 Performance Considerations of Traits 48

Revision History

Version Date Description

1.0 12-May-05 Initial published version.

1.1 9-Feb-06 Converted source files from
OpenOffice.org to Microsoft Word.
Removed sections on Traits UI, as these
are now covered in the Traits UI User
Guide.

1.2 3-Jan-07 Converted to a template that is more
compatible with Pydoh. Removed
“Syntax and Class Reference”, as this
content is now covered in the Traits API
Reference.

1.3 12-Sep-07 No content changes. Modified formatting
to reduce differences in display between
Word and OpenOffice.org Writer.

ii 12-Sep-2007

1 Introduction
The Traits package for the Python language allows Python
programmers to use a special kind of type definition called a trait.
This document introduces the concepts behind, and usage of, the
Traits package.

For more information on the Traits package, refer to the Traits web
page at http://code.enthought.com/traits . This page contains links
to downloadable packages, the source code repository, and the
Traits development website. Additional documentation for the
Traits package is available from the Traits web page, including:

• Traits API Reference
• Traits UI User Guide
• Traits Technical Notes

1.1 What Are Traits?
A trait is a type definition that can be used for normal Python
object attributes, giving the attributes some additional
characteristics:

• Initialization—A trait has a default value, which is automatically
set as the initial value of an attribute before its first use in a
program.

• Validation—A trait attribute is manifestly typed. The type of a
trait-based attribute is evident in the code, and only values that
meet a programmer-specified set of criteria (i.e., the trait
definition) can be assigned to that attribute. Note that the
default value need not meet the criteria defined for assignment
of values.

• Delegation—The value of a trait attribute can be contained
either in the defining object or in another object that is delegated
to by the trait.

• Notification—Setting the value of a trait attribute can notify
other parts of the program that the value has changed.

• Visualization—User interfaces that allow a user to interactively
modify the values of trait attributes can be automatically
constructed using the traits’ definitions. This feature requires
that a supported GUI toolkit be installed. However, if this

12-Sep-2007 1

http://code.enthought.com/traits

Traits User Manual

feature is not used, the Traits package does not otherwise
require GUI support.

A class can freely mix trait-based attributes with normal Python
attributes, or can opt to allow the use of only a fixed or open set of
trait attributes within the class. Trait attributes defined by a class
are automatically inherited by any subclass derived from the class.

The following example illustrates each of the features of the Traits
package. These features are elaborated in the rest of this guide.

all_traits_features.py --- Shows primary features of the Traits
package
from enthought.traits.api import Delegate, HasTraits, Int, Trait

class Parent(HasTraits):
 last_name = Trait('') # INITIALIZATION: 'last_name' is
 # initialized to ''

class Child(HasTraits):
 age = Int
 father = Trait(Parent) # VALIDATION: 'father' must be a Parent
 # instance
 last_name = Delegate('father') # DELEGATION: 'last_name' is
 # delegated to father's
 # 'last_name'

 def _age_changed(self, old, new): # NOTIFICATION: This method
 # is called when 'age'
 # changes
 print 'Age changed from %s to %s ' % (old, new)

"""
>>> joe = Parent()
>>> joe.last_name = 'Johnson'
>>> moe = Child()
>>> moe.father = joe
>>> # DELEGATION in action
>>> print "Moe's last name is %s " % (moe.last_name)
Moe's last name is Johnson
>>> # NOTIFICATION in action
>>> moe.age = 10
Age changed from 0 to 10
>>> # VISUALIZATION: Displays a UI for editing moe's attributes
>>> # (if a supported GUI toolkit is installed)
>>> moe.configure_traits()
"""

In addition, traits can be used to define type-checked method
signatures. The Traits package ensures that the arguments and
return value of a method invocation match the traits defined for the

2 12-Sep-2007

Traits User Manual

parameters and return value in the method signature. This feature
is described in Section 3.4.5, “Type-Checked Methods”.

1.2 Background
Python does not require the data type of variables to be declared.
As any experienced Python programmer knows, this flexibility has
both good and bad points. The Traits package was developed to
address some of the problems caused by not having declared
variable types, in those cases where problems might arise. In
particular, the motivation for Traits came as a direct result of work
done on Chaco, an open source scientific plotting package.

Chaco provides a set of high-level plotting objects, each of which
has a number of user-settable attributes, such as line color, text font,
relative location, and so on. To make the objects easy for scientists
and engineers to use, the attributes attempt to accept a wide variety
and style of values. For example, a color-related attribute of a
Chaco object might accept any of the following as legal values for
the color red:

• 'red'
• 0xFF0000
• (1.0, 0.0, 0.0, 1.0)

Thus, the user might write:
plotitem.color = 'red'

In a predecessor to Chaco, providing such flexibility came at a cost:

• When the value of an attribute was used by an object internally
(for example, setting the correct pen color when drawing a plot
line), the object would often have to map the user-supplied
value to a suitable internal representation, a potentially
expensive operation in some cases.

• If the user supplied a value outside the realm accepted by the
object internally, it often caused disastrous or mysterious
program behavior. This behavior was often difficult to track
down because the cause and effect were usually widely
separated in terms of the logic flow of the program.

So, one of the main goals of the Traits package is to provide a form
of type checking that:

12-Sep-2007 3

Traits User Manual

• Allows for flexibility in the set of values an attribute can have,
such as allowing 'red', 0xFF0000 and (1.0, 0.0, 0.0, 1.0) as
equivalent ways of expressing the color red.

• Catches illegal value assignments at the point of error, and
provides a meaningful and useful explanation of the error and
the set of allowable values.

• Eliminates the need for an object’s implementation to map user-
supplied attribute values into a separate internal representation.

In the process of meeting these design goals, the Traits package
evolved into a useful component in its own right, satisfying all of
the above requirements and introducing several additional,
powerful features of its own. In projects where the Traits package
has been used, it has proven valuable for enhancing programmers'
ability to understand code, during both concurrent development
and maintenance.

The Traits package works with version 2.2 and later of Python, and
is similar in some ways to the Python property language feature.
Standard Python properties provide the similar capabilities to the
Traits package, but with more work on the part of the programmer.

4 12-Sep-2007

Traits User Manual

2 Defining Traits: Initialization
and Validation

Using the Traits package in a Python program requires the
following operations:

1. Import the names you need from the Traits package
(enthought.traits.api).

2. Define the traits you want to use.

3. Define classes derived from HasTraits (or a subclass of
HasTraits), with attributes that use the traits you have defined.

In practice, steps 2 and 3 are often combined by defining traits in-
line in an attribute definition. This strategy is used in many
examples in this guide. However, you can also define traits
independently, and reuse the trait definitions across multiple
classes and attributes. Type-checked method signatures typically
use independently defined traits.

In order to use trait attributes in a class, the class must inherit from
the HasTraits class in the Traits package (or from a subclass of
HasTraits). The following example defines a class called Person
that has a single trait attribute weight, which is initialized to 150.0
and can only take floating point values.

 # minimal.py --- Minimal example of using traits.
from enthought.traits.api import HasTraits, Float

class Person(HasTraits):
 weight = Float(150.0)

In this example, the attribute named weight specifies that the class
has a corresponding trait called weight. The value associated with
the attribute weight (i.e., Float(150.0)) specifies a predefined
trait provided with the Traits package, which requires that values
assigned be of the standard Python type float. The value 150.0
specifies the default value of the trait.

The value associated with each class-level attribute determines the
characteristics of the instance trait identified by the attribute name.
For example:

12-Sep-2007 5

Traits User Manual

>>> from minimal import Person
>>> joe = Person()
>>> print joe.weight
150.0
>>> joe.weight = 161.9 # OK to assign a float
>>> joe.weight = 162 # OK to assign an int
>>> joe.weight = 'average' # Error to assign a string
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
89, in error
 raise TraitError, (object, name, self.info(),
value) enthought.traits.trait_errors.TraitError: The 'weight'
trait of a Person instance must be a value of type 'float', but a
value of average was specified.

In this example, joe is an instance of the Person class defined in the
previous example. The joe object has an instance attribute weight,
whose initial value is the default value of the Person.weight trait
(150.0), and whose assignment is governed by the Person.weight
trait’s validation rules. Assigning an integer to weight is acceptable
because there is no loss of precision (but assigning a float to an Int
trait would cause an error).

The Traits package allows creation of a wide variety of trait types,
ranging from very simple to very sophisticated. The following
section presents some of the simpler, more commonly used forms.

2.1 Simple Trait Definitions
Of the many methods for defining traits, some of the simplest
methods include:

• Using predefined traits
• Defining by example
• Defining a list of all possible values

Using a predefined trait was illustrated at the beginning of this
section by using the Float() function to create an attribute whose
value must be a floating point value.

2.1.1 Predefined Traits
The Traits package includes a number of predefined traits for
commonly used Python data types. Most of these predefined traits

6 12-Sep-2007

Traits User Manual

have factory functions that can take an argument, which becomes
the default value for the trait being defined. For example:
account_balance = Float(10.0)

The predefined traits also have an appropriate built-in default
value for the corresponding type. If you want to use the built-in
default value for the type, you can use the predefined trait name
without parentheses after it. The statements in the following
example are equivalent:
account_balance = Float(0.0)
account_balance = Float

The statements are equivalent because 0.0 is the built-in default
value for the predefined Float trait.

2.1.1.1 Predefined Traits for Simple Types
There are two categories of predefined traits corresponding to
simple types: those that coerce values, and those that cast values.
These categories vary in the way that they handle assigned values
that do not match the type explicitly defined for the trait. However,
they are similar in terms of the Python types they correspond to,
and their built-in default values, as listed in Table 1.

Table 1 Predefined defaults for simple types

Coercing
Trait

Casting
Trait

Python
Type

Built-in Default
Value

Bool CBool Boolean False

Complex CComplex Complex
number

0+0j

Float CFloat Floating
point
number

0.0

Int CInt Plain integer 0

Long CLong Long integer 0L

String CString String ''

Unicode CUnicode Unicode u''

12-Sep-2007 7

Traits User Manual

2.1.1.1.1 Trait Type Coercion

For trait attributes defined using the predefined “coercing” traits, if
a value is assigned to a trait attribute that is not of the type defined
for the trait, but it can be coerced to the required type, then the
coerced value is assigned to the attribute. If the value cannot be
coerced to the required type, a TraitError exception is raised. Only
widening coercions are allowed, to avoid any possible loss of
precision. Table 2 lists traits that coerce values, and the types that
each coerces.

Table 2 Type coercions permitted for coercing traits

Trait Coercible Types

Complex Floating point number, plain integer

Float Plain integer

Long Plain integer

Unicode String

2.1.1.1.2 Trait Type Casting

For trait attributes defined using the predefined “casting” traits, if a
value is assigned to a trait attribute that is not of the type defined
for the trait, but it can be cast to the required type, then the cast
value is assigned to the attribute. If the value cannot be cast to the
required type, a TraitError exception is raised. Internally, casting is
done using the Python built-in functions for type conversion:

• bool()
• complex()
• float()
• int()
• str()
• unicode()

The following example illustrates the difference between coercing
traits and casting traits.

>>> from enthought.traits.api import HasTraits, Float, CFloat
>>> class Person (HasTraits):
... weight = Float
... cweight = CFloat
>>>
>>> bill = Person()
>>> bill.weight = 180 # OK, coerced to 180.0
>>> bill.cweight = 180 # OK, cast to float(180)

8 12-Sep-2007

Traits User Manual

>>> bill.weight = '180' # Error, invalid coercion
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py",
line 89, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'weight' trait of a
Person instance must be a value of type 'float', but a value of
180 was specified.
>>>
>>> bill.cweight = '180' # OK, cast to float('180')
>>> print bill.cweight
180.0

2.1.1.2 Other Predefined Traits
The Traits package provides a number of other predefined traits
besides those for simple types, corresponding to other commonly
used data types, which are listed in Table 3. Refer to the Traits API
Reference, in the section for the module enthought.traits.traits, for
details. Most can be used either as factory functions accepting a
default value as an argument, or as simple names, which use their
built-in default values.

Table 3 Predefined traits and trait factories beyond simple types

Predefined
Traits

Trait Factories

Any Any(value = None, **metadata)

Array Array(typecode = None,
 shape = None,
 value = None,
 **metadata)

Button Button(label = '',
 image = None,
 style = 'button',
 orientation = 'vertical',
 width_padding = 7,
 height_padding = 5,
 **metadata)

Callable

12-Sep-2007 9

Traits User Manual

Predefined
Traits

Trait Factories

CArray CArray(typecode = None,
 shape = None,
 value = None,
 **metadata)

Class

Code Code(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

Color Color(*args, **metadata)

Constant Constant(value, **metadata)

Dict,
DictStrAny,
DictStrBool,
DictStrFloat,
DictStrInt,
DictStrList,
DictStrLong,
DictStrStr

Dict(key_trait = None,
 value_trait = None,
 value = None,
 items = True,
 **metadata)

Directory Directory(value = '',
 auto_set = False,
 **metadata)

Disallow

Enum Enum(*values, **metadata)

Event Event(*value_type, **metadata)

false

10 12-Sep-2007

Traits User Manual

Predefined
Traits

Trait Factories

File File(value = '',
 filter = None,
 auto_set = False,
 **metadata)

Font Font(*args, **metadata)

Function

generic_trait

HTML HTML(value = '', **metadata)

Instance(klass, args = None,
 kw = None,
 allow_none = True,
 **metadata)

KivaFont KivaFont(*args, **metadata)

List, ListBool,
ListClass,
ListComplex,
ListFloat,
ListFunction,
ListInstance,
ListInt,
ListMethod,
ListStr,
ListThis,
ListUnicode

List(trait = None,
 value = None,
 minlen = 0,
 maxlen = sys.maxint,
 items = True,
 **metadata)

Method

missing

Module

12-Sep-2007 11

Traits User Manual

Predefined
Traits

Trait Factories

Password Password(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

Property Property(fget = None,
 fset = None,
 fvalidate = None,
 force = False,
 handler = None,
 trait = None,
 **metadata)

Python

PythonValue PythonValue(value = None,
 **metadata)

Range Range(low = None,
 high = None,
 value = None,
 exclude_low = False,
 exclude_high = False,
 **metadata)

ReadOnly

Regex Regex(value = '',
 regex = '.*',
 **metadata)

RGBAColor RGBAColor(*args, **metadata)

RGBColor RGBColor(*args, **metadata)

self

12 12-Sep-2007

Traits User Manual

Predefined
Traits

Trait Factories

String String(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata

This

ToolbarButton ToolbarButton(label = '',
 image = None,
 style = 'toolbar',
 orientation =
 'vertical',
 width_padding = 2,
 height_padding = 2,
 **metadata)

true

Tuple Tuple(*traits, **metadata)

Type

UIDebugger UIDebugger(**metadata)

undefined

WeakRef WeakRef(klass =
'enthought.traits.HasTraits',
allow_none = False,
**metadata)

2.1.1.3 This
One predefined trait that merits special explanation is This. Use
This for attributes whose values must be of the same class (or a
subclass) as the enclosing class. The default value is None.

The following is an example of using This:

12-Sep-2007 13

Traits User Manual

this.py --- Example of This predefined trait
from enthought.traits.api import HasTraits, This

class Employee(HasTraits):
 manager = This

This example defines an Employee class, which has a manager trait
attribute, which accepts only other Employee instances as its value.
It might be more intuitive to write the following:

bad_self_ref.py --- Non-working example with self- referencing
class definition
from enthought.traits.api import HasTraits, Trait

class Employee(HasTraits):
 manager = Trait(Employee)

However, the Employee class is not fully defined at the time that
the manager attribute is defined. Handling this common design
pattern is the main reason for providing the This trait.

Note that if a trait attribute is defined using This on one class and
is referenced on an instance of a subclass, the This trait verifies
values based on the class of the instance being referenced. For
example:

>>> from enthought.traits.api import HasTraits, This
>>> class Employee(HasTraits):
... manager = This
...
>>> class Executive(Employee):
... pass
...
>>> fred = Employee()
>>> mary = Executive()
>>> fred.manager = mary
>>> # This is OK, because fred's manager can be an instance
>>> # of Employee or any subclass.
>>> mary.manager = fred
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'manager' trait of
an Executive instance must be an instance of the same type as the
receiver, but a value of <__main__.Employee object at 0x00994330>
was specified.

14 12-Sep-2007

Traits User Manual

2.1.2 Defining By Example
In addition to predefined traits, another simple form of trait
definition is defining a trait by example. To define a trait by
example, call the Trait() function with the default value as the only
argument. The Trait() function infers the type of the trait from the
type of the specified default value. The following two statements
are equivalent:
weight = Float(150.0)
weight = Trait(150.0)

A trait defined by example has the specified value as its default
value, and allows only values of the same type as the default value
to be assigned. The default value must be one of the simple Python
data types (plain integer, long integer, floating point number,
complex number, string, Unicode string, or Boolean).

2.1.3 List of Possible Values
In addition to a default value, a trait definition can specify an
exhaustive set of all permitted values, as arguments to the Trait()
function. The values must all be of simple Python data types, such
as strings, integers, and floats, but they do not have to all be of the
same type. This list of values can be a typical parameter list, an
explicit (bracketed) list, or a variable whose type is list.

A trait defined in this fashion can accept only values that are
contained in the list of permitted values. The default value is the
first value specified; it is not considered a valid value for
assignment unless it is repeated after the first position in the
argument list.

>>> from enthought.traits.api import HasTraits, Str, Trait
>>> class InventoryItem(HasTraits):
... name = Str # String value, default is ''
... stock = Trait(None, 0, 1, 2, 3, 'many')
... # Enumerated list, default value is
... #'None'
...
>>> hats = InventoryItem()
>>> hats.name = 'Stetson'

>>> print '%s: %s' % (hats.name, hats.stock)
Stetson: None

12-Sep-2007 15

Traits User Manual

>>> hats.stock = 2 # OK
>>> hats.stock = 'many' # OK
>>> hats.stock = 4 # Error, value is not in \
>>> # permitted list
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'stock' trait of an
InventoryItem instance must be None or 0 or 1 or 2 or 3 or 'many',
but a value of 4 was specified.

This example defines an InventoryItem class, with two trait
attributes, name, and stock. The name attribute is simply a string.
The stock attribute has an initial value of None, and can be
assigned the values 0, 1, 2, 3, and 'many'. The example then creates
an instance of the InventoryItem class named hats, and assigns
values to its attributes.

2.2 The Trait() Function
The predefined traits such as those listed in Table 3 are handy
shortcuts for commonly used types. However, the Traits package
provides a generic facility for defining complex or customized
traits: the Trait() function.

The Trait() function has many forms, many of which are redundant
with the predefined shortcut traits. For example, the simplest form
Trait(default_value), is equivalent to the functions for simple types
described in Section 2.1.1.1, “Predefined Traits for Simple Types”.

The Trait() function’s variety of forms allow a wide variety of
flexible and powerful traits to be defined. Table 4 shows the
complete set of forms understood by the Trait() function:

Table 4 Forms of the Trait() function

No. Form Description

1 Trait(default_value) See Section 2.1.2, “Defining By Example”,
for an example.

2 Trait(default_value,
 other_value2,
 other_value3, …)

See Section 2.1.3, “List of Possible Values”,
for an example.

16 12-Sep-2007

Traits User Manual

No. Form Description

3 Trait([default_value,
 other_value2,
 other_value3,
 …])

Similar to Form 2, but takes an explicit list
or a list variable.

4 Trait(type) The type parameter must be the name of a
Python type. For simple types, the default
values are the same as for the type-specific
functions described in Section 2.1.1.1,
“Predefined Traits for Simple Types”; for
sequence types, the default value is an
empty sequence. In contrast to predefined
traits, this form does not cause assigned
values to be coerced or cast. If the assigned
value is not of the specified type, a
TraitError is raised.

5 Trait(class) Values must be instances of class, or a
subclass of class. The default value is None,
but None cannot be assigned as a value, as
it is not an instance derived from class.

6 Trait(None, class) Values must be instances of class, or a
subclass of class. The default value is None,
and None can also be assigned as a value.

7 Trait(instance) Values must be instances of the same class
as instance, or of a subclass of that class.
The specified instance is the default value.

8 Trait(trait_handler) The trait_handler parameter is class that
verifies values for the trait. Refer to Section
2.4, “Trait Handlers”, for details.

12-Sep-2007 17

Traits User Manual

No. Form Description

9 Trait(default_value,
{ type |
 constant_value|
 dictionary |
 class |
 function |
 trait_handler |
 trait }+)

This is the most general of the forms of the
Trait() function. Note that the notation { …
| … | … }+ means a list of one or more of
any of the items listed between the braces.
Thus, the most general form of the
function consists of a default value,
followed by one or more of several
possible items. A trait defined with
multiple items is called a compound trait.
When more than one item is specified, a
trait value is considered valid if it meets
the criteria of at least one of the items in
the list.

The following is an example of a compound trait with multiple
criteria.

multiple_criteria.py -- Example of multiple criteria in a trait
definition
from enthought.traits.api import HasTraits, Trait
from types import TupleType

class Nonsense(HasTraits):
 rubbish = Trait(0.0, 0.0, 'stuff', TupleType)

The Nonsense class has a rubbish trait, which has a default value
of 0.0, and can have any of the following values:

• The constant float value 0.0
• The constant string value 'stuff'
• Any Python tuple

Note that in this case, it is necessary to specify 0.0 twice: the first
occurrence defines the default value, and the second occurrence
specifies 0.0 as one of the values that can be assigned to the trait.

2.2.1 Compound Trait Parameters
The items listed as categories of values for a compound trait (in
Table 4, Form 9) merit some further explanation.

• type―See Section 2.2.1.1, “Type”.
• constant_value―See Section 2.2.1.2, “Constant Value”.

18 12-Sep-2007

Traits User Manual

• dictionary―See Section 2.3, “Mapped Traits”..
• class―Specifies that the trait value must be an instance of the

specified class or one of its subclasses.
• function―See Section 2.3.1.1, “Validator Functions”..
• trait_handler―See Section 2.4, “Trait Handlers”..
• trait―Another trait object can be passed as a parameter; any

value that is valid for the specified trait is also valid for the trait
referencing it.

2.2.1.1 Type
A type parameter to the Trait() function can be any of the following
standard Python types:

• str or StringType
• unicode or UnicodeType
• int or IntType
• long or LongType
• float or FloatType
• complex or ComplexType
• bool or BooleanType
• list or ListType
• tuple or TupleType
• dict or DictType
• FunctionType
• MethodType
• ClassType
• InstanceType
• TypeType
• NoneType

Specifying one of these types means that the value must be of the
corresponding Python type.

2.2.1.2 Constant Value
A constant_value parameter to the Trait() function can be any
constant belonging to one of the following standard Python types:

• NoneType
• int
• long
• float
• complex

12-Sep-2007 19

Traits User Manual

• bool
• str
• unicode

Specifying a constant means that the trait can have the constant as a
valid value. Note that Form 2 in Table 4 is a special case of the
general form, in which the arguments consist of a default value
followed by a series of constant values.

2.2.2 Keywords
All forms of the Trait() function accept both predefined and
arbitrary keyword arguments. The value of each keyword
argument becomes bound to the resulting trait object as the value
of an attribute having the same name as the keyword. This feature
lets you associate metadata with a trait.

The following predefined keywords are accepted by the Trait()
function:

• desc: A string describing the intended meaning of the trait. It is
used in exception messages and fly-over help in user interface
trait editors.

• label: A string providing a human-readable name for the trait. It
is used to label trait attribute values in user interface trait
editors.

• editor: Specifies an instance of a subclass of TraitEditor to use
when creating a user interface editor for the trait. Refer to the
Traits UI User Guide for more information on trait editors.

• rich_compare: A Boolean indicating whether the basis for
considering a trait attribute value to have changed is a “rich”
comparision (True, the default), or simple object identity (False).
This attribute can be useful in cases where a detailed
comparison of two objects is very expensive, or where you do
not care if the details of an object change, as long as the same
object is used.

For example:

keywords.py --- Example of trait keywords
from enthought.traits.api import HasTraits, Trait

class Person(HasTraits):
 first_name = Trait('',
 desc='first or personal name',

20 12-Sep-2007

Traits User Manual

 label='First Name')
 last_name = Trait('',
 desc='last or family name',
 label='Last Name')

In this example, in a user interface editor for a Person object, the
labels “First Name” and “Last Name” would be used for entry
fields corresponding to the first_name and last_name trait
attributes. If the user interface editor supports rollover tips, then
the first_name field would display “first or personal name” when
the user moves the mouse over it; the last_name field would
display “last or family name” when moused over.

2.3 Mapped Traits
If the Trait() function is called with parameters that include one or
more dictionaries, then the resulting trait is called a mapped trait. In
practice, this means that the resulting object actually contains two
attributes: one whose value is a key in the dictionary used to define
the trait, and the other containing its corresponding value (i.e., the
mapped or shadow value). The name of the shadow attribute is
simply the base attribute name with an underscore appended.

Mapped traits can be used to allow a variety of user-friendly input
values to be mapped to a set of internal, program-friendly values.

The following examples illustrates mapped traits that map color
names to tuples representing red, green, blue, and transparency
values:

mapped.py --- Example of a mapped trait
from enthought.traits.api import HasTraits, Trait

standard_color = Trait ('black',
 {'black': (0.0, 0.0, 0.0, 1.0),
 'blue': (0.0, 0.0, 1.0, 1.0),
 'cyan': (0.0, 1.0, 1.0, 1.0),
 'green': (0.0, 1.0, 0.0, 1.0),
 'magenta': (1.0, 0.0, 1.0, 1.0),
 'orange': (0.8, 0.196, 0.196, 1.0),
 'purple': (0.69, 0.0, 1.0, 1.0),
 'red': (1.0, 0.0, 0.0, 1.0),
 'violet': (0.31, 0.184, 0.31, 1.0),
 'yellow': (1.0, 1.0, 0.0, 1.0),
 'white': (1.0, 1.0, 1.0, 1.0),
 'transparent': (1.0, 1.0, 1.0, 0.0) })

12-Sep-2007 21

Traits User Manual

red_color = Trait ('red', standard_color)

class GraphicShape (HasTraits):
 line_color = standard_color
 fill_color = red_color

The GraphicShape class has two attributes: line_color and
fill_color. These attributes are defined in terms of the
standard_color trait, which uses a dictionary. The standard_color
trait is a mapped trait, which means that each GraphicShape
instance has two shadow attributes: line_color_ and fill_color_.
Any time a new value is assigned to either line_color or fill_color,
the corresponding shadow attribute is updated with the value in
the dictionary corresponding to the value assigned. For example:

>>> import mapped
>>> my_shape1 = mapped.GraphicShape()
>>> print my_shape1.line_color, my_shape1.fill_color
black red
>>> print my_shape1.line_color_, my_shape1.fill_color_
(0.0, 0.0, 0.0, 1.0) (1.0, 0.0, 0.0, 1.0)
>>> my_shape2 = mapped.GraphicShape()
>>> my_shape2.line_color = 'blue'
>>> my_shape2.fill_color = 'green'
>>> print my_shape2.line_color, my_shape2.fill_color
blue green
>>> print my_shape2.line_color_, my_shape2.fill_color_
(0.0, 0.0, 1.0, 1.0) (0.0, 1.0, 0.0, 1.0)

This example shows how a mapped trait can be used to create a
user-friendly attribute (such as line_color) and a corresponding
program-friendly shadow attribute (such as line_color_). The
shadow attribute is program-friendly because it is usually in a form
that can be directly used by program logic.

There are a few other points to keep in mind when creating a
mapped trait:

• If not all values passed to the Trait() function are dictionaries,
the non-dictionary values are copied directly to the shadow
attribute (i.e., the mapping used is the identity mapping).

• Assigning directly to a shadow attribute (the attribute with the
trailing underscore in the name) is not allowed, and raises a
TraitError.

22 12-Sep-2007

Traits User Manual

2.3.1.1 Validator Functions
Rather than directly specifying legal values for a trait, you can
instead specify a reference to a validator function as an argument to
the Trait() function. A function reference is one of the items that
permitted as an argument to Trait() in its most general form. The
validator function determines at run time whether a value being
assigned to the attribute is a legal value. Such a function must have
the following prototype:

function(object, name, value)
In this prototype:

• function is the name of the function.
• object is the object whose attribute is being assigned to.
• name is the name of the attribute being assigned to.
• value is the value being assigned to the attribute.

The function is invoked whenever a value is assigned to the
attribute. Normally the function does not need to know the object
or attribute name being assigned to, but these parameters are
provided in case the testing performed by the function is context-
dependent.

The function indicates a value is valid by returning normally. The
function can return the original value passed to it, or it can return
any other value, usually derived from the original value. The
returned value is assigned to the attribute.

The function indicates that a value is not valid by throwing an
exception. The type of exception thrown is immaterial because it is
always caught by the trait mechanism and mapped into a
TraitError exception. For example:

validator.py --- Example of a validator function
from types import StringType

def bounded_string(object, name, value):
 if type(value) != StringType:
 raise TypeError
 if len(value) < 50:
 return value
 return '%s...%s' % (value[:24], value[-23:])

The bounded_string() function can be passed to the Trait()
function to define a trait whose value must be a string, and whose
value will never exceed 50 characters in length. Long strings are

12-Sep-2007 23

Traits User Manual

shortened to 50 characters by removing excess characters from the
middle of the string.

In order to allow the exceptions generated by validator functions to
be as descriptive as possible, you can attach a short string
describing the values accepted by the function as the info attribute
of the function.

For example, continuing the bounded_string example:
bounded_string.info =
 'a string no longer than 50 characters'

The string contained in the function’s info attribute is merged with
other information about the trait whenever an exception occurs
while assigning a value to the trait attribute. If the info attribute is
not defined, the string 'a legal value' is used in its place.

The following example shows how a validator function can be
combined with other values passed to the Trait() function to create
a compound trait, and how the validator function's info attribute is
used when generating a TraitError exception.

>>> from enthought.traits.api import HasTraits, Trait
>>> from validator import bounded_string
>>>
>>> bounded_string.info = 'a string no longer than 50 characters'
>>> class DatabaseRecord(HasTraits):
... part_desc = Trait(None, None, bounded_string)
...
>>> sprocket = DatabaseRecord()
>>> sprocket.part_desc = 0

Traceback (most recent call last):
 File "<pyshell#29>", line 1, in -toplevel-
 sprocket.part_desc = 0
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error
 raise TraitError, (object, name, self.info(), value)
TraitError: The 'part_desc' trait of a DatabaseRecord instance
must be a string no longer than 50 characters or None, but a value
of 0 was specified.

2.4 Trait Handlers
As an alternative to defining a trait validator function, you can use
a predefined trait handler class or write your own. A trait handler
is an instance of the TraitHandler class, or of a subclass, whose task

24 12-Sep-2007

Traits User Manual

is to verify the correctness of values assigned to object traits. When
a value is assigned to an object trait that has a trait handler, the trait
handler’s validate() method checks the value, and assigns that
value or a computed value, or raises a TraitError if the assigned
value is not valid. Trait handlers have several advantages over trait
validator functions, due to being classes:

• They can have constructors and state. Therefore, you can use
them to create parameterized types.

• They can have multiple methods, whereas validator functions
have only one callable interface. This feature allows more
flexibility in their implementation, and allows them to handle a
wider range of cases, such as interactions with other
components.

The Traits package provides a number of predefined TraitHandler
subclasses, which handle a wide variety of trait definition
situations. (In fact, all of the trait definitions mentioned previously
rely ultimately on one or more of the predefined TraitHandler
subclasses.) A few of the predefined trait handler classes are
described in the following sections. For a complete list and
descriptions of predefined TraitHandler subclasses, refer to the
Traits API Reference, in the section on the
enthought.traits.trait_handlers module.

You can also define your own trait handler class. For more
information, refer to Section 3.1, “Custom Trait Handlers“.

2.4.1 TraitString
An instance of the TraitString class ensures that a trait attribute
value is a string that satisfies some additional, optional constraints.
The constructor for TraitString has the following form:

TraitString(self, minlen=0, maxlen=sys.maxint,
regex='')

In this constructor, minlen and maxlen are the minimum and
maximum lengths allowed for the trait attribute's string value. The
regex parameter is a string defining a Python regular expression
that the string value must match.

The TraitString handler first coerces the value being assigned to a
string, provided that the value is a Python int, long, float, bool, or
complex value. Assigning values of other non-string types results

12-Sep-2007 25

Traits User Manual

in a TraitError. The handler then makes sure that the resulting
string is within the specified length range and that it matches the
specified regular expression. For example:

traitstring.py --- Example of TraitString trait handler class
from enthought.traits.api import HasTraits, Trait, TraitString

class Person(HasTraits):
 name=Trait('', TraitString(maxlen=50, regex=r'^[A-Za-z]*$'))

This example defines a Person class with a name trait attribute,
which must be a string of between 0 and 50 characters that consist
only of upper and lower case letters.

2.4.2 TraitPrefixList
The TraitPrefixList handler accepts not only a specified set of
strings as values, but also any unique prefix substring of those
values. The value assigned to the trait attribute is the full string that
the substring matches.

For example:

>>> from enthought.traits.api import HasTraits, Trait
>>> from enthought.traits.api import TraitPrefixList
>>> class Alien(HasTraits):
... heads = Trait('one', TraitPrefixList(['one','two','three']))
...
>>> alf = Alien()
>>> alf.heads = 'o'
>>> print alf.heads
one
>>> alf.heads = 'tw'
>>> print alf.heads
two
>>> alf.heads = 't' # Error, not a unique prefix
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
601, in validate
 self.error(object, name, self.repr(value))
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'heads' trait of an
Alien instance must be 'one' or 'two' or 'three' (or any unique
prefix), but a value of 't' was specified.

26 12-Sep-2007

Traits User Manual

2.4.3 TraitPrefixMap
The TraitPrefixMap handler combines the TraitPrefixList with
mapped traits. Its constructor takes a parameter that is a dictionary
whose keys are strings. A string is a valid value if it is a unique
prefix for a key in the dictionary. The value assigned is the
dictionary value corresponding to the matched key.

The following example uses TraitPrefixMap to define a Boolean
trait that accepts any prefix of 'true', 'yes', 'false', or 'no', and maps
them to 1 or 0.

traitprefixmap.py --- Example of TraitPrefixMap handler
from enthought.traits.api import Trait, TraitPrefixMap

boolean_map = Trait('true', TraitPrefixMap({
 'true': 1,
 'yes': 1,
 'false': 0,
 'no': 0 }))

12-Sep-2007 27

Traits User Manual

3 Advanced Topics
The preceding sections provide enough information for you to use
traits for manifestly-typed attributes, with initialization and
validation. This section describes the advanced features of the
Traits package, including custom trait handlers, notification, and
delegation. It also delves into advanced aspects of initialization and
validation.

3.1 Custom Trait Handlers
If you need a trait that cannot be defined using the standard set of
trait handling classes, you can create your own subclass of
TraitHandler. The constructor (i.e., __init__ method) for your
TraitHandler subclass can accept whatever additional information,
if any, is needed to completely specify the trait. The constructor
does not need to call the TraitHandler base class’s constructor.

The only method that a custom trait handler must implement is
validate(). Refer to the Traits API Reference for details about this
function.

In many cases, it is also necessary to override one or more of the
following methods in a TraitHandler subclass:

info(self)
post_setattr(self, object, name, value)
get_editor(self, trait)

3.1.1 Example Custom Trait Handler
To illustrate the process of creating a TraitHandler subclass, the
following is a definition of a trait handler that only allows positive,
odd integers as legal values:

custom_traithandler.py --- Example of a custom TraitHandler
import types
from enthought.traits.api import TraitHandler

class TraitOddInteger(TraitHandler):

 def validate(self, object, name, value):
 if ((type(value) is types.IntType) and

28 12-Sep-2007

Traits User Manual

 (value > 0) and ((value % 2) == 1)):
 return value
 self.error(object, name, value)

 def info(self):
 return 'a positive odd integer'

An application could use this new trait handler to define traits such
as the following:

use_custom_th.py --- Example of using a custom TraitHandler
from enthought.traits.api import HasTraits, Trait, TraitRange
from custom_traithandler import TraitOddInteger

class AnOddClass(HasTraits):
 oddball = Trait(1, TraitOddInteger())
 very_odd = Trait(-1, TraitOddInteger(),
 TraitRange(-10, -1))

The following example demonstrates why the info() method
returns a phrase rather than a complete sentence:

>>> from use_custom_th import AnOddClass
>>> odd_stuff = AnOddClass()
>>> odd_stuff.very_odd = 0
Traceback (most recent call last):
 File "test.py", line 25, in ?
 odd_stuff.very_odd = 0
 File "C:\cvsroot\traits\traits.py", line 1119, in validate
 raise TraitError, excp
traits.traits.TraitError: The 'very_odd' trait of a AnOddClass
instance must be a positive odd integer or an integer in the range
from -10 to -1, but a value of 0 was specified.

Note the emphasized result returned by the info() method, which is
embedded in the exception generated by the invalid assignment.

3.2 Trait Notification
When the value of an attribute changes, other parts of the program
might need to be notified that the change has occurred. The Traits
package makes this possible for trait attributes. This functionality
lets you write programs using the same, powerful event-driven
model that is used in writing user interfaces and for other problem
domains.

12-Sep-2007 29

Traits User Manual

Requesting trait attribute change notifications is done in one of two
ways:

• Statically, by writing methods using a special naming
convention in the class defining the trait attribute whose change
notification is to be handled.

• Dynamically, by calling either on_trait_change() or
on_trait_event() to establish (or remove) change notification
handlers.

3.2.1 Static Notification
The static approach is the most convenient, but it is not always
possible to use it. Writing a static change notification handler
requires that, for a class whose trait attribute changes you are
interested in, you write a method with a special name on that class
(or a subclass).

There are two kinds of special method names that can be used for
static trait attribute change notifications. One is attribute-specific,
and the other applies to all trait attributes on a class.

To notify about changes to a trait attribute named name, define a
method named _name_changed() or _name_fired(). The leading
underscore indicates that attribute-specific notification handlers are
normally part of a class's private API. Methods named
_name_fired() are normally used with traits that are events,
described in Section 3.2.3, “Trait Events”.

To notify about changes to any trait attribute on a class, define a
method named _anytrait_changed().

Both of these types of static trait attribute notification methods are
illustrated in the following example:

static_notification.py --- Example of static attribute
notification
from enthought.traits.api import HasTraits, Trait

class Person(HasTraits):
 weight_kg = Trait(0.0)
 height_m = Trait(1.0)
 bmi = Trait(0.0)

30 12-Sep-2007

Traits User Manual

 def _weight_kg_changed(self, old, new):
 print 'weight_kg changed from %s to %s ' % (old, new)
 if self.weight.kg != 0.0
 self.bmi = self.weight_kg / (self.height_m**2)

 def _anytrait_changed(self, name, old, new):
 print 'The %s trait changed from %s to %s ' \
 % (name, old, new)
"""
>>> bob = Person()
>>> bob.height_m = 1.75
The height_m trait changed from 1.0 to 1.75
>>> bob.weight_kg = 100.0
The weight_kg trait changed from 0.0 to 100.0
weight_kg changed from 0.0 to 100.0
The bmi trait changed from 0.0 to 32.6530612245
"""

In this example, the attribute-specific notification function is
_weight_kg_changed(), which is called only when the weight_kg
attribute changes. The class-specific notification handler is
_anytrait_changed(), and is called when weight_kg, height_m, or
bmi changes. Thus, both handlers are called when the weight_kg
attribute changes. Also, the _weight_kg_changed() function
modifies the bmi attribute, which causes _anytrait_changed() to be
called for that attribute.

The arguments passed to the trait attribute change notification
method depend on the method signature and on which type of
static notification handler it is.

For an attribute specific notification handler, the method signatures
supported are:

_name_changed(self)
_name_changed(self, new)
_name_changed(self, old, new)
_name_changed(self, name, old, new)
The method name can also be _name_fired(), with the same set of
signatures.

In these signatures:

• new is the new value assigned to the trait attribute.
• old is the old value assigned to the trait attribute.
• name is the name of the trait attribute.

You can choose whatever method signature from this list is most
convenient to use.

12-Sep-2007 31

Traits User Manual

In the case of a non-attribute specific handler, the method
signatures supported are:

_anytrait_changed(self)
_anytrait_changed(self, name)
_anytrait_changed(self, name, new)
_anytrait_changed(self, name, old, new)
The meanings for name, new, and old are the same as for attribute-
specific notification functions.

3.2.2 Dynamic Notification
In cases where a notification handler cannot be defined on the class
(or a subclass) whose trait attribute changes are to be monitored,
you can use dynamic notification instead. In this case, you define a
handler method, and then invoke the on_trait_change() or
on_trait_event() method register that handler with the object being
monitored. The handler registration methods have the following
signatures:

obj.on_trait_change(handler, name=None,
remove=False)

obj.on_trait_event(handler, name=None,
remove=False)

The handler parameter specifies the function or bound method to be
called whenever the name attribute of obj is modified. If name is
None or omitted, handler is called whenever any trait attribute of
obj is modified. If remove is True (or non-zero), then handler will no
longer be called when the name (or any) trait attribute of obj is
modified. In other words, it causes the handler to be “unhooked”
from the event.

Setting up a dynamic trait attribute change notification handler is
illustrated in the following example:

dynamic_notification --- Example of dynamic notification
from enthought.traits.api import Float, HasTraits, Trait

class Part (HasTraits):
 cost = Trait(0.0)

32 12-Sep-2007

Traits User Manual

class Widget (HasTraits):
 part1 = Trait(Part)
 part2 = Trait(Part)
 cost = Float(0.0)

 def __init__(self):
 self.part1 = Part()
 self.part2 = Part()
 self.part1.on_trait_change(self.update_cost, 'cost')
 self.part2.on_trait_change(self.update_cost, 'cost')

 def update_cost(self):
 self.cost = self.part1.cost + self.part2.cost

"""
>>> w = Widget()
>>> w.part1.cost = 2.25
>>> w.part2.cost = 5.31
>>> print w.cost
7.56
"""

In this example, the Widget constructor sets up a dynamic trait
attribute change notification so that its update_cost() method is
called whenever the cost attribute of either its part1 or part2
attributes is modified.

The handler passed to on_trait_change() or on_trait_event() can
have any one of the following signatures:

handler()
handler(new)
handler(name, new)
handler(object, name, new)
handler(object, name, old, new)
Unlike the static trait attribute change notification handlers, the
signature of a dynamic handler does not depend upon whether the
handler is attribute-specific.

3.2.3 Trait Events
The Traits package defines a special type of trait called an event.
Events are created using the Event() function, which accepts all of
the same arguments as the Trait() function.

There are two major differences between a normal trait and an
event:

12-Sep-2007 33

Traits User Manual

• All notification handlers associated with an event are called
whenever any value is assigned to the event. A normal trait
attribute only calls its associated notification handlers when the
previous value of the attribute is different from the new value
being assigned to it.

• An event does not use any storage, and in fact does not store the
values assigned to it. Any value assigned to an event is reported
as the new value to all associated notification handlers, and then
immediately discarded. Because events do not retain a value,
the old argument to a notification handler associated with an
event is always the special Undefined object (see Section 3.2.4).
Similarly, attempting to read the value of an event results in a
TraitError exception, because an event has no value.

As an example of an event, consider:

event.py --- Example of trait event
from enthought.traits.api import Event, HasTraits, List, Tuple

point_2d = Tuple(0, 0)

class Line2D(HasTraits):
 points = List(point_2d)
 line_color = RGBAColor('black')
 updated = Event

 def redraw():
 pass # Not implemented for this example

 def _points_changed():
 self.updated = True

 def _updated_fired():
 self.redraw()

In support of the use of events, the Traits package understands
attribute-specific notification handlers with names of the form
_name_fired(), with signatures identical to the _name_changed()
functions. In fact, the Traits package does not check whether the
trait attributes that _name_fired() handlers are applied to are
actually events. The function names are simply synonyms for
programmer convenience.

Similarly, a function named on_trait_event() can be used as a
synonym for on_trait_change() for dynamic notification.

34 12-Sep-2007

Traits User Manual

3.2.4 Undefined Object
Python defines a special, singleton object called None. The Traits
package introduces an additional special, singleton object called
Undefined.

The Undefined object is used to indicate that a trait attribute has
not yet had a value set (i.e., its value is undefined). Undefined is
used instead of None, because None is often used for other
meanings, such as that the value is not used. In particular, when a
trait attribute is first assigned a value and its associated trait
notification handlers are called, Undefined is passed as the value of
the old parameter to each handler, to indicate that the attribute
previously had no value. Similarly, the value of a trait event is
always Undefined.

3.3 Trait Delegation
One of the advanced capabilities of the Traits package is its ability
to delegate the definition and default value of a trait attribute to
another object than the one the attribute is defined on. This has
many applications, especially in cases where objects are logically
contained within other objects and may wish to inherit or derive
some attributes from the object they are contained in or associated
with. Delegation leverages the common “has-a” relationship
between objects, rather than the “is-a” relationship that class
inheritance provides.

Trait attributes based on delegation are defined using the
Delegate() function, rather than the Trait() function.

3.3.1 Delegate() Function
The signature of the Delegate function is:

Delegate(delegate, prefix='', modify=False)
The delegate parameter is a string that specifies the name of the
object attribute that refers to the trait’s delegate. The current value
of the trait attribute defined by delegate is used as the delegate
whenever the delegate is needed. Therefore, if the attribute
referenced by delegate changes its value, the delegation also changes

12-Sep-2007 35

Traits User Manual

to use the object referenced by the new value. The prefix and modify
parameters to the Delegate() function specify additional
information about how to do the delegation.

If prefix is the empty string or omitted, the delegation is to an
attribute of the delegate object with the same name as the trait
defined by the Delegate() function. Consider the following
example:

delegate.py --- Example of trait delegation
from enthought.traits.api import Delegate, HasTraits, Str, Trait

class Parent(HasTraits):
 first_name = Str
 last_name = Str

class Child(HasTraits):
 first_name = Trait('')
 last_name = Delegate('father')
 father = Trait(Parent)
 mother = Trait(Parent)
"""
>>> tony = Parent(first_name='Anthony', last_name='Jones')
>>> alice = Parent(first_name='Alice', last_name='Smith')
>>> sally = Child(first_name='Sally', father=tony, mother=alice)
>>> print sally.last_name
Jones
>>> sally.last_name = 'Smith'
>>> sally.last_name = sally.mother # ERR: string expected
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'last_name' trait of
a Child instance must be a value of type 'str', but a value of
<__main__.Parent object at 0x009DD6F0> was specified.
"""

A Child object delegates its last_name attribute to its father object’s
last_name attribute. Because the prefix parameter was not specified
in the Delegate() function used to define the Child class’s
last_name attribute, the attribute name of the delegate is the same
as the original attribute name. Thus, by default, the last_name of a
Child is the same as the last_name of its father.

Note, however, that once a value is explicitly assigned to the
last_name attribute of a Child, it takes on the explicitly assigned
value. This behavior is illustrated in the example when Sally’s last
name is set to be the same as her mother’s last name. However,

36 12-Sep-2007

Traits User Manual

delegation still affects the type of values that can be assigned to the
last_name attribute, as illustrated in the example by the attempt to
assign Sally’s mother (an object) as Sally’s last name. The last_name
attribute delegates the assignment to the father trait, whose
last_name attribute specifies that the only legal values are strings.

3.3.1.1 Prefix Keyword
When the prefix parameter to the Delegate() function is a non-
empty string, the rule for performing trait attribute look-up in the
delegated to object is modified, with the modification depending
on the format of the prefix string:

• If prefix is a valid Python attribute name, then the original
attribute name is replaced by prefix when performing the
delegate object attribute look-up.

• If prefix ends with an asterisk ('*'), and is longer than one
character, then prefix, minus the trailing asterisk, is added to the
front of the original attribute name when performing the
delegate object trait look-up.

• If prefix is equal to a single asterisk ('*'), the value of the object
class’s __prefix__ attribute is added to the front of the original
attribute name when performing the delegate object trait look-
up.

Each of these three possibilities is illustrated in the following
example:

delegate_prefix.py --- Examples of Delegate() prefix parameter
from enthought.traits.api import \
 Delegate, Float, HasTraits, Str, Trait

class Parent (HasTraits):
 first_name = Str
 family_name = ''
 favorite_first_name = Str
 child_allowance = Float(1.00)

class Child (HasTraits):
 __prefix__ = 'child_'
 first_name = Delegate('mother', 'favorite_*')
 last_name = Delegate('father', 'family_name')
 allowance = Delegate('father', '*')
 father = Trait(Parent)
 mother = Trait(Parent)

In this example, instances of the Child class have three delegated
trait attributes:

12-Sep-2007 37

Traits User Manual

• first_name, which delegates to the favorite_first_name
attribute of its mother attribute.

• last_name, which delegates to the family_name attribute of its
father attribute.

• allowance, which delegates to the child_allowance attribute of
its father attribute.

3.3.1.2 Modify Keyword
The final form of delegation occurs when the modify parameter to
the Delegate() function is True. In this case, the attribute delegates
to the attribute specified by the delegate and prefix parameters as
before, but any changes to the attribute are made to the delegate
object’s attribute value, not to the object delegating the attribute.
This form is useful for implementing a proxy design pattern, where
the object using delegation is really a proxy for another object.

Note that when using delegation, the attribute being delegated to
(such as family_name in the preceeding example) need not be
defined by a trait. That is, the attribute that is delegated-to can be a
standard Python attribute.

3.4 Initialization and Validation
Revisited

The following sections present advanced topics related to the
initialization and validation features of the Traits package.

• Dynamic initialization
• Overriding default values
• Reusing trait definitions
• Trait attribute definition strategies
• Type-checked methods

3.4.1 Dynamic Initialization
When you use the Trait() function or other trait factory functions to
define traits, you specify their default values statically. You can
also define a method that dynamically initializes a trait attribute the

38 12-Sep-2007

Traits User Manual

first time that the attribute value is accessed. To do this, you define
a method with the following signature:

 _name_default(self)
This method initializes the name trait attribute, returning its initial
value. The method overrides any default value specified in the trait
definition.

3.4.2 Overriding Default Values in a
Subclass

Often, a subclass must override a trait attribute in a parent class by
providing a different default value. You can specify a new default
value without completely re-specifying the trait definition for the
attribute. For example:

override_default.py -- Example of overriding a default value for
a trait attribute in a subclass
from enthought.traits.api import HasTraits, Range

class Employee(HasTraits):
 name = Str
 salary_grade = Range(value=1, low=1, high=10)

class Manager(Employee):
 salary_grade = 5

In this example, the salary_grade of the Employee class is a range
from 1 to 10, with a default value of 1. In the Manager subclass, the
default value of salary_grade is 5, but it is still a range as defined in
the Employee class.

3.4.3 Reusing Trait Definitions
As mentioned in Section 2, “Defining Traits: Initialization and
Validation”, in most cases, traits are defined in-line in attribute
definitions, but they can also be defined independently. A trait
definition only describes the characteristics of a trait, and not the
current value of a trait attribute, so it can be used in the definition
of any number of attributes. For example:

trait_reuse.py --- Example of reusing trait definitions
from enthought.traits.api import \
 HasTraits, Range, Trait, TraitRange

12-Sep-2007 39

Traits User Manual

coefficient = Trait(0.0, TraitRange(-1.0, 1.0))

class quadratic(HasTraits):
 c2 = coefficient
 c1 = coefficient
 c0 = coefficient
 x = Range(-100.0, 100.0, 0.0)

In this example, a trait named coefficient is defined externally to
the class quadratic, which references coefficient in the definitions
of its trait attributes c2, c1, and c0. Each of these attributes has a
unique value, but they all use the same trait definition to determine
whether a value assigned to them is valid.

3.4.4 Trait Attribute Definition Strategies
In the preceding examples in this guide, all trait attribute
definitions have bound a single object attribute to a specified trait
definition. This is known as explicit trait attribute definition. The
Traits package supports other strategies for defining trait attributes.
You can associate a category of attributes with a particular trait
definition, using the trait attribute name wildcard. You can also
dynamically create trait attributes that are specific to an instance,
using the add_trait() method, rather than defined on a class. These
strategies are described in the following sections.

3.4.4.1 Trait Attribute Name Wildcard
The Traits package enables you to define a category of trait
attributes associated with a particular trait definition, by including
an underscore ('_') as a wildcard at the end of a trait attribute name.
For example:

temp_wildcard.py --- Example of using a wildcard with a Trait
attribute name
from enthought.traits.api import Any, HasTraits

class Person(HasTraits):
 temp_ = Any

This example defines a class Person, with a category of attributes
that have names beginning with 'temp', and that are defined by the
Any trait. Thus, any part of the program that uses a Person
instance can reference attributes such as tempCount, temp_name,

40 12-Sep-2007

Traits User Manual

or temp_whatever, without having to explicitly declare these trait
attributes. Each such attribute has None as the initial value and
allows assignment of any value (because it is based on the Any
trait).

You can even give all object attributes a default trait definition, by
specifying only the wildcard character for the attribute name:

all_wildcard.py --- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits

class Person(HasTraits):
 _ = Any

In this case, all Person instance attributes can be created on the fly
and are defined by the Any trait.

3.4.4.1.1 Wildcard Rules

When using wildcard characters in trait attribute names, the
following rules are used to determine what trait definition governs
an attribute:

1. If an attribute name exactly matches a name without a wildcard
character, that definition applies.

2. Otherwise, if an attribute name matches one or more names
with wildcard characters, the definition with the longest name
applies.

Note that all possible attribute names are covered by one of these
two rules. The base HasTraits class implicitly contains the attribute
definition _ = Python. This rule guarantees that, by default, all
attributes have standard Python language semantics.

These rules are demonstrated by the following example:

wildcard_rules.py --- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits, Int, Python

class Person(HasTraits):
 temp_count = Int(-1)
 temp_ = Any
 _ = Python

In this example, the Person class has a temp_count attribute, which
must be an integer and which has an initial value of -1. Any other
attribute with a name starting with ‘temp’ has an initial value of

12-Sep-2007 41

Traits User Manual

None and allows any value to be assigned. All other object
attributes behave like normal Python attributes (i.e., they allow any
value to be assigned, but they must have a value assigned to them
before their first reference).

3.4.4.1.2 Disallow Object

The singleton object Disallow can be used with wildcards to
disallow all attributes that are not explicitly defined. For example:

disallow.py --- Example of using Disallow with wildcards
from enthought.traits.api import \
 Disallow, Float, HasTraits, Int, Str

class Person (HasTraits):
 name = Str
 age = Int
 weight = Float
 _ = Disallow

In this example, a Person instance has three trait attributes:

• name—Must be a string; its initial value is ''.
• age—Must be an integer; its initial value is 0.
• weight—Must be a float; its initial value is 0.0.

All other object attributes are explicitly disallowed. That is, any
attempt to read or set any object attribute other than name, age, or
weight causes an exception.

3.4.4.1.3 HasTraits Subclasses

Because the HasTraits class implicitly contains the attribute
definition _ = Python, subclasses of HasTraits by default have
very standard Python attribute behavior for any attribute not
explicitly defined as a trait attribute. However, the wildcard trait
attribute definition rules make it easy to create subclasses of
HasTraits with very non-standard attribute behavior. Two such
subclasses are predefined in the Traits package: HasStrictTraits
and HasPrivateTraits.

3.4.4.1.4 HasStrictTraits

This class guarantees that accessing any object attribute that does
not have an explicit or wildcard trait definition results in an
exception. This can be useful in cases where a more rigorous
software engineering approach is employed than is typical for

42 12-Sep-2007

Traits User Manual

Python programs. It also helps prevent typos and spelling mistakes
in attribute names from going unnoticed; a misspelled attribute
name typically causes an exception. The definition of
HasStrictTraits is the following:

 class HasStrictTraits(HasTraits):
 _ = Disallow

HasStrictTraits can be used to create type-checked data structures,
as in the following example:

 class TreeNode(HasStrictTraits):
 left = This
 right = This
 value = Str

This example defines a TreeNode class that has three attributes:
left, right, and value. The left and right attributes can only be
references to other instances of TreeNode (or subclasses), while the
value attribute must be a string. Attempting to set other types of
values generates an exception, as does attempting to set an
attribute that is not one of the three defined attributes. In essence,
TreeNode behaves like a type-checked data structure.

3.4.4.1.5 HasPrivateTraits

This class is similar to HasStrictTraits, but allows attributes
beginning with '_' to have an initial value of None, and to not be
type-checked. This is useful in cases where a class needs private
attributes, which are not part of the class's public API, to keep track
of internal object state. Such attributes do not need to be type-
checked because they are only manipulated by the (presumably
correct) methods of the class itself. The definition of
HasPrivateTraits is the following:

 class HasPrivateTraits(HasTraits):
 __ = Any
 _ = Disallow

These subclasses of HasTraits are provided as a convenience, and
their use is completely optional. However, they do illustrate how
easy it is to create subclasses with customized default attribute
behavior if desired.

12-Sep-2007 43

Traits User Manual

3.4.4.2 Per-Object Trait Attributes
The Traits package allows you to define dynamic trait attributes
that are object-, rather than class-, specific. This is accomplished
using the add_trait() method of the HasTraits class:

object.add_trait(name, trait)
For example:

object_trait_attrs.py --- Example of per-object trait attributes
from enthought.traits.api import HasTraits, Range

class GUISlider (HasTraits):

 def __init__(self, eval=None, label='Value',
 trait=None, min=0.0, max=1.0,
 initial=None, **traits):
 HasTraits.__init__(self, **traits)
 if trait is None:
 if min > max:
 min, max = max, min
 if initial is None:
 initial = min
 elif not (min <= initial <= max):
 initial = [min, max][
 abs(initial - min) >
 abs(initial - max)]
 trait = Range(min, max, value = initial)
 self.add_trait(label, trait)

This example creates a GUISlider class, whose __init__() method
can accept a string label and either a trait definition or minimum,
maximum, and initial values. If no trait definition is specified, one
is constructed based on the max and min values. A trait attribute
whose name is the value of label is added to the object, using the
trait definition (whether specified or constructed). Thus, the label
trait attribute on the GUISlider object is determined by the calling
code, and added in the __init__() method using add_trait().

You can require that add_trait() must be used in order to add
attributes to a class, by deriving the class from HasStrictTraits (see
Section 3.4.4.1.4). When a class inherits from HasStrictTraits, the
program cannot create a new attribute (either a trait attribute or a
regular attribute) simply by assigning to it, as is normally the case
in Python. In this case, add_trait() is the only way to create a new
attribute for the class outside of the class definition.

44 12-Sep-2007

Traits User Manual

3.4.5 Type-Checked Methods
In addition to providing type-checked attributes, the Traits package
also provides the ability to create type-checked methods.

A type-checked method is created by writing a normal method
definition within a class, preceded by a method() signature
function call, as shown in the following example:

type_checked_methods.py --- Example of traits-based method type
checking
from enthought.traits.api import HasTraits, method, Tuple

Color = Tuple(int, int, int, int)

class Palette(HasTraits):

 method(Color, color1=Color, color2=Color)
 def blend (self, color1, color2):
 return ((color1[0] + color2[0]) / 2,
 (color1[1] + color2[1]) / 2,
 (color1[2] + color2[2]) / 2,
 (color1[3] + color2[3]) / 2)
 method(Color, Color, Color)
 def max (self, color1, color2):
 return (max(color1[0], color2[0]),
 max(color1[1], color2[1]),
 max(color1[2], color2[2]),
 max(color1[3], color2[3]))

In this example, Color is defined to be a trait that accepts tuples of
four integer values. The method() signature function appearing
before the definition of the blend() method ensures that the two
arguments to blend() both match the Color trait definition, as does
the result returned by blend(). The method signature appearing
before the max() method does exactly the same thing, but uses
positional rather than keyword arguments. When

Use of the method() signature function is optional. Methods not
preceded by a method() function have standard Python behavior
(i.e., no type-checking of arguments or results is performed). Also,
the method() function can be used in classes that do not subclass
from HasTraits, because the resulting method performs the type
checking directly. And finally, when the method() function is used,
it must directly precede the definition of the method whose type
signature it defines. (However, white space is allowed.) If it does
not, a TraitError is raised.

12-Sep-2007 45

Traits User Manual

3.5 Useful Methods on HasTraits
The HasTraits class defines a number of methods, which are
available to any class derived from it, i.e., any class that uses trait
attributes. This section provides examples of a sample of these
methods. Refer to the Traits API Reference for a complete list of
HasTraits methods.

3.5.1 add_trait()
This method adds a trait attribute to an object dynamically, after
the object has been created. For more information, see Section
3.4.4.2, “Per-Object Trait Attributes”.

3.5.2 clone_traits()
This method copies trait attributes from one object to another. It
can copy specified attributes, all explicitly defined trait attributes,
or all explicitly and implicitly defined trait attributes on the source
object.

This method is useful if you want to allow a user to edit a clone of
an object, so that changes are made permanent only when the user
commits them. In such a case, you might clone an object and its
trait attributes; allow the user to modify the clone; and then re-
clone only the trait attributes back to the original object when the
user commits changes.

3.5.3 set()
This takes a list of keyword-value pairs, and sets the trait attribute
corresponding to each keyword to the matching value. This
shorthand is useful when a number of trait attributes need to be set
on an object, or a trait attribute value needs to be set in a lambda
function. For example:
person.set(name='Bill', age=27)

The statement above is equivalent to the following:
person.name = 'Bill'
person.age = 27

46 12-Sep-2007

Traits User Manual

3.5.4 add_class_trait()
The add_class_trait() method is a class method, while the
preceding HasTraits methods are instance methods. This method is
very similar to the add_trait() instance method. The difference is
that adding a trait attribute by using add_class_trait() is the same
as having declared the trait as part of the class definition. That is,
any trait attribute added using add_class_trait() is defined in every
subsequently-created instance of the class, and in any
subsequently-defined subclasses of the class. In contrast, the
add_trait() method adds the specified trait attribute only to the
object instance it is applied to.

In addition, if the name of the trait attribute ends with a '_', then a
new (or replacement) prefix rule is added to the class definition,
just as if the prefix rule had been specified statically in the class
definition. It is not possible to define new prefix rules using the
add_trait() method.

One of the main uses of the add_class_trait() method is to add trait
attribute definitions that could not be defined statically as part of
the body of the class definition. This occurs, for example, when two
classes with trait attributes are being defined and each class has a
trait attribute that should contain a reference to the other. For the
class that occurs first in lexical order, it is not possible to define the
trait attribute that references the other class, since the class it needs
to refer to has not yet been defined. This is illustrated in the
following example:

circular_definition.py --- Non-working example of mutually-
referring classes
from enthought.traits.api import HasTraits, Trait

class Chicken(HasTraits):
 hatched_from = Trait(Egg)

class Egg(HasTraits):
 created_by = Trait(Chicken)

As it stands, this example will not run because the hatched_from
attribute references the Egg class, which has not yet been defined.
Reversing the definition order of the classes does not fix the
problem, because then the created_by trait references the Chicken
class, which has not yet been defined.

The problem can be solved using the add_class_trait() method, as
shown in the following code:

12-Sep-2007 47

Traits User Manual

add_class_trait.py --- Example of mutually-referring classes
using add_class_trait()
from enthought.traits.api import HasTraits, Trait

class Chicken(HasTraits):
 pass

class Egg(HasTraits):
 created_by = Trait(Chicken)

Chicken.add_class_trait('hatched_from', Egg)

3.6 Performance Considerations of
Traits

Using traits can potentially impose a performance penalty on
attribute access over and above that of normal Python attributes.
For the most part, this penalty, if any, is small, because the core of
the Traits package is written in C, just like the Python interpreter.
In fact, for some common cases, subclasses of HasTraits can
actually have the same or better performance than old or new style
Python classes.

However, there are a couple of performance-related factors to keep
in mind when defining classes and attributes using traits:

• Whether a trait attribute delegates
• The complexity of a trait definition

If a trait attribute does not delegate, the performance penalty can be
characterized as follows:

• Getting a value: No penalty (i.e., standard Python attribute
access speed or faster)

• Setting a value: Depends upon the complexity of the validation
tests performed by the trait definition. Many of the predefined
trait handlers defined in the Traits package support fast C-level
validation. For most of these, the cost of validation is usually
negligible. For other trait handlers, with Python-level validation
methods, the cost can be quite a bit higher.

If a trait attribute does delegate, the cases to be considered are:

• Getting the default value: Cost of following the delegation
chain. The chain is resolved at the C level, and is quite fast, but

48 12-Sep-2007

Traits User Manual

its cost is linear with the number of delegation links that must
be followed to find the default value for the trait.

• Getting an explicitly assigned value: No penalty (i.e., standard
Python attribute access speed or faster)

• Setting: Cost of following the delegation chain plus the cost of
performing the validation of the new value. The preceding
discussions about delegation chain following and fast versus
slow validation apply here as well.

Note that in the case where delegation modifies the delegate object,
the cost of getting an attribute always includes the cost of following
the delegation chain.

In a typical application scenario, where attributes are read more
often than they are written, and delegation is not used, the impact
of using traits is often minimal, because the only cost occurs when
attributes are assigned and validated.

The worst case scenario occurs when delegation is used heavily to
provide attributes with default values that are seldom changed. In
this case, the cost of frequently following delegation chains may
impose a measurable performance detriment on the application. Of
course, this is offset by the convenience and flexibility provided by
the delegation model. As with any powerful tool, it is best to
understand its strengths and weaknesses and apply that
understanding in determining when use of the tool is justified and
appropriate.

12-Sep-2007 49

	1Introduction
	1.1What Are Traits?
	1.2Background

	2Defining Traits: Initialization and Validation
	2.1Simple Trait Definitions
	2.1.1Predefined Traits
	2.1.1.1Predefined Traits for Simple Types
	2.1.1.1.1Trait Type Coercion
	2.1.1.1.2Trait Type Casting

	2.1.1.2Other Predefined Traits
	2.1.1.3This

	2.1.2Defining By Example
	2.1.3List of Possible Values

	2.2The Trait() Function
	2.2.1Compound Trait Parameters
	2.2.1.1Type
	2.2.1.2Constant Value

	2.2.2Keywords

	2.3Mapped Traits
	2.3.1.1Validator Functions

	2.4Trait Handlers
	2.4.1TraitString
	2.4.2TraitPrefixList
	2.4.3TraitPrefixMap

	3Advanced Topics
	3.1Custom Trait Handlers
	3.1.1Example Custom Trait Handler

	3.2Trait Notification
	3.2.1Static Notification
	3.2.2Dynamic Notification
	3.2.3Trait Events
	3.2.4Undefined Object

	3.3Trait Delegation
	3.3.1Delegate() Function
	3.3.1.1Prefix Keyword
	3.3.1.2Modify Keyword

	3.4Initialization and Validation Revisited
	3.4.1Dynamic Initialization
	3.4.2Overriding Default Values in a Subclass
	3.4.3Reusing Trait Definitions
	3.4.4Trait Attribute Definition Strategies
	3.4.4.1Trait Attribute Name Wildcard
	3.4.4.1.1Wildcard Rules
	3.4.4.1.2Disallow Object
	3.4.4.1.3HasTraits Subclasses
	3.4.4.1.4HasStrictTraits
	3.4.4.1.5HasPrivateTraits

	3.4.4.2Per-Object Trait Attributes

	3.4.5Type-Checked Methods

	3.5Useful Methods on HasTraits
	3.5.1add_trait()
	3.5.2clone_traits()
	3.5.3set()
	3.5.4add_class_trait()

	3.6Performance Considerations of Traits

