

[image: image3.png]

[image: image3.png][image: image4.png][image: image5.png]Traits 2 User Interface Toolkit Design
David C. Morrill SUBJECT
Draft Version
Table of Contents
2Table of Contents

3Traits 2 UI Toolkit Goals

3Learning From History

4The New Design

5The New UI Sub-package

5EditorFactory and Editor Objects

6Group and Item Objects Revisited

7View Objects

11ViewElements and Include Objects

15Using View Templates with HasTraits Based Classes

16Model and View Separation

16UI and UIInfo Objects

17Handler Objects

20Putting It All Together: The User Interface Creation Process

23Traits 2 UI Toolkit Examples

24Low-level GUI Toolkit Interface

25Additional Enhancements

Traits 2 UI Toolkit Goals
The Traits 2 UI toolkit is designed to provide a robust and scalable set of tools for creating interactive user interfaces for manipulating trait values.
The primary design goals of the UI toolkit are:

1. Provide a higher-level abstraction for creating traits-based user interfaces than is provided by GUI toolkits such as wxPython. The abstraction should manage mundane details like screen layout and synchronizing/mapping object values to UI control values.

2. Provide a smooth range of complexity/power trade-offs that allow simple interfaces to be created with virtually no effort, then allow additional sophistication and control to be added as necessary using tools requiring gradually increasing levels of user sophistication and experience.
3. In a worst case scenario, allow experienced developers full-access to the underlying UI toolkit in order to provide functionality not provided by the Traits UI toolkit. This is worst case because the design intent is to eliminate developer dependency on the underlying UI toolkit as much as possible. However, missing features or functionality in the Traits UI toolkit should not preclude a developer from developing solutions using whatever other tools are available.
Learning From History

The preceding are essentially the same goals that the original Traits UI toolkit sought to achieve. However, experience in development of Chaco, Enable, ProAVA2, and other projects has shown that while the first goal was successful, the other two goals met with varying degrees of success. In particular:
· The goal of providing a continuous range of complexity/power trade-offs suffered from too small a range of power. While the toolkit worked well for simple to medium complexity problems, it tended to “run out of gas” in situations requiring complex interactions between fields or dynamically specified content constraints.

· The goal of providing simple access to the underlying UI toolkit in worst case scenarios was only partially achieved because the necessity to do so arose quickly in too many situations, and the dividing line between the Traits UI toolkit and the underlying UI toolkit was not well defined or managed.

Some specific examples of where the original Traits UI support was found wanting were discussed in an informal series of meetings held by Enthought developers during the last week of September and first week of October, 2004. Besides providing the impetus to re-visit the Traits UI toolkit design, the meetings also provided a number of touchstones by which to measure any new design.

The New Design

The following sections provide a high-level overview of the proposed new design for the Traits 2 user interface toolkit. For the most part, it tends to build upon the successes of the original Traits user interface toolkit support, while at the same time addressing the short-comings mentioned above and discussed in the various meetings that were held. It also reflects a number of simplifications and class renaming artifacts that are intended to be consistent with other changes already introduced into the new Traits 2 package.
The diagram below introduces the main objects and classes involved in the Traits 2 user interface toolkit:

[image: image1]
The New UI Sub-package

The first thing to note is that all user interface related Traits elements are split off into a separate sub-package: enthought.traits.ui. This allows for a cleaner separation between the core Traits functionality and the user interface toolkit. The separate user interface sub-package is evident in the preceding diagram through the light blue and green shaded boxes representing various enthought.traits.ui classes and subclasses. Blue boxes represent classes that are normally subclassed when used, while green boxes represent classes that are normally used without being subclassed.
For those already familiar with the original Traits UI toolkit, the following table shows the class renaming that occurs between Traits and Traits 2:

	Traits 2
	Traits

	EditorFactory
	TraitEditor

	Editor
	

	View
	

	ViewElements
	

	Group
	TraitGroup

	Item
	TraitGroupItem

	UI
	

	UIInfo
	

	Handler
	TraitSheetHandler

All of the existing Traits user interface toolkit classes are used in Traits 2, but are given new names designed to be consistent with the naming style used in the rest of the Traits 2 package. In addition, several new classes have been introduced.
EditorFactory and Editor Objects

One of the first changes to note is that the original TraitEditor class has been “split” into the EditorFactory and Editor classes. For the most part, the EditorFactory serves the same purpose as the original TraitEditor class. The main difference is that now an EditorFactory subclass creates Editor subclasses that encapsulate and abstract the interface to an underlying wxPython (or other GUI toolkit) control. Previously, a TraitEditor subclass directly created wxPython controls, and attached additional traits-related state information to them.

The new design allows all of the traits-related information to be kept in the Editor object. It also allows the Editor object to expose a number of traits which play an important part in the new design:

	Trait
	Meaning

	ui
	The UI object this Editor is part of.

	control
	The underlying wxPython control

	enabled
	The underlying wxPython control is enabled or disabled.

	object
	The object this Editor is editing.

	name
	The trait within object this Editor is editing

	value
	The original value of object.name before editing began

Another change from the original Traits package is that the base EditorFactory class derives from HasTraits, which allows an EditorFactory to have traits. This will be an important feature for tools like a Visual Interface Editor, which will need to allow a developer to edit the properties of an EditorFactory.

Group and Item Objects Revisited

The Group and Item classes play the same role that the TraitGroup and TraitGroupItem classes do in the original Traits package. In the new design however, both are subclasses of the abstract ViewElement class, which in turn derives from HasStrictTraits.
The Group class has the following new traits defined:

	Trait
	Meaning

	id
	Name to assign to the Editor object generated from this Group in a UIInfo object. If id is left empty, no Editor object is created for the Group. An id is used in the case of a wizard dialog, where the Group’s Editor object is used to control when a user can advance to the corresponding page of the wizard. The id can also be used to mark a Group that can be replaced dynamically by another Group when a user interface is created. More information on how this substitution occurs is provided in a later section.

	defined_when
	A string specifying a Python expression which, when evaluated at user interface build time, returns a boolean value that determines whether or not the item and its children are included in the user interface.

	enabled_when
	A string specifying a Python expression which, when evaluated while the user interface is active, returns a boolean value that determines whether or not the corresponding wizard page is enabled or not. This trait only has an effect on top-level Group objects used to construct a wizard dialog.

The Item class has several new traits defined:
	Trait
	Meaning

	id
	Name to assign to the Editor object generated from this Item in a UIInfo object. Note: if the value is empty (the default), the name trait is used instead. The id trait can be used to resolve conflicts in cases where the name trait may not be unique within a View. The id can also be used to mark an Item that can be replaced dynamically by another Item when a user interface is created. More information on how this substitution occurs is provided in a later section.

	defined_when
	A string specifying a Python expression which, when evaluated at user interface build time, returns a boolean value that determines whether or not the item is included in the user interface.

	enabled_when
	A string specifying a Python expression which, when evaluated while the user interface is active, returns a boolean value that determines whether or not the corresponding trait editor is enabled or not.

The Item object trait also has a new definition. Instead of directly referring to an object to edit, it is now a string containing the name of the context object to edit, with the default value being ‘object’.

In addition, it is now possible to specify a label without a corresponding object trait to edit by setting label to the label to display, and setting the name trait to empty (i.e. ‘’). As before, if both name and label are empty, the Item will cause a 5 pixel space to be inserted into the user interface.

View Objects

The View class is a new class introduced to act as the top-level object for representing a traits-based user interface. In essence, it is a factory object that can produce a traits-based user interface editor based on a collection of template data provided to it at construction time. As with the Group and Item classes, View is a subclass of the abstract ViewElement class.
In terms of the original Traits package, View objects replace the __editable_traits__ class attribute. The advantage of this approach is that it opens up the possibility of having multiple traits-based user interfaces defined for a single class, both internal and external to a class’s definition.
The constructor for the View class has the form:

View(group1 [, group2, …, groupn])

View({string|item|include} [, {string|item|include}, …])
which is very similar to the current type of information that can be specified as the value of __editable_traits__. Basically, the information describes the structural content of the user interface in terms of Group, Item and Include objects, or data that can be converted to Group and Item objects. Include objects are described in a subsequent section.
A View object also has a number of traits defined:

	Trait
	Meaning

	content
	A list of Group objects, initially derived from the information passed to the constructor, which describes the structural content of the user interface

	view_elements
	None or a reference to a ViewElements object. The purpose of the ViewElements object will be described in a later section.

	handler
	The handler object passed to any UI created from the View template. The value must be an instance of the Handler class or one of its subclasses. The default value is an instance of the Handler base class.

	title
	Title to display when the View template is used to create a dialog-based user interface. The default value is ‘Edit properties’.

	type
	The type of view to be created when the view_ui method is called. The value can be one of the strings: panel, modal, nonmodal, or wizard, with the default value being nonmodal. More information about the different types of views is provided later.

	style
	The default style to use when creating a user interface. This can have any of the same values that the Group or Item style trait supports, and is used by any Group or Item object in the content trait that does not have an explicit style specified by itself or one of its parent container objects. The default value is ‘simple’.

	apply
	A boolean value specifying whether or not or not an Apply button should be added to a modal dialog created from the View template. The value is only used when a modal dialog is created. The default value is False.

	revert
	A boolean value specifying whether or not a Revert button should be added to a modal or nonmodal dialog created from the View template. The value is only used when a modal or nonmodal dialog is created. The default value is False.

	undo
	A boolean value specifying whether or not an Undo and Redo button should be added to a nonmodal dialog created from the View template. The value is only used when a nonmodal dialog is created. The default value is False.

The View class has the following method used to create UI objects for a traits-based user interface:
view_ui(context, parent = None, type = None)

Creates and returns a UI object for a traits-based user interface. Context specifies the collection of objects that will be edited or used by the interface, and may either be an object whose class derives from HasTraits, or a dictionary of string: object pairs, where the string keys represent the names of the corresponding objects, all of which should belong to classes which derive from HasTraits. The dictionary represents the collection of objects which will be edited or used by the user interface created. Specifying a single object instead of a dictionary is equivalent to writing: { ‘object’: object }.
Parent specifies the wxPython (or other user interface toolkit) component which is the parent object for the user-interface created.

Type specifies the type of user interface to be created. It can have any of the same values as the type trait of a View object (i.e. panel, modal, nonmodal or wizard). If omitted or None, the value specified by the View object’s type trait is used.

The type of user interface created by the view_ui method depends upon the value of the type argument to the view_ui method (or the View object’s type trait if type is omitted or None). The different types of user interfaces are:

panel

Creates an embeddable, panel-based user interface. This type of view is intended to be used as part of a larger interface. Note that for this type of interface, the parent argument to the view_ui method specifies the parent control for the user interface created, and must not be None.

modal
Creates a modal dialog user interface. The modal dialog contains OK and Cancel buttons, and does not modify any of the objects specified in context until the dialog is closed by pressing the OK or window close button. That is, the dialog creates an internal set of context objects whose values are initially clones of the context passed. Any changes made while editing is in progress are made to the internal set of context objects. When the user presses the OK or window close button, the changes made to the internal set of context objects are copied back to the original set of context objects.

Note that control does not return from the view_ui method until the user dismisses the dialog using the OK, Cancel or window close button. The rc trait of the returned UI object contains the return code: True if the user dismisses the dialog using the OK or window close button, and False if the Cancel button is used.

The value of the View’s apply trait specifies whether or not the dialog should contain an Apply button. If apply is True, an Apply button is added; otherwise it is not. Clicking the Apply button copies all changes that have been made to the internal context objects back to the original context passed to the method.

The value of the View’s revert trait specifies whether or not the dialog should contain a Revert button. If revert (and apply) is True, a Revert button is added; otherwise it is not. Clicking the Revert button copies the original context object values back to the internal context objects.

nonmodal
Creates a UI object for a non-modal user interface. Unlike the modal interface described above, a non-modal dialog does not contain OK or Cancel buttons, and any changes made in the editing controls are immediately applied to the objects specified in context.

The value of the View’s undo trait specifies whether or not the dialog should contain Undo button and Redo buttons. If undo is True, Undo and Redo buttons are added; otherwise they are not. Clicking the Undo button undoes one change in the undo history of changes made to the context objects maintained while the dialog is active. Clicking the Redo button re-applies the most recently undone change made by clicking the Undo button. All changes made while editing can be undone or redone by clicking the Undo and Redo buttons appropriately.

The value of the View’s revert trait specifies whether or not the dialog should contain a Revert button. If revert is True, a Revert button is added; otherwise it is not. Clicking the Revert button restores the context objects back to their initial state at the time the dialog was created. It also discards the undo history of changes made to the context objects by the dialog.

Note that it is also possible to create an application wide undo history by specifying an appropriate handler object. The undo history maintained by the dialog is discarded when the dialog is closed, or the Revert button is clicked.

wizard
Creates a UI object for a wizard-like modal dialog. A wizard is a dialog which divides the editable items up into a sequence of pages. The pages can only be processed in order, from first to last, with the possibility of moving both forward and backward in the order. Although the dialog can be cancelled at any point, it can only be successfully closed, and all changes applied to the context objects, by clicking the OK button displayed on the last page of the sequence. Control does not return from the view_ui method until the dialog is dismissed.

Each Group in the View’s content defines one page in the wizard. By default, the user can move from one page to the next at any time by clicking on the Next and Previous buttons. However, a developer supplied handler can control the user’s movement through the sequence by appropriate setting of each top-level Group’s enabled trait. If a Group is disabled, the user cannot advance to the page the Group represents. This feature is normally used to force users to specify required trait values before being allowed to continue.

The wizard is a modal dialog. No changes are made to the context objects until the user clicks the OK button on the last page of the dialog. If the user clicks the Cancel button on any page, the dialog is dismissed and no changes are made to the context objects. Unlike the other form of modal dialog however, clicking the window close button also discards all changes made, without applying them to the context objects. As with a modal dialog, the rc trait of the returned UI object specifies how the user dismissed the dialog. If the user clicks the OK button, then rc is True; otherwise, if the user clicks the Cancel or window close button, rc is False.
ViewElements and Include Objects

Applications frequently define subclasses that add new traits to the base class. In such cases, the user interface for the subclass often is the same or similar to the base class’s user interface, with the addition of one or more fields for the subclass’s new traits.
A brute force approach to creating a subclass’s user interface is to simply copy the parent class’s View template and add in the appropriate new Group and Item objects, as shown below:
class Person (HasTraits):

 name = Str

 address = Str

 traits_view = View(‘name’, ‘address’)

class Employee (Person):

 employer = Str

 traits_view = View(‘name’, ‘address’, ‘employer’)

However, there are several problems with this approach:

· It is error-prone. If a trait is added or removed from the base class, the developer must remember that the changes need to be propagated to all subclass’s View templates.

· It is fragile. For exactly the same reason just stated. In many cases, subclass’s may be developed by group’s unknown to the base class developer. Therefore it may be impossible to add or remove the trait from any subclass’s View templates, and any changes to the base class effectively break all subclasses’s user interfaces.
· It is redundant. Each subclass replicates all of the information provided in each superclass. In an object-oriented world, this is equivalent to having to re-implement all of the superclass’s methods in each subclass, not just the ones whose behavior is being changed.
To avoid these problems, the traits package provides a form of visual inheritance that allows a subclass to extend a superclass’s user interfaces without having to completely re-specify them. The mechanism that provides this capability depends upon the use of two new additional classes: ViewElements and Include.
ViewElements objects keeps track of groups of named View, Group and Item objects that are used within a common framework or environment. The shared framework or environment can be explicitly defined and managed by the developer, but more often than not is defined and maintained automatically as part of the process of creating class definitions.

This automatic process for defining and maintaining ViewElements objects uses the traits meta-class framework and works as follows:

· As part of the process of defining a new HasTraits subclass, a new ViewElements object is created and associated with the subclass.

· Each immediate parent class of the subclass that derives from HasTraits has its corresponding ViewElements object added to the subclass’s ViewElements object as a parent of the ViewElements object.

· Each ViewElement object defined as a class-level attribute of the subclass is removed from the subclass and added to the subclass’s ViewElements object as a named ViewElement.

· In addition, in the case of class-level View objects, the view_elements trait is automatically set to the subclass’s ViewElements object.

A simple example to illustrate this process is:

class Example (HasTraits):

 … # Trait definitions

 my_view = View(‘a’, ‘b’, ‘c’)

 my_group = Group(‘d’, ‘e’)

class Example2 (Example):

 … # More trait definitions
 new_view = View(‘x’, ‘y’)

 my_group = Group(‘j’, ‘k’)

The preceding code results in the following object hierarchy:

[image: image2]
The main purpose of ViewElements objects is to provide a hierarchical, searchable name space for traits user interface related objects.
In the case of class based definitions, the hierarchy exactly mirrors the object class hierarchy. However, it is also possible to programmatically construct ViewElements in cases where the user interface structure is not known statically at class definition time. ViewElements constructed in this manner can have arbitrary hierarchies and dynamically updatable user interface element content.
The Include class provides a means of referring to items stored in a ViewElements name space from within a View template. The constructor for an Include object has the form:

Include(id)

where id is a string matching the name of some ViewElement in a ViewElements’s name space.
Before describing how Include objects are used, we need to clarify one aspect of Group object behavior: Ideally, a Group object contains a collection of Group objects or a collection of Item objects, but not both mixed together. If a Group does contain both type of objects, each Group is logically replaced by its Item object contents (which might require some recursion to accomplish) when the Group is converted into a user interface. This fact is important to an understanding of different uses of the Include class.

In general, an Include object acts as a placeholder in a View template. When an Include object is encountered in the process of building a user interface from a specified View template, the Include object is logically replaced by the object it refers to. That is, when an Include object is encountered, the ViewElements’s name space associated with the current View template is searched for a ViewElement whose name matches the id of the Include object. If a match is found, the matching ViewElement is logically substituted for the Include object in the user interface being constructed. If no match is found, the Include object is simply ignored.

The algorithm used to perform the search of the ViewElements’s name space is as follows:
· At the start of the user interface generation process, the name space search stack is set to empty.

· The root ViewElements name space to search is determined from the view_elements trait of the View template object.

· When an Include object is encountered in the process of generating the user interface for a specified View template object, the search stack is examined to find the first entry whose name matches the id of the Include object.
· If a matching entry is found, the search starts at the ViewElements object specified in the matching search stack entry.

· If no matching entry is found, the search starts at the root ViewElements object established earlier.

· Once the starting ViewElements search object has been determined, the object is searched for a ViewElement whose name matches the id of the Include object.

· If a matching ViewElement is found:

· An entry containing the Include object id and the ViewElements object its match was found in is pushed onto the search stack.

· The matching ViewElement is returned as the result of the search.

· If no matching ViewElement is found, the current ViewElements object is checked to see if it has a defined parent object.

· If it does, the current ViewElements object is set to the parent object, and the search continues with the parent object.

· If it does not, None is returned as the result of the search.

As stated previously, if the result of the search is None, the Include object is simply ignored. Otherwise, subsequent processing depends upon the type of ViewElement returned by the search:

· If an Item object is returned:

· The search stack is popped.

· The Item is substituted in place of the original Include object.
· If a Group object is returned:

· The contents of the Group object are checked for any Include objects, and they are searched for and replaced as necessary.

· The search stack is popped.

· If the current set of objects being processed are any other Include objects, they are replaced by their ???
Using View Templates with HasTraits Based Classes
Zero, one or more View, Group and Item objects can be associated with a class that has traits at class definition time:
class Point (HasTraits):

 x = Float

 y = Float

 view = View(‘x’, ‘y’)

 x_view = View(‘x’)

 y_view = View(‘y’)

As stated previously, each ViewElement subclass (i.e. View, Group and Item) instance that occurs in the class definition is automatically removed from the class and inserted into the class’s associated ViewElements object.
In addition, the HasTraits class has the following two new methods used for dealing with View templates:

trait_view([name [, view_element]])
If both name and view_element are specified, the specified view_element is associated with name. That is, the specified view_element is added to the class’s associated ViewElements object.
If only name is specified, it returns the user interface element previously associated with name, either as a result of a previous trait_view (name,view_element) call or from a ViewElement object bound to a class attribute at class definition time. If no user interface element is associated with name, None is returned.
If neither name nor view_element is specified, it checks to see if there is a View object named ‘traits_view defined for the object. If so, it returns that View template object. If not, but there is exactly one View template object defined, it returns that View object. In all other cases (i.e. zero or more than one View template object is defined), it returns View(self.editable_traits()).
trait_views(klass = View)

Returns a list of all user interface element names for the object using the ViewElements object associated with the object’s class. The optional klass argument specifies the class that all returned names corresponding objects must be instances of. The default value is View, which means that all resulting names will correspond to objects that are View class instances. Other possible values are: Group, Item, ViewElement and ViewSubElement.
Based on this new model, the original Traits edit_traits method can be redefined as follows:

def edit_traits (self):

 self.trait_view().view_ui(self)

Model and View Separation

Note also that with this new model, it is not necessary to directly associate any View templates with the class itself. That is, user interface templates can be defined and used completely external to the class definition. For example:
class Point (HasTraits):

 x = Float

 y = Float

…

pt = Point()

View(‘x’, ‘y’).view_ui(pt)

This provides for a clean separation of model from view if desired.
UI and UIInfo Objects

UI objects are created as a result of calling the view_ui method on a View object. The UI object is the top-level object for an active traits-based user interface, and defines a number of useful, predefined traits:

	Trait
	Meaning

	context
	A dictionary containing name: object pairs for all objects being edited in the user interface.

	handler
	The Handler object used for controlling the user interface associated with the View.

	view
	A reference to the View object used to create the UI.

	control
	The top-level wxPython control used by the user interface. The type of object depends on the method used to create the UI.

	info
	A UIInfo object containing the dynamically created set of traits describing the context and Editor objects used by the user interface.

	rc
	Return code from a modal or wizard dialog. It is set to True if a modal dialog is dismissed using the OK or window close button, and False if the Cancel button is used. It is set to True if a wizard dialog is dismissed using the OK button, and False if the Cancel or window close button is used.

The UI’s info trait references a UIInfo object that contains a number of dynamically created traits defined when the UI is created. These dynamic traits are based on information contained in the View object the UI is created from, as well as the context dictionary specified in the view_ui method call.
In particular:

· A trait is defined for each named object specified in the context dictionary, with the name being the dictionary key, and its value being the corresponding dictionary value.

· A trait is defined for each View Item that results in an Editor object being created. The trait name is the value of the Item’s name trait, and its value is the Editor object created from the corresponding Item object.

These dynamically created traits are used to provide simple, programmatic access to important information needed by the Handler object associated with the UI.
The UIInfo object also has one predefined trait:

	Trait
	Meaning

	ui
	A reference to the associated UI object.

The UI class also has a number of methods defined:

view_ui(parent)

Creates the type of user interface specified by the UI’s view.type trait. Refer to the section on View objects for more information about the types of user interfaces that can be created. No result is returned.

close(is_ok)

In the case of a modal dialog, it synchronizes the edited set of context objects with the original set of context objects if is_ok is True. In all other cases, no action is performed.

Handler Objects

A Handler object provides developer access and control over the run-time workings of a traits-based user interface, and is the key to providing the extra level of control and expandability that the original Traits user interface toolkit lacked.
All of the important control decisions and internal data flow provided by a traits-based user interface are delegated through the Handler object. The base Handler class provides appropriate default behavior for each method in the Handler interface, but by providing a subclass of Handler, a developer is able to gain control or modify behavior at key points in the user interface data flow.
In addition, by simply defining appropriate static event handlers in a Handler sub-class, a developer can easily provide individual field or intra-field custom behavior without having to explicitly wire-up the event handlers at run-time. This capability is provided by the UI class, which at creation time looks for specific methods in the provided Handler object and automatically sets them up as the appropriate event handler based on names found in both the View Item and context objects. This provides a simple, declarative method of defining event handlers and eliminates a lot of tedious initialization code that would normally need to be provided by the developer.
As a result of all this, Handler objects provide both a pre-defined interface used by the user interface run-time, as well as a custom, case specific interface whose use is automatically determined at run-time based on information provided by the View and context objects.

The methods defined as part of the fixed Handler interface are:

init(info)

Called at user interface creation time after all user interface elements have been created, but before the user interface has been displayed (in the case of a dialog). Info is the UIInfo object associated with the new user interface.

This method allows the developer to further customize the user interface before it is initially displayed to the user.

A result of True indicates that the user interface was initialized successfully, while a result of False indicates that initialization failed and the user interface should be aborted.

The default implementation simply returns True without taking any other action.

position (info)

Called at user interface creation time (for a dialog) after the call to init, but before the user interface is displayed. Info is the UIInfo object associated with the new user interface.

This method allows the developer to position the user interface on the display before it is initially displayed to the user.

No result is returned.

The default implementation centers the dialog on the display.

close (info, is_ok)

Called (in the case of a dialog) when the user has requested that the dialog be closed, either by pressing the Ok, Cancel or window close buttons. Info is the UIInfo object associated with the user interface, and is_ok is a boolean value indicating whether the user pressed the Ok, Cancel or window close button. For a non-modal dialog, is_ok is always True. For a modal dialog, is_ok is True if either the Ok or window close button is pressed, and False if the Cancel button is pressed. For a wizard dialog, is_ok is True if the OK button is pressed, and False if the Cancel or window close button is pressed.
The result is a boolean indicating whether or not the dialog should be allowed to close. A True result indicates that the dialog can be closed, while a False result indicates that the dialog should remain open.

The default implementation calls the info.ui object’s close method, then returns True.
setattr (object, name, value)
Called whenever a trait editor wishes to set a new value for a specified object trait. Object specifies the object whose trait is to be set. Name specifies the name of the trait to be set. Value specifies the new value to be assigned to the trait.

This method allows the developer to control what happens when a trait editor wants to change the value of an object trait. In particular, it provides a useful hook for implementing an undo history mechanism.

No result is returned.

The default implementation simply performs: setattr(object, name, value).

As stated previously, the UI class automatically connects methods on a Handler object to user interface events based on method name and the name of Item and context objects used to construct the user interface.

Connections are made based on the method names found in the supplied Handler object. The rules applied are as follows:

object_name_changed(info)
This method is called whenever the name trait of the context object called object is changed. Info is the UIInfo object associated with the user interface.

This method allows the developer to dynamically adjust the state of any edit controls that may be dependent upon the value of object.name.

name_defined(info)

This method is called if the View contains an Item object whose name trait is name, and the corresponding Editor object is created as part of the user interface (remember, creation of an Editor may be conditional based on the result of the Item’s defined_when trait). Info is the UIInfo object associated with the user interface. The method is called after all user interface elements have been created, but before the user interface has been displayed to the user.

The method allows the developer to customize the specified editor before it is displayed.

Putting It All Together: The User Interface Creation Process

This section attempts to show how all of the objects described in the preceding sections are used in the process of creating a traits-based user interface. While not strictly necessary in order to define or use such interfaces, hopefully this presentation will provide a better understanding of how all the pieces fit together.
In a subsequent section, we’ll present some examples of using the user interface toolkit to create user interfaces with various degrees of sophistication and control, to see how the objects are used from a developer’s perspective.

All that having been said, let’s begin:

1. Define all necessary objects. We’ll gloss over the details of this for now, since this is the essence of what will be presented in the following examples section.

2. Invoke the View object’s view_ui method to begin the process of user interface construction.

3. The View object constructs a UI object, passing itself, the context, parent, and handler objects as arguments. If no handler object was specified to the View method, the value of the default handler trait of the View object is used. Once constructed, the View invokes the UI’s view_ui method to initialize the UI. The View then returns the constructed UI object as the result.
4. The UI class constructor is basically passive, simply storing all of its construction arguments as trait values for later use.
5. The UI class’s view_ui method (which actually delegates the operation to the current Toolkit object’s view_ui method) begins the actual process of user interface construction. Each user interface type differs in some details, but for the most part they all follow a similar recipe. The process begins by constructing the outermost wxPython level control (e.g. a wxDialog or wxPanel object) and assigning that as the value of the UI’s control trait. In the case of a dialog, the View’s title trait is used to define the dialog window’s title.
6. A UIInfo object is created and assigned to the UI’s info trait. Each object in the context associated with the UI is added to the UIInfo as a new trait, whose name is specified by the context object’s dictionary key. In the case of a modal dialog, clones of the original objects are used, and the original set of context objects are cached as private instance data of the UI. The original objects are only used by the UI’s close method, called when the dialog is dismissed. If the UIInfo object already has a trait with the same name as one of the context objects, the context object is not defined as a trait.
7. The UI then begins a recursive process of converting its associated View object’s Group and Item contents into their corresponding wxPython-level objects:

a. For the most part, Group objects become containers of some sort, either notebook pages, or panels with horizontal or vertical layouts. If a Group has a non-empty defined_when trait, it is evaluated using the context dictionary as its name space. If the result is True, the Group and its dependent Groups and Items are processed; otherwise, they are ignored.
In the case of top-level Group objects within a wizard dialog, if the Group has a non-empty id or enabled_when value, a special GroupEditor object is created. If id is not empty, the GroupEditor is added to the UI’s info object as a trait whose name is specified by id. If the trait is already defined, the GroupEditor object is not added.

If the enabled_when value is not empty, the GroupEditor is added to the UI’s private list of monitored Editor objects.

b. Item objects are used to either define specialized layout elements, like spacers, labels or separators, or to define trait editor controls. If an Item has a non-empty defined_when trait, it is evaluated using the context dictionary as its name space. If the result is True, the Item is processed; otherwise, the Item is ignored.
c. In the case of an Item that defines a trait editor control:
i. The Item’s editor trait is first checked to see if an EditorFactory object has been specified. If so, the specified EditorFactory object is used.
ii. Otherwise:

1. The Item’s object trait is used to select an object in the UI’s context.
2. The Item’s name trait is then used to retrieve the trait definition of the appropriate trait from the selected object.

3. Finally, the trait’s get_editor method is called to retrieve the EditorFactory object associated with the trait definition.
iii. Once the EditorFactory has been selected, the Item’s style trait is used to select the type of Editor object needed. If no Item style is specified, the style of the first containing Group object that has a defined style is used. The resulting style determines which EditorFactory method (e.g. simple_editor) is called. Calling the selected method creates and returns an Editor subclass whose control trait references the underlying wxPython control used to edit the specified object trait.

iv. The Editor object created in the previous step is defined as a trait on the UI’s info object using the Item’s id trait value as its name. If the id trait is empty, the Item’s name trait is used instead. In either case, if the UIInfo object already has a trait with the specified name, the Editor object is not defined as a trait on the UIInfo object.
v. If the associated handler object has a method called name_created, where name is the value of the Item’s name trait, the method is added to a list of methods to be called once the user interface has been constructed.
vi. If the Item has a non-empty enabled_when trait, the Editor is added to the UI’s private list of monitored Editor objects.

8. Once all Group and Item objects have been processed, the initial user interface construction is complete. In the case of dialogs, any additional user interface elements, such as Ok and Cancel buttons are then added to the dialog.

9. For each name_created method defined on the handler object that was saved in one of the earlier steps, invoke the method to allow the developer defined customization of the edit control to be performed.
10. Invoke the handler’s init method to allow any final customization of the user interface. If the result returned is False, dispose of the user interface objects, set the UI’s rc trait to False, and raise an exception to indicate that the user interface could not be created.

11. In the case of a dialog, invoke the handler’s position method to set the initial position of the dialog on the display.

12. For each object in the context dictionary, check the handler object for method names of the form: object_name_changed, where object is the context object’s name, and name is the name of a trait in object. For each match found, set up a trait change notification handler that will invoke the matching method whenever the specified trait on the context object is changed, as described previously. In addition, invoke the object_name_changed method immediately to allow the handler to set any appropriate, initial user interface state.
13. If the UI’s list of monitored Editor objects (established in a previous step) is non-empty:

a. Evaluate each monitored Editor object’s corresponding enabled_when trait using the context object as its name space. Set the Editor object’s enabled trait to the result returned from the evaluation.

b. For each object in the context, set up an event handler that will perform the previous step any time that a context object trait changes value.

14. In the case of a dialog, display the dialog. In the case of a modal or wizard dialog, wait until the dialog is dismissed, then set the UI’s rc trait to reflect whether the user dismissed the dialog using the OK, Cancel or window close button.
Traits 2 UI Toolkit Examples

In this section we’ll explore a few examples of using the proposed Traits 2 user interface toolkit to create an increasingly more sophisticated set of user interfaces.

First, we’ll begin by showing that we can still create the type of brain-dead simple UI’s that we could create using the original Traits package:

class Point (HasTraits):

 x = Float

 y = Float

pt = Point()

pt.edit_traits()

Now we’ll extend the previous example by adding an optional z component, which can be None or a float. If the value is None, the user should not see the z component when editing the Point object:

class Point (HasTraits):

 x = Float

 y = Float

 z = Trait(None, None, float)

 tp = View(‘x’, ‘y’, Item(‘z’,

 defined_when = ‘object.z is not None’))

pt = Point()

pt.edit_traits()
As a slight variation on the above, we’ll modify the previous example so that the z component is visible, but disabled, when it is None:

class Point (HasTraits):

 x = Float

 y = Float

 z = Trait(None, None, float)

 tp = View(‘x’, ‘y’, Item(‘z’,

 enabled_when = ‘object.z is not None’))

pt = Point()

pt.edit_traits()

In the following example, we’ll define an object representing a rental car that allows the user to specify a driving distance, and whether extra insurance is requested. However, we only wish to allow extra insurance if the driving distance is greater than 100 miles:
class RentalCarHandler (Handler):

 def object_distance_changed (self, info):

 state = (info.object.distance > 100.0)

 info.extra_insurance.enabled = state

 if not state:

 info.object.extra_insurance = False

class RentalCar (HasTraits):

 distance = Float

 extra_insurance = Bool

 tp = View(‘distance’, ‘extra_insurance’,

 handler = RentalCarHandler())

car = RentalCar()

car.edit_traits()

Low-level GUI Toolkit Interface

The Traits user interface toolkit is built on top of an underlying GUI toolkit. If only one toolkit was ever to be supported, such as wxPython, then the interface between the Traits UI and the GUI toolkit would be trivial. However, to provide maximum flexibility, the Traits user interface toolkit is designed to allow the underlying GUI toolkit to be pluggable.

The interface between the Traits user interface and the underlying GUI toolkit is managed using the toolkit function:
toolkit([toolkit_name1, …, toolkit_namen])

Each toolkit_namei value specifies the string name of a GUI toolkit to use when creating a traits-based user interface. Currently, the only legal value is ‘wx’ (for wxPython). In the future, other values may be allowed, such as ‘tk’ (for Tkinter), or ‘enable’ (for Enable). The value is actually the name of an enthought.traits.ui subpackage (e.g. enthought.traits.ui.wx). If more than one toolkit_namei value is specified, the first valid toolkit whose underlying GUI support is installed is selected as the current toolkit.
If no toolkit_namei values are specified, the Toolkit object for the currently selected GUI toolkit is returned. If a GUI toolkit has not been explicitly selected by calling toolkit with a specific GUI toolkit name, the function will attempt to select a toolkit based on what GUI toolkits are installed on the system. If no supported GUI toolkit can be located, the function will raise an exception.
The Toolkit class is an abstract base class. A concrete sub-class is defined by each GUI toolkit sub-package (e.g. WxToolkit in enthought.traits.ui.wx). Each Toolkit sub-class defines a number of factory methods. For example, each of the standard EditorFactory classes defined by the Traits package is really a factory function that calls the corresponding method on the current Toolkit object to create the GUI toolkit specific version of the EditorFactory. Similarly, UI objects delegate the implementation of the view_ui method to the view_ui method on the current Toolkit object.
Additional Enhancements
There are a number of additional areas where improvements to the Traits 2 user interface toolkit may be useful, but which have not yet been completely specified. Some possibilities include:

· A Visual Interface Editor that allows a traits-based user interface to be created interactively by dragging and dropping Group and Items onto a View, with the net result being a View code snippet that can be pasted into code. Developers see the resulting user interface update as changes are made to the View contents.

· Enhancements to the Group class to provide additional layout capabilities.

· Enhancements to the Item class to provide additional field level controls.

· Adding useful TraitEditor classes defined as part of other projects, such as ProAVA2, to the enthought.traits.ui package as new EditorFactory classes.

· Providing other new, or enhanced, TraitEditor classes, especially in the area of list or table editing and editing traits whose values are objects with traits.
enthought.traits.ui class

enthought.traits.ui subclass

foo

view_ui()

handler

view

control

control

Handler

UI

name = ‘foo’

Item

Group

View

Editor

EditorFactory

Trait

object

wxPython controls

bar

 foo

UIInfo

ui

info

object

simple_editor()

ViewElements

view_elements

my_group

new_view

my_group

my_view

parent

j,k

Group

x,y

View

d,e

Group

a,b,c

View

Example2 class

Example class

ViewIElements

ViewElements

view_elements

view_elements

Toolkit

ii
 DOCPROPERTY Keywords
21-Oct-04
Error! Unknown document property name.
 DOCPROPERTY Keywords
1

[image: image6.png]