
GNU Emacs Lisp Reference Manual
For Emacs Version 21

Revision 2.8, January 2002

by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright c© 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002 Free
Software Foundation, Inc.

Edition 2.8
Revised for Emacs Version 21.2,
January 2002.

ISBN 1-882114-73-6

Published by the Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Copying”, with the Front-
Cover texts being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A
copy of the license is included in the section entitled “GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”
Cover art by Etienne Suvasa.

Chapter 1: Introduction 1

1 Introduction

Most of the GNU Emacs text editor is written in the programming language called
Emacs Lisp. You can write new code in Emacs Lisp and install it as an extension to the
editor. However, Emacs Lisp is more than a mere “extension language”; it is a full computer
programming language in its own right. You can use it as you would any other programming
language.

Because Emacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and
so on. Emacs Lisp is closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs, and parameters for
customization are ordinary Lisp variables.

This manual attempts to be a full description of Emacs Lisp. For a beginner’s introduc-
tion to Emacs Lisp, see An Introduction to Emacs Lisp Programming, by Bob Chassell, also
published by the Free Software Foundation. This manual presumes considerable familiarity
with the use of Emacs for editing; see The GNU Emacs Manual for this basic information.

Generally speaking, the earlier chapters describe features of Emacs Lisp that have coun-
terparts in many programming languages, and later chapters describe features that are
peculiar to Emacs Lisp or relate specifically to editing.

This is edition 2.8.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless.
There are a few topics that are not covered, either because we consider them secondary
(such as most of the individual modes) or because they are yet to be written. Because we
are not able to deal with them completely, we have left out several parts intentionally. This
includes most information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to
criticism on anything it says—from specific examples and descriptive text, to the ordering
of chapters and sections. If something is confusing, or you find that you have to look at
the sources or experiment to learn something not covered in the manual, then perhaps the
manual should be fixed. Please let us know.

As you use this manual, we ask that you mark pages with corrections so you can later
look them up and send them to us. If you think of a simple, real-life example for a function
or group of functions, please make an effort to write it up and send it in. Please reference
any comments to the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change and we may have trouble finding
the text you are talking about. Also state the number of the edition you are criticizing.

Please mail comments and corrections to
bug-lisp-manual@gnu.org

We let mail to this list accumulate unread until someone decides to apply the corrections.
Months, and sometimes years, go by between updates. So please attach no significance to
the lack of a reply—your mail will be acted on in due time. If you want to contact the
Emacs maintainers more quickly, send mail to bug-gnu-emacs@gnu.org.

2 GNU Emacs Lisp Reference Manual

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950s at the Mas-
sachusetts Institute of Technology for research in artificial intelligence. The great power
of the Lisp language makes it ideal for other purposes as well, such as writing editing
commands.

Dozens of Lisp implementations have been built over the years, each with its own id-
iosyncrasies. Many of them were inspired by Maclisp, which was written in the 1960s at
MIT’s Project MAC. Eventually the implementors of the descendants of Maclisp came to-
gether and developed a standard for Lisp systems, called Common Lisp. In the meantime,
Gerry Sussman and Guy Steele at MIT developed a simplified but very powerful dialect of
Lisp, called Scheme.

GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you
know Common Lisp, you will notice many similarities. However, many features of Common
Lisp have been omitted or simplified in order to reduce the memory requirements of GNU
Emacs. Sometimes the simplifications are so drastic that a Common Lisp user might be
very confused. We will occasionally point out how GNU Emacs Lisp differs from Common
Lisp. If you don’t know Common Lisp, don’t worry about it; this manual is self-contained.

A certain amount of Common Lisp emulation is available via the ‘cl’ library. See section
“Common Lisp Extension” in Common Lisp Extensions.

Emacs Lisp is not at all influenced by Scheme; but the GNU project has an imple-
mentation of Scheme, called Guile. We use Guile in all new GNU software that calls for
extensibility.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” refer to
those routines in Lisp that convert textual representations of Lisp objects into actual Lisp
objects, and vice versa. See Section 2.1 [Printed Representation], page 9, for more details.
You, the person reading this manual, are thought of as “the programmer” and are addressed
as “you”. “The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code are formatted like this: (list 1 2 3). Names that represent
metasyntactic variables, or arguments to a function being described, are formatted like
this: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When
used as a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the
same object, the symbol nil. The different ways of writing the symbol are intended entirely

Chapter 1: Introduction 3

for human readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to
determine which representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol
t always has the value t.

In Emacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt
to change their values results in a setting-constant error. The same is true of any symbol
whose name starts with a colon (‘:’). See Section 11.2 [Constant Variables], page 133.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always
produces a result, which is a Lisp object. In the examples in this manual, this is indicated
with ‘⇒’:

(car ’(1 2))
⇒ 1

You can read this as “(car ’(1 2)) evaluates to 1”.
When a form is a macro call, it expands into a new form for Lisp to evaluate. We show

the result of the expansion with ‘ 7→’. We may or may not show the result of the evaluation
of the expanded form.

(third ’(a b c))
7→ (car (cdr (cdr ’(a b c))))
⇒ c

Sometimes to help describe one form we show another form that produces identical
results. The exact equivalence of two forms is indicated with ‘≡ ’.

(make-sparse-keymap) ≡ (list ’keymap)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch*’), the printed text
is inserted into the buffer. If you execute the example by other means (such as by evaluating
the function eval-region), the printed text is displayed in the echo area.

Examples in this manual indicate printed text with ‘ a ’, irrespective of where that text
goes. The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
a foo
a bar
⇒ bar

4 GNU Emacs Lisp Reference Manual

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area.
We show the error message on a line starting with ‘ error ’. Note that ‘ error ’ itself does
not appear in the echo area.

(+ 23 ’x)
error Wrong type argument: number-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples describe modifications to the contents of a buffer, by showing the “before”
and “after” versions of the text. These examples show the contents of the buffer in question
between two lines of dashes containing the buffer name. In addition, ‘?’ indicates the
location of point. (The symbol for point, of course, is not part of the text in the buffer; it
indicates the place between two characters where point is currently located.)

---------- Buffer: foo ----------
This is the ?contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
⇒ nil

---------- Buffer: foo ----------
This is the changed ?contents of foo.
---------- Buffer: foo ----------

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described
in this manual in a uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable, or whatever—is
printed next to the right margin. The description follows on succeeding lines, sometimes
with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of argument names. These names are also used in the
body of the description, to stand for the values of the arguments.

The appearance of the keyword &optional in the argument list indicates that the sub-
sequent arguments may be omitted (omitted arguments default to nil). Do not write
&optional when you call the function.

The keyword &rest (which must be followed by a single argument name) indicates that
any number of arguments can follow. The single following argument name will have a value,
as a variable, which is a list of all these remaining arguments. Do not write &rest when
you call the function.

Here is a description of an imaginary function foo:

Chapter 1: Introduction 5

Functionfoo integer1 &optional integer2 &rest integers
The function foo subtracts integer1 from integer2, then adds all the rest of the
arguments to the result. If integer2 is not supplied, then the number 19 is used by
default.

(foo 1 5 3 9)
⇒ 16

(foo 5)
⇒ 14

More generally,
(foo w x y...)
≡
(+ (- x w) y...)

Any argument whose name contains the name of a type (e.g., integer, integer1 or buffer)
is expected to be of that type. A plural of a type (such as buffers) often means a list of
objects of that type. Arguments named object may be of any type. (See Chapter 2 [Lisp
Data Types], page 9, for a list of Emacs object types.) Arguments with other sorts of names
(e.g., new-file) are discussed specifically in the description of the function. In some sections,
features common to the arguments of several functions are described at the beginning.

See Section 12.2 [Lambda Expressions], page 156, for a more complete description of
optional and rest arguments.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands
are simply functions that may be called interactively; macros process their arguments dif-
ferently from functions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
arguments because they can break the argument list down into separate arguments in
more complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-
args...’ stands for zero or more arguments. Parentheses are used when several arguments
are grouped into additional levels of list structure. Here is an example:

Special Formcount-loop (var [from to [inc]]) body . . .
This imaginary special form implements a loop that executes the body forms and
then increments the variable var on each iteration. On the first iteration, the variable
has the value from; on subsequent iterations, it is incremented by one (or by inc if
that is given). The loop exits before executing body if var equals to. Here is an
example:

(count-loop (i 0 10)
(prin1 i) (princ " ")
(prin1 (aref vector i))
(terpri))

If from and to are omitted, var is bound to nil before the loop begins, and the loop
exits if var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)
(if (pending)

(fixit)

6 GNU Emacs Lisp Reference Manual

(setq done t)))

In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, certain variables that exist specifically so that users can change them are called user
options. Ordinary variables and user options are described using a format like that for
functions except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

Variableelectric-future-map
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought
about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Op-
tion’.

1.4 Version Information

These facilities provide information about which version of Emacs is in use.

Commandemacs-version
This function returns a string describing the version of Emacs that is running. It is
useful to include this string in bug reports.

(emacs-version)
⇒ "GNU Emacs 20.3.5 (i486-pc-linux-gnulibc1, X toolkit)

of Sat Feb 14 1998 on psilocin.gnu.org"

Called interactively, the function prints the same information in the echo area.

Variableemacs-build-time
The value of this variable indicates the time at which Emacs was built at the local
site. It is a list of three integers, like the value of current-time (see Section 40.5
[Time of Day], page 732).

emacs-build-time
⇒ (13623 62065 344633)

Variableemacs-version
The value of this variable is the version of Emacs being run. It is a string such as
"20.3.1". The last number in this string is not really part of the Emacs release
version number; it is incremented each time you build Emacs in any given directory.
A value with four numeric components, such as "20.3.9.1", indicates an unreleased
test version.

Chapter 1: Introduction 7

The following two variables have existed since Emacs version 19.23:

Variableemacs-major-version
The major version number of Emacs, as an integer. For Emacs version 20.3, the value
is 20.

Variableemacs-minor-version
The minor version number of Emacs, as an integer. For Emacs version 20.3, the value
is 3.

1.5 Acknowledgements

This manual was written by Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M.
Stallman and Chris Welty, the volunteers of the GNU manual group, in an effort extending
over several years. Robert J. Chassell helped to review and edit the manual, with the
support of the Defense Advanced Research Projects Agency, ARPA Order 6082, arranged
by Warren A. Hunt, Jr. of Computational Logic, Inc.

Corrections were supplied by Karl Berry, Jim Blandy, Bard Bloom, Stephane Boucher,
David Boyes, Alan Carroll, Richard Davis, Lawrence R. Dodd, Peter Doornbosch, David A.
Duff, Chris Eich, Beverly Erlebacher, David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen
Gildea, Bob Glickstein, Eric Hanchrow, George Hartzell, Nathan Hess, Masayuki Ida, Dan
Jacobson, Jak Kirman, Bob Knighten, Frederick M. Korz, Joe Lammens, Glenn M. Lewis,
K. Richard Magill, Brian Marick, Roland McGrath, Skip Montanaro, John Gardiner Myers,
Thomas A. Peterson, Francesco Potorti, Friedrich Pukelsheim, Arnold D. Robbins, Raul
Rockwell, Per Starbäck, Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost,
Rickard Westman, Jean White, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright,
and David D. Zuhn.

8 GNU Emacs Lisp Reference Manual

Chapter 2: Lisp Data Types 9

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our
purposes, a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar struc-
tures and may usually be used in the same contexts. Types can overlap, and objects can
belong to two or more types. Consequently, we can ask whether an object belongs to a
particular type, but not for “the” type of an object.

A few fundamental object types are built into Emacs. These, from which all other
types are constructed, are called primitive types. Each object belongs to one and only one
primitive type. These types include integer, float, cons, symbol, string, vector, hash-table,
subr, and byte-code function, plus several special types, such as buffer, that are related to
editing. (See Section 2.4 [Editing Types], page 23.)

Each primitive type has a corresponding Lisp function that checks whether an object is
a member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing : the
primitive type of the object is implicit in the object itself. For example, if an object is a
vector, nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and
the type is known by the compiler but not represented in the data. Such type declarations
do not exist in Emacs Lisp. A Lisp variable can have any type of value, and it remembers
whatever value you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of
the standard types in GNU Emacs Lisp. Details on how to use these types can be found in
later chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prin1) for that object. The read syntax of an object is the format of
the input accepted by the Lisp reader (the function read) for that object. See Chapter 19
[Read and Print], page 255.

Most objects have more than one possible read syntax. Some types of object have no
read syntax, since it may not make sense to enter objects of these types directly in a Lisp
program. Except for these cases, the printed representation of an object is also a read
syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression
is primarily a Lisp object and only secondarily the text that is the object’s read syntax.
Often there is no need to emphasize this distinction, but you must keep it in the back of
your mind, or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax—for example,
the buffer type has none. Objects of these types are printed in hash notation: the characters
‘#<’ followed by a descriptive string (typically the type name followed by the name of the
object), and closed with a matching ‘>’. Hash notation cannot be read at all, so the Lisp
reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

10 GNU Emacs Lisp Reference Manual

(current-buffer)
⇒ #<buffer objects.texi>

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 9
[Evaluation], page 107). However, evaluation and reading are separate activities. Reading
returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 19.3 [Input Functions], page 257, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’)
starts a comment if it is not within a string or character constant. The comment continues
to the end of line. The Lisp reader discards comments; they do not become part of the Lisp
objects which represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The Emacs Lisp byte compiler uses this in its
output files (see Chapter 16 [Byte Compilation], page 205). It isn’t meant for source files,
however.

See Section D.4 [Comment Tips], page 773, for conventions for formatting comments.

2.3 Programming Types

There are two general categories of types in Emacs Lisp: those having to do with Lisp
programming, and those having to do with editing. The former exist in many Lisp imple-
mentations, in one form or another. The latter are unique to Emacs Lisp.

2.3.1 Integer Type

The range of values for integers in Emacs Lisp is −134217728 to 134217727 (28 bits;
i.e., −227 to 228 − 1) on most machines. (Some machines may provide a wider range.) It
is important to note that the Emacs Lisp arithmetic functions do not check for overflow.
Thus (1+ 134217727) is −134217728 on most machines.

The read syntax for integers is a sequence of (base ten) digits with an optional sign at
the beginning and an optional period at the end. The printed representation produced by
the Lisp interpreter never has a leading ‘+’ or a final ‘.’.

-1 ; The integer -1.
1 ; The integer 1.
1. ; Also the integer 1.
+1 ; Also the integer 1.
268435457 ; Also the integer 1 on a 28-bit implementation.

See Chapter 3 [Numbers], page 33, for more information.

Chapter 2: Lisp Data Types 11

2.3.2 Floating Point Type

Floating point numbers are the computer equivalent of scientific notation. The precise
number of significant figures and the range of possible exponents is machine-specific; Emacs
always uses the C data type double to store the value.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent.

See Chapter 3 [Numbers], page 33, for more information.

2.3.3 Character Type

A character in Emacs Lisp is nothing more than an integer. In other words, characters
are represented by their character codes. For example, the character A is represented as the
integer 65.

Individual characters are not often used in programs. It is far more common to work
with strings, which are sequences composed of characters. See Section 2.3.8 [String Type],
page 18.

Characters in strings, buffers, and files are currently limited to the range of 0 to 524287—
nineteen bits. But not all values in that range are valid character codes. Codes 0 through 127
are ascii codes; the rest are non-ascii (see Chapter 33 [Non-ASCII Characters], page 583).
Characters that represent keyboard input have a much wider range, to encode modifier keys
such as Control, Meta and Shift.

Since characters are really integers, the printed representation of a character is a decimal
number. This is also a possible read syntax for a character, but writing characters that way
in Lisp programs is a very bad idea. You should always use the special read syntax formats
that Emacs Lisp provides for characters. These syntax formats start with a question mark.

The usual read syntax for alphanumeric characters is a question mark followed by the
character; thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character
a.

For example:
?Q ⇒ 81 ?q ⇒ 113

You can use the same syntax for punctuation characters, but it is often a good idea
to add a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For
example, ‘?\ ’ is the way to write the space character. If the character is ‘\’, you must use
a second ‘\’ to quote it: ‘?\\’.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, del, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\r’, ‘?\d’, and ‘?\e’,
respectively. Thus,

?\a ⇒ 7 ; C-g
?\b ⇒ 8 ; backspace, 〈BS〉, C-h
?\t ⇒ 9 ; tab, 〈TAB〉, C-i
?\n ⇒ 10 ; newline, C-j
?\v ⇒ 11 ; vertical tab, C-k

12 GNU Emacs Lisp Reference Manual

?\f ⇒ 12 ; formfeed character, C-l
?\r ⇒ 13 ; carriage return, 〈RET〉, C-m
?\e ⇒ 27 ; escape character, 〈ESC〉, C-[
?\\ ⇒ 92 ; backslash character, \
?\d ⇒ 127 ; delete character, 〈DEL〉

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the
character 〈ESC〉.

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character,
in either upper or lower case. For example, both ‘?\^I’ and ‘?\^i’ are valid read syntax
for the character C-i, the character whose value is 9.

Instead of the ‘^’, you can use ‘C-’; thus, ‘?\C-i’ is equivalent to ‘?\^I’ and to ‘?\^i’:
?\^I ⇒ 9 ?\C-I ⇒ 9

In strings and buffers, the only control characters allowed are those that exist in ascii;
but for keyboard input purposes, you can turn any character into a control character with
‘C-’. The character codes for these non-ascii control characters include the 226 bit as well
as the code for the corresponding non-control character. Ordinary terminals have no way of
generating non-ascii control characters, but you can generate them straightforwardly using
X and other window systems.

For historical reasons, Emacs treats the 〈DEL〉 character as the control equivalent of ?:
?\^? ⇒ 127 ?\C-? ⇒ 127

As a result, it is currently not possible to represent the character Control-?, which is a
meaningful input character under X, using ‘\C-’. It is not easy to change this, as various
Lisp files refer to 〈DEL〉 in this way.

For representing control characters to be found in files or strings, we recommend the ‘^’
syntax; for control characters in keyboard input, we prefer the ‘C-’ syntax. Which one you
use does not affect the meaning of the program, but may guide the understanding of people
who read it.

A meta character is a character typed with the 〈META〉 modifier key. The integer that
represents such a character has the 227 bit set (which on most machines makes it a negative
number). We use high bits for this and other modifiers to make possible a wide range of
basic character codes.

In a string, the 27 bit attached to an ascii character indicates a meta character; thus,
the meta characters that can fit in a string have codes in the range from 128 to 255, and
are the meta versions of the ordinary ascii characters. (In Emacs versions 18 and older,
this convention was used for characters outside of strings as well.)

The read syntax for meta characters uses ‘\M-’. For example, ‘?\M-A’ stands for M-

A. You can use ‘\M-’ together with octal character codes (see below), with ‘\C-’, or with
any other syntax for a character. Thus, you can write M-A as ‘?\M-A’, or as ‘?\M-\101’.
Likewise, you can write C-M-b as ‘?\M-\C-b’, ‘?\C-\M-b’, or ‘?\M-\002’.

The case of a graphic character is indicated by its character code; for example, ascii
distinguishes between the characters ‘a’ and ‘A’. But ascii has no way to represent whether
a control character is upper case or lower case. Emacs uses the 225 bit to indicate that the

Chapter 2: Lisp Data Types 13

shift key was used in typing a control character. This distinction is possible only when you
use X terminals or other special terminals; ordinary terminals do not report the distinction
to the computer in any way. The Lisp syntax for the shift bit is ‘\S-’; thus, ‘?\C-\S-o’ or
‘?\C-\S-O’ represents the shifted-control-o character.

The X Window System defines three other modifier bits that can be set in a character:
hyper, super and alt. The syntaxes for these bits are ‘\H-’, ‘\s-’ and ‘\A-’. (Case is signif-
icant in these prefixes.) Thus, ‘?\H-\M-\A-x’ represents Alt-Hyper-Meta-x. Numerically,
the bit values are 222 for alt, 223 for super and 224 for hyper.

Finally, the most general read syntax for a character represents the character code in
either octal or hex. To use octal, write a question mark followed by a backslash and the
octal character code (up to three octal digits); thus, ‘?\101’ for the character A, ‘?\001’ for
the character C-a, and ?\002 for the character C-b. Although this syntax can represent any
ascii character, it is preferred only when the precise octal value is more important than
the ascii representation.

?\012 ⇒ 10 ?\n ⇒ 10 ?\C-j ⇒ 10
?\101 ⇒ 65 ?A ⇒ 65

To use hex, write a question mark followed by a backslash, ‘x’, and the hexadecimal
character code. You can use any number of hex digits, so you can represent any character
code in this way. Thus, ‘?\x41’ for the character A, ‘?\x1’ for the character C-a, and ?\x8e0
for the Latin-1 character ‘à’.

A backslash is allowed, and harmless, preceding any character without a special escape
meaning; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most
characters. However, you should add a backslash before any of the characters ‘()\|;’‘"#.,’
to avoid confusing the Emacs commands for editing Lisp code. Also add a backslash before
whitespace characters such as space, tab, newline and formfeed. However, it is cleaner to
use one of the easily readable escape sequences, such as ‘\t’, instead of an actual whitespace
character such as a tab.

2.3.4 Symbol Type

A symbol in GNU Emacs Lisp is an object with a name. The symbol name serves as the
printed representation of the symbol. In ordinary use, the name is unique—no two symbols
have the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or
it may serve only to be distinct from all other Lisp objects, so that its presence in a data
structure may be recognized reliably. In a given context, usually only one of these uses is
intended. But you can use one symbol in all of these ways, independently.

A symbol whose name starts with a colon (‘:’) is called a keyword symbol. These symbols
automatically act as constants, and are normally used only by comparing an unknown
symbol with a few specific alternatives.

A symbol name can contain any characters whatever. Most symbol names are written
with letters, digits, and the punctuation characters ‘-+=*/’. Such names require no special
punctuation; the characters of the name suffice as long as the name does not look like a
number. (If it does, write a ‘\’ at the beginning of the name to force interpretation as a
symbol.) The characters ‘_~!@$%^&:<>{}?’ are less often used but also require no special

14 GNU Emacs Lisp Reference Manual

punctuation. Any other characters may be included in a symbol’s name by escaping them
with a backslash. In contrast to its use in strings, however, a backslash in the name of a
symbol simply quotes the single character that follows the backslash. For example, in a
string, ‘\t’ represents a tab character; in the name of a symbol, however, ‘\t’ merely quotes
the letter ‘t’. To have a symbol with a tab character in its name, you must actually use a
tab (preceded with a backslash). But it’s rare to do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and
lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is
escaped to prevent it from being read as a number. This is not necessary in the sixth
example because the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOO’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.
1+ ; A symbol named ‘1+’

; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’

; (not a very readable name).
\(*\ 1\ 2\) ; A symbol named ‘(* 1 2)’ (a worse name).
+-*/_~!@$%^&=:<>{} ; A symbol named ‘+-*/_~!@$%^&=:<>{}’.

; These characters need not be escaped.

Normally the Lisp reader interns all symbols (see Section 8.3 [Creating Symbols],
page 101). To prevent interning, you can write ‘#:’ before the name of the symbol.

2.3.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two
kinds of sequence in Emacs Lisp, lists and arrays. Thus, an object of type list or of type
array is also considered a sequence.

Arrays are further subdivided into strings, vectors, char-tables and bool-vectors. Vectors
can hold elements of any type, but string elements must be characters, and bool-vector
elements must be t or nil. Char-tables are like vectors except that they are indexed by
any valid character code. The characters in a string can have text properties like characters
in a buffer (see Section 32.19 [Text Properties], page 562), but vectors do not support text
properties, even when their elements happen to be characters.

Lists, strings and the other array types are different, but they have important similarities.
For example, all have a length l, and all have elements which can be indexed from zero to l
minus one. Several functions, called sequence functions, accept any kind of sequence. For
example, the function elt can be used to extract an element of a sequence, given its index.
See Chapter 6 [Sequences Arrays Vectors], page 83.

It is generally impossible to read the same sequence twice, since sequences are always
created anew upon reading. If you read the read syntax for a sequence twice, you get two
sequences with equal contents. There is one exception: the empty list () always stands for
the same object, nil.

Chapter 2: Lisp Data Types 15

2.3.6 Cons Cell and List Types

A cons cell is an object that consists of two slots, called the car slot and the cdr slot.
Each slot can hold or refer to any Lisp object. We also say that “the car of this cons cell
is” whatever object its car slot currently holds, and likewise for the cdr.

A note to C programmers: in Lisp, we do not distinguish between “holding” a
value and “pointing to” the value, because pointers in Lisp are implicit.

A list is a series of cons cells, linked together so that the cdr slot of each cons cell holds
either the next cons cell or the empty list. See Chapter 5 [Lists], page 63, for functions that
work on lists. Because most cons cells are used as part of lists, the phrase list structure has
come to refer to any structure made out of cons cells.

The names car and cdr derive from the history of Lisp. The original Lisp implementa-
tion ran on an IBM 704 computer which divided words into two parts, called the “address”
part and the “decrement”; car was an instruction to extract the contents of the address
part of a register, and cdr an instruction to extract the contents of the decrement. By
contrast, “cons cells” are named for the function cons that creates them, which in turn was
named for its purpose, the construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not
a cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left
parenthesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That
is, a cons cell is made for each element. The car slot of the cons cell holds the element,
and its cdr slot refers to the next cons cell of the list, which holds the next element in the
list. The cdr slot of the last cons cell is set to hold nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of
boxes, like dominoes. (The Lisp reader cannot read such an illustration; unlike the textual
notation, which can be understood by both humans and computers, the box illustrations
can be understood only by humans.) This picture represents the three-element list (rose
violet buttercup):

--- --- --- --- --- ---
| | |--> | | |--> | | |--> nil
--- --- --- --- --- ---
| | |
| | |
--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can hold or refer to any Lisp object.
Each pair of boxes represents a cons cell. Each arrow represents a reference to a Lisp object,
either an atom or another cons cell.

In this example, the first box, which holds the car of the first cons cell, refers to or
“holds” rose (a symbol). The second box, holding the cdr of the first cons cell, refers to
the next pair of boxes, the second cons cell. The car of the second cons cell is violet, and
its cdr is the third cons cell. The cdr of the third (and last) cons cell is nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a dif-
ferent manner:

16 GNU Emacs Lisp Reference Manual

--------------- ---------------- -------------------
car	cdr		car	cdr		car	cdr
rose	o-------->	violet	o-------->	buttercup	nil		
--------------- ---------------- -------------------

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

(A 2 "A") ; A list of three elements.
() ; A list of no elements (the empty list).
nil ; A list of no elements (the empty list).
("A ()") ; A list of one element: the string "A ()".
(A ()) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.
((A B C)) ; A list of one element

; (which is a list of three elements).

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

--- --- --- ---
| | |--> | | |--> nil
--- --- --- ---
| |
| |
--> A --> nil

2.3.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the car and
cdr explicitly. In this syntax, (a . b) stands for a cons cell whose car is the object a, and
whose cdr is the object b. Dotted pair notation is therefore more general than list syntax.
In the dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For
nil-terminated lists, you can use either notation, but list notation is usually clearer and
more convenient. When printing a list, the dotted pair notation is only used if the cdr of
a cons cell is not a list.

Here’s an example using boxes to illustrate dotted pair notation. This example shows
the pair (rose . violet):

--- ---
| | |--> violet
--- ---
|
|
--> rose

You can combine dotted pair notation with list notation to represent conveniently a
chain of cons cells with a non-nil final cdr. You write a dot after the last element of the
list, followed by the cdr of the final cons cell. For example, (rose violet . buttercup)
is equivalent to (rose . (violet . buttercup)). The object looks like this:

Chapter 2: Lisp Data Types 17

--- --- --- ---
| | |--> | | |--> buttercup
--- --- --- ---
| |
| |
--> rose --> violet

The syntax (rose . violet . buttercup) is invalid because there is nothing that it
could mean. If anything, it would say to put buttercup in the cdr of a cons cell whose
cdr is already used for violet.

The list (rose violet) is equivalent to (rose . (violet)), and looks like this:
--- --- --- ---

| | |--> | | |--> nil
--- --- --- ---
| |
| |
--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose .
(violet . (buttercup))).

2.3.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells.
In each element, the car is considered a key, and the cdr is considered an associated value.
(In some cases, the associated value is stored in the car of the cdr.) Association lists are
often used as stacks, since it is easy to add or remove associations at the front of the list.

For example,
(setq alist-of-colors

’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose
is the key and red is the value.

See Section 5.8 [Association Lists], page 79, for a further explanation of alists and for
functions that work on alists. See Chapter 7 [Hash Tables], page 93, for another kind of
lookup table, which is much faster for handling a large number of keys.

2.3.7 Array Type

An array is composed of an arbitrary number of slots for holding or referring to other
Lisp objects, arranged in a contiguous block of memory. Accessing any element of an array
takes approximately the same amount of time. In contrast, accessing an element of a list
requires time proportional to the position of the element in the list. (Elements at the end
of a list take longer to access than elements at the beginning of a list.)

Emacs defines four types of array: strings, vectors, bool-vectors, and char-tables.
A string is an array of characters and a vector is an array of arbitrary objects. A bool-

vector can hold only t or nil. These kinds of array may have any length up to the largest
integer. Char-tables are sparse arrays indexed by any valid character code; they can hold
arbitrary objects.

18 GNU Emacs Lisp Reference Manual

The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3. The largest possible index value is one less than the length of the array. Once an
array is created, its length is fixed.

All Emacs Lisp arrays are one-dimensional. (Most other programming languages support
multidimensional arrays, but they are not essential; you can get the same effect with an
array of arrays.) Each type of array has its own read syntax; see the following sections for
details.

The array type is contained in the sequence type and contains the string type, the vector
type, the bool-vector type, and the char-table type.

2.3.8 String Type

A string is an array of characters. Strings are used for many purposes in Emacs, as can
be expected in a text editor; for example, as the names of Lisp symbols, as messages for the
user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation
of a string returns the same string.

See Chapter 4 [Strings and Characters], page 49, for functions that operate on strings.

2.3.8.1 Syntax for Strings

The read syntax for strings is a double-quote, an arbitrary number of characters, and
another double-quote, "like this". To include a double-quote in a string, precede it with
a backslash; thus, "\"" is a string containing just a single double-quote character. Likewise,
you can include a backslash by preceding it with another backslash, like this: "this \\ is
a single embedded backslash".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—
one that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores
an escaped newline while reading a string. An escaped space ‘\ ’ is likewise ignored.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."

⇒ "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

2.3.8.2 Non-ascii Characters in Strings

You can include a non-ascii international character in a string constant by writing it
literally. There are two text representations for non-ascii characters in Emacs strings (and
in buffers): unibyte and multibyte. If the string constant is read from a multibyte source,
such as a multibyte buffer or string, or a file that would be visited as multibyte, then the
character is read as a multibyte character, and that makes the string multibyte. If the
string constant is read from a unibyte source, then the character is read as unibyte and that
makes the string unibyte.

Chapter 2: Lisp Data Types 19

You can also represent a multibyte non-ascii character with its character code: use a
hex escape, ‘\xnnnnnnn’, with as many digits as necessary. (Multibyte non-ascii character
codes are all greater than 256.) Any character which is not a valid hex digit terminates
this construct. If the next character in the string could be interpreted as a hex digit, write
‘\ ’ (backslash and space) to terminate the hex escape—for example, ‘\x8e0\ ’ represents
one character, ‘a’ with grave accent. ‘\ ’ in a string constant is just like backslash-newline;
it does not contribute any character to the string, but it does terminate the preceding hex
escape.

Using a multibyte hex escape forces the string to multibyte. You can represent a unibyte
non-ascii character with its character code, which must be in the range from 128 (0200
octal) to 255 (0377 octal). This forces a unibyte string.

See Section 33.1 [Text Representations], page 583, for more information about the two
text representations.

2.3.8.3 Nonprinting Characters in Strings

You can use the same backslash escape-sequences in a string constant as in character
literals (but do not use the question mark that begins a character constant). For example,
you can write a string containing the nonprinting characters tab and C-a, with commas and
spaces between them, like this: "\t, \C-a". See Section 2.3.3 [Character Type], page 11,
for a description of the read syntax for characters.

However, not all of the characters you can write with backslash escape-sequences are
valid in strings. The only control characters that a string can hold are the ascii control
characters. Strings do not distinguish case in ascii control characters.

Properly speaking, strings cannot hold meta characters; but when a string is to be used
as a key sequence, there is a special convention that provides a way to represent meta
versions of ascii characters in a string. If you use the ‘\M-’ syntax to indicate a meta
character in a string constant, this sets the 27 bit of the character in the string. If the string
is used in define-key or lookup-key, this numeric code is translated into the equivalent
meta character. See Section 2.3.3 [Character Type], page 11.

Strings cannot hold characters that have the hyper, super, or alt modifiers.

2.3.8.4 Text Properties in Strings

A string can hold properties for the characters it contains, in addition to the characters
themselves. This enables programs that copy text between strings and buffers to copy the
text’s properties with no special effort. See Section 32.19 [Text Properties], page 562, for an
explanation of what text properties mean. Strings with text properties use a special read
and print syntax:

#("characters" property-data...)

where property-data consists of zero or more elements, in groups of three as follows:

beg end plist

The elements beg and end are integers, and together specify a range of indices in the string;
plist is the property list for that range. For example,

20 GNU Emacs Lisp Reference Manual

#("foo bar" 0 3 (face bold) 3 4 nil 4 7 (face italic))

represents a string whose textual contents are ‘foo bar’, in which the first three characters
have a face property with value bold, and the last three have a face property with value
italic. (The fourth character has no text properties, so its property list is nil. It is not
actually necessary to mention ranges with nil as the property list, since any characters not
mentioned in any range will default to having no properties.)

2.3.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount
of time to access any element of a vector. (In a list, the access time of an element is
proportional to the distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements,
and a right square bracket. This is also the read syntax. Like numbers and strings, vectors
are considered constants for evaluation.

[1 "two" (three)] ; A vector of three elements.
⇒ [1 "two" (three)]

See Section 6.4 [Vectors], page 87, for functions that work with vectors.

2.3.10 Char-Table Type

A char-table is a one-dimensional array of elements of any type, indexed by character
codes. Char-tables have certain extra features to make them more useful for many jobs
that involve assigning information to character codes—for example, a char-table can have a
parent to inherit from, a default value, and a small number of extra slots to use for special
purposes. A char-table can also specify a single value for a whole character set.

The printed representation of a char-table is like a vector except that there is an extra
‘#^’ at the beginning.

See Section 6.6 [Char-Tables], page 89, for special functions to operate on char-tables.
Uses of char-tables include:
• Case tables (see Section 4.9 [Case Tables], page 60).
• Character category tables (see Section 35.9 [Categories], page 632).
• Display tables (see Section 38.17 [Display Tables], page 704).
• Syntax tables (see Chapter 35 [Syntax Tables], page 621).

2.3.11 Bool-Vector Type

A bool-vector is a one-dimensional array of elements that must be t or nil.
The printed representation of a bool-vector is like a string, except that it begins with

‘#&’ followed by the length. The string constant that follows actually specifies the contents
of the bool-vector as a bitmap—each “character” in the string contains 8 bits, which specify
the next 8 elements of the bool-vector (1 stands for t, and 0 for nil). The least significant
bits of the character correspond to the lowest indices in the bool-vector. If the length is
not a multiple of 8, the printed representation shows extra elements, but these extras really
make no difference.

Chapter 2: Lisp Data Types 21

(make-bool-vector 3 t)
⇒ #&3"\007"

(make-bool-vector 3 nil)
⇒ #&3"\0"

;; These are equal since only the first 3 bits are used.
(equal #&3"\377" #&3"\007")

⇒ t

2.3.12 Hash Table Type

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps
keys to corresponding values, but much faster. Hash tables are a new feature in Emacs
21; they have no read syntax, and print using hash notation. See Chapter 7 [Hash Tables],
page 93.

(make-hash-table)
⇒ #<hash-table ’eql nil 0/65 0x83af980>

2.3.13 Function Type

Just as functions in other programming languages are executable, Lisp function objects
are pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 12.2 [Lambda Expressions], page 156).

In most programming languages, it is impossible to have a function without a name. In
Lisp, a function has no intrinsic name. A lambda expression is also called an anonymous
function (see Section 12.7 [Anonymous Functions], page 164). A named function in Lisp
is actually a symbol with a valid function in its function cell (see Section 12.4 [Defining
Functions], page 160).

Most of the time, functions are called when their names are written in Lisp expressions
in Lisp programs. However, you can construct or obtain a function object at run time
and then call it with the primitive functions funcall and apply. See Section 12.5 [Calling
Functions], page 161.

2.3.14 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented
as an object much like a function, but with different argument-passing semantics. A Lisp
macro has the form of a list whose first element is the symbol macro and whose cdr is a
Lisp function object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list
that begins with macro is a macro as far as Emacs is concerned. See Chapter 13 [Macros],
page 171, for an explanation of how to write a macro.

Warning: Lisp macros and keyboard macros (see Section 21.15 [Keyboard Macros],
page 322) are entirely different things. When we use the word “macro” without qualification,
we mean a Lisp macro, not a keyboard macro.

22 GNU Emacs Lisp Reference Manual

2.3.15 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr”
is derived from “subroutine”.) Most primitive functions evaluate all their arguments when
they are called. A primitive function that does not evaluate all its arguments is called a
special form (see Section 9.1.7 [Special Forms], page 111).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to redefine a primitive with a function written in Lisp. The
reason is that the primitive function may be called directly from C code. Calls to the
redefined function from Lisp will use the new definition, but calls from C code may still use
the built-in definition. Therefore, we discourage redefinition of primitive functions.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.3.13 [Function Type], page 21, for information about the functions written in
Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.

⇒ #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?

⇒ t ; Yes.

2.3.16 Byte-Code Function Type

The byte compiler produces byte-code function objects. Internally, a byte-code function
object is much like a vector; however, the evaluator handles this data type specially when
it appears as a function to be called. See Chapter 16 [Byte Compilation], page 205, for
information about the byte compiler.

The printed representation and read syntax for a byte-code function object is like that
for a vector, with an additional ‘#’ before the opening ‘[’.

2.3.17 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as
the function definition of a symbol, where it serves as a placeholder for the real definition.
The autoload object says that the real definition is found in a file of Lisp code that should
be loaded when necessary. It contains the name of the file, plus some other information
about the real definition.

After the file has been loaded, the symbol should have a new function definition that is
not an autoload object. The new definition is then called as if it had been there to begin
with. From the user’s point of view, the function call works as expected, using the function
definition in the loaded file.

An autoload object is usually created with the function autoload, which stores the
object in the function cell of a symbol. See Section 15.4 [Autoload], page 197, for more
details.

Chapter 2: Lisp Data Types 23

2.4 Editing Types

The types in the previous section are used for general programming purposes, and most
of them are common to most Lisp dialects. Emacs Lisp provides several additional data
types for purposes connected with editing.

2.4.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 27 [Buffers],
page 439). Most buffers hold the contents of a disk file (see Chapter 25 [Files], page 397)
so they can be edited, but some are used for other purposes. Most buffers are also meant
to be seen by the user, and therefore displayed, at some time, in a window (see Chapter 28
[Windows], page 453). But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings in
Emacs Lisp, and the available operations are different. For example, you can insert text
efficiently into an existing buffer, altering the buffer’s contents, whereas “inserting” text into
a string requires concatenating substrings, and the result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 30 [Positions], page 509).
At any time, one buffer is the current buffer. Most editing commands act on the contents
of the current buffer in the neighborhood of point. Many of the standard Emacs functions
manipulate or test the characters in the current buffer; a whole chapter in this manual is
devoted to describing these functions (see Chapter 32 [Text], page 531).

Several other data structures are associated with each buffer:
• a local syntax table (see Chapter 35 [Syntax Tables], page 621);
• a local keymap (see Chapter 22 [Keymaps], page 325); and,
• a list of buffer-local variable bindings (see Section 11.10 [Buffer-Local Variables],

page 146).
• overlays (see Section 38.9 [Overlays], page 671).
• text properties for the text in the buffer (see Section 32.19 [Text Properties], page 562).

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer, but presents
it differently. See Section 27.11 [Indirect Buffers], page 451.

Buffers have no read syntax. They print in hash notation, showing the buffer name.
(current-buffer)

⇒ #<buffer objects.texi>

2.4.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically
relocate the position value as necessary to ensure that the marker always points between
the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

24 GNU Emacs Lisp Reference Manual

(point-marker)
⇒ #<marker at 10779 in objects.texi>

See Chapter 31 [Markers], page 523, for information on how to test, create, copy, and
move markers.

2.4.3 Window Type

A window describes the portion of the terminal screen that Emacs uses to display a
buffer. Every window has one associated buffer, whose contents appear in the window. By
contrast, a given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated
the selected window. This is the window where the cursor is (usually) displayed when Emacs
is ready for a command. The selected window usually displays the current buffer, but this
is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only
one frame. See Section 2.4.4 [Frame Type], page 24.

Windows have no read syntax. They print in hash notation, giving the window number
and the name of the buffer being displayed. The window numbers exist to identify windows
uniquely, since the buffer displayed in any given window can change frequently.

(selected-window)
⇒ #<window 1 on objects.texi>

See Chapter 28 [Windows], page 453, for a description of the functions that work on
windows.

2.4.4 Frame Type

A frame is a rectangle on the screen that contains one or more Emacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window) which you can
subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s title, plus
its address in core (useful to identify the frame uniquely).

(selected-frame)
⇒ #<frame emacs@psilocin.gnu.org 0xdac80>

See Chapter 29 [Frames], page 483, for a description of the functions that work on frames.

2.4.5 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of
the windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax; their print syntax looks like
‘#<window-configuration>’. See Section 28.17 [Window Configurations], page 479, for a
description of several functions related to window configurations.

Chapter 2: Lisp Data Types 25

2.4.6 Frame Configuration Type

A frame configuration stores information about the positions, sizes, and contents of the
windows in all frames. It is actually a list whose car is frame-configuration and whose
cdr is an alist. Each alist element describes one frame, which appears as the car of that
element.

See Section 29.12 [Frame Configurations], page 498, for a description of several functions
related to frame configurations.

2.4.7 Process Type

The word process usually means a running program. Emacs itself runs in a process of
this sort. However, in Emacs Lisp, a process is a Lisp object that designates a subprocess
created by the Emacs process. Programs such as shells, GDB, ftp, and compilers, running
in subprocesses of Emacs, extend the capabilities of Emacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to
Emacs for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of
the process:

(process-list)
⇒ (#<process shell>)

See Chapter 37 [Processes], page 641, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

2.4.8 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this
way: markers, buffers, strings, and functions. Most often, input streams (character sources)
obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks)
send characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands
for the value of the variable standard-input or standard-output. Also, the object t as
a stream specifies input using the minibuffer (see Chapter 20 [Minibuffers], page 265) or
output in the echo area (see Section 38.4 [The Echo Area], page 663).

Streams have no special printed representation or read syntax, and print as whatever
primitive type they are.

See Chapter 19 [Read and Print], page 255, for a description of functions related to
streams, including parsing and printing functions.

2.4.9 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the
user’s command input is executed. A keymap is actually a list whose car is the symbol
keymap.

See Chapter 22 [Keymaps], page 325, for information about creating keymaps, handling
prefix keys, local as well as global keymaps, and changing key bindings.

26 GNU Emacs Lisp Reference Manual

2.4.10 Overlay Type

An overlay specifies properties that apply to a part of a buffer. Each overlay applies
to a specified range of the buffer, and contains a property list (a list whose elements are
alternating property names and values). Overlay properties are used to present parts of the
buffer temporarily in a different display style. Overlays have no read syntax, and print in
hash notation, giving the buffer name and range of positions.

See Section 38.9 [Overlays], page 671, for how to create and use overlays.

2.5 Read Syntax for Circular Objects

In Emacs 21, to represent shared or circular structure within a complex of Lisp objects,
you can use the reader constructs ‘#n=’ and ‘#n#’.

Use #n= before an object to label it for later reference; subsequently, you can use #n# to
refer the same object in another place. Here, n is some integer. For example, here is how
to make a list in which the first element recurs as the third element:

(#1=(a) b #1#)

This differs from ordinary syntax such as this

((a) b (a))

which would result in a list whose first and third elements look alike but are not the same
Lisp object. This shows the difference:

(prog1 nil
(setq x ’(#1=(a) b #1#)))

(eq (nth 0 x) (nth 2 x))
⇒ t

(setq x ’((a) b (a)))
(eq (nth 0 x) (nth 2 x))

⇒ nil

You can also use the same syntax to make a circular structure, which appears as an
“element” within itself. Here is an example:

#1=(a #1#)

This makes a list whose second element is the list itself. Here’s how you can see that it
really works:

(prog1 nil
(setq x ’#1=(a #1#)))

(eq x (cadr x))
⇒ t

The Lisp printer can produce this syntax to record circular and shared structure in a
Lisp object, if you bind the variable print-circle to a non-nil value. See Section 19.6
[Output Variables], page 262.

Chapter 2: Lisp Data Types 27

2.6 Type Predicates

The Emacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do so, since function arguments in
Lisp do not have declared data types, as they do in other programming languages. It is
therefore up to the individual function to test whether each actual argument belongs to a
type that the function can use.

All built-in functions do check the types of their actual arguments when appropriate,
and signal a wrong-type-argument error if an argument is of the wrong type. For example,
here is what happens if you pass an argument to + that it cannot handle:

(+ 2 ’a)
error Wrong type argument: number-or-marker-p, a

If you want your program to handle different types differently, you must do explicit
type checking. The most common way to check the type of an object is to call a type
predicate function. Emacs has a type predicate for each type, as well as some predicates
for combinations of types.

A type predicate function takes one argument; it returns t if the argument belongs to
the appropriate type, and nil otherwise. Following a general Lisp convention for predicate
functions, most type predicates’ names end with ‘p’.

Here is an example which uses the predicates listp to check for a list and symbolp to
check for a symbol.

(defun add-on (x)
(cond ((symbolp x)

;; If X is a symbol, put it on LIST.
(setq list (cons x list)))

((listp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))

(t
;; We handle only symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to
further information.

atom See Section 5.3 [List-related Predicates], page 64.

arrayp See Section 6.3 [Array Functions], page 86.

bool-vector-p
See Section 6.7 [Bool-Vectors], page 91.

bufferp See Section 27.1 [Buffer Basics], page 439.

byte-code-function-p
See Section 2.3.16 [Byte-Code Type], page 22.

case-table-p
See Section 4.9 [Case Tables], page 60.

char-or-string-p
See Section 4.2 [Predicates for Strings], page 50.

28 GNU Emacs Lisp Reference Manual

char-table-p
See Section 6.6 [Char-Tables], page 89.

commandp See Section 21.3 [Interactive Call], page 292.

consp See Section 5.3 [List-related Predicates], page 64.

display-table-p
See Section 38.17 [Display Tables], page 704.

floatp See Section 3.3 [Predicates on Numbers], page 35.

frame-configuration-p
See Section 29.12 [Frame Configurations], page 498.

frame-live-p
See Section 29.5 [Deleting Frames], page 493.

framep See Chapter 29 [Frames], page 483.

functionp
See Chapter 12 [Functions], page 155.

integer-or-marker-p
See Section 31.2 [Predicates on Markers], page 524.

integerp See Section 3.3 [Predicates on Numbers], page 35.

keymapp See Section 22.3 [Creating Keymaps], page 327.

keywordp See Section 11.2 [Constant Variables], page 133.

listp See Section 5.3 [List-related Predicates], page 64.

markerp See Section 31.2 [Predicates on Markers], page 524.

wholenump
See Section 3.3 [Predicates on Numbers], page 35.

nlistp See Section 5.3 [List-related Predicates], page 64.

numberp See Section 3.3 [Predicates on Numbers], page 35.

number-or-marker-p
See Section 31.2 [Predicates on Markers], page 524.

overlayp See Section 38.9 [Overlays], page 671.

processp See Chapter 37 [Processes], page 641.

sequencep
See Section 6.1 [Sequence Functions], page 83.

stringp See Section 4.2 [Predicates for Strings], page 50.

subrp See Section 12.8 [Function Cells], page 166.

symbolp See Chapter 8 [Symbols], page 99.

syntax-table-p
See Chapter 35 [Syntax Tables], page 621.

Chapter 2: Lisp Data Types 29

user-variable-p
See Section 11.5 [Defining Variables], page 137.

vectorp See Section 6.4 [Vectors], page 87.

window-configuration-p
See Section 28.17 [Window Configurations], page 479.

window-live-p
See Section 28.3 [Deleting Windows], page 456.

windowp See Section 28.1 [Basic Windows], page 453.

The most general way to check the type of an object is to call the function type-of.
Recall that each object belongs to one and only one primitive type; type-of tells you which
one (see Chapter 2 [Lisp Data Types], page 9). But type-of knows nothing about non-
primitive types. In most cases, it is more convenient to use type predicates than type-of.

Functiontype-of object
This function returns a symbol naming the primitive type of object. The value is one
of the symbols symbol, integer, float, string, cons, vector, char-table, bool-
vector, hash-table, subr, compiled-function, marker, overlay, window, buffer,
frame, process, or window-configuration.

(type-of 1)
⇒ integer

(type-of ’nil)
⇒ symbol

(type-of ’()) ; () is nil.
⇒ symbol

(type-of ’(x))
⇒ cons

2.7 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other
functions test equality between objects of specific types, e.g., strings. For these predicates,
see the appropriate chapter describing the data type.

Functioneq object1 object2
This function returns t if object1 and object2 are the same object, nil otherwise.
The “same object” means that a change in one will be reflected by the same change
in the other.
eq returns t if object1 and object2 are integers with the same value. Also, since
symbol names are normally unique, if the arguments are symbols with the same
name, they are eq. For other types (e.g., lists, vectors, strings), two arguments with
the same contents or elements are not necessarily eq to each other: they are eq only
if they are the same object.

(eq ’foo ’foo)
⇒ t

30 GNU Emacs Lisp Reference Manual

(eq 456 456)
⇒ t

(eq "asdf" "asdf")
⇒ nil

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

(setq foo ’(1 (2 (3))))
⇒ (1 (2 (3)))

(eq foo foo)
⇒ t

(eq foo ’(1 (2 (3))))
⇒ nil

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

(eq (point-marker) (point-marker))
⇒ nil

The make-symbol function returns an uninterned symbol, distinct from the symbol
that is used if you write the name in a Lisp expression. Distinct symbols with the
same name are not eq. See Section 8.3 [Creating Symbols], page 101.

(eq (make-symbol "foo") ’foo)
⇒ nil

Functionequal object1 object2
This function returns t if object1 and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements or contents are the same. So, if two objects are eq,
they are equal, but the converse is not always true.

(equal ’foo ’foo)
⇒ t

(equal 456 456)
⇒ t

(equal "asdf" "asdf")
⇒ t

(eq "asdf" "asdf")
⇒ nil

(equal ’(1 (2 (3))) ’(1 (2 (3))))
⇒ t

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

(equal [(1 2) 3] [(1 2) 3])
⇒ t

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

Chapter 2: Lisp Data Types 31

(equal (point-marker) (point-marker))
⇒ t

(eq (point-marker) (point-marker))
⇒ nil

Comparison of strings is case-sensitive, but does not take account of text properties—
it compares only the characters in the strings. A unibyte string never equals a multi-
byte string unless the contents are entirely ascii (see Section 33.1 [Text Representa-
tions], page 583).

(equal "asdf" "ASDF")
⇒ nil

However, two distinct buffers are never considered equal, even if their textual contents
are the same.

The test for equality is implemented recursively; for example, given two cons cells x and
y, (equal x y) returns t if and only if both the expressions below return t:

(equal (car x) (car y))
(equal (cdr x) (cdr y))

Because of this recursive method, circular lists may therefore cause infinite recursion
(leading to an error).

32 GNU Emacs Lisp Reference Manual

Chapter 3: Numbers 33

3 Numbers

GNU Emacs supports two numeric data types: integers and floating point numbers.
Integers are whole numbers such as −3, 0, 7, 13, and 511. Their values are exact. Floating
point numbers are numbers with fractional parts, such as −4.5, 0.0, or 2.71828. They can
also be expressed in exponential notation: 1.5e2 equals 150; in this example, ‘e2’ stands for
ten to the second power, and that is multiplied by 1.5. Floating point values are not exact;
they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
−134217728 to 134217727 (28 bits; i.e., −227 to 227− 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and
optional final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer −1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer 0.

In addition, the Lisp reader recognizes a syntax for integers in bases other than 10:
‘#Binteger’ reads integer in binary (radix 2), ‘#Ointeger’ reads integer in octal (radix 8),
‘#Xinteger’ reads integer in hexadecimal (radix 16), and ‘#radixrinteger’ reads integer in
radix radix (where radix is between 2 and 36, inclusivley). Case is not significant for the
letter after ‘#’ (‘B’, ‘O’, etc.) that denotes the radix.

To understand how various functions work on integers, especially the bitwise operators
(see Section 3.8 [Bitwise Operations], page 42), it is often helpful to view the numbers in
their binary form.

In 28-bit binary, the decimal integer 5 looks like this:
0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits,
to make the binary integer easier to read.)

The integer −1 looks like this:
1111 1111 1111 1111 1111 1111 1111

−1 is represented as 28 ones. (This is called two’s complement notation.)

The negative integer, −5, is creating by subtracting 4 from −1. In binary, the decimal
integer 4 is 100. Consequently, −5 looks like this:

1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer value is 134,217,727 in decimal.
In binary, it looks like this:

34 GNU Emacs Lisp Reference Manual

0111 1111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range,
when you add 1 to 134,217,727, the value is the negative integer −134,217,728:

(+ 1 134217727)
⇒ -134217728
⇒ 1000 0000 0000 0000 0000 0000 0000

Many of the functions described in this chapter accept markers for arguments in place
of numbers. (See Chapter 31 [Markers], page 523.) Since the actual arguments to such
functions may be either numbers or markers, we often give these arguments the name
number-or-marker. When the argument value is a marker, its position value is used and its
buffer is ignored.

3.2 Floating Point Basics

Floating point numbers are useful for representing numbers that are not integral. The
precise range of floating point numbers is machine-specific; it is the same as the range of
the C data type double on the machine you are using.

The read-syntax for floating point numbers requires either a decimal point (with at least
one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’, ‘1.5e3’,
and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They are
all equivalent. You can also use a minus sign to write negative floating point numbers, as
in ‘-1.0’.

Most modern computers support the IEEE floating point standard, which provides for
positive infinity and negative infinity as floating point values. It also provides for a class
of values called NaN or “not-a-number”; numerical functions return such values in cases
where there is no correct answer. For example, (sqrt -1.0) returns a NaN. For practical
purposes, there’s no significant difference between different NaN values in Emacs Lisp, and
there’s no rule for precisely which NaN value should be used in a particular case, so Emacs
Lisp doesn’t try to distinguish them. Here are the read syntaxes for these special floating
point values:

positive infinity
‘1.0e+INF’

negative infinity
‘-1.0e+INF’

Not-a-number
‘0.0e+NaN’.

In addition, the value -0.0 is distinguishable from ordinary zero in IEEE floating point
(although equal and = consider them equal values).

You can use logb to extract the binary exponent of a floating point number (or estimate
the logarithm of an integer):

Functionlogb number
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

Chapter 3: Numbers 35

(logb 10)
⇒ 3

(logb 10.0e20)
⇒ 69

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is
a certain sort of number. The functions integerp and floatp can take any type of Lisp
object as argument (the predicates would not be of much use otherwise); but the zerop
predicate requires a number as its argument. See also integer-or-marker-p and number-
or-marker-p, in Section 31.2 [Predicates on Markers], page 524.

Functionfloatp object
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.
floatp does not exist in Emacs versions 18 and earlier.

Functionintegerp object
This predicate tests whether its argument is an integer, and returns t if so, nil
otherwise.

Functionnumberp object
This predicate tests whether its argument is a number (either integer or floating
point), and returns t if so, nil otherwise.

Functionwholenump object
The wholenump predicate (whose name comes from the phrase “whole-number-p”)
tests to see whether its argument is a nonnegative integer, and returns t if so, nil
otherwise. 0 is considered non-negative.
natnump is an obsolete synonym for wholenump.

Functionzerop number
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.
These two forms are equivalent: (zerop x) ≡ (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can
be many distinct floating point number objects with the same numeric value. If you use
eq to compare them, then you test whether two values are the same object. By contrast, =
compares only the numeric values of the objects.

At present, each integer value has a unique Lisp object in Emacs Lisp. Therefore, eq
is equivalent to = where integers are concerned. It is sometimes convenient to use eq for

36 GNU Emacs Lisp Reference Manual

comparing an unknown value with an integer, because eq does not report an error if the
unknown value is not a number—it accepts arguments of any type. By contrast, = signals
an error if the arguments are not numbers or markers. However, it is a good idea to use = if
you can, even for comparing integers, just in case we change the representation of integers
in a future Emacs version.

Sometimes it is useful to compare numbers with equal; it treats two numbers as equal
if they have the same data type (both integers, or both floating point) and the same value.
By contrast, = can treat an integer and a floating point number as equal.

There is another wrinkle: because floating point arithmetic is not exact, it is often a
bad idea to check for equality of two floating point values. Usually it is better to test for
approximate equality. Here’s a function to do this:

(defvar fuzz-factor 1.0e-6)
(defun approx-equal (x y)
(or (and (= x 0) (= y 0))

(< (/ (abs (- x y))
(max (abs x) (abs y)))

fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires =
because Common Lisp implements multi-word integers, and two distinct integer
objects can have the same numeric value. Emacs Lisp can have just one integer
object for any given value because it has a limited range of integer values.

Function= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and returns t if so,
nil otherwise.

Function/= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and returns t if they
are not, and nil if they are.

Function< number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly less than its second argument.
It returns t if so, nil otherwise.

Function<= number-or-marker1 number-or-marker2
This function tests whether its first argument is less than or equal to its second
argument. It returns t if so, nil otherwise.

Function> number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly greater than its second argu-
ment. It returns t if so, nil otherwise.

Function>= number-or-marker1 number-or-marker2
This function tests whether its first argument is greater than or equal to its second
argument. It returns t if so, nil otherwise.

Chapter 3: Numbers 37

Functionmax number-or-marker &rest numbers-or-markers
This function returns the largest of its arguments. If any of the argument is floating-
point, the value is returned as floating point, even if it was given as an integer.

(max 20)
⇒ 20

(max 1 2.5)
⇒ 2.5

(max 1 3 2.5)
⇒ 3.0

Functionmin number-or-marker &rest numbers-or-markers
This function returns the smallest of its arguments. If any of the argument is floating-
point, the value is returned as floating point, even if it was given as an integer.

(min -4 1)
⇒ -4

Functionabs number
This function returns the absolute value of number.

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

Functionfloat number
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in
how they round. These functions accept integer arguments also, and return such arguments
unchanged.

Functiontruncate number
This returns number, converted to an integer by rounding towards zero.

(truncate 1.2)
⇒ 1

(truncate 1.7)
⇒ 1

(truncate -1.2)
⇒ -1

(truncate -1.7)
⇒ -1

Functionfloor number &optional divisor
This returns number, converted to an integer by rounding downward (towards nega-
tive infinity).
If divisor is specified, floor divides number by divisor and then converts to an integer;
this uses the kind of division operation that corresponds to mod, rounding downward.
An arith-error results if divisor is 0.

38 GNU Emacs Lisp Reference Manual

(floor 1.2)
⇒ 1

(floor 1.7)
⇒ 1

(floor -1.2)
⇒ -2

(floor -1.7)
⇒ -2

(floor 5.99 3)
⇒ 1

Functionceiling number
This returns number, converted to an integer by rounding upward (towards positive
infinity).

(ceiling 1.2)
⇒ 2

(ceiling 1.7)
⇒ 2

(ceiling -1.2)
⇒ -1

(ceiling -1.7)
⇒ -1

Functionround number
This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to
zero, or it may prefer an even integer, depending on your machine.

(round 1.2)
⇒ 1

(round 1.7)
⇒ 2

(round -1.2)
⇒ -1

(round -1.7)
⇒ -2

3.6 Arithmetic Operations

Emacs Lisp provides the traditional four arithmetic operations: addition, subtraction,
multiplication, and division. Remainder and modulus functions supplement the division
functions. The functions to add or subtract 1 are provided because they are traditional in
Lisp and commonly used.

All of these functions except % return a floating point value if any argument is floating.
It is important to note that in Emacs Lisp, arithmetic functions do not check for overflow.

Thus (1+ 134217727) may evaluate to −134217728, depending on your hardware.

Function1+ number-or-marker
This function returns number-or-marker plus 1. For example,

Chapter 3: Numbers 39

(setq foo 4)
⇒ 4

(1+ foo)
⇒ 5

This function is not analogous to the C operator ++—it does not increment a variable.
It just computes a sum. Thus, if we continue,

foo
⇒ 4

If you want to increment the variable, you must use setq, like this:
(setq foo (1+ foo))

⇒ 5

Function1- number-or-marker
This function returns number-or-marker minus 1.

Function+ &rest numbers-or-markers
This function adds its arguments together. When given no arguments, + returns 0.

(+)
⇒ 0

(+ 1)
⇒ 1

(+ 1 2 3 4)
⇒ 10

Function- &optional number-or-marker &rest more-numbers-or-markers
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, - subtracts each of the more-numbers-or-markers from number-or-marker,
cumulatively. If there are no arguments, the result is 0.

(- 10 1 2 3 4)
⇒ 0

(- 10)
⇒ -10

(-)
⇒ 0

Function* &rest numbers-or-markers
This function multiplies its arguments together, and returns the product. When given
no arguments, * returns 1.

(*)
⇒ 1

(* 1)
⇒ 1

(* 1 2 3 4)
⇒ 24

40 GNU Emacs Lisp Reference Manual

Function/ dividend divisor &rest divisors
This function divides dividend by divisor and returns the quotient. If there are
additional arguments divisors, then it divides dividend by each divisor in turn. Each
argument may be a number or a marker.

If all the arguments are integers, then the result is an integer too. This means the
result has to be rounded. On most machines, the result is rounded towards zero after
each division, but some machines may round differently with negative arguments.
This is because the Lisp function / is implemented using the C division operator,
which also permits machine-dependent rounding. As a practical matter, all known
machines round in the standard fashion.

If you divide an integer by 0, an arith-error error is signaled. (See Section 10.5.3
[Errors], page 125.) Floating point division by zero returns either infinity or a NaN
if your machine supports IEEE floating point; otherwise, it signals an arith-error
error.

(/ 6 2)
⇒ 3

(/ 5 2)
⇒ 2

(/ 5.0 2)
⇒ 2.5

(/ 5 2.0)
⇒ 2.5

(/ 5.0 2.0)
⇒ 2.5

(/ 25 3 2)
⇒ 4

(/ -17 6)
⇒ -2

The result of (/ -17 6) could in principle be -3 on some machines.

Function% dividend divisor
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.

For negative arguments, the remainder is in principle machine-dependent since the
quotient is; but in practice, all known machines behave alike.

An arith-error results if divisor is 0.

(% 9 4)
⇒ 1

(% -9 4)
⇒ -1

(% 9 -4)
⇒ 1

(% -9 -4)
⇒ -1

For any two integers dividend and divisor,

Chapter 3: Numbers 41

(+ (% dividend divisor)
(* (/ dividend divisor) divisor))

always equals dividend.

Functionmod dividend divisor
This function returns the value of dividend modulo divisor; in other words, the re-
mainder after division of dividend by divisor, but with the same sign as divisor. The
arguments must be numbers or markers.
Unlike %, mod returns a well-defined result for negative arguments. It also permits
floating point arguments; it rounds the quotient downward (towards minus infinity)
to an integer, and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.

(mod 9 4)
⇒ 1

(mod -9 4)
⇒ 3

(mod 9 -4)
⇒ -3

(mod -9 -4)
⇒ -1

(mod 5.5 2.5)
⇒ .5

For any two numbers dividend and divisor,
(+ (mod dividend divisor)

(* (floor dividend divisor) divisor))

always equals dividend, subject to rounding error if either argument is floating point.
For floor, see Section 3.5 [Numeric Conversions], page 37.

3.7 Rounding Operations

The functions ffloor, fceiling, fround, and ftruncate take a floating point argument
and return a floating point result whose value is a nearby integer. ffloor returns the nearest
integer below; fceiling, the nearest integer above; ftruncate, the nearest integer in the
direction towards zero; fround, the nearest integer.

Functionffloor float
This function rounds float to the next lower integral value, and returns that value as
a floating point number.

Functionfceiling float
This function rounds float to the next higher integral value, and returns that value
as a floating point number.

Functionftruncate float
This function rounds float towards zero to an integral value, and returns that value
as a floating point number.

42 GNU Emacs Lisp Reference Manual

Functionfround float
This function rounds float to the nearest integral value, and returns that value as a
floating point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits
which are either zero or one). A bitwise operation acts on the individual bits of such a
sequence. For example, shifting moves the whole sequence left or right one or more places,
reproducing the same pattern “moved over”.

The bitwise operations in Emacs Lisp apply only to integers.

Functionlsh integer1 count
lsh, which is an abbreviation for logical shift, shifts the bits in integer1 to the left
count places, or to the right if count is negative, bringing zeros into the vacated bits.
If count is negative, lsh shifts zeros into the leftmost (most-significant) bit, producing
a positive result even if integer1 is negative. Contrast this with ash, below.

Here are two examples of lsh, shifting a pattern of bits one place to the left. We
show only the low-order eight bits of the binary pattern; the rest are all zero.

(lsh 5 1)
⇒ 10

;; Decimal 5 becomes decimal 10.
00000101 ⇒ 00001010

(lsh 7 1)
⇒ 14

;; Decimal 7 becomes decimal 14.
00000111 ⇒ 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces
a number that is twice the value of the previous number.

Shifting a pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):

(lsh 3 2)
⇒ 12

;; Decimal 3 becomes decimal 12.
00000011 ⇒ 00001100

On the other hand, shifting one place to the right looks like this:
(lsh 6 -1)

⇒ 3
;; Decimal 6 becomes decimal 3.
00000110 ⇒ 00000011

(lsh 5 -1)
⇒ 2

;; Decimal 5 becomes decimal 2.
00000101 ⇒ 00000010

Chapter 3: Numbers 43

As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.
The function lsh, like all Emacs Lisp arithmetic functions, does not check for overflow,
so shifting left can discard significant bits and change the sign of the number. For
example, left shifting 134,217,727 produces −2 on a 28-bit machine:

(lsh 134217727 1) ; left shift
⇒ -2

In binary, in the 28-bit implementation, the argument looks like this:
;; Decimal 134,217,727
0111 1111 1111 1111 1111 1111 1111

which becomes the following when left shifted:
;; Decimal −2
1111 1111 1111 1111 1111 1111 1110

Functionash integer1 count
ash (arithmetic shift) shifts the bits in integer1 to the left count places, or to the
right if count is negative.
ash gives the same results as lsh except when integer1 and count are both negative.
In that case, ash puts ones in the empty bit positions on the left, while lsh puts zeros
in those bit positions.
Thus, with ash, shifting the pattern of bits one place to the right looks like this:

(ash -6 -1) ⇒ -3
;; Decimal −6 becomes decimal −3.
1111 1111 1111 1111 1111 1111 1010

⇒
1111 1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with lsh looks like this:
(lsh -6 -1) ⇒ 134217725
;; Decimal −6 becomes decimal 134,217,725.
1111 1111 1111 1111 1111 1111 1010

⇒
0111 1111 1111 1111 1111 1111 1101

Here are other examples:
; 28-bit binary values

(lsh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 20 ; = 0000 0000 0000 0000 0000 0001 0100

(ash 5 2)
⇒ 20

(lsh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -20 ; = 1111 1111 1111 1111 1111 1110 1100

(ash -5 2)
⇒ -20

(lsh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 1 ; = 0000 0000 0000 0000 0000 0000 0001

44 GNU Emacs Lisp Reference Manual

(ash 5 -2)
⇒ 1

(lsh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ 4194302 ; = 0011 1111 1111 1111 1111 1111 1110

(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -2 ; = 1111 1111 1111 1111 1111 1111 1110

Functionlogand &rest ints-or-markers
This function returns the “logical and” of the arguments: the nth bit is set in the
result if, and only if, the nth bit is set in all the arguments. (“Set” means that the
value of the bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two
bits are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of the arguments, so
the rightmost two bits of the returned value are 0’s.

Therefore,

(logand 13 12)
⇒ 12

If logand is not passed any argument, it returns a value of −1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

; 28-bit binary values

(logand 14 13) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101

⇒ 12 ; 12 = 0000 0000 0000 0000 0000 0000 1100

(logand 14 13 4) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101
; 4 = 0000 0000 0000 0000 0000 0000 0100

⇒ 4 ; 4 = 0000 0000 0000 0000 0000 0000 0100

(logand)
⇒ -1 ; -1 = 1111 1111 1111 1111 1111 1111 1111

Functionlogior &rest ints-or-markers
This function returns the “inclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in at least one of the arguments. If there are
no arguments, the result is zero, which is an identity element for this operation. If
logior is passed just one argument, it returns that argument.

; 28-bit binary values

(logior 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 13 ; 13 = 0000 0000 0000 0000 0000 0000 1101

Chapter 3: Numbers 45

(logior 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 15 ; 15 = 0000 0000 0000 0000 0000 0000 1111

Functionlogxor &rest ints-or-markers
This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there
are no arguments, the result is 0, which is an identity element for this operation. If
logxor is passed just one argument, it returns that argument.

; 28-bit binary values

(logxor 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 9 ; 9 = 0000 0000 0000 0000 0000 0000 1001

(logxor 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 14 ; 14 = 0000 0000 0000 0000 0000 0000 1110

Functionlognot integer
This function returns the logical complement of its argument: the nth bit is one in
the result if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)
⇒ -6

;; 5 = 0000 0000 0000 0000 0000 0000 0101
;; becomes
;; -6 = 1111 1111 1111 1111 1111 1111 1010

3.9 Standard Mathematical Functions

These mathematical functions allow integers as well as floating point numbers as argu-
ments.

Functionsin arg
Functioncos arg
Functiontan arg

These are the ordinary trigonometric functions, with argument measured in radians.

Functionasin arg
The value of (asin arg) is a number between −π/2 and π/2 (inclusive) whose sine
is arg ; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

Functionacos arg
The value of (acos arg) is a number between 0 and π (inclusive) whose cosine is arg ;
if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

46 GNU Emacs Lisp Reference Manual

Functionatan arg
The value of (atan arg) is a number between−π/2 and π/2 (exclusive) whose tangent
is arg.

Functionexp arg
This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

Functionlog arg &optional base
This function returns the logarithm of arg, with base base. If you don’t specify base,
the base e is used. If arg is negative, the result is a NaN.

Functionlog10 arg
This function returns the logarithm of arg, with base 10. If arg is negative, the result
is a NaN. (log10 x) ≡ (log x 10), at least approximately.

Functionexpt x y
This function returns x raised to power y. If both arguments are integers and y is
positive, the result is an integer; in this case, it is truncated to fit the range of possible
integer values.

Functionsqrt arg
This returns the square root of arg. If arg is negative, the value is a NaN.

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most
purposes, pseudo-random numbers suffice. A series of pseudo-random numbers is generated
in a deterministic fashion. The numbers are not truly random, but they have certain
properties that mimic a random series. For example, all possible values occur equally often
in a pseudo-random series.

In Emacs, pseudo-random numbers are generated from a “seed” number. Starting from
any given seed, the random function always generates the same sequence of numbers. Emacs
always starts with the same seed value, so the sequence of values of random is actually the
same in each Emacs run! For example, in one operating system, the first call to (random)
after you start Emacs always returns -1457731, and the second one always returns -7692030.
This repeatability is helpful for debugging.

If you want random numbers that don’t always come out the same, execute (random
t). This chooses a new seed based on the current time of day and on Emacs’s process id
number.

Functionrandom &optional limit
This function returns a pseudo-random integer. Repeated calls return a series of
pseudo-random integers.
If limit is a positive integer, the value is chosen to be nonnegative and less than limit.

Chapter 3: Numbers 47

If limit is t, it means to choose a new seed based on the current time of day and on
Emacs’s process id number.
On some machines, any integer representable in Lisp may be the result of random.
On other machines, the result can never be larger than a certain maximum or less
than a certain (negative) minimum.

48 GNU Emacs Lisp Reference Manual

Chapter 4: Strings and Characters 49

4 Strings and Characters

A string in Emacs Lisp is an array that contains an ordered sequence of characters.
Strings are used as names of symbols, buffers, and files; to send messages to users; to hold
text being copied between buffers; and for many other purposes. Because strings are so
important, Emacs Lisp has many functions expressly for manipulating them. Emacs Lisp
programs use strings more often than individual characters.

See Section 21.6.14 [Strings of Events], page 308, for special considerations for strings of
keyboard character events.

4.1 String and Character Basics

Characters are represented in Emacs Lisp as integers; whether an integer is a character
or not is determined only by how it is used. Thus, strings really contain integers.

The length of a string (like any array) is fixed, and cannot be altered once the string
exists. Strings in Lisp are not terminated by a distinguished character code. (By contrast,
strings in C are terminated by a character with ascii code 0.)

Since strings are arrays, and therefore sequences as well, you can operate on them with
the general array and sequence functions. (See Chapter 6 [Sequences Arrays Vectors],
page 83.) For example, you can access or change individual characters in a string using the
functions aref and aset (see Section 6.3 [Array Functions], page 86).

There are two text representations for non-ascii characters in Emacs strings (and in
buffers): unibyte and multibyte (see Section 33.1 [Text Representations], page 583). An
ascii character always occupies one byte in a string; in fact, when a string is all ascii,
there is no real difference between the unibyte and multibyte representations. For most
Lisp programming, you don’t need to be concerned with these two representations.

Sometimes key sequences are represented as strings. When a string is a key sequence,
string elements in the range 128 to 255 represent meta characters (which are large integers)
rather than character codes in the range 128 to 255.

Strings cannot hold characters that have the hyper, super or alt modifiers; they can hold
ascii control characters, but no other control characters. They do not distinguish case in
ascii control characters. If you want to store such characters in a sequence, such as a key
sequence, you must use a vector instead of a string. See Section 2.3.3 [Character Type],
page 11, for more information about the representation of meta and other modifiers for
keyboard input characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 34.3 [Regexp Search], page 611). The functions match-string
(see Section 34.6.2 [Simple Match Data], page 616) and replace-match (see Section 34.6.1
[Replacing Match], page 615) are useful for decomposing and modifying strings based on
regular expression matching.

Like a buffer, a string can contain text properties for the characters in it, as well as
the characters themselves. See Section 32.19 [Text Properties], page 562. All the Lisp
primitives that copy text from strings to buffers or other strings also copy the properties of
the characters being copied.

50 GNU Emacs Lisp Reference Manual

See Chapter 32 [Text], page 531, for information about functions that display strings
or copy them into buffers. See Section 2.3.3 [Character Type], page 11, and Section 2.3.8
[String Type], page 18, for information about the syntax of characters and strings. See
Chapter 33 [Non-ASCII Characters], page 583, for functions to convert between text repre-
sentations and to encode and decode character codes.

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Se-
quences Arrays Vectors], page 83, and Section 6.2 [Arrays], page 85.

Functionstringp object
This function returns t if object is a string, nil otherwise.

Functionchar-or-string-p object
This function returns t if object is a string or a character (i.e., an integer), nil
otherwise.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together,
or by taking them apart.

Functionmake-string count character
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.

(make-string 5 ?x)
⇒ "xxxxx"

(make-string 0 ?x)
⇒ ""

Other functions to compare with this one include char-to-string (see Section 4.6
[String Conversion], page 55), make-vector (see Section 6.4 [Vectors], page 87), and
make-list (see Section 5.5 [Building Lists], page 68).

Functionstring &rest characters
This returns a string containing the characters characters.

(string ?a ?b ?c)
⇒ "abc"

Functionsubstring string start &optional end
This function returns a new string which consists of those characters from string in
the range from (and including) the character at the index start up to (but excluding)
the character at the index end. The first character is at index zero.

Chapter 4: Strings and Characters 51

(substring "abcdefg" 0 3)
⇒ "abc"

Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus,
three letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the
character position up to which the substring is copied. The character whose index is
3 is actually the fourth character in the string.
A negative number counts from the end of the string, so that −1 signifies the index
of the last character of the string. For example:

(substring "abcdefg" -3 -1)
⇒ "ef"

In this example, the index for ‘e’ is −3, the index for ‘f’ is −2, and the index for ‘g’
is −1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.
When nil is used as an index, it stands for the length of the string. Thus,

(substring "abcdefg" -3 nil)
⇒ "efg"

Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
⇒ "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 83).
If the characters copied from string have text properties, the properties are copied
into the new string also. See Section 32.19 [Text Properties], page 562.
substring also accepts a vector for the first argument. For example:

(substring [a b (c) "d"] 1 3)
⇒ [b (c)]

A wrong-type-argument error is signaled if either start or end is not an integer or
nil. An args-out-of-range error is signaled if start indicates a character following
end, or if either integer is out of range for string.
Contrast this function with buffer-substring (see Section 32.2 [Buffer Contents],
page 532), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

Functionconcat &rest sequences
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives
no arguments, it returns an empty string.

(concat "abc" "-def")
⇒ "abc-def"

(concat "abc" (list 120 121) [122])
⇒ "abcxyz"

;; nil is an empty sequence.
(concat "abc" nil "-def")

52 GNU Emacs Lisp Reference Manual

⇒ "abc-def"
(concat "The " "quick brown " "fox.")

⇒ "The quick brown fox."
(concat)

⇒ ""

The concat function always constructs a new string that is not eq to any existing
string.

In Emacs versions before 21, when an argument was an integer (not a sequence of
integers), it was converted to a string of digits making up the decimal printed rep-
resentation of the integer. This obsolete usage no longer works. The proper way to
convert an integer to its decimal printed form is with format (see Section 4.7 [For-
matting Strings], page 56) or number-to-string (see Section 4.6 [String Conversion],
page 55).

For information about other concatenation functions, see the description of mapconcat
in Section 12.6 [Mapping Functions], page 163, vconcat in Section 6.4 [Vectors],
page 87, and append in Section 5.5 [Building Lists], page 68.

Functionsplit-string string separators
This function splits string into substrings at matches for the regular expression sep-
arators. Each match for separators defines a splitting point; the substrings between
the splitting points are made into a list, which is the value returned by split-string.
If separators is nil (or omitted), the default is "[\f\t\n\r\v]+".

For example,
(split-string "Soup is good food" "o")
⇒ ("S" "up is g" "" "d f" "" "d")
(split-string "Soup is good food" "o+")
⇒ ("S" "up is g" "d f" "d")

When there is a match adjacent to the beginning or end of the string, this does not
cause a null string to appear at the beginning or end of the list:

(split-string "out to moo" "o+")
⇒ ("ut t" " m")

Empty matches do count, when not adjacent to another match:
(split-string "Soup is good food" "o*")
⇒("S" "u" "p" " " "i" "s" " " "g" "d" " " "f" "d")
(split-string "Nice doggy!" "")
⇒("N" "i" "c" "e" " " "d" "o" "g" "g" "y" "!")

4.4 Modifying Strings

The most basic way to alter the contents of an existing string is with aset (see Section 6.3
[Array Functions], page 86). (aset string idx char) stores char into string at index idx.
Each character occupies one or more bytes, and if char needs a different number of bytes
from the character already present at that index, aset signals an error.

A more powerful function is store-substring:

Chapter 4: Strings and Characters 53

Functionstore-substring string idx obj
This function alters part of the contents of the string string, by storing obj starting
at index idx. The argument obj may be either a character or a (smaller) string.
Since it is impossible to change the length of an existing string, it is an error if obj
doesn’t fit within string ’s actual length, or if any new character requires a different
number of bytes from the character currently present at that point in string.

4.5 Comparison of Characters and Strings

Functionchar-equal character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal ?x ?x)
⇒ t

(let ((case-fold-search nil))
(char-equal ?x ?X))

⇒ nil

Functionstring= string1 string2
This function returns t if the characters of the two strings match exactly. Case is
always significant, regardless of case-fold-search.

(string= "abc" "abc")
⇒ t

(string= "abc" "ABC")
⇒ nil

(string= "ab" "ABC")
⇒ nil

The function string= ignores the text properties of the two strings. When equal (see
Section 2.7 [Equality Predicates], page 29) compares two strings, it uses string=.
If the strings contain non-ascii characters, and one is unibyte while the other is multi-
byte, then they cannot be equal. See Section 33.1 [Text Representations], page 583.

Functionstring-equal string1 string2
string-equal is another name for string=.

Functionstring< string1 string2
This function compares two strings a character at a time. It scans both the strings at
the same time to find the first pair of corresponding characters that do not match. If
the lesser character of these two is the character from string1, then string1 is less, and
this function returns t. If the lesser character is the one from string2, then string1 is
greater, and this function returns nil. If the two strings match entirely, the value is
nil.
Pairs of characters are compared according to their character codes. Keep in mind
that lower case letters have higher numeric values in the ascii character set than

54 GNU Emacs Lisp Reference Manual

their upper case counterparts; digits and many punctuation characters have a lower
numeric value than upper case letters. An ascii character is less than any non-ascii
character; a unibyte non-ascii character is always less than any multibyte non-ascii
character (see Section 33.1 [Text Representations], page 583).

(string< "abc" "abd")
⇒ t

(string< "abd" "abc")
⇒ nil

(string< "123" "abc")
⇒ t

When the strings have different lengths, and they match up to the length of string1,
then the result is t. If they match up to the length of string2, the result is nil. A
string of no characters is less than any other string.

(string< "" "abc")
⇒ t

(string< "ab" "abc")
⇒ t

(string< "abc" "")
⇒ nil

(string< "abc" "ab")
⇒ nil

(string< "" "")
⇒ nil

Functionstring-lessp string1 string2
string-lessp is another name for string<.

Functioncompare-strings string1 start1 end1 string2 start2 end2 &optional
ignore-case

This function compares the specified part of string1 with the specified part of string2.
The specified part of string1 runs from index start1 up to index end1 (nil means the
end of the string). The specified part of string2 runs from index start2 up to index
end2 (nil means the end of the string).
The strings are both converted to multibyte for the comparison (see Section 33.1 [Text
Representations], page 583) so that a unibyte string can be equal to a multibyte string.
If ignore-case is non-nil, then case is ignored, so that upper case letters can be equal
to lower case letters.
If the specified portions of the two strings match, the value is t. Otherwise, the value
is an integer which indicates how many leading characters agree, and which string
is less. Its absolute value is one plus the number of characters that agree at the
beginning of the two strings. The sign is negative if string1 (or its specified portion)
is less.

Functionassoc-ignore-case key alist
This function works like assoc, except that key must be a string, and comparison is
done using compare-strings, ignoring case differences. See Section 5.8 [Association
Lists], page 79.

Chapter 4: Strings and Characters 55

Functionassoc-ignore-representation key alist
This function works like assoc, except that key must be a string, and comparison is
done using compare-strings. Case differences are significant.

See also compare-buffer-substrings in Section 32.3 [Comparing Text], page 534, for
a way to compare text in buffers. The function string-match, which matches a regular
expression against a string, can be used for a kind of string comparison; see Section 34.3
[Regexp Search], page 611.

4.6 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prin1-to-string (see Section 19.5 [Output Functions], page 260) can also
convert Lisp objects into strings. read-from-string (see Section 19.3 [Input Functions],
page 257) can “convert” a string representation of a Lisp object into an object. The functions
string-make-multibyte and string-make-unibyte convert the text representation of a
string (see Section 33.2 [Converting Representations], page 584).

See Chapter 24 [Documentation], page 387, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-
char-description). These functions are used primarily for making help messages.

Functionchar-to-string character
This function returns a new string containing one character, character. This func-
tion is semi-obsolete because the function string is more general. See Section 4.3
[Creating Strings], page 50.

Functionstring-to-char string
This function returns the first character in string. If the string is empty, the function
returns 0. The value is also 0 when the first character of string is the null character,
ascii code 0.

(string-to-char "ABC")
⇒ 65

(string-to-char "xyz")
⇒ 120

(string-to-char "")
⇒ 0

(string-to-char "\000")
⇒ 0

This function may be eliminated in the future if it does not seem useful enough to
retain.

Functionnumber-to-string number
This function returns a string consisting of the printed base-ten representation of
number, which may be an integer or a floating point number. The returned value
starts with a minus sign if the argument is negative.

56 GNU Emacs Lisp Reference Manual

(number-to-string 256)
⇒ "256"

(number-to-string -23)
⇒ "-23"

(number-to-string -23.5)
⇒ "-23.5"

int-to-string is a semi-obsolete alias for this function.
See also the function format in Section 4.7 [Formatting Strings], page 56.

Functionstring-to-number string &optional base
This function returns the numeric value of the characters in string. If base is non-nil,
integers are converted in that base. If base is nil, then base ten is used. Floating
point conversion always uses base ten; we have not implemented other radices for
floating point numbers, because that would be much more work and does not seem
useful. If string looks like an integer but its value is too large to fit into a Lisp integer,
string-to-number returns a floating point result.
The parsing skips spaces and tabs at the beginning of string, then reads as much of
string as it can interpret as a number. (On some systems it ignores other whitespace
at the beginning, not just spaces and tabs.) If the first character after the ignored
whitespace is neither a digit, nor a plus or minus sign, nor the leading dot of a floating
point number, this function returns 0.

(string-to-number "256")
⇒ 256

(string-to-number "25 is a perfect square.")
⇒ 25

(string-to-number "X256")
⇒ 0

(string-to-number "-4.5")
⇒ -4.5

(string-to-number "1e5")
⇒ 100000.0

string-to-int is an obsolete alias for this function.

Here are some other functions that can convert to or from a string:

concat concat can convert a vector or a list into a string. See Section 4.3 [Creating
Strings], page 50.

vconcat vconcat can convert a string into a vector. See Section 6.5 [Vector Functions],
page 88.

append append can convert a string into a list. See Section 5.5 [Building Lists], page 68.

4.7 Formatting Strings

Formatting means constructing a string by substitution of computed values at various
places in a constant string. This constant string controls how the other values are printed,
as well as where they appear; it is called a format string.

Chapter 4: Strings and Characters 57

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from
format only in how they use the result of formatting.

Functionformat string &rest objects
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.
The characters in string, other than the format specifications, are copied directly into
the output; starting in Emacs 21, if they have text properties, these are copied into
the output also.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there
is a ‘%d’ in string, the format function replaces it with the printed representation of one of
the values to be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
⇒ "The value of fill-column is 72."

If string contains more than one format specification, the format specifications corre-
spond to successive values from objects. Thus, the first format specification in string uses
the first such value, the second format specification uses the second such value, and so on.
Any extra format specifications (those for which there are no corresponding values) cause
unpredictable behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. If you supply a value
that doesn’t fit the requirements, an error is signaled.

Here is a table of valid format specifications:

‘%s’ Replace the specification with the printed representation of the object, made
without quoting (that is, using princ, not prin1—see Section 19.5 [Output
Functions], page 260). Thus, strings are represented by their contents alone,
with no ‘"’ characters, and symbols appear without ‘\’ characters.
Starting in Emacs 21, if the object is a string, its text properties are copied
into the output. The text properties of the ‘%s’ itself are also copied, but those
of the object take priority.
If there is no corresponding object, the empty string is used.

‘%S’ Replace the specification with the printed representation of the object, made
with quoting (that is, using prin1—see Section 19.5 [Output Functions],
page 260). Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters
appear where necessary before special characters.
If there is no corresponding object, the empty string is used.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘%d’ Replace the specification with the base-ten representation of an integer.

‘%x’
‘%X’ Replace the specification with the base-sixteen representation of an integer. ‘%x’

uses lower case and ‘%X’ uses upper case.

58 GNU Emacs Lisp Reference Manual

‘%c’ Replace the specification with the character which is the value given.

‘%e’ Replace the specification with the exponential notation for a floating point
number.

‘%f’ Replace the specification with the decimal-point notation for a floating point
number.

‘%g’ Replace the specification with notation for a floating point number, using either
exponential notation or decimal-point notation, whichever is shorter.

‘%%’ Replace the specification with a single ‘%’. This format specification is unusual
in that it does not use a value. For example, (format "%% %d" 30) returns "%
30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:
(format "The name of this buffer is %s." (buffer-name))

⇒ "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
⇒ "The buffer object prints as strings.texi."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)

⇒ "The octal value of 18 is 22,
and the hex value is 12."

All the specification characters allow an optional numeric prefix between the ‘%’ and the
character. The optional numeric prefix defines the minimum width for the object. If the
printed representation of the object contains fewer characters than this, then it is padded.
The padding is on the left if the prefix is positive (or starts with zero) and on the right if
the prefix is negative. The padding character is normally a space, but if the numeric prefix
starts with a zero, zeros are used for padding. Here are some examples of padding:

(format "%06d is padded on the left with zeros" 123)
⇒ "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
⇒ "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you
specify. Thus, you can use a numeric prefix to specify a minimum spacing between columns
with no risk of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case,
the string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for
padding. In the second case, the string "specification" is 13 letters wide but is not
truncated. In the third case, the padding is on the right.

(format "The word ‘%7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘ foo’ actually has 3 letters in it."

Chapter 4: Strings and Characters 59

(format "The word ‘%7s’ actually has %d letters in it."
"specification" (length "specification"))

⇒ "The word ‘specification’ actually has 13 letters in it."

(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘foo ’ actually has 3 letters in it."

4.8 Case Conversion in Lisp

The character case functions change the case of single characters or of the contents of
strings. The functions normally convert only alphabetic characters (the letters ‘A’ through
‘Z’ and ‘a’ through ‘z’, as well as non-ascii letters); other characters are not altered. You
can specify a different case conversion mapping by specifying a case table (see Section 4.9
[Case Tables], page 60).

These functions do not modify the strings that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ascii codes 88 and 120
respectively.

Functiondowncase string-or-char
This function converts a character or a string to lower case.

When the argument to downcase is a string, the function creates and returns a new
string in which each letter in the argument that is upper case is converted to lower
case. When the argument to downcase is a character, downcase returns the corre-
sponding lower case character. This value is an integer. If the original character is
lower case, or is not a letter, then the value equals the original character.

(downcase "The cat in the hat")
⇒ "the cat in the hat"

(downcase ?X)
⇒ 120

Functionupcase string-or-char
This function converts a character or a string to upper case.

When the argument to upcase is a string, the function creates and returns a new
string in which each letter in the argument that is lower case is converted to upper
case.

When the argument to upcase is a character, upcase returns the corresponding upper
case character. This value is an integer. If the original character is upper case, or is
not a letter, then the value returned equals the original character.

(upcase "The cat in the hat")
⇒ "THE CAT IN THE HAT"

(upcase ?x)
⇒ 88

60 GNU Emacs Lisp Reference Manual

Functioncapitalize string-or-char
This function capitalizes strings or characters. If string-or-char is a string, the func-
tion creates and returns a new string, whose contents are a copy of string-or-char in
which each word has been capitalized. This means that the first character of each
word is converted to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 622).

When the argument to capitalize is a character, capitalize has the same result
as upcase.

(capitalize "The cat in the hat")
⇒ "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
⇒ "The 77th-Hatted Cat"

(capitalize ?x)
⇒ 88

Functionupcase-initials string
This function capitalizes the initials of the words in string, without altering any letters
other than the initials. It returns a new string whose contents are a copy of string,
in which each word has had its initial letter converted to upper case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 622).

(upcase-initials "The CAT in the hAt")
⇒ "The CAT In The HAt"

See Section 4.5 [Text Comparison], page 53, for functions that compare strings; some of
them ignore case differences, or can optionally ignore case differences.

4.9 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the case conversion
functions for Lisp objects (see the previous section) and those that apply to text in the
buffer (see Section 32.18 [Case Changes], page 560). Each buffer has a case table; there is
also a standard case table which is used to initialize the case table of new buffers.

A case table is a char-table (see Section 6.6 [Char-Tables], page 89) whose subtype
is case-table. This char-table maps each character into the corresponding lower case
character. It has three extra slots, which hold related tables:

upcase The upcase table maps each character into the corresponding upper case char-
acter.

Chapter 4: Strings and Characters 61

canonicalize
The canonicalize table maps all of a set of case-related characters into a partic-
ular member of that set.

equivalences
The equivalences table maps each one of a set of case-related characters into
the next character in that set.

In simple cases, all you need to specify is the mapping to lower-case; the three related
tables will be calculated automatically from that one.

For some languages, upper and lower case letters are not in one-to-one correspondence.
There may be two different lower case letters with the same upper case equivalent. In these
cases, you need to specify the maps for both lower case and upper case.

The extra table canonicalize maps each character to a canonical equivalent; any two
characters that are related by case-conversion have the same canonical equivalent character.
For example, since ‘a’ and ‘A’ are related by case-conversion, they should have the same
canonical equivalent character (which should be either ‘a’ for both of them, or ‘A’ for both
of them).

The extra table equivalences is a map that cyclicly permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary ascii, this would map ‘a’
into ‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs fills
in this slot from the lower case and upper case mappings. You can also provide nil for
equivalences; then Emacs fills in this slot from canonicalize. In a case table that is actually
in use, those components are non-nil. Do not try to specify equivalences without also
specifying canonicalize.

Here are the functions for working with case tables:

Functioncase-table-p object
This predicate returns non-nil if object is a valid case table.

Functionset-standard-case-table table
This function makes table the standard case table, so that it will be used in any
buffers created subsequently.

Functionstandard-case-table
This returns the standard case table.

Functioncurrent-case-table
This function returns the current buffer’s case table.

Functionset-case-table table
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-
ascii character sets. They modify the specified case table case-table; they also modify the
standard syntax table. See Chapter 35 [Syntax Tables], page 621. Normally you would use
these functions to change the standard case table.

62 GNU Emacs Lisp Reference Manual

Functionset-case-syntax-pair uc lc case-table
This function specifies a pair of corresponding letters, one upper case and one lower
case.

Functionset-case-syntax-delims l r case-table
This function makes characters l and r a matching pair of case-invariant delimiters.

Functionset-case-syntax char syntax case-table
This function makes char case-invariant, with syntax syntax.

Commanddescribe-buffer-case-table
This command displays a description of the contents of the current buffer’s case table.

Chapter 5: Lists 63

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects).
The important difference between lists and vectors is that two or more lists can share part
of their structure; in addition, you can insert or delete elements in a list without copying
the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons
cell is a data object that represents an ordered pair. That is, it has two slots, and each slot
holds, or refers to, some Lisp object. One slot is known as the car, and the other is known
as the cdr. (These names are traditional; see Section 2.3.6 [Cons Cell Type], page 15.)
cdr is pronounced “could-er.”

We say that “the car of this cons cell is” whatever object its car slot currently holds,
and likewise for the cdr.

A list is a series of cons cells “chained together,” so that each cell refers to the next one.
There is one cons cell for each element of the list. By convention, the cars of the cons
cells hold the elements of the list, and the cdrs are used to chain the list: the cdr slot of
each cons cell refers to the following cons cell. The cdr of the last cons cell is nil. This
asymmetry between the car and the cdr is entirely a matter of convention; at the level of
cons cells, the car and cdr slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to
mean any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements.
For convenience, the symbol nil is considered to have nil as its cdr (and also as its car).

The cdr of any nonempty list l is a list containing all the elements of l except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the car and
the second box represents the cdr. Here is an illustration of the two-element list, (tulip
lily), made from two cons cells:

--------------- ---------------
car	cdr		car	cdr
tulip	o---------->	lily	nil	
--------------- ---------------

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “holds” a
Lisp object. (These terms are synonymous.) The first box, which describes the car of the
first cons cell, contains the symbol tulip. The arrow from the cdr box of the first cons
cell to the second cons cell indicates that the cdr of the first cons cell is the second cons
cell.

The same list can be illustrated in a different sort of box notation like this:

64 GNU Emacs Lisp Reference Manual

--- --- --- ---
| | |--> | | |--> nil
--- --- --- ---
| |
| |
--> tulip --> lily

Here is a more complex illustration, showing the three-element list, ((pine needles)
oak maple), the first element of which is a two-element list:

--- --- --- --- --- ---
| | |--> | | |--> | | |--> nil
--- --- --- --- --- ---
| | |
| | |
| --> oak --> maple
|
| --- --- --- ---
--> | | |--> | | |--> nil

--- --- --- ---
| |
| |
--> pine --> needles

The same list represented in the first box notation looks like this:

-------------- -------------- --------------
car	cdr		car	cdr		car	cdr	
o	o------->	oak	o------->	maple	nil			
-- | --------- -------------- --------------

|
|
| -------------- ----------------
| | car | cdr | | car | cdr |
------>| pine | o------->| needles | nil |

| | | | | |
-------------- ----------------

See Section 2.3.6 [Cons Cell Type], page 15, for the read and print syntax of cons cells
and lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list,
or whether it is the distinguished object nil. (Many of these predicates can be defined in
terms of the others, but they are used so often that it is worth having all of them.)

Functionconsp object
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

Chapter 5: Lists 65

Functionatom object
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object
that is both.

(atom object) ≡ (not (consp object))

Functionlistp object
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(listp ’(1))
⇒ t

(listp ’())
⇒ t

Functionnlistp object
This function is the opposite of listp: it returns t if object is not a list. Otherwise,
it returns nil.

(listp object) ≡ (not (nlistp object))

Functionnull object
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 10.3 [Combining
Conditions], page 120).

(null ’(1))
⇒ nil

(null ’())
⇒ t

5.4 Accessing Elements of Lists

Functioncar cons-cell
This function returns the value referred to by the first slot of the cons cell cons-cell.
Expressed another way, this function returns the car of cons-cell.
As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any
list is a valid argument for car. An error is signaled if the argument is not a cons cell
or nil.

(car ’(a b c))
⇒ a

(car ’())
⇒ nil

Functioncdr cons-cell
This function returns the value referred to by the second slot of the cons cell cons-cell.
Expressed another way, this function returns the cdr of cons-cell.

66 GNU Emacs Lisp Reference Manual

As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any
list is a valid argument for cdr. An error is signaled if the argument is not a cons cell
or nil.

(cdr ’(a b c))
⇒ (b c)

(cdr ’())
⇒ nil

Functioncar-safe object
This function lets you take the car of a cons cell while avoiding errors for other data
types. It returns the car of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)
≡
(let ((x object))
(if (consp x)

(car x)
nil))

Functioncdr-safe object
This function lets you take the cdr of a cons cell while avoiding errors for other data
types. It returns the cdr of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)
≡
(let ((x object))
(if (consp x)

(cdr x)
nil))

Macropop listname
This macro is a way of examining the car of a list, and taking it off the list, all at
once. It is new in Emacs 21.
It operates on the list which is stored in the symbol listname. It removes this element
from the list by setting listname to the cdr of its old value—but it also returns the
car of that list, which is the element being removed.

x
⇒ (a b c)

(pop x)
⇒ a

x
⇒ (b c)

Functionnth n list
This function returns the nth element of list. Elements are numbered starting with
zero, so the car of list is element number zero. If the length of list is n or less, the
value is nil.

Chapter 5: Lists 67

If n is negative, nth returns the first element of list.
(nth 2 ’(1 2 3 4))

⇒ 3
(nth 10 ’(1 2 3 4))

⇒ nil
(nth -3 ’(1 2 3 4))

⇒ 1

(nth n x) ≡ (car (nthcdr n x))

The function elt is similar, but applies to any kind of sequence. For historical reasons,
it takes its arguments in the opposite order. See Section 6.1 [Sequence Functions],
page 83.

Functionnthcdr n list
This function returns the nth cdr of list. In other words, it skips past the first n
links of list and returns what follows.
If n is zero or negative, nthcdr returns all of list. If the length of list is n or less,
nthcdr returns nil.

(nthcdr 1 ’(1 2 3 4))
⇒ (2 3 4)

(nthcdr 10 ’(1 2 3 4))
⇒ nil

(nthcdr -3 ’(1 2 3 4))
⇒ (1 2 3 4)

Functionlast list &optional n
This function returns the last link of list. The car of this link is the list’s last element.
If list is null, nil is returned. If n is non-nil the n-th-to-last link is returned instead,
or the whole list if n is bigger than list’s length.

Functionsafe-length list
This function returns the length of list, with no risk of either an error or an infinite
loop.
If list is not really a list, safe-length returns 0. If list is circular, it returns a finite
value which is at least the number of distinct elements.

The most common way to compute the length of a list, when you are not worried that
it may be circular, is with length. See Section 6.1 [Sequence Functions], page 83.

Functioncaar cons-cell
This is the same as (car (car cons-cell)).

Functioncadr cons-cell
This is the same as (car (cdr cons-cell)) or (nth 1 cons-cell).

Functioncdar cons-cell
This is the same as (cdr (car cons-cell)).

68 GNU Emacs Lisp Reference Manual

Functioncddr cons-cell
This is the same as (cdr (cdr cons-cell)) or (nthcdr 2 cons-cell).

Functionbutlast x &optional n
This function returns the list x with the last element, or the last n elements, removed.
If n is greater than zero it makes a copy of the list so as not to damage the original
list. In general, (append (butlast x n) (last x n)) will return a list equal to x.

Functionnbutlast x &optional n
This is a version of butlast that works by destructively modifying the cdr of the
appropriate element, rather than making a copy of the list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the funda-
mental list-building function; however, it is interesting to note that list is used more times
in the source code for Emacs than cons.

Functioncons object1 object2
This function is the fundamental function used to build new list structure. It creates
a new cons cell, making object1 the car, and object2 the cdr. It then returns the
new cons cell. The arguments object1 and object2 may be any Lisp objects, but most
often object2 is a list.

(cons 1 ’(2))
⇒ (1 2)

(cons 1 ’())
⇒ (1)

(cons 1 2)
⇒ (1 . 2)

cons is often used to add a single element to the front of a list. This is called consing
the element onto the list.1 For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named list described below; any symbol can serve both purposes.

Macropush newelt listname
This macro provides an alternative way to write (setq listname (cons newelt list-
name)). It is new in Emacs 21.

1 There is no strictly equivalent way to add an element to the end of a list. You can use (append listname
(list newelt)), which creates a whole new list by copying listname and adding newelt to its end. Or
you can use (nconc listname (list newelt)), which modifies listname by following all the cdrs and
then replacing the terminating nil. Compare this to adding an element to the beginning of a list with
cons, which neither copies nor modifies the list.

Chapter 5: Lists 69

(setq l ’(a b))
⇒ (a b)

(push ’c l)
⇒ (c a b)

l
⇒ (c a b)

Functionlist &rest objects
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

(list 1 2 3 4 5)
⇒ (1 2 3 4 5)

(list 1 2 ’(3 4 5) ’foo)
⇒ (1 2 (3 4 5) foo)

(list)
⇒ nil

Functionmake-list length object
This function creates a list of length elements, in which each element is object. Com-
pare make-list with make-string (see Section 4.3 [Creating Strings], page 50).

(make-list 3 ’pigs)
⇒ (pigs pigs pigs)

(make-list 0 ’pigs)
⇒ nil

(setq l (make-list 3 ’(a b))
⇒ ((a b) (a b) (a b))

(eq (car l) (cadr l))
⇒ t

Functionappend &rest sequences
This function returns a list containing all the elements of sequences. The sequences
may be lists, vectors, bool-vectors, or strings, but the last one should usually be a
list. All arguments except the last one are copied, so none of the arguments is altered.
(See nconc in Section 5.6.3 [Rearrangement], page 74, for a way to join lists with no
copying.)
More generally, the final argument to append may be any Lisp object. The final
argument is not copied or converted; it becomes the cdr of the last cons cell in
the new list. If the final argument is itself a list, then its elements become in effect
elements of the result list. If the final element is not a list, the result is a “dotted
list” since its final cdr is not nil as required in a true list.
The append function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the
strings instead of the original integers. Don’t use this feature; we plan to eliminate it.
If you already use this feature, change your programs now! The proper way to convert
an integer to a decimal number in this way is with format (see Section 4.7 [Formatting
Strings], page 56) or number-to-string (see Section 4.6 [String Conversion], page 55).

70 GNU Emacs Lisp Reference Manual

Here is an example of using append:
(setq trees ’(pine oak))

⇒ (pine oak)
(setq more-trees (append ’(maple birch) trees))

⇒ (maple birch pine oak)

trees
⇒ (pine oak)

more-trees
⇒ (maple birch pine oak)

(eq trees (cdr (cdr more-trees)))
⇒ t

You can see how append works by looking at a box diagram. The variable trees is set
to the list (pine oak) and then the variable more-trees is set to the list (maple birch
pine oak). However, the variable trees continues to refer to the original list:

more-trees trees
| |
| --- --- --- --- -> --- --- --- ---
--> | | |--> | | |--> | | |--> | | |--> nil

--- --- --- --- --- --- --- ---
| | | |
| | | |
--> maple -->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a conse-
quence of this, a final nil argument forces a copy of the previous argument:

trees
⇒ (pine oak)

(setq wood (append trees nil))
⇒ (pine oak)

wood
⇒ (pine oak)

(eq wood trees)
⇒ nil

This once was the usual way to copy a list, before the function copy-sequence was invented.
See Chapter 6 [Sequences Arrays Vectors], page 83.

Here we show the use of vectors and strings as arguments to append:
(append [a b] "cd" nil)

⇒ (a b 99 100)

With the help of apply (see Section 12.5 [Calling Functions], page 161), we can append
all the lists in a list of lists:

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

If no sequences are given, nil is returned:
(append)

⇒ nil

Here are some examples where the final argument is not a list:

Chapter 5: Lists 71

(append ’(x y) ’z)
⇒ (x y . z)

(append ’(x y) [z])
⇒ (x y . [z])

The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence
becomes the final cdr, like any other non-list final argument.

Functionreverse list
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

(setq x ’(1 2 3 4))
⇒ (1 2 3 4)

(reverse x)
⇒ (4 3 2 1)

x
⇒ (1 2 3 4)

Functionremq object list
This function returns a copy of list, with all elements removed which are eq to object.
The letter ‘q’ in remq says that it uses eq to compare object against the elements of
list.

(setq sample-list ’(a b c a b c))
⇒ (a b c a b c)

(remq ’a sample-list)
⇒ (b c b c)

sample-list
⇒ (a b c a b c)

The function delq offers a way to perform this operation destructively. See Section 5.7
[Sets And Lists], page 77.

5.6 Modifying Existing List Structure

You can modify the car and cdr contents of a cons cell with the primitives setcar and
setcdr. We call these “destructive” operations because they change existing list structure.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter
list structure; they change structure the same way as setcar and setcdr, but
the Common Lisp functions return the cons cell while setcar and setcdr return
the new car or cdr.

5.6.1 Altering List Elements with setcar

Changing the car of a cons cell is done with setcar. When used on a list, setcar
replaces one element of a list with a different element.

72 GNU Emacs Lisp Reference Manual

Functionsetcar cons object
This function stores object as the new car of cons, replacing its previous car. In
other words, it changes the car slot of cons to refer to object. It returns the value
object. For example:

(setq x ’(1 2))
⇒ (1 2)

(setcar x 4)
⇒ 4

x
⇒ (4 2)

When a cons cell is part of the shared structure of several lists, storing a new car into
the cons changes one element of each of these lists. Here is an example:

;; Create two lists that are partly shared.
(setq x1 ’(a b c))

⇒ (a b c)
(setq x2 (cons ’z (cdr x1)))

⇒ (z b c)

;; Replace the car of a shared link.
(setcar (cdr x1) ’foo)

⇒ foo
x1 ; Both lists are changed.

⇒ (a foo c)
x2

⇒ (z foo c)

;; Replace the car of a link that is not shared.
(setcar x1 ’baz)

⇒ baz
x1 ; Only one list is changed.

⇒ (baz foo c)
x2

⇒ (z foo c)

Here is a graphical depiction of the shared structure of the two lists in the variables x1
and x2, showing why replacing b changes them both:

--- --- --- --- --- ---
x1---> | | |----> | | |--> | | |--> nil

--- --- --- --- --- ---
| --> | |
| | | |
--> a | --> b --> c

|
--- --- |

x2--> | | |--
--- ---
|
|
--> z

Here is an alternative form of box diagram, showing the same relationship:

Chapter 5: Lists 73

x1:
-------------- -------------- --------------
car	cdr		car	cdr		car	cdr
a	o------->	b	o------->	c	nil		
		-->					
-------------- | -------------- --------------

|
x2:
car
z

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a cdr is setcdr:

Functionsetcdr cons object
This function stores object as the new cdr of cons, replacing its previous cdr. In
other words, it changes the cdr slot of cons to refer to object. It returns the value
object.

Here is an example of replacing the cdr of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element
is unchanged, because it resides in the car of the list, and is not reached via the cdr.

(setq x ’(1 2 3))
⇒ (1 2 3)

(setcdr x ’(4))
⇒ (4)

x
⇒ (1 4)

You can delete elements from the middle of a list by altering the cdrs of the cons cells
in the list. For example, here we delete the second element, b, from the list (a b c), by
changing the cdr of the first cons cell:

(setq x1 ’(a b c))
⇒ (a b c)

(setcdr x1 (cdr (cdr x1)))
⇒ (c)

x1
⇒ (a c)

74 GNU Emacs Lisp Reference Manual

Here is the result in box notation:

| |

-------------- | -------------- | --------------
| car | cdr | | | car | cdr | -->| car | cdr |
| a | o----- | b | o-------->| c | nil |
| | | | | | | | |
-------------- -------------- --------------

The second cons cell, which previously held the element b, still exists and its car is still b,
but it no longer forms part of this list.

It is equally easy to insert a new element by changing cdrs:
(setq x1 ’(a b c))

⇒ (a b c)
(setcdr x1 (cons ’d (cdr x1)))

⇒ (d b c)
x1

⇒ (a d b c)

Here is this result in box notation:
-------------- ------------- -------------
car	cdr		car	cdr		car	cdr		
a	o	-->	b	o------->	c	nil			
--------- | -- | ------------- -------------

| |
----- --------
-->| d | o------

| | |

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the cdrs of
their component cons cells. We call these functions “destructive” because they chew up the
original lists passed to them as arguments, relinking their cons cells to form a new list that
is the returned value.

The function delq in the following section is another example of destructive list manip-
ulation.

Functionnconc &rest lists
This function returns a list containing all the elements of lists. Unlike append (see
Section 5.5 [Building Lists], page 68), the lists are not copied. Instead, the last cdr
of each of the lists is changed to refer to the following list. The last of the lists is not
altered. For example:

Chapter 5: Lists 75

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’(4 5))
⇒ (1 2 3 4 5)

x
⇒ (1 2 3 4 5)

Since the last argument of nconc is not itself modified, it is reasonable to use a
constant list, such as ’(4 5), as in the above example. For the same reason, the last
argument need not be a list:

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’z)
⇒ (1 2 3 . z)

x
⇒ (1 2 3 . z)

However, the other arguments (all but the last) must be lists.

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
⇒ (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
⇒ (foo 1 2 3 4)

(eq xx xy)
⇒ t

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

Functionnreverse list
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument by reversing the cdrs in the cons cells forming the list. The cons
cell that used to be the last one in list becomes the first cons cell of the value.

For example:
(setq x ’(a b c))

⇒ (a b c)
x

⇒ (a b c)
(nreverse x)

⇒ (c b a)
;; The cons cell that was first is now last.
x

⇒ (a)

76 GNU Emacs Lisp Reference Manual

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c), presented graphically:
Original list head: Reversed list:
------------- ------------- ------------
| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |<-- | c | o |
| | | | | | | | | | | | |
------------- | --------- | - | -------- | -

| | | |
------------- ------------

Functionsort list predicate
This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.
The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return
t if the first element is “less than” the second, or nil if not.
The comparison function predicate must give reliable results for any given pair of
arguments, at least within a single call to sort. It must be antisymmetric; that is,
if a is less than b, b must not be less than a. It must be transitive—that is, if a is
less than b, and b is less than c, then a must be less than c. If you use a comparison
function which does not meet these requirements, the result of sort is unpredictable.
The destructive aspect of sort is that it rearranges the cons cells forming list by
changing cdrs. A nondestructive sort function would create new cons cells to store the
elements in their sorted order. If you wish to make a sorted copy without destroying
the original, copy it first with copy-sequence and then sort.
Sorting does not change the cars of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its car after sorting, but it now appears
in a different position in the list due to the change of cdrs. For example:

(setq nums ’(1 3 2 6 5 4 0))
⇒ (1 3 2 6 5 4 0)

(sort nums ’<)
⇒ (0 1 2 3 4 5 6)

nums
⇒ (1 2 3 4 5 6)

Warning: Note that the list in nums no longer contains 0; this is the same cons cell
that it was before, but it is no longer the first one in the list. Don’t assume a variable
that formerly held the argument now holds the entire sorted list! Instead, save the
result of sort and use that. Most often we store the result back into the variable that
held the original list:

(setq nums (sort nums ’<))

Chapter 5: Lists 77

See Section 32.15 [Sorting], page 552, for more functions that perform sorting. See
documentation in Section 24.2 [Accessing Documentation], page 388, for a useful
example of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element
of a set if it appears in the list, and ignore the order of the list. To form the union of
two sets, use append (as long as you don’t mind having duplicate elements). Other useful
functions for sets include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but GNU Emacs Lisp does not
have them. You can write them in Lisp if you wish.

Functionmemq object list
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For
example:

(memq ’b ’(a b c b a))
⇒ (b c b a)

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

Functionmember-ignore-case object list
This function is like member, except that it ignores differences in letter-case and text
representation: upper-case and lower-case letters are treated as equal, and unibyte
strings are converted to multibyte prior to comparison.

Functiondelq object list
This function destructively removes all elements eq to object from list. The letter ‘q’
in delq says that it uses eq to compare object against the elements of the list, like
memq and remq.

When delq deletes elements from the front of the list, it does so simply by advancing
down the list and returning a sublist that starts after those elements:

(delq ’a ’(a b c)) ≡ (cdr ’(a b c))

When an element to be deleted appears in the middle of the list, removing it involves
changing the cdrs (see Section 5.6.2 [Setcdr], page 73).

(setq sample-list ’(a b c (4)))
⇒ (a b c (4))

(delq ’a sample-list)
⇒ (b c (4))

sample-list
⇒ (a b c (4))

(delq ’c sample-list)
⇒ (a b (4))

78 GNU Emacs Lisp Reference Manual

sample-list
⇒ (a b (4))

Note that (delq ’c sample-list) modifies sample-list to splice out the third element,
but (delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t
assume that a variable which formerly held the argument list now has fewer elements, or
that it still holds the original list! Instead, save the result of delq and use that. Most often
we store the result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the
sample-list are not eq:

(delq ’(4) sample-list)
⇒ (a c (4))

The following two functions are like memq and delq but use equal rather than eq to
compare elements. See Section 2.7 [Equality Predicates], page 29.

Functionmember object list
The function member tests to see whether object is a member of list, comparing
members with object using equal. If object is a member, member returns a list
starting with its first occurrence in list. Otherwise, it returns nil.
Compare this with memq:

(member ’(2) ’((1) (2))) ; (2) and (2) are equal.
⇒ ((2))

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

;; Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))

⇒ ("foo" "bar")

Functiondelete object sequence
If sequence is a list, this function destructively removes all elements equal to object
from sequence. For lists, delete is to delq as member is to memq: it uses equal to
compare elements with object, like member; when it finds an element that matches, it
removes the element just as delq would.
If sequence is a vector or string, delete returns a copy of sequence with all elements
equal to object removed.
For example:

(delete ’(2) ’((2) (1) (2)))
⇒ ((1))

(delete ’(2) [(2) (1) (2)])
⇒ [(1)]

Functionremove object sequence
This function is the non-destructive counterpart of delete. If returns a copy of
sequence, a list, vector, or string, with elements equal to object removed. For
example:

Chapter 5: Lists 79

(remove ’(2) ’((2) (1) (2)))
⇒ ((1))

(remove ’(2) [(2) (1) (2)])
⇒ [(1)]

Common Lisp note: The functions member, delete and remove in GNU Emacs
Lisp are derived from Maclisp, not Common Lisp. The Common Lisp versions
do not use equal to compare elements.

See also the function add-to-list, in Section 11.8 [Setting Variables], page 142, for
another way to add an element to a list stored in a variable.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list
of cons cells called associations: the car of each cons cell is the key, and the cdr is the
associated value.2

Here is an example of an alist. The key pine is associated with the value cones; the key
oak is associated with acorns; and the key maple is associated with seeds.

((pine . cones)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example,
in the following alist, the symbol a is associated with the number 1, and the string "b" is
associated with the list (2 3), which is the cdr of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the car of the
cdr of the element. Here is an example of such an alist:

((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this kind of alist
is that you can store other related information—even a list of other items—in the cdr of
the cdr. One disadvantage is that you cannot use rassq (see below) to find the element
containing a given value. When neither of these considerations is important, the choice is
a matter of taste, as long as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value
in the cdr of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on
a stack, since new associations may be added easily to the front of the list. When searching
an association list for an association with a given key, the first one found is returned, if
there is more than one.

In Emacs Lisp, it is not an error if an element of an association list is not a cons cell.
The alist search functions simply ignore such elements. Many other versions of Lisp signal
errors in such cases.

2 This usage of “key” is not related to the term “key sequence”; it means a value used to look up an item
in a table. In this case, the table is the alist, and the alist associations are the items.

80 GNU Emacs Lisp Reference Manual

Note that property lists are similar to association lists in several respects. A property
list behaves like an association list in which each key can occur only once. See Section 8.4
[Property Lists], page 104, for a comparison of property lists and association lists.

Functionassoc key alist
This function returns the first association for key in alist. It compares key against
the alist elements using equal (see Section 2.7 [Equality Predicates], page 29). It
returns nil if no association in alist has a car equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assoc ’oak trees)
⇒ (oak . acorns)

(cdr (assoc ’oak trees))
⇒ acorns

(assoc ’birch trees)
⇒ nil

Here is another example, in which the keys and values are not symbols:
(setq needles-per-cluster

’((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
⇒ ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
⇒ ("Austrian Pine" "Red Pine")

The functions assoc-ignore-representation and assoc-ignore-case are much like
assoc except using compare-strings to do the comparison. See Section 4.5 [Text Com-
parison], page 53.

Functionrassoc value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr equal to value.
rassoc is like assoc except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assoc”, finding the key for a given
value.

Functionassq key alist
This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a car eq to key. This function is used more often than assoc, since eq
is faster than equal and most alists use symbols as keys. See Section 2.7 [Equality
Predicates], page 29.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assq ’pine trees)

Chapter 5: Lists 81

⇒ (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be
symbols:

(setq leaves
’(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
⇒ nil

(assoc "simple leaves" leaves)
⇒ ("simple leaves" . oak)

Functionrassq value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr eq to value.
rassq is like assq except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assq”, finding the key for a given value.
For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
⇒ (oak . acorns)

(rassq ’spores trees)
⇒ nil

Note that rassq cannot search for a value stored in the car of the cdr of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
⇒ nil

In this case, the cdr of the association (lily white) is not the symbol white, but
rather the list (white). This becomes clearer if the association is written in dotted
pair notation:

(lily white) ≡ (lily . (white))

Functionassoc-default key alist &optional test default
This function searches alist for a match for key. For each element of alist, it compares
the element (if it is an atom) or the element’s car (if it is a cons) against key, by
calling test with two arguments: the element or its car, and key. The arguments are
passed in that order so that you can get useful results using string-match with an
alist that contains regular expressions (see Section 34.3 [Regexp Search], page 611).
If test is omitted or nil, equal is used for comparison.
If an alist element matches key by this criterion, then assoc-default returns a value
based on this element. If the element is a cons, then the value is the element’s cdr.
Otherwise, the return value is default.
If no alist element matches key, assoc-default returns nil.

82 GNU Emacs Lisp Reference Manual

Functioncopy-alist alist
This function returns a two-level deep copy of alist: it creates a new copy of each
association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster
’((2 . ("Austrian Pine" "Red Pine"))
(3 . ("Pitch Pine"))
(5 . ("White Pine"))))

⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(eq needles-per-cluster copy)
⇒ nil

(equal needles-per-cluster copy)
⇒ t

(eq (car needles-per-cluster) (car copy))
⇒ nil

(cdr (car (cdr needles-per-cluster)))
⇒ ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
⇒ t

This example shows how copy-alist makes it possible to change the associations of
one copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))

⇒ ("Pitch Pine")

Functionassq-delete-all key alist
This function deletes from alist all the elements whose car is eq to key. It returns
alist, modified in this way. Note that it modifies the original list structure of alist.

(assq-delete-all ’foo
’((foo 1) (bar 2) (foo 3) (lose 4)))

⇒ ((bar 2) (lose 4))

Chapter 6: Sequences, Arrays, and Vectors 83

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of two other Lisp types: lists and arrays. In
other words, any list is a sequence, and any array is a sequence. The common property that
all sequences have is that each is an ordered collection of elements.

An array is a single primitive object that has a slot for each of its elements. All the
elements are accessible in constant time, but the length of an existing array cannot be
changed. Strings, vectors, char-tables and bool-vectors are the four types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons
cells, one cell per element. Finding the nth element requires looking through n cons cells,
so elements farther from the beginning of the list take longer to access. But it is possible
to add elements to the list, or remove elements.

The following diagram shows the relationship between these types:

| |
| Sequence |
| ______ ________________________________ |
	List		Array					
			________ ________					

		Vector		String				
		________		________				
	____________ _____________							
		Char-table		Bool-vector				
		____________		_____________				

The elements of vectors and lists may be any Lisp objects. The elements of strings are
all characters.

6.1 Sequences

In Emacs Lisp, a sequence is either a list or an array. The common property of all
sequences is that they are ordered collections of elements. This section describes functions
that accept any kind of sequence.

Functionsequencep object
Returns t if object is a list, vector, or string, nil otherwise.

Functionlength sequence
This function returns the number of elements in sequence. If sequence is a cons cell
that is not a list (because the final cdr is not nil), a wrong-type-argument error is
signaled.
See Section 5.4 [List Elements], page 65, for the related function safe-length.

84 GNU Emacs Lisp Reference Manual

(length ’(1 2 3))
⇒ 3

(length ())
⇒ 0

(length "foobar")
⇒ 6

(length [1 2 3])
⇒ 3

(length (make-bool-vector 5 nil))
⇒ 5

Functionelt sequence index
This function returns the element of sequence indexed by index. Legitimate values
of index are integers ranging from 0 up to one less than the length of sequence. If
sequence is a list, then out-of-range values of index return nil; otherwise, they trigger
an args-out-of-range error.

(elt [1 2 3 4] 2)
⇒ 3

(elt ’(1 2 3 4) 2)
⇒ 3

;; We use string to show clearly which character elt returns.
(string (elt "1234" 2))

⇒ "3"
(elt [1 2 3 4] 4)

error Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1)

error Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions], page 86) and nth
(see Section 5.4 [List Elements], page 65).

Functioncopy-sequence sequence
Returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.

If the sequence is a string with text properties, the property list in the copy is itself
a copy, not shared with the original’s property list. However, the actual values of the
properties are shared. See Section 32.19 [Text Properties], page 562.

See also append in Section 5.5 [Building Lists], page 68, concat in Section 4.3 [Cre-
ating Strings], page 50, and vconcat in Section 6.4 [Vectors], page 87, for other ways
to copy sequences.

(setq bar ’(1 2))
⇒ (1 2)

Chapter 6: Sequences, Arrays, and Vectors 85

(setq x (vector ’foo bar))
⇒ [foo (1 2)]

(setq y (copy-sequence x))
⇒ [foo (1 2)]

(eq x y)
⇒ nil

(equal x y)
⇒ t

(eq (elt x 1) (elt y 1))
⇒ t

;; Replacing an element of one sequence.
(aset x 0 ’quux)
x ⇒ [quux (1 2)]
y ⇒ [foo (1 2)]

;; Modifying the inside of a shared element.
(setcar (aref x 1) 69)
x ⇒ [quux (69 2)]
y ⇒ [foo (69 2)]

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements
of the array. Any element of an array may be accessed in constant time. In contrast, an
element of a list requires access time that is proportional to the position of the element in
the list.

Emacs defines four types of array, all one-dimensional: strings, vectors, bool-vectors and
char-tables. A vector is a general array; its elements can be any Lisp objects. A string is
a specialized array; its elements must be characters. Each type of array has its own read
syntax. See Section 2.3.8 [String Type], page 18, and Section 2.3.9 [Vector Type], page 20.

All four kinds of array share these characteristics:
• The first element of an array has index zero, the second element has index 1, and so on.

This is called zero-origin indexing. For example, an array of four elements has indices
0, 1, 2, and 3.

• The length of the array is fixed once you create it; you cannot change the length of an
existing array.

• The array is a constant, for evaluation—in other words, it evaluates to itself.
• The elements of an array may be referenced or changed with the functions aref and

aset, respectively (see Section 6.3 [Array Functions], page 86).

When you create an array, other than a char-table, you must specify its length. You can-
not specify the length of a char-table, because that is determined by the range of character
codes.

In principle, if you want an array of text characters, you could use either a string or a
vector. In practice, we always choose strings for such applications, for four reasons:
• They occupy one-fourth the space of a vector of the same elements.

86 GNU Emacs Lisp Reference Manual

• Strings are printed in a way that shows the contents more clearly as text.
• Strings can hold text properties. See Section 32.19 [Text Properties], page 562.
• Many of the specialized editing and I/O facilities of Emacs accept only strings. For

example, you cannot insert a vector of characters into a buffer the way you can insert
a string. See Chapter 4 [Strings and Characters], page 49.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector
may be necessary, because many keyboard input characters are outside the range that will
fit in a string. See Section 21.7.1 [Key Sequence Input], page 309.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept all types of arrays.

Functionarrayp object
This function returns t if object is an array (i.e., a vector, a string, a bool-vector or
a char-table).

(arrayp [a])
⇒ t

(arrayp "asdf")
⇒ t

(arrayp (syntax-table)) ;; A char-table.
⇒ t

Functionaref array index
This function returns the indexth element of array. The first element is at index zero.

(setq primes [2 3 5 7 11 13])
⇒ [2 3 5 7 11 13]

(aref primes 4)
⇒ 11

(aref "abcdefg" 1)
⇒ 98 ; ‘b’ is ascii code 98.

See also the function elt, in Section 6.1 [Sequence Functions], page 83.

Functionaset array index object
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
⇒ [foo bar baz]

(aset w 0 ’fu)
⇒ fu

w
⇒ [fu bar baz]

(setq x "asdfasfd")
⇒ "asdfasfd"

(aset x 3 ?Z)
⇒ 90

x
⇒ "asdZasfd"

Chapter 6: Sequences, Arrays, and Vectors 87

If array is a string and object is not a character, a wrong-type-argument error results.
The function converts a unibyte string to multibyte if necessary to insert a character.

Functionfillarray array object
This function fills the array array with object, so that each element of array is object.
It returns array.

(setq a [a b c d e f g])
⇒ [a b c d e f g]

(fillarray a 0)
⇒ [0 0 0 0 0 0 0]

a
⇒ [0 0 0 0 0 0 0]

(setq s "When in the course")
⇒ "When in the course"

(fillarray s ?-)
⇒ "------------------"

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects
known to be arrays. See Section 6.1 [Sequence Functions], page 83.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements
can be accessed in constant time. A vector is a general-purpose array of specified length;
its elements can be any Lisp objects. (By contrast, a string can hold only characters as
elements.) Vectors in Emacs are used for obarrays (vectors of symbols), and as part of
keymaps (vectors of commands). They are also used internally as part of the representation
of a byte-compiled function; if you print such a function, you will see a vector in it.

In Emacs Lisp, the indices of the elements of a vector start from zero and count up from
there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]. You can write vectors in the
same way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result
of evaluating it is the same vector. This does not evaluate or even examine the elements of
the vector. See Section 9.1.1 [Self-Evaluating Forms], page 108.

Here are examples illustrating these principles:

(setq avector [1 two ’(three) "four" [five]])
⇒ [1 two (quote (three)) "four" [five]]

(eval avector)
⇒ [1 two (quote (three)) "four" [five]]

(eq avector (eval avector))
⇒ t

88 GNU Emacs Lisp Reference Manual

6.5 Functions for Vectors

Here are some functions that relate to vectors:

Functionvectorp object
This function returns t if object is a vector.

(vectorp [a])
⇒ t

(vectorp "asdf")
⇒ nil

Functionvector &rest objects
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
⇒ [foo 23 [bar baz] "rats"]

(vector)
⇒ []

Functionmake-vector length object
This function returns a new vector consisting of length elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))
⇒ [Z Z Z Z Z Z Z Z Z]

Functionvconcat &rest sequences
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be any kind of arrays, including lists, vectors, or strings.
If no sequences are given, an empty vector is returned.
The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat ’(A B C) ’(D E F)))
⇒ [A B C D E F]

(eq a (vconcat a))
⇒ nil

(vconcat)
⇒ []

(vconcat [A B C] "aa" ’(foo (6 7)))
⇒ [A B C 97 97 foo (6 7)]

The vconcat function also allows byte-code function objects as arguments. This is a
special feature to make it easy to access the entire contents of a byte-code function
object. See Section 16.6 [Byte-Code Objects], page 210.
The vconcat function also allows integers as arguments. It converts them to strings
of digits, making up the decimal print representation of the integer, and then uses the
strings instead of the original integers. Don’t use this feature; we plan to eliminate it.
If you already use this feature, change your programs now! The proper way to convert
an integer to a decimal number in this way is with format (see Section 4.7 [Formatting
Strings], page 56) or number-to-string (see Section 4.6 [String Conversion], page 55).

Chapter 6: Sequences, Arrays, and Vectors 89

For other concatenation functions, see mapconcat in Section 12.6 [Mapping Func-
tions], page 163, concat in Section 4.3 [Creating Strings], page 50, and append in
Section 5.5 [Building Lists], page 68.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists], page 68):

(setq avector [1 two (quote (three)) "four" [five]])
⇒ [1 two (quote (three)) "four" [five]]

(append avector nil)
⇒ (1 two (quote (three)) "four" [five])

6.6 Char-Tables

A char-table is much like a vector, except that it is indexed by character codes. Any valid
character code, without modifiers, can be used as an index in a char-table. You can access
a char-table’s elements with aref and aset, as with any array. In addition, a char-table
can have extra slots to hold additional data not associated with particular character codes.
Char-tables are constants when evaluated.

Each char-table has a subtype which is a symbol. The subtype has two purposes: to
distinguish char-tables meant for different uses, and to control the number of extra slots.
For example, display tables are char-tables with display-table as the subtype, and syntax
tables are char-tables with syntax-table as the subtype. A valid subtype must have a
char-table-extra-slots property which is an integer between 0 and 10. This integer
specifies the number of extra slots in the char-table.

A char-table can have a parent, which is another char-table. If it does, then whenever
the char-table specifies nil for a particular character c, it inherits the value specified in the
parent. In other words, (aref char-table c) returns the value from the parent of char-table
if char-table itself specifies nil.

A char-table can also have a default value. If so, then (aref char-table c) returns the
default value whenever the char-table does not specify any other non-nil value.

Functionmake-char-table subtype &optional init
Return a newly created char-table, with subtype subtype. Each element is initialized
to init, which defaults to nil. You cannot alter the subtype of a char-table after the
char-table is created.
There is no argument to specify the length of the char-table, because all char-tables
have room for any valid character code as an index.

Functionchar-table-p object
This function returns t if object is a char-table, otherwise nil.

Functionchar-table-subtype char-table
This function returns the subtype symbol of char-table.

Functionset-char-table-default char-table new-default
This function sets the default value of char-table to new-default.
There is no special function to access the default value of a char-table. To do that,
use (char-table-range char-table nil).

90 GNU Emacs Lisp Reference Manual

Functionchar-table-parent char-table
This function returns the parent of char-table. The parent is always either nil or
another char-table.

Functionset-char-table-parent char-table new-parent
This function sets the parent of char-table to new-parent.

Functionchar-table-extra-slot char-table n
This function returns the contents of extra slot n of char-table. The number of extra
slots in a char-table is determined by its subtype.

Functionset-char-table-extra-slot char-table n value
This function stores value in extra slot n of char-table.

A char-table can specify an element value for a single character code; it can also specify
a value for an entire character set.

Functionchar-table-range char-table range
This returns the value specified in char-table for a range of characters range. Here
are the possibilities for range:

nil Refers to the default value.

char Refers to the element for character char (supposing char is a valid char-
acter code).

charset Refers to the value specified for the whole character set charset (see Sec-
tion 33.5 [Character Sets], page 586).

generic-char
A generic character stands for a character set; specifying the generic
character as argument is equivalent to specifying the character set name.
See Section 33.7 [Splitting Characters], page 588, for a description of
generic characters.

Functionset-char-table-range char-table range value
This function sets the value in char-table for a range of characters range. Here are
the possibilities for range:

nil Refers to the default value.

t Refers to the whole range of character codes.

char Refers to the element for character char (supposing char is a valid char-
acter code).

charset Refers to the value specified for the whole character set charset (see Sec-
tion 33.5 [Character Sets], page 586).

generic-char
A generic character stands for a character set; specifying the generic
character as argument is equivalent to specifying the character set name.
See Section 33.7 [Splitting Characters], page 588, for a description of
generic characters.

Chapter 6: Sequences, Arrays, and Vectors 91

Functionmap-char-table function char-table
This function calls function for each element of char-table. function is called with
two arguments, a key and a value. The key is a possible range argument for char-
table-range—either a valid character or a generic character—and the value is (char-
table-range char-table key).
Overall, the key-value pairs passed to function describe all the values stored in char-
table.
The return value is always nil; to make this function useful, function should have
side effects. For example, here is how to examine each element of the syntax table:

(let (accumulator)
(map-char-table
#’(lambda (key value)

(setq accumulator
(cons (list key value) accumulator)))

(syntax-table))
accumulator)

⇒
((475008 nil) (474880 nil) (474752 nil) (474624 nil)
... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))

6.7 Bool-vectors

A bool-vector is much like a vector, except that it stores only the values t and nil.
If you try to store any non-nil value into an element of the bool-vector, the effect is to
store t there. As with all arrays, bool-vector indices start from 0, and the length cannot be
changed once the bool-vector is created. Bool-vectors are constants when evaluated.

There are two special functions for working with bool-vectors; aside from that, you
manipulate them with same functions used for other kinds of arrays.

Functionmake-bool-vector length initial
Return a new bool-vector of length elements, each one initialized to initial.

Functionbool-vector-p object
This returns t if object is a bool-vector, and nil otherwise.

Here is an example of creating, examining, and updating a bool-vector. Note that the
printed form represents up to 8 boolean values as a single character.

(setq bv (make-bool-vector 5 t))
⇒ #&5"^_"

(aref bv 1)
⇒ t

(aset bv 3 nil)
⇒ nil

bv
⇒ #&5"^W"

These results make sense because the binary codes for control- and control-W are 11111
and 10111, respectively.

92 GNU Emacs Lisp Reference Manual

Chapter 7: Hash Tables 93

7 Hash Tables

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps
keys to corresponding values. It differs from an alist in these ways:

• Lookup in a hash table is extremely fast for large tables—in fact, the time required
is essentially independent of how many elements are stored in the table. For smaller
tables (a few tens of elements) alists may still be faster because hash tables have a
more-or-less constant overhead.

• The correspondences in a hash table are in no particular order.

• There is no way to share structure between two hash tables, the way two alists can
share a common tail.

Emacs Lisp (starting with Emacs 21) provides a general-purpose hash table data type,
along with a series of functions for operating on them. Hash tables have no read syntax,
and print in hash notation, like this:

(make-hash-table)
⇒ #<hash-table ’eql nil 0/65 0x83af980>

(The term “hash notation” refers to the initial ‘#’ character—see Section 2.1 [Printed Rep-
resentation], page 9—and has nothing to do with the term “hash table.”)

Obarrays are also a kind of hash table, but they are a different type of object and are
used only for recording interned symbols (see Section 8.3 [Creating Symbols], page 101).

7.1 Creating Hash Tables

The principal function for creating a hash table is make-hash-table.

Functionmake-hash-table &rest keyword-args
This function creates a new hash table according to the specified arguments. The
arguments should consist of alternating keywords (particular symbols recognized spe-
cially) and values corresponding to them.

Several keywords make sense in make-hash-table, but the only two that you really
need to know about are :test and :weakness.

:test test This specifies the method of key lookup for this hash table. The default
is eql; eq and equal are other alternatives:

eql Keys which are numbers are “the same” if they are equal in
value; otherwise, two distinct objects are never “the same”.

eq Any two distinct Lisp objects are “different” as keys.

equal Two Lisp objects are “the same”, as keys, if they are equal
according to equal.

You can use define-hash-table-test (see Section 7.3 [Defining Hash],
page 95) to define additional possibilities for test.

94 GNU Emacs Lisp Reference Manual

:weakness weak
The weakness of a hash table specifies whether the presence of a key or
value in the hash table preserves it from garbage collection.

The value, weak, must be one of nil, key, value, key-or-value, key-
and-value, or t which is an alias for key-and-value. If weak is key then
the hash table does not prevent its keys from being collected as garbage
(if they are not referenced anywhere else); if a particular key does get
collected, the corresponding association is removed from the hash table.

If weak is value, then the hash table does not prevent values from being
collected as garbage (if they are not referenced anywhere else); if a par-
ticular value does get collected, the corresponding association is removed
from the hash table.

If weak is key-or-value or t, the hash table does not protect either keys
or values from garbage collection; if either one is collected as garbage, the
association is removed.

If weak is key-and-value, associations are removed from the hash table
when both their key and value would be collected as garbage, again not
considering references to the key and value from weak hash tables.

The default for weak is nil, so that all keys and values referenced in the
hash table are preserved from garbage collection. If weak is t, neither
keys nor values are protected (that is, both are weak).

:size size This specifies a hint for how many associations you plan to store in the
hash table. If you know the approximate number, you can make things
a little more efficient by specifying it this way. If you specify too small
a size, the hash table will grow automatically when necessary, but doing
that takes some extra time.

The default size is 65.

:rehash-size rehash-size
When you add an association to a hash table and the table is “full,” it
grows automatically. This value specifies how to make the hash table
larger, at that time.

If rehash-size is an integer, it should be positive, and the hash table grows
by adding that much to the nominal size. If rehash-size is a floating point
number, it had better be greater than 1, and the hash table grows by
multiplying the old size by that number.

The default value is 1.5.

:rehash-threshold threshold
This specifies the criterion for when the hash table is “full.” The value,
threshold, should be a positive floating point number, no greater than 1.
The hash table is “full” whenever the actual number of entries exceeds
this fraction of the nominal size. The default for threshold is 0.8.

Chapter 7: Hash Tables 95

Functionmakehash &optional test
This is equivalent to make-hash-table, but with a different style argument list. The
argument test specifies the method of key lookup.
If you want to specify other parameters, you should use make-hash-table.

7.2 Hash Table Access

This section describes the functions for accessing and storing associations in a hash table.

Functiongethash key table &optional default
This function looks up key in table, and returns its associated value—or default, if
key has no association in table.

Functionputhash key value table
This function enters an association for key in table, with value value. If key already
has an association in table, value replaces the old associated value.

Functionremhash key table
This function removes the association for key from table, if there is one. If key has
no association, remhash does nothing.

Functionclrhash table
This function removes all the associations from hash table table, so that it becomes
empty. This is also called clearing the hash table.

Functionmaphash function table
This function calls function once for each of the associations in table. The function
function should accept two arguments—a key listed in table, and its associated value.

7.3 Defining Hash Comparisons

You can define new methods of key lookup by means of define-hash-table-test. In
order to use this feature, you need to understand how hash tables work, and what a hash
code means.

You can think of a hash table conceptually as a large array of many slots, each capable
of holding one association. To look up a key, gethash first computes an integer, the hash
code, from the key. It reduces this integer modulo the length of the array, to produce an
index in the array. Then it looks in that slot, and if necessary in other nearby slots, to see
if it has found the key being sought.

Thus, to define a new method of key lookup, you need to specify both a function to
compute the hash code from a key, and a function to compare two keys directly.

96 GNU Emacs Lisp Reference Manual

Functiondefine-hash-table-test name test-fn hash-fn
This function defines a new hash table test, named name.

After defining name in this way, you can use it as the test argument in make-hash-
table. When you do that, the hash table will use test-fn to compare key values, and
hash-fn to compute a “hash code” from a key value.

The function test-fn should accept two arguments, two keys, and return non-nil if
they are considered “the same.”

The function hash-fn should accept one argument, a key, and return an integer that
is the “hash code” of that key. For good results, the function should use the whole
range of integer values for hash codes, including negative integers.

The specified functions are stored in the property list of name under the property
hash-table-test; the property value’s form is (test-fn hash-fn).

Functionsxhash obj
This function returns a hash code for Lisp object obj. This is an integer which reflects
the contents of obj and the other Lisp objects it points to.

If two objects obj1 and obj2 are equal, then (sxhash obj1) and (sxhash obj2) are
the same integer.

If the two objects are not equal, the values returned by sxhash are usually different,
but not always; but once in a rare while, by luck, you will encounter two distinct-
looking objects that give the same result from sxhash.

This example creates a hash table whose keys are strings that are compared case-
insensitively.

(defun case-fold-string= (a b)
(compare-strings a nil nil b nil nil t))

(defun case-fold-string-hash (a)
(sxhash (upcase a)))

(define-hash-table-test ’case-fold ’case-fold-string=
’case-fold-string-hash))

(make-hash-table :test ’case-fold)

Here is how you could define a hash table test equivalent to the predefined test value
equal. The keys can be any Lisp object, and equal-looking objects are considered the same
key.

(define-hash-table-test ’contents-hash ’equal ’sxhash)

(make-hash-table :test ’contents-hash)

Chapter 7: Hash Tables 97

7.4 Other Hash Table Functions

Here are some other functions for working with hash tables.

Functionhash-table-p table
This returns non-nil if table is a hash table object.

Functioncopy-hash-table table
This function creates and returns a copy of table. Only the table itself is copied—the
keys and values are shared.

Functionhash-table-count table
This function returns the actual number of entries in table.

Functionhash-table-test table
This returns the test value that was given when table was created, to specify how
to hash and compare keys. See make-hash-table (see Section 7.1 [Creating Hash],
page 93).

Functionhash-table-weakness table
This function returns the weak value that was specified for hash table table.

Functionhash-table-rehash-size table
This returns the rehash size of table.

Functionhash-table-rehash-threshold table
This returns the rehash threshold of table.

Functionhash-table-size table
This returns the current nominal size of table.

98 GNU Emacs Lisp Reference Manual

Chapter 8: Symbols 99

8 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their com-
ponents, their property lists, and how they are created and interned. Separate chapters
describe the use of symbols as variables and as function names; see Chapter 11 [Variables],
page 133, and Chapter 12 [Functions], page 155. For the precise read syntax for symbols,
see Section 2.3.4 [Symbol Type], page 13.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

Functionsymbolp object
This function returns t if object is a symbol, nil otherwise.

8.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and
printing. See symbol-name in Section 8.3 [Creating Symbols], page 101.

Value The value cell holds the current value of the symbol as a variable. When a
symbol is used as a form, the value of the form is the contents of the symbol’s
value cell. See symbol-value in Section 11.7 [Accessing Variables], page 141.

Function The function cell holds the function definition of the symbol. When a symbol
is used as a function, its function definition is used in its place. This cell is
also used to make a symbol stand for a keymap or a keyboard macro, for editor
command execution. Because each symbol has separate value and function cells,
variables names and function names do not conflict. See symbol-function in
Section 12.8 [Function Cells], page 166.

Property list
The property list cell holds the property list of the symbol. See symbol-plist
in Section 8.4 [Property Lists], page 104.

The print name cell always holds a string, and cannot be changed. The other three cells
can be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols
are represented textually by their names, it is important not to have two symbols with the
same name. The Lisp reader ensures this: every time it reads a symbol, it looks for an
existing symbol with the specified name before it creates a new one. (In GNU Emacs Lisp,
this lookup uses a hashing algorithm and an obarray; see Section 8.3 [Creating Symbols],
page 101.)

The value cell holds the symbol’s value as a variable (see Chapter 11 [Variables],
page 133). That is what you get if you evaluate the symbol as a Lisp expression (see
Chapter 9 [Evaluation], page 107). Any Lisp object is a legitimate value. Certain symbols
have values that cannot be changed; these include nil and t, and any symbol whose name
starts with ‘:’ (those are called keywords). See Section 11.2 [Constant Variables], page 133.

100 GNU Emacs Lisp Reference Manual

We often refer to “the function foo” when we really mean the function stored in the
function cell of the symbol foo. We make the distinction explicit only when necessary.
In normal usage, the function cell usually contains a function (see Chapter 12 [Functions],
page 155) or a macro (see Chapter 13 [Macros], page 171), as that is what the Lisp inter-
preter expects to see there (see Chapter 9 [Evaluation], page 107). Keyboard macros (see
Section 21.15 [Keyboard Macros], page 322), keymaps (see Chapter 22 [Keymaps], page 325)
and autoload objects (see Section 9.1.8 [Autoloading], page 112) are also sometimes stored
in the function cells of symbols.

The property list cell normally should hold a correctly formatted property list (see
Section 8.4 [Property Lists], page 104), as a number of functions expect to see a property
list there.

The function cell or the value cell may be void, which means that the cell does not
reference any object. (This is not the same thing as holding the symbol void, nor the same
as holding the symbol nil.) Examining a function or value cell that is void results in an
error, such as ‘Symbol’s value as variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function
return the contents of the four cells of a symbol. Here as an example we show the contents
of the four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)
⇒ "buffer-file-name"

(symbol-value ’buffer-file-name)
⇒ "/gnu/elisp/symbols.texi"

(symbol-plist ’buffer-file-name)
⇒ (variable-documentation 29529)

(symbol-function ’buffer-file-name)
⇒ #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the
current buffer, the value cell contents we see are the name of the source file of this chapter of
the Emacs Lisp Manual. The property list cell contains the list (variable-documentation
29529) which tells the documentation functions where to find the documentation string
for the variable buffer-file-name in the ‘DOC-version’ file. (29529 is the offset from
the beginning of the ‘DOC-version’ file to where that documentation string begins—see
Section 24.1 [Documentation Basics], page 387.) The function cell contains the function for
returning the name of the file. buffer-file-name names a primitive function, which has
no read syntax and prints in hash notation (see Section 2.3.15 [Primitive Function Type],
page 22). A symbol naming a function written in Lisp would have a lambda expression (or
a byte-code object) in this cell.

8.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain
symbol in a particular way. In Emacs Lisp, you can define a symbol as a variable, or define
it as a function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a

Chapter 8: Symbols 101

symbol as a variable, you can supply an initial value for the variable, plus documentation
for the variable.

defvar and defconst are special forms that define a symbol as a global variable. They
are documented in detail in Section 11.5 [Defining Variables], page 137. For defining user
option variables that can be customized, use defcustom (see Chapter 14 [Customization],
page 179).

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of
the symbol. (The term “function definition”, meaning the contents of the function cell, is
derived from the idea that defun gives the symbol its definition as a function.) defsubst
and defalias are two other ways of defining a function. See Chapter 12 [Functions],
page 155.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the
function cell of the symbol. Note that a given symbol can be a macro or a function, but
not both at once, because both macro and function definitions are kept in the function cell,
and that cell can hold only one Lisp object at any given time. See Chapter 13 [Macros],
page 171.

In Emacs Lisp, a definition is not required in order to use a symbol as a variable or
function. Thus, you can make a symbol a global variable with setq, whether you define
it first or not. The real purpose of definitions is to guide programmers and programming
tools. They inform programmers who read the code that certain symbols are intended to be
used as variables, or as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’
recognize definitions, and add appropriate information to tag tables and the ‘DOC-version’
file. See Section 24.2 [Accessing Documentation], page 388.

8.3 Creating and Interning Symbols

To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp
reads them. Lisp must ensure that it finds the same symbol every time it reads the same
set of characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then
it “hashes” those characters to find an index in a table called an obarray. Hashing is an
efficient method of looking something up. For example, instead of searching a telephone
book cover to cover when looking up Jan Jones, you start with the J’s and go from there.
That is a simple version of hashing. Each element of the obarray is a bucket which holds
all the symbols with a given hash code; to look for a given name, it is sufficient to look
through all the symbols in the bucket for that name’s hash code. (The same idea is used for
general Emacs hash tables, but they are a different data type; see Chapter 7 [Hash Tables],
page 93.)

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to
the obarray. Finding or adding a symbol with a certain name is called interning it, and the
symbol is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

102 GNU Emacs Lisp Reference Manual

Interning usually happens automatically in the reader, but sometimes other programs
need to do it. For example, after the M-x command obtains the command name as a string
using the minibuffer, it then interns the string, to get the interned symbol with that name.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the
value of a variable.

Creating an uninterned symbol is useful in generating Lisp code, because an uninterned
symbol used as a variable in the code you generate cannot clash with any variables used in
other Lisp programs.

In Emacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, so you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend
to result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern
can enter a symbol in an obarray properly.

Common Lisp note: In Common Lisp, a single symbol may be interned in
several obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A
wrong-type-argument error is signaled if the name is not a string, or if the obarray is not
a vector.

Functionsymbol-name symbol
This function returns the string that is symbol’s name. For example:

(symbol-name ’foo)
⇒ "foo"

Warning: Changing the string by substituting characters does change the name of
the symbol, but fails to update the obarray, so don’t do it!

Functionmake-symbol name
This function returns a newly-allocated, uninterned symbol whose name is name
(which must be a string). Its value and function definition are void, and its property
list is nil. In the example below, the value of sym is not eq to foo because it is a
distinct uninterned symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
⇒ foo

(eq sym ’foo)
⇒ nil

Chapter 8: Symbols 103

Functionintern name &optional obarray
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray obarray, intern creates a new one, adds it to the obarray, and
returns it. If obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))
⇒ foo

(eq sym ’foo)
⇒ t

(setq sym1 (intern "foo" other-obarray))
⇒ foo

(eq sym1 ’foo)
⇒ nil

Common Lisp note: In Common Lisp, you can intern an existing symbol in an
obarray. In Emacs Lisp, you cannot do this, because the argument to intern
must be a string, not a symbol.

Functionintern-soft name &optional obarray
This function returns the symbol in obarray whose name is name, or nil if obarray
has no symbol with that name. Therefore, you can use intern-soft to test whether
a symbol with a given name is already interned. If obarray is omitted, the value of
the global variable obarray is used.
The argument name may also be a symbol; in that case, the function returns name
if name is interned in the specified obarray, and otherwise nil.

(intern-soft "frazzle") ; No such symbol exists.
⇒ nil

(make-symbol "frazzle") ; Create an uninterned one.
⇒ frazzle

(intern-soft "frazzle") ; That one cannot be found.
⇒ nil

(setq sym (intern "frazzle")) ; Create an interned one.
⇒ frazzle

(intern-soft "frazzle") ; That one can be found!
⇒ frazzle

(eq sym ’frazzle) ; And it is the same one.
⇒ t

Variableobarray
This variable is the standard obarray for use by intern and read.

Functionmapatoms function &optional obarray
This function calls function once with each symbol in the obarray obarray. Then it
returns nil. If obarray is omitted, it defaults to the value of obarray, the standard
obarray for ordinary symbols.

(setq count 0)
⇒ 0

104 GNU Emacs Lisp Reference Manual

(defun count-syms (s)
(setq count (1+ count)))

⇒ count-syms
(mapatoms ’count-syms)

⇒ nil
count

⇒ 1871

See documentation in Section 24.2 [Accessing Documentation], page 388, for another
example using mapatoms.

Functionunintern symbol &optional obarray
This function deletes symbol from the obarray obarray. If symbol is not actually in
the obarray, unintern does nothing. If obarray is nil, the current obarray is used.
If you provide a string instead of a symbol as symbol, it stands for a symbol name.
Then unintern deletes the symbol (if any) in the obarray which has that name. If
there is no such symbol, unintern does nothing.
If unintern does delete a symbol, it returns t. Otherwise it returns nil.

8.4 Property Lists

A property list (plist for short) is a list of paired elements stored in the property list
cell of a symbol. Each of the pairs associates a property name (usually a symbol) with a
property or value. Property lists are generally used to record information about a symbol,
such as its documentation as a variable, the name of the file where it was defined, or perhaps
even the grammatical class of the symbol (representing a word) in a language-understanding
system.

Character positions in a string or buffer can also have property lists. See Section 32.19
[Text Properties], page 562.

The property names and values in a property list can be any Lisp objects, but the names
are usually symbols. Property list functions compare the property names using eq. Here is
an example of a property list, found on the symbol progn when the compiler is loaded:

(lisp-indent-function 0 byte-compile byte-compile-progn)

Here lisp-indent-function and byte-compile are property names, and the other two
elements are the corresponding values.

8.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists], page 79) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not
significant since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If your program keeps all of its associations in one association
list, it will typically need to search that entire list each time it checks for an association.
This could be slow. By contrast, if you keep the same information in the property lists
of the function names or variables themselves, each search will scan only the length of

Chapter 8: Symbols 105

one property list, which is usually short. This is why the documentation for a variable is
recorded in a property named variable-documentation. The byte compiler likewise uses
properties to record those functions needing special treatment.

However, association lists have their own advantages. Depending on your application,
it may be faster to add an association to the front of an association list than to update
a property. All properties for a symbol are stored in the same property list, so there is
a possibility of a conflict between different uses of a property name. (For this reason, it
is a good idea to choose property names that are probably unique, such as by beginning
the property name with the program’s usual name-prefix for variables and functions.) An
association list may be used like a stack where associations are pushed on the front of the
list and later discarded; this is not possible with a property list.

8.4.2 Property List Functions for Symbols

Functionsymbol-plist symbol
This function returns the property list of symbol.

Functionsetplist symbol plist
This function sets symbol’s property list to plist. Normally, plist should be a well-
formed property list, but this is not enforced.

(setplist ’foo ’(a 1 b (2 3) c nil))
⇒ (a 1 b (2 3) c nil)

(symbol-plist ’foo)
⇒ (a 1 b (2 3) c nil)

For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 36 [Abbrevs], page 635).

Functionget symbol property
This function finds the value of the property named property in symbol’s property
list. If there is no such property, nil is returned. Thus, there is no distinction between
a value of nil and the absence of the property.
The name property is compared with the existing property names using eq, so any
object is a legitimate property.
See put for an example.

Functionput symbol property value
This function puts value onto symbol’s property list under the property name prop-
erty, replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)
⇒’transitive

(put ’fly ’noun ’(a buzzing little bug))
⇒ (a buzzing little bug)

(get ’fly ’verb)
⇒ transitive

(symbol-plist ’fly)
⇒ (verb transitive noun (a buzzing little bug))

106 GNU Emacs Lisp Reference Manual

8.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other
than symbols:

Functionplist-get plist property
This returns the value of the property property stored in the property list plist. For
example,

(plist-get ’(foo 4) ’foo)
⇒ 4

Functionplist-put plist property value
This stores value as the value of the property property in the property list plist.
It may modify plist destructively, or it may construct a new list structure without
altering the old. The function returns the modified property list, so you can store
that back in the place where you got plist. For example,

(setq my-plist ’(bar t foo 4))
⇒ (bar t foo 4)

(setq my-plist (plist-put my-plist ’foo 69))
⇒ (bar t foo 69)

(setq my-plist (plist-put my-plist ’quux ’(a)))
⇒ (bar t foo 69 quux (a))

You could define put in terms of plist-put as follows:
(defun put (symbol prop value)
(setplist symbol

(plist-put (symbol-plist symbol) prop value)))

Functionplist-member plist property
This returns non-nil if plist contains the given property. Unlike plist-get, this
allows you to distinguish between a missing property and a property with the value
nil. The value is actually the tail of plist whose car is property.

Chapter 9: Evaluation 107

9 Evaluation

The evaluation of expressions in Emacs Lisp is performed by the Lisp interpreter—a
program that receives a Lisp object as input and computes its value as an expression. How
it does this depends on the data type of the object, according to rules described in this
chapter. The interpreter runs automatically to evaluate portions of your program, but can
also be called explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The
fact that expressions are data objects and not merely text is one of the fundamental differ-
ences between Lisp-like languages and typical programming languages. Any object can be
evaluated, but in practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se
does not evaluate anything; it converts the printed representation of a Lisp object to the
object itself. It is up to the caller of read whether this object is a form to be evaluated, or
serves some entirely different purpose. See Section 19.3 [Input Functions], page 257.

Do not confuse evaluation with command key interpretation. The editor command
loop translates keyboard input into a command (an interactively callable function) using
the active keymaps, and then uses call-interactively to invoke the command. The
execution of the command itself involves evaluation if the command is written in Lisp, but
that is not a part of command key interpretation itself. See Chapter 21 [Command Loop],
page 287.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument
of the function call, and then evaluates each form in the function body. Consider evaluation
of the form (car x): the subform x must first be evaluated recursively, so that its value can
be passed as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 12
[Functions], page 155. The execution of the function may itself work by evaluating the
function definition; or the function may be a Lisp primitive implemented in C, or it may be
a byte-compiled function (see Chapter 16 [Byte Compilation], page 205).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.1 Whenever a form refers to a variable
without creating a new binding for it, the value of the variable’s binding in the current
environment is used. See Chapter 11 [Variables], page 133.

Evaluation of a form may create new environments for recursive evaluation by binding
variables (see Section 11.3 [Local Variables], page 134). These environments are temporary
and vanish by the time evaluation of the form is complete. The form may also make changes
that persist; these changes are called side effects. An example of a form that produces side
effects is (setq foo 1).

The details of what evaluation means for each kind of form are described below (see
Section 9.1 [Forms], page 108).

1 This definition of “environment” is specifically not intended to include all the data that can affect the
result of a program.

108 GNU Emacs Lisp Reference Manual

9.1 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How Emacs evaluates a
form depends on its data type. Emacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds, one
by one, starting with the “all other types” which are self-evaluating forms.

9.1.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms
evaluate to themselves: the result of evaluation is the same object that was evaluated.
Thus, the number 25 evaluates to 25, and the string "foo" evaluates to the string "foo".
Likewise, evaluation of a vector does not cause evaluation of the elements of the vector—it
returns the same vector with its contents unchanged.

’123 ; A number, shown without evaluation.
⇒ 123

123 ; Evaluated as usual—result is the same.
⇒ 123

(eval ’123) ; Evaluated “by hand”—result is the same.
⇒ 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
⇒ 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for
types that lack a read syntax, because there’s no way to write them textually. It is possible
to construct Lisp expressions containing these types by means of a Lisp program. Here is
an example:

;; Build an expression containing a buffer object.
(setq print-exp (list ’print (current-buffer)))

⇒ (print #<buffer eval.texi>)
;; Evaluate it.
(eval print-exp)

a #<buffer eval.texi>
⇒ #<buffer eval.texi>

9.1.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s
value, if it has one. If it has none (if its value cell is void), an error is signaled. For more
information on the use of variables, see Chapter 11 [Variables], page 133.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)
⇒ 123

(eval ’a)
⇒ 123

a
⇒ 123

Chapter 9: Evaluation 109

The symbols nil and t are treated specially, so that the value of nil is always nil, and
the value of t is always t; you cannot set or bind them to any other values. Thus, these two
symbols act like self-evaluating forms, even though eval treats them like any other symbol.
A symbol whose name starts with ‘:’ also self-evaluates in the same way; likewise, its value
ordinarily cannot be changed. See Section 11.2 [Constant Variables], page 133.

9.1.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form,
according to its first element. These three kinds of forms are evaluated in different ways,
described below. The remaining list elements constitute the arguments for the function,
macro, or special form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

9.1.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol.
See Section 12.3 [Function Names], page 159, for more information about using a symbol
as a name for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in
which case the subroutine symbol-function signals a void-function error. But if neither
of these things happens, we eventually obtain a non-symbol, which ought to be a function
or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of
these types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set
the function cell of a symbol and symbol-function to get the function cell contents (see
Section 12.8 [Function Cells], page 166). Specifically, we store the symbol car into the
function cell of first, and the symbol first into the function cell of erste.

;; Build this function cell linkage:
;; ------------- ----- ------- -------
;; | #<subr car> | <-- | car | <-- | first | <-- | erste |
;; ------------- ----- ------- -------

(symbol-function ’car)
⇒ #<subr car>

(fset ’first ’car)
⇒ car

(fset ’erste ’first)
⇒ first

110 GNU Emacs Lisp Reference Manual

(erste ’(1 2 3)) ; Call the function referenced by erste.
⇒ 1

By contrast, the following example calls a function without any symbol function indi-
rection, because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
’(1 2 3))

⇒ 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol func-
tion indirection explicitly.

Functionindirect-function function
This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function
is not a symbol, then it returns function itself.
Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)

(indirect-function (symbol-function function))
function))

9.1.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object
or primitive function object, then that list is a function call. For example, here is a call to
the function +:

(+ 1 x)

The first step in evaluating a function call is to evaluate the remaining elements of
the list from left to right. The results are the actual argument values, one value for each
list element. The next step is to call the function with this list of arguments, effectively
using the function apply (see Section 12.5 [Calling Functions], page 161). If the function
is written in Lisp, the arguments are used to bind the argument variables of the function
(see Section 12.2 [Lambda Expressions], page 156); then the forms in the function body are
evaluated in order, and the value of the last body form becomes the value of the function
call.

9.1.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro
call. When a macro call is evaluated, the elements of the rest of the list are not initially
evaluated. Instead, these elements themselves are used as the arguments of the macro. The
macro definition computes a replacement form, called the expansion of the macro, to be
evaluated in place of the original form. The expansion may be any sort of form: a self-
evaluating constant, a symbol, or a list. If the expansion is itself a macro call, this process
of expansion repeats until some other sort of form results.

Chapter 9: Evaluation 111

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the
macro expansion is not necessarily evaluated right away, or at all, because other programs
also expand macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro
expansion, but instead appear as part of the expansion, so they are computed when the
expansion is evaluated.

For example, given a macro defined as follows:
(defmacro cadr (x)
(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))

Note that the argument (assq ’handler list) appears in the expansion.
See Chapter 13 [Macros], page 171, for a complete description of Emacs Lisp macros.

9.1.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are
used without evaluation. Whether a particular argument is evaluated may depend on the
results of evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a
reference to where each is described.

and see Section 10.3 [Combining Conditions], page 120

catch see Section 10.5.1 [Catch and Throw], page 123

cond see Section 10.2 [Conditionals], page 118

condition-case
see Section 10.5.3.3 [Handling Errors], page 127

defconst see Section 11.5 [Defining Variables], page 137

defmacro see Section 13.4 [Defining Macros], page 173

defun see Section 12.4 [Defining Functions], page 160

defvar see Section 11.5 [Defining Variables], page 137

function see Section 12.7 [Anonymous Functions], page 164

if see Section 10.2 [Conditionals], page 118

interactive
see Section 21.3 [Interactive Call], page 292

let
let* see Section 11.3 [Local Variables], page 134

or see Section 10.3 [Combining Conditions], page 120

112 GNU Emacs Lisp Reference Manual

prog1
prog2
progn see Section 10.1 [Sequencing], page 117

quote see Section 9.2 [Quoting], page 113

save-current-buffer
see Section 27.2 [Current Buffer], page 439

save-excursion
see Section 30.3 [Excursions], page 518

save-restriction
see Section 30.4 [Narrowing], page 519

save-window-excursion
see Section 28.17 [Window Configurations], page 479

setq see Section 11.8 [Setting Variables], page 142

setq-default
see Section 11.10.2 [Creating Buffer-Local], page 148

track-mouse
see Section 29.13 [Mouse Tracking], page 498

unwind-protect
see Section 10.5 [Nonlocal Exits], page 123

while see Section 10.4 [Iteration], page 121

with-output-to-temp-buffer
see Section 38.8 [Temporary Displays], page 669

Common Lisp note: Here are some comparisons of special forms in GNU Emacs
Lisp and Common Lisp. setq, if, and catch are special forms in both Emacs
Lisp and Common Lisp. defun is a special form in Emacs Lisp, but a macro in
Common Lisp. save-excursion is a special form in Emacs Lisp, but doesn’t
exist in Common Lisp. throw is a special form in Common Lisp (because it
must be able to throw multiple values), but it is a function in Emacs Lisp (which
doesn’t have multiple values).

9.1.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition
has not yet been loaded into Emacs. It specifies which file contains the definition. When an
autoload object appears as a symbol’s function definition, calling that symbol as a function
automatically loads the specified file; then it calls the real definition loaded from that file.
See Section 15.4 [Autoload], page 197.

Chapter 9: Evaluation 113

9.2 Quoting

The special form quote returns its single argument, as written, without evaluating it.
This provides a way to include constant symbols and lists, which are not self-evaluating
objects, in a program. (It is not necessary to quote self-evaluating objects such as numbers,
strings, and vectors.)

Special Formquote object
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a
list whose first element is quote, and whose second element is the object. Thus, the read
syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))
⇒ (+ 1 2)

(quote foo)
⇒ foo

’foo
⇒ foo

’’foo
⇒ (quote foo)

’(quote foo)
⇒ (quote foo)

[’foo]
⇒ [(quote foo)]

Other quoting constructs include function (see Section 12.7 [Anonymous Functions],
page 164), which causes an anonymous lambda expression written in Lisp to be compiled,
and ‘‘’ (see Section 13.5 [Backquote], page 173), which is used to quote only part of a list,
while computing and substituting other parts.

9.3 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is
computed at run time, such as after reading a form from text being edited or getting one
from a property list. On these occasions, use the eval function.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation
(see Chapter 15 [Loading], page 193).

Note: it is generally cleaner and more flexible to store a function in a data structure,
and call it with funcall or apply, than to store an expression in the data structure and
evaluate it. Using functions provides the ability to pass information to them as arguments.

114 GNU Emacs Lisp Reference Manual

Functioneval form
This is the basic function evaluating an expression. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the
type of the object (see Section 9.1 [Forms], page 108).
Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval
function itself. Here is an example:

(setq foo ’bar)
⇒ bar

(setq bar ’baz)
⇒ baz

;; Here eval receives argument foo
(eval ’foo)

⇒ bar
;; Here eval receives argument bar, which is the value of foo
(eval foo)

⇒ baz

The number of currently active calls to eval is limited to max-lisp-eval-depth (see
below).

Commandeval-region start end &optional stream read-function
This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.
If stream is non-nil, the values that result from evaluating the expressions in the
region are printed using stream. See Section 19.4 [Output Streams], page 258.
If read-function is non-nil, it should be a function, which is used instead of read to
read expressions one by one. This function is called with one argument, the stream for
reading input. You can also use the variable load-read-function (see Section 15.1
[How Programs Do Loading], page 193) to specify this function, but it is more robust
to use the read-function argument.
eval-region always returns nil.

Commandeval-current-buffer &optional stream
This is like eval-region except that it operates on the whole buffer.

Variablemax-lisp-eval-depth
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-
eval-depth"). This limit, with the associated error when it is exceeded, is one way
that Lisp avoids infinite recursion on an ill-defined function.
The depth limit counts internal uses of eval, apply, and funcall, such as for calling
the functions mentioned in Lisp expressions, and recursive evaluation of function call
arguments and function body forms, as well as explicit calls in Lisp code.

Chapter 9: Evaluation 115

The default value of this variable is 300. If you set it to a value less than 100, Lisp
will reset it to 100 if the given value is reached. Entry to the Lisp debugger increases
the value, if there is little room left, to make sure the debugger itself has room to
execute.
max-specpdl-size provides another limit on nesting. See Section 11.3 [Local Vari-
ables], page 134.

Variablevalues
The value of this variable is a list of the values returned by all the expressions that were
read, evaluated, and printed from buffers (including the minibuffer) by the standard
Emacs commands which do this. The elements are ordered most recent first.

(setq x 1)
⇒ 1

(list ’A (1+ 2) auto-save-default)
⇒ (A 3 t)

values
⇒ ((A 3 t) 1 ...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;; Refer to the most recent evaluation result.
(nth 0 values)

⇒ (A 3 t)
;; That put a new element on,
;; so all elements move back one.
(nth 1 values)

⇒ (A 3 t)
;; This gets the element that was next-to-most-recent
;; before this example.
(nth 3 values)

⇒ 1

116 GNU Emacs Lisp Reference Manual

Chapter 10: Control Structures 117

10 Control Structures

A Lisp program consists of expressions or forms (see Section 9.1 [Forms], page 108).
We control the order of execution of these forms by enclosing them in control structures.
Control structures are special forms which control when, whether, or how many times to
execute the forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and
so on. This is what happens when you write several forms in succession in the body of a
function, or at top level in a file of Lisp code—the forms are executed in the order written.
We call this textual order. For example, if a function body consists of two forms a and b,
evaluation of the function evaluates first a and then b. The result of evaluating b becomes
the value of the function.

Explicit control structures make possible an order of execution other than sequential.

Emacs Lisp provides several kinds of control structure, including other varieties of se-
quencing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in
control structures are special forms since their subforms are not necessarily evaluated or not
evaluated sequentially. You can use macros to define your own control structure constructs
(see Chapter 13 [Macros], page 171).

10.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes
from one form to another. In some contexts, such as in a function body, this happens
automatically. Elsewhere you must use a control structure construct to do this: progn, the
simplest control construct of Lisp.

A progn special form looks like this:

(progn a b c ...)

and it says to execute the forms a, b, c, and so on, in that order. These forms are called
the body of the progn form. The value of the last form in the body becomes the value of
the entire progn. (progn) returns nil.

In the early days of Lisp, progn was the only way to execute two or more forms in
succession and use the value of the last of them. But programmers found they often needed
to use a progn in the body of a function, where (at that time) only one form was allowed.
So the body of a function was made into an “implicit progn”: several forms are allowed
just as in the body of an actual progn. Many other control structures likewise contain an
implicit progn. As a result, progn is not used as much as it was many years ago. It is
needed now most often inside an unwind-protect, and, or, or in the then-part of an if.

Special Formprogn forms. . .
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

118 GNU Emacs Lisp Reference Manual

(progn (print "The first form")
(print "The second form")
(print "The third form"))

a "The first form"
a "The second form"
a "The third form"

⇒ "The third form"

Two other control constructs likewise evaluate a series of forms but return a different
value:

Special Formprog1 form1 forms. . .
This special form evaluates form1 and all of the forms, in textual order, returning the
result of form1.

(prog1 (print "The first form")
(print "The second form")
(print "The third form"))

a "The first form"
a "The second form"
a "The third form"

⇒ "The first form"

Here is a way to remove the first element from a list in the variable x, then return
the value of that former element:

(prog1 (car x) (setq x (cdr x)))

Special Formprog2 form1 form2 forms. . .
This special form evaluates form1, form2, and all of the following forms, in textual
order, returning the result of form2.

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))

a "The first form"
a "The second form"
a "The third form"

⇒ "The second form"

10.2 Conditionals

Conditional control structures choose among alternatives. Emacs Lisp has four condi-
tional forms: if, which is much the same as in other languages; when and unless, which
are variants of if; and cond, which is a generalized case statement.

Special Formif condition then-form else-forms. . .
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 10.1
[Sequencing], page 117.)

Chapter 10: Control Structures 119

If condition has the value nil, and no else-forms are given, if returns nil.

if is a special form because the branch that is not selected is never evaluated—it
is ignored. Thus, in the example below, true is not printed because print is never
called.

(if nil
(print ’true)

’very-false)
⇒ very-false

Macrowhen condition then-forms. . .
This is a variant of if where there are no else-forms, and possibly several then-forms.
In particular,

(when condition a b c)

is entirely equivalent to

(if condition (progn a b c) nil)

Macrounless condition forms. . .
This is a variant of if where there is no then-form:

(unless condition a b c)

is entirely equivalent to

(if condition nil
a b c)

Special Formcond clause. . .
cond chooses among an arbitrary number of alternatives. Each clause in the cond
must be a list. The car of this list is the condition; the remaining elements, if any,
the body-forms. Thus, a clause looks like this:

(condition body-forms...)

cond tries the clauses in textual order, by evaluating the condition of each clause.
If the value of condition is non-nil, the clause “succeeds”; then cond evaluates its
body-forms, and the value of the last of body-forms becomes the value of the cond.
The remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.

A clause may also look like this:

(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value
of the cond form.

The following example has four clauses, which test for the cases where the value of x
is a number, string, buffer and symbol, respectively:

120 GNU Emacs Lisp Reference Manual

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause

((symbolp x) (symbol-value x)))

Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t
body-forms). The form t evaluates to t, which is never nil, so this clause never
fails, provided the cond gets to it at all.
For example,

(setq a 5)
(cond ((eq a ’hack) ’foo)

(t "default"))
⇒ "default"

This cond expression returns foo if the value of a is hack, and returns the string
"default" otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b c)
≡
(cond (a b) (t c))

10.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually
as kinds of multiple conditional constructs.

Functionnot condition
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the
name null if you are testing for an empty list.

Special Formand conditions. . .
The and special form tests whether all the conditions are true. It works by evaluating
the conditions one by one in the order written.
If any of the conditions evaluates to nil, then the result of the and must be nil
regardless of the remaining conditions; so and returns nil right away, ignoring the
remaining conditions.
If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form. Just (and), with no conditions, returns t, appropriate because
all the conditions turned out non-nil. (Think about it; which one did not?)
Here is an example. The first condition returns the integer 1, which is not nil.
Similarly, the second condition returns the integer 2, which is not nil. The third
condition is nil, so the remaining condition is never evaluated.

Chapter 10: Control Structures 121

(and (print 1) (print 2) nil (print 3))
a 1
a 2

⇒ nil

Here is a more realistic example of using and:
(if (and (consp foo) (eq (car foo) ’x))

(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an
error.
and can be expressed in terms of either if or cond. For example:

(and arg1 arg2 arg3)
≡
(if arg1 (if arg2 arg3))
≡
(cond (arg1 (cond (arg2 arg3))))

Special Formor conditions. . .
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.
If any of the conditions evaluates to a non-nil value, then the result of the or must
be non-nil; so or returns right away, ignoring the remaining conditions. The value
it returns is the non-nil value of the condition just evaluated.
If all the conditions turn out nil, then the or expression returns nil. Just (or),
with no conditions, returns nil, appropriate because all the conditions turned out
nil. (Think about it; which one did not?)
For example, this expression tests whether x is either nil or the integer zero:

(or (eq x nil) (eq x 0))

Like the and construct, or can be written in terms of cond. For example:
(or arg1 arg2 arg3)
≡
(cond (arg1)

(arg2)
(arg3))

You could almost write or in terms of if, but not quite:
(if arg1 arg1
(if arg2 arg2

arg3))

This is not completely equivalent because it can evaluate arg1 or arg2 twice. By
contrast, (or arg1 arg2 arg3) never evaluates any argument more than once.

10.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want
to repeat some computation once for each element of a list, or once for each integer from 0
to n. You can do this in Emacs Lisp with the special form while:

122 GNU Emacs Lisp Reference Manual

Special Formwhile condition forms. . .
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.
There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 10.5 [Nonlocal Exits], page 123).
The value of a while form is always nil.

(setq num 0)
⇒ 0

(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))

a Iteration 0.
a Iteration 1.
a Iteration 2.
a Iteration 3.
⇒ nil

To write a “repeat...until” loop, which will execute something on each iteration and
then do the end-test, put the body followed by the end-test in a progn as the first
argument of while, as shown here:

(while (progn
(forward-line 1)
(not (looking-at "^$"))))

This moves forward one line and continues moving by lines until it reaches an empty
line. It is peculiar in that the while has no body, just the end test (which also does
the real work of moving point).

The dolist and dotimes macros provide convenient ways to write two common kinds
of loops.

Macrodolist (var list [result]) body. . .
This construct executes body once for each element of list, using the variable var
to hold the current element. Then it returns the value of evaluating result, or nil
if result is omitted. For example, here is how you could use dolist to define the
reverse function:

(defun reverse (list)
(let (value)
(dolist (elt list value)
(setq value (cons elt value)))))

Macrodotimes (var count [result]) body. . .
This construct executes body once for each integer from 0 (inclusive) to count (ex-
clusive), using the variable var to hold the integer for the current iteration. Then it
returns the value of evaluating result, or nil if result is omitted. Here is an example
of using dotimes do something 100 times:

Chapter 10: Control Structures 123

(dotimes (i 100)
(insert "I will not obey absurd orders\n"))

10.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs
being exited.

10.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The
function throw is the exception to this rule of normal program execution: it performs a
nonlocal exit on request. (There are other exceptions, but they are for error handling only.)
throw is used inside a catch, and jumps back to that catch. For example:

(defun foo-outer ()
(catch ’foo
(foo-inner)))

(defun foo-inner ()
...
(if x

(throw ’foo t))
...)

The throw form, if executed, transfers control straight back to the corresponding catch,
which returns immediately. The code following the throw is not executed. The second
argument of throw is used as the return value of the catch.

The function throw finds the matching catch based on the first argument: it searches for
a catch whose first argument is eq to the one specified in the throw. If there is more than
one applicable catch, the innermost one takes precedence. Thus, in the above example, the
throw specifies foo, and the catch in foo-outer specifies the same symbol, so that catch
is the applicable one (assuming there is no other matching catch in between).

Executing throw exits all Lisp constructs up to the matching catch, including function
calls. When binding constructs such as let or function calls are exited in this way, the
bindings are unbound, just as they are when these constructs exit normally (see Section 11.3
[Local Variables], page 134). Likewise, throw restores the buffer and position saved by
save-excursion (see Section 30.3 [Excursions], page 518), and the narrowing status saved
by save-restriction and the window selection saved by save-window-excursion (see
Section 28.17 [Window Configurations], page 479). It also runs any cleanups established
with the unwind-protect special form when it exits that form (see Section 10.5.4 [Cleanups],
page 131).

The throw need not appear lexically within the catch that it jumps to. It can equally
well be called from another function called within the catch. As long as the throw takes
place chronologically after entry to the catch, and chronologically before exit from it, it

124 GNU Emacs Lisp Reference Manual

has access to that catch. This is why throw can be used in commands such as exit-
recursive-edit that throw back to the editor command loop (see Section 21.12 [Recursive
Editing], page 319).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and
go, for example. Emacs Lisp has only throw.

Special Formcatch tag body. . .
catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object except
nil. The argument tag is evaluated normally before the return point is established.
With the return point in effect, catch evaluates the forms of the body in textual
order. If the forms execute normally (without error or nonlocal exit) the value of the
last body form is returned from the catch.
If a throw is executed during the execution of body, specifying the same value tag,
the catch form exits immediately; the value it returns is whatever was specified as
the second argument of throw.

Functionthrow tag value
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,
the innermost one is used.
The argument value is used as the value to return from that catch.
If no return point is in effect with tag tag, then a no-catch error is signaled with
data (tag value).

10.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0
to 9:

(defun search-foo ()
(catch ’loop
(let ((i 0))
(while (< i 10)
(let ((j 0))
(while (< j 10)
(if (foo i j)

(throw ’loop (list i j)))
(setq j (1+ j))))

(setq i (1+ i))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

Chapter 10: Control Structures 125

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))

⇒ catch2

(catch ’hack
(print (catch2 ’hack))
’no)

a yes
⇒ no

Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value
is printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:
(catch ’hack
(print (catch2 ’quux))
’no)

⇒ yes

We still have two return points, but this time only the outer one has the tag hack; the inner
one has the tag quux instead. Therefore, throw makes the outer catch return the value
yes. The function print is never called, and the body-form ’no is never evaluated.

10.5.3 Errors

When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evalu-
ated, it signals an error.

When an error is signaled, Emacs’s default reaction is to print an error message and
terminate execution of the current command. This is the right thing to do in most cases,
such as if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example,
the program may have made temporary changes in data structures, or created temporary
buffers that should be deleted before the program is finished. In such cases, you would
use unwind-protect to establish cleanup expressions to be evaluated in case of error. (See
Section 10.5.4 [Cleanups], page 131.) Occasionally, you may wish the program to continue
execution despite an error in a subroutine. In these cases, you would use condition-case
to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the
program to another; use catch and throw instead. See Section 10.5.1 [Catch and Throw],
page 123.

10.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the car of an integer or move forward a character at
the end of the buffer. You can also signal errors explicitly with the functions error and
signal.

126 GNU Emacs Lisp Reference Manual

Quitting, which happens when the user types C-g, is not considered an error, but it is
handled almost like an error. See Section 21.10 [Quitting], page 316.

The error message should state what is wrong (“File does not exist”), not how things
ought to be (“File must exist”). The convention in Emacs Lisp is that error messages should
start with a capital letter, but should not end with any sort of punctuation.

Functionerror format-string &rest args
This function signals an error with an error message constructed by applying format
(see Section 4.6 [String Conversion], page 55) to format-string and args.
These examples show typical uses of error:

(error "That is an error -- try something else")
error That is an error -- try something else

(error "You have committed %d errors" 10)
error You have committed 10 errors

error works by calling signal with two arguments: the error symbol error, and a
list containing the string returned by format.
Warning: If you want to use your own string as an error message verbatim, don’t
just write (error string). If string contains ‘%’, it will be interpreted as a format
specifier, with undesirable results. Instead, use (error "%s" string).

Functionsignal error-symbol data
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.
The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how Emacs Lisp
classifies different sorts of errors.
The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-arg error, there should be two objects in the list: a
predicate that describes the type that was expected, and the object that failed to fit
that type. See Section 10.5.3.4 [Error Symbols], page 130, for a description of error
symbols.
Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data)
(see Section 10.5.3.3 [Handling Errors], page 127). If the error is not handled, these
two values are used in printing the error message.
The function signal never returns (though in older Emacs versions it could sometimes
return).

(signal ’wrong-number-of-arguments ’(x y))
error Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition"))
error peculiar error: "My unknown error condition"

Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of
continuable errors.

Chapter 10: Control Structures 127

10.5.3.2 How Emacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler
is a sequence of Lisp expressions designated to be executed if an error happens in part of
the Lisp program. If the error has an applicable handler, the handler is executed, and
control resumes following the handler. The handler executes in the environment of the
condition-case that established it; all functions called within that condition-case have
already been exited, and the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and
control returns to the editor command loop, because the command loop has an implicit
handler for all kinds of errors. The command loop’s handler uses the error symbol and
associated data to print an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is
enabled if the variable debug-on-error (see Section 18.1.1 [Error Debugging], page 225) is
non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that
you can examine values of variables precisely as they were at the time of the error.

10.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and
return immediately to the Emacs editor command loop. You can arrange to trap errors
occurring in a part of your program by establishing an error handler, with the special form
condition-case. A simple example looks like this:

(condition-case nil
(delete-file filename)

(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.
The second argument of condition-case is called the protected form. (In the example

above, the protected form is a call to delete-file.) The error handlers go into effect when
this form begins execution and are deactivated when this form returns. They remain in
effect for all the intervening time. In particular, they are in effect during the execution
of functions called by this form, in their subroutines, and so on. This is a good thing,
since, strictly speaking, errors can be signaled only by Lisp primitives (including signal
and error) called by the protected form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more
condition names (which are symbols) to specify which errors it will handle. The error
symbol specified when an error is signaled also defines a list of condition names. A handler
applies to an error if they have any condition names in common. In the example above,
there is one handler, and it specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle
the same error, the inner of the two gets to handle it.

If an error is handled by some condition-case form, this ordinarily prevents the de-
bugger from being run, even if debug-on-error says this error should invoke the debugger.
See Section 18.1.1 [Error Debugging], page 225. If you want to be able to debug errors that
are caught by a condition-case, set the variable debug-on-signal to a non-nil value.

128 GNU Emacs Lisp Reference Manual

When an error is handled, control returns to the handler. Before this happens, Emacs
unbinds all variable bindings made by binding constructs that are being exited and executes
the cleanups of all unwind-protect forms that are exited. Once control arrives at the
handler, the body of the handler is executed.

After execution of the handler body, execution returns from the condition-case form.
Because the protected form is exited completely before execution of the handler, the handler
cannot resume execution at the point of the error, nor can it examine variable bindings that
were made within the protected form. All it can do is clean up and proceed.

The condition-case construct is often used to trap errors that are predictable, such as
failure to open a file in a call to insert-file-contents. It is also used to trap errors that
are totally unpredictable, such as when the program evaluates an expression read from the
user.

Error signaling and handling have some resemblance to throw and catch (see Sec-
tion 10.5.1 [Catch and Throw], page 123), but they are entirely separate facilities. An
error cannot be caught by a catch, and a throw cannot be handled by an error handler
(though using throw when there is no suitable catch signals an error that can be handled).

Special Formcondition-case var protected-form handlers. . .
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). Here conditions is
an error condition name to be handled, or a list of condition names; body is one or
more Lisp expressions to be executed when this handler handles an error. Here are
examples of handlers:

(error nil)

(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it
is. The error-conditions property of this symbol is a list of condition names (see
Section 10.5.3.4 [Error Symbols], page 130). Emacs searches all the active condition-
case forms for a handler that specifies one or more of these condition names; the
innermost matching condition-case handles the error. Within this condition-
case, the first applicable handler handles the error.

After executing the body of the handler, the condition-case returns normally, using
the value of the last form in the handler body as the overall value.

The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, it binds
var locally to an error description, which is a list giving the particulars of the error.

Chapter 10: Control Structures 129

The error description has the form (error-symbol . data). The handler can refer to
this list to decide what to do. For example, if the error is for failure opening a file, the
file name is the second element of data—the third element of the error description.

If var is nil, that means no variable is bound. Then the error symbol and associated
data are not available to the handler.

Functionerror-message-string error-description
This function returns the error message string for a given error descriptor. It is useful
if you want to handle an error by printing the usual error message for that error.

Here is an example of using condition-case to handle the error that results from
dividing by zero. The handler displays the error message (but without a beep), then returns
a very large number.

(defun safe-divide (dividend divisor)
(condition-case err

;; Protected form.
(/ dividend divisor)

;; The handler.
(arith-error ; Condition.
;; Display the usual message for this error.
(message "%s" (error-message-string err))
1000000)))

⇒ safe-divide

(safe-divide 5 0)
a Arithmetic error: (arith-error)

⇒ 1000000

The handler specifies condition name arith-error so that it will handle only division-by-
zero errors. Other kinds of errors will not be handled, at least not by this condition-case.
Thus,

(safe-divide nil 3)
error Wrong type argument: number-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with
error:

(setq baz 34)
⇒ 34

(condition-case err
(if (eq baz 35)

t
;; This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))

;; This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))

2))
a The error was: (error "Rats! The variable baz was 34, not 35")
⇒ 2

130 GNU Emacs Lisp Reference Manual

10.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you
have in mind. Each error has one and only one error symbol to categorize it. This is the
finest classification of errors defined by the Emacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error
conditions, identified by condition names. The narrowest such classes belong to the error
symbols themselves: each error symbol is also a condition name. There are also condition
names for more extensive classes, up to the condition name error which takes in all kinds
of errors. Thus, each error has one or more condition names: error, the error symbol if
that is distinct from error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members
of this list.) Thus, the hierarchy of condition names is defined by the error-conditions
properties of the error symbols.

In addition to the error-conditions list, the error symbol should have an error-
message property whose value is a string to be printed when that error is signaled but
not handled. If the error-message property exists, but is not a string, the error message
‘peculiar error’ is used.

Here is how we define a new error symbol, new-error:

(put ’new-error
’error-conditions
’(error my-own-errors new-error))

⇒ (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
⇒ "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-
errors, which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period.
This is for consistency with the rest of Emacs.

Naturally, Emacs will never signal new-error on its own; only an explicit call to signal
(see Section 10.5.3.1 [Signaling Errors], page 125) in your code can do this:

(signal ’new-error ’(x y))
error A new error: x, y

This error can be handled through any of the three condition names. This example
handles new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)

(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names
used to match errors with handlers. An error symbol serves only as a convenient way to
specify the intended error message and list of condition names. It would be cumbersome to
give signal a list of condition names rather than one error symbol.

Chapter 10: Control Structures 131

By contrast, using only error symbols without condition names would seriously decrease
the power of condition-case. Condition names make it possible to categorize errors at
various levels of generality when you write an error handler. Using error symbols alone
would eliminate all but the narrowest level of classification.

See Appendix F [Standard Errors], page 797, for a list of all the standard error symbols
and their conditions.

10.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data struc-
ture in an inconsistent state; it permits you to make the data consistent again in the event
of an error or throw.

Special Formunwind-protect body cleanup-forms. . .
unwind-protect executes the body with a guarantee that the cleanup-forms will
be evaluated if control leaves body, no matter how that happens. The body may
complete normally, or execute a throw out of the unwind-protect, or cause an error;
in all cases, the cleanup-forms will be evaluated.
If the body forms finish normally, unwind-protect returns the value of the last body
form, after it evaluates the cleanup-forms. If the body forms do not finish, unwind-
protect does not return any value in the normal sense.
Only the body is protected by the unwind-protect. If any of the cleanup-forms
themselves exits nonlocally (via a throw or an error), unwind-protect is not guar-
anteed to evaluate the rest of them. If the failure of one of the cleanup-forms has the
potential to cause trouble, then protect it with another unwind-protect around that
form.
The number of currently active unwind-protect forms counts, together with the num-
ber of local variable bindings, against the limit max-specpdl-size (see Section 11.3
[Local Variables], page 134).

For example, here we make an invisible buffer for temporary use, and make sure to kill
it before finishing:

(save-excursion
(let ((buffer (get-buffer-create " *temp*")))
(set-buffer buffer)
(unwind-protect

body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and
dispense with the variable buffer. However, the way shown above is safer, if body happens
to get an error after switching to a different buffer! (Alternatively, you could write another
save-excursion around the body, to ensure that the temporary buffer becomes current
again in time to kill it.)

Emacs includes a standard macro called with-temp-buffer which expands into more
or less the code shown above (see Section 27.2 [Current Buffer], page 439). Several of the
macros defined in this manual use unwind-protect in this way.

132 GNU Emacs Lisp Reference Manual

Here is an actual example derived from an FTP package. It creates a process (see
Chapter 37 [Processes], page 641) to try to establish a connection to a remote machine.
As the function ftp-login is highly susceptible to numerous problems that the writer of
the function cannot anticipate, it is protected with a form that guarantees deletion of the
process in the event of failure. Otherwise, Emacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect

(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))

(message "Logged in")
(error "Ftp login failed")))

(or win (and process (delete-process process)))))

This example has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process
is set, the process will not be killed. There is no easy way to fix this bug, but at least it is
very unlikely.

Chapter 11: Variables 133

11 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written
using the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 8.1 [Symbol Components], page 99.

The Lisp objects that constitute a Lisp program determine the textual form of the
program—it is simply the read syntax for those Lisp objects. This is why, for example,
a variable in a textual Lisp program is written using the read syntax for the symbol that
represents the variable.

11.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just
one value at a time, and this value is in effect (at least for the moment) throughout the
Lisp system. The value remains in effect until you specify a new one. When a new value
replaces the old one, no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument,
the name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an
expression. Thus,

x ⇒ (a b)

assuming the setq form shown above has already been executed.
If you do set the same variable again, the new value replaces the old one:

x
⇒ (a b)

(setq x 4)
⇒ 4

x
⇒ 4

11.2 Variables that Never Change

In Emacs Lisp, certain symbols normally evaluate to themselves. These include nil and
t, as well as any symbol whose name starts with ‘:’ (these are called keywords). These
symbols cannot be rebound, nor can their values be changed. Any attempt to set or bind
nil or t signals a setting-constant error. The same is true for a keyword (a symbol
whose name starts with ‘:’), if it is interned in the standard obarray, except that setting
such a symbol to itself is not an error.

134 GNU Emacs Lisp Reference Manual

nil ≡ ’nil
⇒ nil

(setq nil 500)
error Attempt to set constant symbol: nil

Functionkeywordp object
function returns t if object is a symbol whose name starts with ‘:’, interned in the
standard obarray, and returns nil otherwise.

11.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Some-
times it is useful to create variable values that exist temporarily—only until a certain part
of the program finishes. These values are called local, and the variables so used are called
local variables.

For example, when a function is called, its argument variables receive new local values
that last until the function exits. The let special form explicitly establishes new local
values for specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean
time, we say that the previous value is shadowed and not visible. Both global and local
values may be shadowed (see Section 11.9.1 [Scope], page 144).

If you set a variable (such as with setq) while it is local, this replaces the local value; it
does not alter the global value, or previous local values, that are shadowed. To model this
behavior, we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored
within it. Use of setq or set while there is a local binding stores a different value into the
local binding; it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is
kept.

A variable can have more than one local binding at a time (for example, if there are
nested let forms that bind it). In such a case, the most recently created local binding that
still exists is the current binding of the variable. (This rule is called dynamic scoping ; see
Section 11.9 [Variable Scoping], page 143.) If there are no local bindings, the variable’s
global binding is its current binding. We sometimes call the current binding the most-local
existing binding, for emphasis. Ordinary evaluation of a symbol always returns the value
of its current binding.

The special forms let and let* exist to create local bindings.

Special Formlet (bindings. . .) forms. . .
This special form binds variables according to bindings and then evaluates all of the
forms in textual order. The let-form returns the value of the last form in forms.

Chapter 11: Variables 135

Each of the bindings is either (i) a symbol, in which case that symbol is bound to
nil; or (ii) a list of the form (symbol value-form), in which case symbol is bound to
the result of evaluating value-form. If value-form is omitted, nil is used.
All of the value-forms in bindings are evaluated in the order they appear and before
binding any of the symbols to them. Here is an example of this: Z is bound to the
old value of Y, which is 2, not the new value of Y, which is 1.

(setq Y 2)
⇒ 2

(let ((Y 1)
(Z Y))

(list Y Z))
⇒ (1 2)

Special Formlet* (bindings. . .) forms. . .
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression
in bindings can reasonably refer to the preceding symbols bound in this let* form.
Compare the following example with the example above for let.

(setq Y 2)
⇒ 2

(let* ((Y 1)
(Z Y)) ; Use the just-established value of Y.

(list Y Z))
⇒ (1 1)

Here is a complete list of the other facilities that create local bindings:
• Function calls (see Chapter 12 [Functions], page 155).
• Macro calls (see Chapter 13 [Macros], page 171).
• condition-case (see Section 10.5.3 [Errors], page 125).

Variables can also have buffer-local bindings (see Section 11.10 [Buffer-Local Variables],
page 146) and frame-local bindings (see Section 11.11 [Frame-Local Variables], page 152); a
few variables have terminal-local bindings (see Section 29.2 [Multiple Displays], page 484).
These kinds of bindings work somewhat like ordinary local bindings, but they are localized
depending on “where” you are in Emacs, rather than localized in time.

Variablemax-specpdl-size
This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 10.5 [Nonlocal Exits], page 123) that are al-
lowed before signaling an error (with data "Variable binding depth exceeds max-
specpdl-size").
This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function. max-lisp-eval-depth provides another
limit on depth of nesting. See Section 9.3 [Eval], page 113.
The default value is 600. Entry to the Lisp debugger increases the value, if there is
little room left, to make sure the debugger itself has room to execute.

136 GNU Emacs Lisp Reference Manual

11.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object
in it. If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and
can be the value of a variable just as any other object can be; but it is a value. A void
variable does not have any value.

After you have given a variable a value, you can make it void once more using
makunbound.

Functionmakunbound symbol
This function makes the current variable binding of symbol void. Subsequent attempts
to use this symbol’s value as a variable will signal the error void-variable, unless
and until you set it again.

makunbound returns symbol.

(makunbound ’x) ; Make the global value of x void.
⇒ x

x
error Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This
is the only way a symbol can have a void local binding, since all the constructs that
create local bindings create them with values. In this case, the voidness lasts at
most as long as the binding does; when the binding is removed due to exit from the
construct that made it, the previous local or global binding is reexposed as usual, and
the variable is no longer void unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
⇒ 1

(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)

error Symbol’s value as variable is void: x
x ; The global binding is unchanged.

⇒ 1

(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))
(makunbound ’x)) ; Void inner binding, then remove it.

x) ; Now outer let binding is visible.
⇒ 2

Chapter 11: Variables 137

A variable that has been made void with makunbound is indistinguishable from one that
has never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

Functionboundp variable
boundp returns t if variable (a symbol) is not void; more precisely, if its current
binding is not void. It returns nil otherwise.

(boundp ’abracadabra) ; Starts out void.
⇒ nil

(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))

⇒ t
(boundp ’abracadabra) ; Still globally void.

⇒ nil
(setq abracadabra 5) ; Make it globally nonvoid.

⇒ 5
(boundp ’abracadabra)

⇒ t

11.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable
definition: a special form, either defconst or defvar.

In Emacs Lisp, definitions serve three purposes. First, they inform people who read the
code that certain symbols are intended to be used a certain way (as variables). Second,
they inform the Lisp system of these things, supplying a value and documentation. Third,
they provide information to utilities such as etags and make-docfile, which create data
bases of the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving
to inform human readers of whether the value should ever change. Emacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes
the variable, while defvar initializes it only if it is void.

Special Formdefvar symbol [value [doc-string]]
This special form defines symbol as a variable and can also initialize and document it.
The definition informs a person reading your code that symbol is used as a variable
that might be set or changed. Note that symbol is not evaluated; the symbol to be
defined must appear explicitly in the defvar.

If symbol is void and value is specified, defvar evaluates it and sets symbol to the
result. But if symbol already has a value (i.e., it is not void), value is not even
evaluated, and symbol’s value remains unchanged. If value is omitted, the value of
symbol is not changed in any case.

If symbol has a buffer-local binding in the current buffer, defvar operates on the
default value, which is buffer-independent, not the current (buffer-local) binding. It

138 GNU Emacs Lisp Reference Manual

sets the default value if the default value is void. See Section 11.10 [Buffer-Local
Variables], page 146.
When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-
defun), a special feature of eval-defun arranges to set the variable unconditionally,
without testing whether its value is void.
If the doc-string argument appears, it specifies the documentation for the variable.
(This opportunity to specify documentation is one of the main benefits of defining
the variable.) The documentation is stored in the symbol’s variable-documentation
property. The Emacs help functions (see Chapter 24 [Documentation], page 387) look
for this property.
If the variable is a user option that users would want to set interactively, you should
use ‘*’ as the first character of doc-string. This lets users set the variable conve-
niently using the set-variable command. Note that you should nearly always use
defcustom instead of defvar to define these variables, so that users can use M-x

customize and related commands to set them. See Chapter 14 [Customization],
page 179.
Here are some examples. This form defines foo but does not initialize it:

(defvar foo)
⇒ foo

This example initializes the value of bar to 23, and gives it a documentation string:
(defvar bar 23
"The normal weight of a bar.")

⇒ bar

The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ nil)
would get an error if it were evaluated, but since it is not evaluated, there is no error.)

(defvar bar (1+ nil)
"*The normal weight of a bar.")

⇒ bar
bar

⇒ 23

Here is an equivalent expression for the defvar special form:
(defvar symbol value doc-string)
≡
(progn
(if (not (boundp ’symbol))

(setq symbol value))
(if ’doc-string
(put ’symbol ’variable-documentation ’doc-string))

’symbol)

The defvar form returns symbol, but it is normally used at top level in a file where
its value does not matter.

Special Formdefconst symbol [value [doc-string]]
This special form defines symbol as a value and initializes it. It informs a person
reading your code that symbol has a standard global value, established here, that

Chapter 11: Variables 139

should not be changed by the user or by other programs. Note that symbol is not
evaluated; the symbol to be defined must appear explicitly in the defconst.
defconst always evaluates value, and sets the value of symbol to the result if value
is given. If symbol does have a buffer-local binding in the current buffer, defconst
sets the default value, not the buffer-local value. (But you should not be making
buffer-local bindings for a symbol that is defined with defconst.)
Here, pi is a constant that presumably ought not to be changed by anyone (attempts
by the Indiana State Legislature notwithstanding). As the second form illustrates,
however, this is only advisory.

(defconst pi 3.1415 "Pi to five places.")
⇒ pi

(setq pi 3)
⇒ pi

pi
⇒ 3

Functionuser-variable-p variable
This function returns t if variable is a user option—a variable intended to be set by
the user for customization—and nil otherwise. (Variables other than user options
exist for the internal purposes of Lisp programs, and users need not know about
them.)
User option variables are distinguished from other variables either though being de-
clared using defcustom1 or by the first character of their variable-documentation
property. If the property exists and is a string, and its first character is ‘*’, then the
variable is a user option.

If a user option variable has a variable-interactive property, the set-variable
command uses that value to control reading the new value for the variable. The property’s
value is used as if it were specified in interactive (see Section 21.2.1 [Using Interactive],
page 288). However, this feature is largely obsoleted by defcustom (see Chapter 14 [Cus-
tomization], page 179).

Warning: If the defconst and defvar special forms are used while the variable has a
local binding, they set the local binding’s value; the global binding is not changed. This
is not what you usually want. To prevent it, use these special forms at top level in a file,
where normally no local binding is in effect, and make sure to load the file before making a
local binding for the variable.

11.6 Tips for Defining Variables Robustly

When you define a variable whose value is a function, or a list of functions, use a name
that ends in ‘-function’ or ‘-functions’, respectively.

There are several other variable name conventions; here is a complete list:

‘...-hook’
The variable is a normal hook (see Section 23.6 [Hooks], page 383).

1 They may also be declared equivalently in ‘cus-start.el’.

140 GNU Emacs Lisp Reference Manual

‘...-function’
The value is a function.

‘...-functions’
The value is a list of functions.

‘...-form’
The value is a form (an expression).

‘...-forms’
The value is a list of forms (expressions).

‘...-predicate’
The value is a predicate—a function of one argument that returns non-nil for
“good” arguments and nil for “bad” arguments.

‘...-flag’
The value is significant only as to whether it is nil or not.

‘...-program’
The value is a program name.

‘...-command’
The value is a whole shell command.

‘‘’-switches’
The value specifies options for a command.

When you define a variable, always consider whether you should mark it as “risky”; see
Section 11.13 [File Local Variables], page 153.

When defining and initializing a variable that holds a complicated value (such as a
keymap with bindings in it), it’s best to put the entire computation of the value into the
defvar, like this:

(defvar my-mode-map
(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)
...
map)

docstring)

This method has several benefits. First, if the user quits while loading the file, the variable
is either still uninitialized or initialized properly, never in-between. If it is still uninitialized,
reloading the file will initialize it properly. Second, reloading the file once the variable is
initialized will not alter it; that is important if the user has run hooks to alter part of
the contents (such as, to rebind keys). Third, evaluating the defvar form with C-M-x will
reinitialize the map completely.

Putting so much code in the defvar form has one disadvantage: it puts the documen-
tation string far away from the line which names the variable. Here’s a safe way to avoid
that:

(defvar my-mode-map nil
docstring)

(unless my-mode-map

Chapter 11: Variables 141

(let ((map (make-sparse-keymap)))
(define-key map "\C-c\C-a" ’my-command)
...
(setq my-mode-map map)))

This has all the same advantages as putting the initialization inside the defvar, except that
you must type C-M-x twice, once on each form, if you do want to reinitialize the variable.

But be careful not to write the code like this:
(defvar my-mode-map nil

docstring)
(unless my-mode-map
(setq my-mode-map (make-sparse-keymap))
(define-key my-mode-map "\C-c\C-a" ’my-command)
...)

This code sets the variable, then alters it, but it does so in more than one step. If the user
quits just after the setq, that leaves the variable neither correctly initialized nor void nor
nil. Once that happens, reloading the file will not initialize the variable; it will remain
incomplete.

11.7 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Sec-
tion 9.1.2 [Symbol Forms], page 108). This requires you to specify the variable name when
you write the program. Usually that is exactly what you want to do. Occasionally you need
to choose at run time which variable to reference; then you can use symbol-value.

Functionsymbol-value symbol
This function returns the value of symbol. This is the value in the innermost local
binding of the symbol, or its global value if it has no local bindings.

(setq abracadabra 5)
⇒ 5

(setq foo 9)
⇒ 9

;; Here the symbol abracadabra
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))

⇒ foo

;; Here the value of abracadabra,
;; which is foo,
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value abracadabra))

⇒ 9

(symbol-value ’abracadabra)
⇒ 5

A void-variable error is signaled if the current binding of symbol is void.

142 GNU Emacs Lisp Reference Manual

11.8 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When
you need to compute the choice of variable at run time, use the function set.

Special Formsetq [symbol form]. . .
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The most-local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”
The value of the setq form is the value of the last form.

(setq x (1+ 2))
⇒ 3

x ; x now has a global value.
⇒ 3

(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)

⇒ 6
x ; The global value is unchanged.

⇒ 3

Note that the first form is evaluated, then the first symbol is set, then the second
form is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
⇒ 11

Functionset symbol value
This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.
The most-local existing binding of the variable is the binding that is set; shadowed
bindings are not affected.

(set one 1)
error Symbol’s value as variable is void: one
(set ’one 1)

⇒ 1
(set ’two ’one)

⇒ one
(set two 2) ; two evaluates to symbol one.

⇒ 2
one ; So it is one that was set.

⇒ 2
(let ((one 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)

⇒ 3

Chapter 11: Variables 143

one
⇒ 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.
(set ’(x y) ’z)
error Wrong type argument: symbolp, (x y)

Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given
the availability of set. However, set itself is rarely used; beginners hardly need to
know about it. It is useful only for choosing at run time which variable to set. For
example, the command set-variable, which reads a variable name from the user
and then sets the variable, needs to use set.

Common Lisp note: In Common Lisp, set always changes the symbol’s
“special” or dynamic value, ignoring any lexical bindings. In Emacs Lisp,
all variables and all bindings are dynamic, so set always affects the most
local existing binding.

One other function for setting a variable is designed to add an element to a list if it is
not already present in the list.

Functionadd-to-list symbol element
This function sets the variable symbol by consing element onto the old value, if
element is not already a member of that value. It returns the resulting list, whether
updated or not. The value of symbol had better be a list already before the call.
The argument symbol is not implicitly quoted; add-to-list is an ordinary function,
like set and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-list:
(setq foo ’(a b))

⇒ (a b)

(add-to-list ’foo ’c) ;; Add c.
⇒ (c a b)

(add-to-list ’foo ’b) ;; No effect.
⇒ (c a b)

foo ;; foo was changed.
⇒ (c a b)

An equivalent expression for (add-to-list ’var value) is this:
(or (member value var)

(setq var (cons value var)))

11.9 Scoping Rules for Variable Bindings

A given symbol foo can have several local variable bindings, established at different
places in the Lisp program, as well as a global binding. The most recently established
binding takes precedence over the others.

144 GNU Emacs Lisp Reference Manual

Local bindings in Emacs Lisp have indefinite scope and dynamic extent. Scope refers to
where textually in the source code the binding can be accessed. “Indefinite scope” means
that any part of the program can potentially access the variable binding. Extent refers to
when, as the program is executing, the binding exists. “Dynamic extent” means that the
binding lasts as long as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local
variable must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynam-
ically scoped, like all variables in Emacs Lisp.

11.9.1 Scope

Emacs Lisp uses indefinite scope for local variable bindings. This means that any func-
tion anywhere in the program text might access a given binding of a variable. Consider the
following function definitions:

(defun binder (x) ; x is bound in binder.
(foo 5)) ; foo is some other function.

(defun user () ; x is used “free” in user.
(list x))

In a lexically scoped language, the binding of x in binder would never be accessible in
user, because user is not textually contained within the function binder. However, in
dynamically-scoped Emacs Lisp, user may or may not refer to the binding of x established
in binder, depending on the circumstances:

• If we call user directly without calling binder at all, then whatever binding of x is
found, it cannot come from binder.

• If we define foo as follows and then call binder, then the binding made in binder will
be seen in user:

(defun foo (lose)
(user))

• However, if we define foo as follows and then call binder, then the binding made in
binder will not be seen in user:

(defun foo (x)
(user))

Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow
the one made in binder.) Therefore, user will access the x bound by foo instead of
the one bound by binder.

Emacs Lisp uses dynamic scoping because simple implementations of lexical scoping are
slow. In addition, every Lisp system needs to offer dynamic scoping at least as an option;
if lexical scoping is the norm, there must be a way to specify dynamic scoping instead for a
particular variable. It might not be a bad thing for Emacs to offer both, but implementing
it with dynamic scoping only was much easier.

Chapter 11: Variables 145

11.9.2 Extent

Extent refers to the time during program execution that a variable name is valid. In
Emacs Lisp, a variable is valid only while the form that bound it is executing. This is
called dynamic extent. “Local” or “automatic” variables in most languages, including C
and Pascal, have dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable
binding can live on past the exit from the form that made the binding. Common Lisp and
Scheme, for example, support this, but Emacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to add
n to its own argument m. This would work in Common Lisp, but it does not do the job in
Emacs Lisp, because after the call to make-add exits, the variable n is no longer bound to
the actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
⇒ make-add

(fset ’add2 (make-add 2)) ; Define function add2
; with (make-add 2).

⇒ (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.
error Symbol’s value as variable is void: n

Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. Emacs Lisp does not have closures.

11.9.3 Implementation of Dynamic Scoping

A simple sample implementation (which is not how Emacs Lisp actually works) may
help you understand dynamic binding. This technique is called deep binding and was used
in early Lisp systems.

Suppose there is a stack of bindings, which are variable-value pairs. At entry to a
function or to a let form, we can push bindings onto the stack for the arguments or local
variables created there. We can pop those bindings from the stack at exit from the binding
construct.

We can find the value of a variable by searching the stack from top to bottom for a
binding for that variable; the value from that binding is the value of the variable. To set
the variable, we search for the current binding, then store the new value into that binding.

As you can see, a function’s bindings remain in effect as long as it continues execution,
even during its calls to other functions. That is why we say the extent of the binding is
dynamic. And any other function can refer to the bindings, if it uses the same variables
while the bindings are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in GNU Emacs Lisp uses a technique
called shallow binding. Each variable has a standard place in which its current value is
always found—the value cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Cre-
ating a new binding works by pushing the old value (belonging to a previous binding) onto

146 GNU Emacs Lisp Reference Manual

a stack, and storing the new local value in the value cell. Eliminating a binding works by
popping the old value off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster,
since there is never a need to search for a binding.

11.9.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but
if used without restraint, it can make programs hard to understand. There are two clean
ways to use this technique:
• Use or bind the variable only in a few related functions, written close together in one

file. Such a variable is used for communication within one program.
You should write comments to inform other programmers that they can see all uses of
the variable before them, and to advise them not to add uses elsewhere.

• Give the variable a well-defined, documented meaning, and make all appropriate func-
tions refer to it (but not bind it or set it) wherever that meaning is relevant. For
example, the variable case-fold-search is defined as “non-nil means ignore case
when searching”; various search and replace functions refer to it directly or through
their subroutines, but do not bind or set it.
Then you can bind the variable in other programs, knowing reliably what the effect
will be.

In either case, you should define the variable with defvar. This helps other people
understand your program by telling them to look for inter-function usage. It also avoids a
warning from the byte compiler. Choose the variable’s name to avoid name conflicts—don’t
use short names like x.

11.10 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form
or another. Emacs, however, also supports additional, unusual kinds of variable binding:
buffer-local bindings, which apply only in one buffer, and frame-local bindings, which apply
only in one frame. Having different values for a variable in different buffers and/or frames
is an important customization method.

This section describes buffer-local bindings; for frame-local bindings, see the following
section, Section 11.11 [Frame-Local Variables], page 152. (A few variables have bindings
that are local to each terminal; see Section 29.2 [Multiple Displays], page 484.)

11.10.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so its
other bindings are unchanged. This means that the change is visible only in the buffer
where you made it.

The variable’s ordinary binding, which is not associated with any specific buffer, is called
the default binding. In most cases, this is the global binding.

Chapter 11: Variables 147

A variable can have buffer-local bindings in some buffers but not in other buffers. The
default binding is shared by all the buffers that don’t have their own bindings for the
variable. (This includes all newly-created buffers.) If you set the variable in a buffer that
does not have a buffer-local binding for it, this sets the default binding (assuming there
are no frame-local bindings to complicate the matter), so the new value is visible in all the
buffers that see the default binding.

The most common use of buffer-local bindings is for major modes to change variables
that control the behavior of commands. For example, C mode and Lisp mode both set the
variable paragraph-start to specify that only blank lines separate paragraphs. They do
this by making the variable buffer-local in the buffer that is being put into C mode or Lisp
mode, and then setting it to the new value for that mode. See Section 23.1 [Major Modes],
page 355.

The usual way to make a buffer-local binding is with make-local-variable, which is
what major mode commands typically use. This affects just the current buffer; all other
buffers (including those yet to be created) will continue to share the default value unless
they are explicitly given their own buffer-local bindings.

A more powerful operation is to mark the variable as automatically buffer-local by
calling make-variable-buffer-local. You can think of this as making the variable local
in all buffers, even those yet to be created. More precisely, the effect is that setting the
variable automatically makes the variable local to the current buffer if it is not already
so. All buffers start out by sharing the default value of the variable as usual, but setting
the variable creates a buffer-local binding for the current buffer. The new value is stored
in the buffer-local binding, leaving the default binding untouched. This means that the
default value cannot be changed with setq in any buffer; the only way to change it is with
setq-default.

Warning: When a variable has buffer-local values in one or more buffers, you can get
Emacs very confused by binding the variable with let, changing to a different current buffer
in which a different binding is in effect, and then exiting the let. This can scramble the
values of the buffer-local and default bindings.

To preserve your sanity, avoid using a variable in that way. If you use save-excursion
around each piece of code that changes to a different current buffer, you will not have this
problem (see Section 30.3 [Excursions], page 518). Here is an example of what to avoid:

(setq foo ’b)
(set-buffer "a")
(make-local-variable ’foo)
(setq foo ’a)
(let ((foo ’temp))
(set-buffer "b")
body...)

foo ⇒ ’a ; The old buffer-local value from buffer ‘a’
; is now the default value.

(set-buffer "a")
foo ⇒ ’temp ; The local let value that should be gone

; is now the buffer-local value in buffer ‘a’.

But save-excursion as shown here avoids the problem:

148 GNU Emacs Lisp Reference Manual

(let ((foo ’temp))
(save-excursion
(set-buffer "b")
body...))

Note that references to foo in body access the buffer-local binding of buffer ‘b’.
When a file specifies local variable values, these become buffer-local values when you

visit the file. See section “File Variables” in The GNU Emacs Manual.

11.10.2 Creating and Deleting Buffer-Local Bindings

Commandmake-local-variable variable
This function creates a buffer-local binding in the current buffer for variable (a sym-
bol). Other buffers are not affected. The value returned is variable.
The buffer-local value of variable starts out as the same value variable previously
had. If variable was void, it remains void.

;; In buffer ‘b1’:
(setq foo 5) ; Affects all buffers.

⇒ 5
(make-local-variable ’foo) ; Now it is local in ‘b1’.

⇒ foo
foo ; That did not change

⇒ 5 ; the value.
(setq foo 6) ; Change the value

⇒ 6 ; in ‘b1’.
foo

⇒ 6

;; In buffer ‘b2’, the value hasn’t changed.
(save-excursion
(set-buffer "b2")
foo)

⇒ 5

Making a variable buffer-local within a let-binding for that variable does not work
reliably, unless the buffer in which you do this is not current either on entry to or
exit from the let. This is because let does not distinguish between different kinds
of bindings; it knows only which variable the binding was made for.
If the variable is terminal-local, this function signals an error. Such variables cannot
have buffer-local bindings as well. See Section 29.2 [Multiple Displays], page 484.
Note: Do not use make-local-variable for a hook variable. Instead, use make-
local-hook. See Section 23.6 [Hooks], page 383.

Commandmake-variable-buffer-local variable
This function marks variable (a symbol) automatically buffer-local, so that any sub-
sequent attempt to set it will make it local to the current buffer at the time.
A peculiar wrinkle of this feature is that binding the variable (with let or other
binding constructs) does not create a buffer-local binding for it. Only setting the
variable (with set or setq) does so.

Chapter 11: Variables 149

The value returned is variable.
Warning: Don’t assume that you should use make-variable-buffer-local for user-
option variables, simply because users might want to customize them differently in
different buffers. Users can make any variable local, when they wish to. It is better
to leave the choice to them.
The time to use make-variable-buffer-local is when it is crucial that no two
buffers ever share the same binding. For example, when a variable is used for internal
purposes in a Lisp program which depends on having separate values in separate
buffers, then using make-variable-buffer-local can be the best solution.

Functionlocal-variable-p variable &optional buffer
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

Functionbuffer-local-variables &optional buffer
This function returns a list describing the buffer-local variables in buffer buffer. (If
buffer is omitted, the current buffer is used.) It returns an association list (see
Section 5.8 [Association Lists], page 79) in which each element contains one buffer-
local variable and its value. However, when a variable’s buffer-local binding in buffer
is void, then the variable appears directly in the resulting list.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq lcl (buffer-local-variables))

;; First, built-in variables local in all buffers:
⇒ ((mark-active . nil)

(buffer-undo-list . nil)
(mode-name . "Fundamental")
...
;; Next, non-built-in buffer-local variables.
;; This one is buffer-local and void:
foobar
;; This one is buffer-local and nonvoid:
(bind-me . 69))

Note that storing new values into the cdrs of cons cells in this list does not change
the buffer-local values of the variables.

Commandkill-local-variable variable
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the default binding of variable becomes visible in this
buffer. This typically results in a change in the value of variable, since the default
value is usually different from the buffer-local value just eliminated.
If you kill the buffer-local binding of a variable that automatically becomes buffer-
local when set, this makes the default value visible in the current buffer. However, if
you set the variable again, that will once again create a buffer-local binding for it.

150 GNU Emacs Lisp Reference Manual

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local
variable interactively, just as it is useful to create buffer-local variables interactively.

Functionkill-all-local-variables
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marked as “permanent”. As a result, the buffer will see the
default values of most variables.

This function also resets certain other information pertaining to the buffer: it sets
the local keymap to nil, the syntax table to the value of (standard-syntax-table),
the case table to (standard-case-table), and the abbrev table to the value of
fundamental-mode-abbrev-table.

The very first thing this function does is run the normal hook change-major-mode-
hook (see below).

Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should
not be marked permanent.

kill-all-local-variables returns nil.

Variablechange-major-mode-hook
The function kill-all-local-variables runs this normal hook before it does any-
thing else. This gives major modes a way to arrange for something special to be done
if the user switches to a different major mode. For best results, make this variable
buffer-local, so that it will disappear after doing its job and will not interfere with
the subsequent major mode. See Section 23.6 [Hooks], page 383.

A buffer-local variable is permanent if the variable name (a symbol) has a permanent-
local property that is non-nil. Permanent locals are appropriate for data pertaining to
where the file came from or how to save it, rather than with how to edit the contents.

11.10.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect whenever neither the current buffer nor the selected
frame has its own binding for the variable.

The functions default-value and setq-default access and change a variable’s default
value regardless of whether the current buffer has a buffer-local binding. For example, you
could use setq-default to change the default setting of paragraph-start for most buffers;
and this would work even when you are in a C or Lisp mode buffer that has a buffer-local
value for this variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any buffer-local or frame-local value.

Chapter 11: Variables 151

Functiondefault-value symbol
This function returns symbol’s default value. This is the value that is seen in buffers
and frames that do not have their own values for this variable. If symbol is not
buffer-local, this is equivalent to symbol-value (see Section 11.7 [Accessing Vari-
ables], page 141).

Functiondefault-boundp symbol
The function default-boundp tells you whether symbol’s default value is nonvoid.
If (default-boundp ’foo) returns nil, then (default-value ’foo) would get an
error.

default-boundp is to default-value as boundp is to symbol-value.

Special Formsetq-default [symbol form]. . .
This special form gives each symbol a new default value, which is the result of eval-
uating the corresponding form. It does not evaluate symbol, but does evaluate form.
The value of the setq-default form is the value of the last form.

If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for
the current buffer, then this changes the value that other buffers will see (as long as
they don’t have a buffer-local value), but not the value that the current buffer sees.

;; In buffer ‘foo’:
(make-local-variable ’buffer-local)

⇒ buffer-local
(setq buffer-local ’value-in-foo)

⇒ value-in-foo
(setq-default buffer-local ’new-default)

⇒ new-default
buffer-local

⇒ value-in-foo
(default-value ’buffer-local)

⇒ new-default

;; In (the new) buffer ‘bar’:
buffer-local

⇒ new-default
(default-value ’buffer-local)

⇒ new-default
(setq buffer-local ’another-default)

⇒ another-default
(default-value ’buffer-local)

⇒ another-default

;; Back in buffer ‘foo’:
buffer-local

⇒ value-in-foo
(default-value ’buffer-local)

⇒ another-default

152 GNU Emacs Lisp Reference Manual

Functionset-default symbol value
This function is like setq-default, except that symbol is an ordinary evaluated
argument.

(set-default (car ’(a b c)) 23)
⇒ 23

(default-value ’a)
⇒ 23

11.11 Frame-Local Variables

Just as variables can have buffer-local bindings, they can also have frame-local bind-
ings. These bindings belong to one frame, and are in effect when that frame is selected.
Frame-local bindings are actually frame parameters: you create a frame-local binding in a
specific frame by calling modify-frame-parameters and specifying the variable name as
the parameter name.

To enable frame-local bindings for a certain variable, call the function make-variable-
frame-local.

Commandmake-variable-frame-local variable
Enable the use of frame-local bindings for variable. This does not in itself create
any frame-local bindings for the variable; however, if some frame already has a value
for variable as a frame parameter, that value automatically becomes a frame-local
binding.
If the variable is terminal-local, this function signals an error, because such vari-
ables cannot have frame-local bindings as well. See Section 29.2 [Multiple Displays],
page 484. A few variables that are implemented specially in Emacs can be (and
usually are) buffer-local, but can never be frame-local.

Buffer-local bindings take precedence over frame-local bindings. Thus, consider a vari-
able foo: if the current buffer has a buffer-local binding for foo, that binding is active;
otherwise, if the selected frame has a frame-local binding for foo, that binding is active;
otherwise, the default binding of foo is active.

Here is an example. First we prepare a few bindings for foo:
(setq f1 (selected-frame))
(make-variable-frame-local ’foo)

;; Make a buffer-local binding for foo in ‘b1’.
(set-buffer (get-buffer-create "b1"))
(make-local-variable ’foo)
(setq foo ’(b 1))

;; Make a frame-local binding for foo in a new frame.
;; Store that frame in f2.
(setq f2 (make-frame))
(modify-frame-parameters f2 ’((foo . (f 2))))

Now we examine foo in various contexts. Whenever the buffer ‘b1’ is current, its buffer-
local binding is in effect, regardless of the selected frame:

Chapter 11: Variables 153

(select-frame f1)
(set-buffer (get-buffer-create "b1"))
foo

⇒ (b 1)

(select-frame f2)
(set-buffer (get-buffer-create "b1"))
foo

⇒ (b 1)

Otherwise, the frame gets a chance to provide the binding; when frame f2 is selected, its
frame-local binding is in effect:

(select-frame f2)
(set-buffer (get-buffer "*scratch*"))
foo

⇒ (f 2)

When neither the current buffer nor the selected frame provides a binding, the default
binding is used:

(select-frame f1)
(set-buffer (get-buffer "*scratch*"))
foo

⇒ nil

When the active binding of a variable is a frame-local binding, setting the variable changes
that binding. You can observe the result with frame-parameters:

(select-frame f2)
(set-buffer (get-buffer "*scratch*"))
(setq foo ’nobody)
(assq ’foo (frame-parameters f2))

⇒ (foo . nobody)

11.12 Possible Future Local Variables

We have considered the idea of bindings that are local to a category of frames—for
example, all color frames, or all frames with dark backgrounds. We have not implemented
them because it is not clear that this feature is really useful. You can get more or less
the same results by adding a function to after-make-frame-functions, set up to define a
particular frame parameter according to the appropriate conditions for each frame.

It would also be possible to implement window-local bindings. We don’t know of many
situations where they would be useful, and it seems that indirect buffers (see Section 27.11
[Indirect Buffers], page 451) with buffer-local bindings offer a way to handle these situations
more robustly.

If sufficient application is found for either of these two kinds of local bindings, we will
provide it in a subsequent Emacs version.

11.13 File Local Variables

This section describes the functions and variables that affect processing of local variables
lists in files.

154 GNU Emacs Lisp Reference Manual

User Optionenable-local-variables
This variable controls whether to process file local variables lists. A value of t means
process the local variables lists unconditionally; nil means ignore them; anything else
means ask the user what to do for each file. The default value is t.

Functionhack-local-variables &optional force
This function parses, and binds or evaluates as appropriate, any local variables spec-
ified by the contents of the current buffer. The variable enable-local-variables
has its effect here.
The argument force usually comes from the argument find-file given to normal-mode.

If a file local variable list could specify the a function that will be called later, or an
expression that will be executed later, simply visiting a file could take over your Emacs. To
prevent this, Emacs takes care not to allow local variable lists to set such variables.

For one thing, any variable whose name ends in ‘-function’, ‘-functions’, ‘-hook’,
‘-hooks’, ‘-form’, ‘-forms’, ‘-program’, ‘-command’ or ‘-predicate’ cannot be set in a
local variable list. In general, you should use such a name whenever it is appropriate for
the variable’s meaning.

In addition, any variable whose name has a non-nil risky-local-variable property
is also ignored. So are all variables listed in ignored-local-variables:

Variableignored-local-variables
This variable holds a list of variables that should not be set by a file’s local variables
list. Any value specified for one of these variables is ignored.

The ‘Eval:’ “variable” is also a potential loophole, so Emacs normally asks for confir-
mation before handling it.

User Optionenable-local-eval
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is maybe.

Chapter 12: Functions 155

12 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what
functions are, how they accept arguments, and how to define them.

12.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values
called arguments. The result of the computation is called the value of the function. The
computation can also have side effects: lasting changes in the values of variables or the
contents of data structures.

Here are important terms for functions in Emacs Lisp and for other function-like objects.

function In Emacs Lisp, a function is anything that can be applied to arguments in a
Lisp program. In some cases, we use it more specifically to mean a function
written in Lisp. Special forms and macros are not functions.

primitive A primitive is a function callable from Lisp that is written in C, such as car
or append. These functions are also called built-in functions or subrs. (Special
forms are also considered primitives.)

Usually the reason we implement a function as a primitive is either because it
is fundamental, because it provides a low-level interface to operating system
services, or because it needs to run fast. Primitives can be modified or added
only by changing the C sources and recompiling the editor. See Section E.5
[Writing Emacs Primitives], page 782.

lambda expression
A lambda expression is a function written in Lisp. These are described in the
following section.

special form
A special form is a primitive that is like a function but does not evaluate all of
its arguments in the usual way. It may evaluate only some of the arguments, or
may evaluate them in an unusual order, or several times. Many special forms
are described in Chapter 10 [Control Structures], page 117.

macro A macro is a construct defined in Lisp by the programmer. It differs from a
function in that it translates a Lisp expression that you write into an equivalent
expression to be evaluated instead of the original expression. Macros enable Lisp
programmers to do the sorts of things that special forms can do. See Chapter 13
[Macros], page 171, for how to define and use macros.

command A command is an object that command-execute can invoke; it is a possible
definition for a key sequence. Some functions are commands; a function written
in Lisp is a command if it contains an interactive declaration (see Section 21.2
[Defining Commands], page 288). Such a function can be called from Lisp
expressions like other functions; in this case, the fact that the function is a
command makes no difference.

156 GNU Emacs Lisp Reference Manual

Keyboard macros (strings and vectors) are commands also, even though they
are not functions. A symbol is a command if its function definition is a com-
mand; such symbols can be invoked with M-x. The symbol is a function as well
if the definition is a function. See Section 21.1 [Command Overview], page 287.

keystroke command
A keystroke command is a command that is bound to a key sequence (typically
one to three keystrokes). The distinction is made here merely to avoid confusion
with the meaning of “command” in non-Emacs editors; for Lisp programs, the
distinction is normally unimportant.

byte-code function
A byte-code function is a function that has been compiled by the byte compiler.
See Section 2.3.16 [Byte-Code Type], page 22.

Functionfunctionp object
This function returns t if object is any kind of function, or a special form or macro.

Functionsubrp object
This function returns t if object is a built-in function (i.e., a Lisp primitive).

(subrp ’message) ; message is a symbol,
⇒ nil ; not a subr object.

(subrp (symbol-function ’message))
⇒ t

Functionbyte-code-function-p object
This function returns t if object is a byte-code function. For example:

(byte-code-function-p (symbol-function ’next-line))
⇒ t

Functionsubr-arity subr
This function provides information about the argument list of a primitive, subr. The
returned value is a pair (min . max). min is the minimum number of args. max is
the maximum number or the symbol many, for a function with &rest arguments, or
the symbol unevalled if subr is a special form.

12.2 Lambda Expressions

A function written in Lisp is a list that looks like this:
(lambda (arg-variables...)

[documentation-string]
[interactive-declaration]
body-forms...)

Such a list is called a lambda expression. In Emacs Lisp, it actually is valid as an
expression—it evaluates to itself. In some other Lisp dialects, a lambda expression is not a
valid expression at all. In either case, its main use is not to be evaluated as an expression,
but to be called as a function.

Chapter 12: Functions 157

12.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates
that the list represents a function. The reason functions are defined to start with lambda
is so that other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols—the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided.
See Section 11.3 [Local Variables], page 134.

The documentation string is a Lisp string object placed within the function definition
to describe the function for the Emacs help facilities. See Section 12.2.4 [Function Docu-
mentation], page 159.

The interactive declaration is a list of the form (interactive code-string). This de-
clares how to provide arguments if the function is used interactively. Functions with this
declaration are called commands; they can be called using M-x or bound to a key. Func-
tions not intended to be called in this way should not have interactive declarations. See
Section 21.2 [Defining Commands], page 288, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of
the function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The
value returned by the function is the value returned by the last element of the body.

12.2.2 A Simple Lambda-Expression Example

Consider for example the following function:
(lambda (a b c) (+ a b c))

We can call this function by writing it as the car of an expression, like this:
((lambda (a b c) (+ a b c))
1 2 3)

This call evaluates the body of the lambda expression with the variable a bound to 1, b
bound to 2, and c bound to 3. Evaluation of the body adds these three numbers, producing
the result 6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:
((lambda (a b c) (+ a b c))
1 (* 2 3) (- 5 4))

This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies
the lambda expression to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the car of a form in this way. You
can get the same result, of making local variables and giving them values, using the special
form let (see Section 11.3 [Local Variables], page 134). And let is clearer and easier to
use. In practice, lambda expressions are either stored as the function definitions of symbols,
to produce named functions, or passed as arguments to other functions (see Section 12.7
[Anonymous Functions], page 164).

However, calls to explicit lambda expressions were very useful in the old days of Lisp,
before the special form let was invented. At that time, they were the only way to bind
and initialize local variables.

158 GNU Emacs Lisp Reference Manual

12.2.3 Other Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument vari-
ables, so it must be called with three arguments: if you try to call it with only two arguments
or four arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted.
For example, the function substring accepts three arguments—a string, the start index
and the end index—but the third argument defaults to the length of the string if you omit
it. It is also convenient for certain functions to accept an indefinite number of arguments,
as the functions list and + do.

To specify optional arguments that may be omitted when a function is called, simply
include the keyword &optional before the optional arguments. To specify a list of zero or
more extra arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:
(required-vars...
[&optional optional-vars...]
[&rest rest-var])

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any
actual arguments beyond that unless the lambda list uses &rest. In that case, there may
be any number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always
default to nil. There is no way for the function to distinguish between an explicit argument
of nil and an omitted argument. However, the body of the function is free to consider nil
an abbreviation for some other meaningful value. This is what substring does; nil as the
third argument to substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default
value to use when an optional argument is omitted; Emacs Lisp always uses
nil. Emacs Lisp does not support “supplied-p” variables that tell you whether
an argument was explicitly passed.

For example, an argument list that looks like this:
(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more
arguments are provided, c and d are bound to them respectively; any arguments after the
first four are collected into a list and e is bound to that list. If there are only two arguments,
c is nil; if two or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that c in the example were optional and d
were required. Suppose three actual arguments are given; which variable would the third
argument be for? Would it be used for the c, or for d? One can argue for both possibilities.
Similarly, it makes no sense to have any more arguments (either required or optional) after
a &rest argument.

Here are some examples of argument lists and proper calls:

Chapter 12: Functions 159

((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.

⇒ 2
((lambda (n &optional n1) ; One required and one optional:

(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
1 2)

⇒ 3
((lambda (n &rest ns) ; One required and one rest:

(+ n (apply ’+ ns))) ; 1 or more arguments.
1 2 3 4 5)

⇒ 15

12.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda
list. This string does not affect execution of the function; it is a kind of comment, but
a systematized comment which actually appears inside the Lisp world and can be used
by the Emacs help facilities. See Chapter 24 [Documentation], page 387, for how the
documentation-string is accessed.

It is a good idea to provide documentation strings for all the functions in your program,
even those that are called only from within your program. Documentation strings are like
comments, except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos
displays just this first line. It should consist of one or two complete sentences that summarize
the function’s purpose.

The start of the documentation string is usually indented in the source file, but since
these spaces come before the starting double-quote, they are not part of the string. Some
people make a practice of indenting any additional lines of the string so that the text lines
up in the program source. This is a mistake. The indentation of the following lines is inside
the string; what looks nice in the source code will look ugly when displayed by the help
commands.

You may wonder how the documentation string could be optional, since there are re-
quired components of the function that follow it (the body). Since evaluation of a string
returns that string, without any side effects, it has no effect if it is not the last form in the
body. Thus, in practice, there is no confusion between the first form of the body and the
documentation string; if the only body form is a string then it serves both as the return
value and as the documentation.

12.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without
a name is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a
list whose first element is lambda, a byte-code function object, or a primitive subr-object.

However, a symbol can serve as the name of a function. This happens when you put
the function in the symbol’s function cell (see Section 8.1 [Symbol Components], page 99).
Then the symbol itself becomes a valid, callable function, equivalent to the list or subr-
object that its function cell refers to. The contents of the function cell are also called the

160 GNU Emacs Lisp Reference Manual

symbol’s function definition. The procedure of using a symbol’s function definition in place
of the symbol is called symbol function indirection; see Section 9.1.4 [Function Indirection],
page 109.

In practice, nearly all functions are given names in this way and referred to through their
names. For example, the symbol car works as a function and does what it does because
the primitive subr-object #<subr car> is stored in its function cell.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. For primitive subr-objects such as #<subr car>, names are the only way you
can refer to them: there is no read syntax for such objects. For functions written in Lisp,
the name is more convenient to use in a call than an explicit lambda expression. Also, a
function with a name can refer to itself—it can be recursive. Writing the function’s name
in its own definition is much more convenient than making the function definition point to
itself (something that is not impossible but that has various disadvantages in practice).

We often identify functions with the symbols used to name them. For example, we often
speak of “the function car”, not distinguishing between the symbol car and the primitive
subr-object that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given
function object usually appears in the function cell of only one symbol, this is just a matter
of convenience. It is easy to store it in several symbols using fset; then each of the symbols
is equally well a name for the same function.

A symbol used as a function name may also be used as a variable; these two uses of
a symbol are independent and do not conflict. (Some Lisp dialects, such as Scheme, do
not distinguish between a symbol’s value and its function definition; a symbol’s value as a
variable is also its function definition.) If you have not given a symbol a function definition,
you cannot use it as a function; whether the symbol has a value as a variable makes no
difference to this.

12.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun special form.

Special Formdefun name argument-list body-forms
defun is the usual way to define new Lisp functions. It defines the symbol name as
a function that looks like this:

(lambda argument-list . body-forms)

defun stores this lambda expression in the function cell of name. It returns the value
name, but usually we ignore this value.
As described previously (see Section 12.2 [Lambda Expressions], page 156), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two of the body-forms may be a documentation string and an interactive
declaration.
There is no conflict if the same symbol name is also used as a variable, since the
symbol’s value cell is independent of the function cell. See Section 8.1 [Symbol Com-
ponents], page 99.

Chapter 12: Functions 161

Here are some examples:
(defun foo () 5)

⇒ foo
(foo)

⇒ 5

(defun bar (a &optional b &rest c)
(list a b c))
⇒ bar

(bar 1 2 3 4 5)
⇒ (1 2 (3 4 5))

(bar 1)
⇒ (1 nil nil)

(bar)
error Wrong number of arguments.

(defun capitalize-backwards ()
"Upcase the last letter of a word."
(interactive)
(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))

⇒ capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even
primitive functions such as car without any hesitation or notification. Redefining a
function already defined is often done deliberately, and there is no way to distinguish
deliberate redefinition from unintentional redefinition.

Functiondefalias name definition
This special form defines the symbol name as a function, with definition definition
(which can be any valid Lisp function).
The proper place to use defalias is where a specific function name is being defined—
especially where that name appears explicitly in the source file being loaded. This
is because defalias records which file defined the function, just like defun (see
Section 15.7 [Unloading], page 201).
By contrast, in programs that manipulate function definitions for other purposes, it
is better to use fset, which does not keep such records.

See also defsubst, which defines a function like defun and tells the Lisp compiler to
open-code it. See Section 12.9 [Inline Functions], page 168.

12.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call
them, i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example,
evaluating the list (concat "a" "b") calls the function concat with arguments "a" and
"b". See Chapter 9 [Evaluation], page 107, for a description of evaluation.

162 GNU Emacs Lisp Reference Manual

When you write a list as an expression in your program, the function name it calls is
written in your program. This means that you choose which function to call, and how
many arguments to give it, when you write the program. Usually that’s just what you
want. Occasionally you need to compute at run time which function to call. To do that, use
the function funcall. When you also need to determine at run time how many arguments
to pass, use apply.

Functionfuncall function &rest arguments
funcall calls function with arguments, and returns whatever function returns.
Since funcall is a function, all of its arguments, including function, are evaluated
before funcall is called. This means that you can use any expression to obtain the
function to be called. It also means that funcall does not see the expressions you
write for the arguments, only their values. These values are not evaluated a second
time in the act of calling function; funcall enters the normal procedure for calling a
function at the place where the arguments have already been evaluated.
The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the
“unevaluated” argument expressions. funcall cannot provide these because, as we
saw above, it never knows them in the first place.

(setq f ’list)
⇒ list

(funcall f ’x ’y ’z)
⇒ (x y z)

(funcall f ’x ’y ’(z))
⇒ (x y (z))

(funcall ’and t nil)
error Invalid function: #<subr and>

Compare these examples with the examples of apply.

Functionapply function &rest arguments
apply calls function with arguments, just like funcall but with one difference: the
last of arguments is a list of objects, which are passed to function as separate ar-
guments, rather than a single list. We say that apply spreads this list so that each
individual element becomes an argument.

apply returns the result of calling function. As with funcall, function must either
be a Lisp function or a primitive function; special forms and macros do not make
sense in apply.

(setq f ’list)
⇒ list

(apply f ’x ’y ’z)
error Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

⇒ 10
(apply ’+ ’(1 2 3 4))

⇒ 10

Chapter 12: Functions 163

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

For an interesting example of using apply, see the description of mapcar, in Sec-
tion 12.6 [Mapping Functions], page 163.

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the
argument. Here are two different kinds of no-op function:

Functionidentity arg
This function returns arg and has no side effects.

Functionignore &rest args
This function ignores any arguments and returns nil.

12.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collec-
tion. Emacs Lisp has several such functions; mapcar and mapconcat, which scan a list, are
described here. See Section 8.3 [Creating Symbols], page 101, for the function mapatoms
which maps over the symbols in an obarray. See Section 7.2 [Hash Access], page 95, for the
function maphash which maps over key/value associations in a hash table.

These mapping functions do not allow char-tables because a char-table is a sparse array
whose nominal range of indices is very large. To map over a char-table in a way that
deals properly with its sparse nature, use the function map-char-table (see Section 6.6
[Char-Tables], page 89).

Functionmapcar function sequence
mapcar applies function to each element of sequence in turn, and returns a list of the
results.
The argument sequence can be any kind of sequence except a char-table; that is, a
list, a vector, a bool-vector, or a string. The result is always a list. The length of the
result is the same as the length of sequence.
For example:

(mapcar ’car ’((a b) (c d) (e f)))
⇒ (a c e)

(mapcar ’1+ [1 2 3])
⇒ (2 3 4)

(mapcar ’char-to-string "abc")
⇒ ("a" "b" "c")

;; Call each function in my-hooks.
(mapcar ’funcall my-hooks)

164 GNU Emacs Lisp Reference Manual

(defun mapcar* (function &rest args)
"Apply FUNCTION to successive cars of all ARGS.

Return the list of results."
;; If no list is exhausted,
(if (not (memq ’nil args))

;; apply function to cars.
(cons (apply function (mapcar ’car args))

(apply ’mapcar* function
;; Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) ’(1 2 3 4))
⇒ ((a . 1) (b . 2) (c . 3))

Functionmapc function sequence
mapc is like mapcar except that function is used for side-effects only—the values it
returns are ignored, not collected into a list. mapc always returns sequence.

Functionmapconcat function sequence separator
mapconcat applies function to each element of sequence: the results, which must
be strings, are concatenated. Between each pair of result strings, mapconcat inserts
the string separator. Usually separator contains a space or comma or other suitable
punctuation.
The argument function must be a function that can take one argument and return a
string. The argument sequence can be any kind of sequence except a char-table; that
is, a list, a vector, a bool-vector, or a string.

(mapconcat ’symbol-name
’(The cat in the hat)
" ")

⇒ "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"
"")

⇒ "IBM.9111"

12.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda, a byte-code function compiled from
such a list, or alternatively a primitive subr-object; names are “extra”. Although usually
functions are defined with defun and given names at the same time, it is occasionally more
concise to use an explicit lambda expression—an anonymous function. Such a list is valid
wherever a function name is.

Any method of creating such a list makes a valid function. Even this:
(setq silly (append ’(lambda (x)) (list (list ’+ (* 3 4) ’x))))
⇒ (lambda (x) (+ 12 x))

This computes a list that looks like (lambda (x) (+ 12 x)) and makes it the value (not the
function definition!) of silly.

Here is how we might call this function:

Chapter 12: Functions 165

(funcall silly 1)
⇒ 13

(It does not work to write (silly 1), because this function is not the function definition
of silly. We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For
example, you might want to pass one as an argument to the function mapcar, which applies
any given function to each element of a list.

Here we define a function change-property which uses a function as its third argument:

(defun change-property (symbol prop function)
(let ((value (get symbol prop)))
(put symbol prop (funcall function value))))

Here we define a function that uses change-property, passing it a function to double a
number:

(defun double-property (symbol prop)
(change-property symbol prop ’(lambda (x) (* 2 x))))

In such cases, we usually use the special form function instead of simple quotation to quote
the anonymous function, like this:

(defun double-property (symbol prop)
(change-property symbol prop

(function (lambda (x) (* 2 x)))))

Using function instead of quote makes a difference if you compile the function double-
property. For example, if you compile the second definition of double-property, the
anonymous function is compiled as well. By contrast, if you compile the first definition
which uses ordinary quote, the argument passed to change-property is the precise list
shown:

(lambda (x) (* x 2))

The Lisp compiler cannot assume this list is a function, even though it looks like one, since
it does not know what change-property will do with the list. Perhaps it will check whether
the car of the third element is the symbol *! Using function tells the compiler it is safe
to go ahead and compile the constant function.

Nowadays it is possible to omit function entirely, like this:

(defun double-property (symbol prop)
(change-property symbol prop (lambda (x) (* 2 x))))

This is because lambda itself implies function.

We sometimes write function instead of quote when quoting the name of a function,
but this usage is just a sort of comment:

(function symbol) ≡ (quote symbol) ≡ ’symbol

The read syntax #’ is a short-hand for using function. For example,

#’(lambda (x) (* x x))

is equivalent to

(function (lambda (x) (* x x)))

166 GNU Emacs Lisp Reference Manual

Special Formfunction function-object
This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the Emacs Lisp compiler that function-
object is intended to be used only as a function, and therefore can safely be compiled.
Contrast this with quote, in Section 9.2 [Quoting], page 113.

See documentation in Section 24.2 [Accessing Documentation], page 388, for a realistic
example using function and an anonymous function.

12.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function in Section 9.1.4 [Function Indirection],
page 109.

Functionsymbol-function symbol
This returns the object in the function cell of symbol. If the symbol’s function cell is
void, a void-function error is signaled.
This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))
⇒ bar

(symbol-function ’bar)
⇒ (lambda (n) (+ n 2))

(fset ’baz ’bar)
⇒ bar

(symbol-function ’baz)
⇒ bar

If you have never given a symbol any function definition, we say that that symbol’s
function cell is void. In other words, the function cell does not have any Lisp object in it.
If you try to call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void
are Lisp objects, and can be stored into a function cell just as any other object can be (and
they can be valid functions if you define them in turn with defun). A void function cell
contains no object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

Functionfboundp symbol
This function returns t if the symbol has an object in its function cell, nil otherwise.
It does not check that the object is a legitimate function.

Functionfmakunbound symbol
This function makes symbol’s function cell void, so that a subsequent attempt to ac-
cess this cell will cause a void-function error. (See also makunbound, in Section 11.4
[Void Variables], page 136.)

Chapter 12: Functions 167

(defun foo (x) x)
⇒ foo

(foo 1)
⇒1

(fmakunbound ’foo)
⇒ foo

(foo 1)
error Symbol’s function definition is void: foo

Functionfset symbol definition
This function stores definition in the function cell of symbol. The result is definition.
Normally definition should be a function or the name of a function, but this is not
checked. The argument symbol is an ordinary evaluated argument.
There are three normal uses of this function:
• Copying one symbol’s function definition to another—in other words, making

an alternate name for a function. (If you think of this as the definition of the
new name, you should use defalias instead of fset; see Section 12.4 [Defining
Functions], page 160.)

• Giving a symbol a function definition that is not a list and therefore cannot be
made with defun. For example, you can use fset to give a symbol s1 a function
definition which is another symbol s2; then s1 serves as an alias for whatever
definition s2 presently has. (Once again use defalias instead of fset if you
think of this as the definition of s1.)

• In constructs for defining or altering functions. If defun were not a primitive, it
could be written in Lisp (as a macro) using fset.

Here are examples of these uses:
;; Save foo’s definition in old-foo.
(fset ’old-foo (symbol-function ’foo))

;; Make the symbol car the function definition of xfirst.
;; (Most likely, defalias would be better than fset here.)
(fset ’xfirst ’car)

⇒ car
(xfirst ’(1 2 3))

⇒ 1
(symbol-function ’xfirst)

⇒ car
(symbol-function (symbol-function ’xfirst))

⇒ #<subr car>

;; Define a named keyboard macro.
(fset ’kill-two-lines "\^u2\^k")

⇒ "\^u2\^k"

;; Here is a function that alters other functions.
(defun copy-function-definition (new old)
"Define NEW with the same function definition as OLD."
(fset new (symbol-function old)))

168 GNU Emacs Lisp Reference Manual

When writing a function that extends a previously defined function, the following idiom
is sometimes used:

(fset ’old-foo (symbol-function ’foo))
(defun foo ()
"Just like old-foo, except more so."
(old-foo)
(more-so))

This does not work properly if foo has been defined to autoload. In such a case, when foo
calls old-foo, Lisp attempts to define old-foo by loading a file. Since this presumably
defines foo rather than old-foo, it does not produce the proper results. The only way to
avoid this problem is to make sure the file is loaded before moving aside the old definition
of foo.

But it is unmodular and unclean, in any case, for a Lisp file to redefine a function defined
elsewhere. It is cleaner to use the advice facility (see Chapter 17 [Advising Functions],
page 215).

12.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function
works just like an ordinary function except for one thing: when you compile a call to the
function, the function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages.
For one thing, it reduces flexibility; if you change the definition of the function, calls already
inlined still use the old definition until you recompile them. Since the flexibility of redefining
functions is an important feature of Emacs, you should not make a function inline unless
its speed is really crucial.

Another disadvantage is that making a large function inline can increase the size of
compiled code both in files and in memory. Since the speed advantage of inline functions
is greatest for small functions, you generally should not make large functions inline.

It’s possible to define a macro to expand into the same code that an inline function
would execute. (See Chapter 13 [Macros], page 171.) But the macro would be limited to
direct use in expressions—a macro cannot be called with apply, mapcar and so on. Also,
it takes some work to convert an ordinary function into a macro. To convert it into an
inline function is very easy; simply replace defun with defsubst. Since each argument of
an inline function is evaluated exactly once, you needn’t worry about how many times the
body uses the arguments, as you do for macros. (See Section 13.6.2 [Argument Evaluation],
page 175.)

Inline functions can be used and open-coded later on in the same file, following the
definition, just like macros.

12.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 12.5 [Calling Functions], page 161.

Chapter 12: Functions 169

autoload See Section 15.4 [Autoload], page 197.

call-interactively
See Section 21.3 [Interactive Call], page 292.

commandp See Section 21.3 [Interactive Call], page 292.

documentation
See Section 24.2 [Accessing Documentation], page 388.

eval See Section 9.3 [Eval], page 113.

funcall See Section 12.5 [Calling Functions], page 161.

function See Section 12.7 [Anonymous Functions], page 164.

ignore See Section 12.5 [Calling Functions], page 161.

indirect-function
See Section 9.1.4 [Function Indirection], page 109.

interactive
See Section 21.2.1 [Using Interactive], page 288.

interactive-p
See Section 21.3 [Interactive Call], page 292.

mapatoms See Section 8.3 [Creating Symbols], page 101.

mapcar See Section 12.6 [Mapping Functions], page 163.

map-char-table
See Section 6.6 [Char-Tables], page 89.

mapconcat
See Section 12.6 [Mapping Functions], page 163.

undefined
See Section 22.7 [Key Lookup], page 333.

170 GNU Emacs Lisp Reference Manual

Chapter 13: Macros 171

13 Macros

Macros enable you to define new control constructs and other language features. A
macro is defined much like a function, but instead of telling how to compute a value, it tells
how to compute another Lisp expression which will in turn compute the value. We call this
expression the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the ar-
guments, not on the argument values as functions do. They can therefore construct an
expansion containing these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the
sake of speed, consider using an inline function instead. See Section 12.9 [Inline Functions],
page 168.

13.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much
like the ++ operator in C. We would like to write (inc x) and have the effect of (setq x
(1+ x)). Here’s a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var is the symbol x—not the value of x,
as it would be in a function. The body of the macro uses this to construct the expansion,
which is (setq x (1+ x)). Once the macro definition returns this expansion, Lisp proceeds
to evaluate it, thus incrementing x.

13.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name
of the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one
crucial difference: the macro arguments are the actual expressions appearing in the macro
call. They are not evaluated before they are given to the macro definition. By contrast, the
arguments of a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is
invoked. The argument variables of the macro are bound to the argument values from the
macro call, or to a list of them in the case of a &rest argument. And the macro body
executes and returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned
by the macro body is not the value of the macro call. Instead, it is an alternate expression
for computing that value, also known as the expansion of the macro. The Lisp interpreter
proceeds to evaluate the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other
macros. It may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

172 GNU Emacs Lisp Reference Manual

Functionmacroexpand form &optional environment
This function expands form, if it is a macro call. If the result is another macro call,
it is expanded in turn, until something which is not a macro call results. That is
the value returned by macroexpand. If form is not a macro call to begin with, it is
returned as given.
Note that macroexpand does not look at the subexpressions of form (although some
macro definitions may do so). Even if they are macro calls themselves, macroexpand
does not expand them.
The function macroexpand does not expand calls to inline functions. Normally there
is no need for that, since a call to an inline function is no harder to understand than
a call to an ordinary function.
If environment is provided, it specifies an alist of macro definitions that shadow the
currently defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))
⇒ inc

(macroexpand ’(inc r))
⇒ (setq r (1+ r))

(defmacro inc2 (var1 var2)
(list ’progn (list ’inc var1) (list ’inc var2)))
⇒ inc2

(macroexpand ’(inc2 r s))
⇒ (progn (inc r) (inc s)) ; inc not expanded here.

13.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls
the macro definition just as the interpreter would, and receives an expansion. But instead
of evaluating this expansion, it compiles the expansion as if it had appeared directly in the
program. As a result, the compiled code produces the value and side effects intended for
the macro, but executes at full compiled speed. This would not work if the macro body
computed the value and side effects itself—they would be computed at compile time, which
is not useful.

In order for compilation of macro calls to work, the macros must already be defined in
Lisp when the calls to them are compiled. The compiler has a special feature to help you
do this: if a file being compiled contains a defmacro form, the macro is defined temporarily
for the rest of the compilation of that file. To make this feature work, you must put the
defmacro in the same file where it is used, and before its first use.

Byte-compiling a file executes any require calls at top-level in the file. This is in case the
file needs the required packages for proper compilation. One way to ensure that necessary
macro definitions are available during compilation is to require the files that define them
(see Section 15.6 [Named Features], page 200). To avoid loading the macro definition files

Chapter 13: Macros 173

when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 16.5 [Eval During Compile], page 209).

13.4 Defining Macros

A Lisp macro is a list whose car is macro. Its cdr should be a function; expansion of
the macro works by applying the function (with apply) to the list of unevaluated argument-
expressions from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this
is never done, because it does not make sense to pass an anonymous macro to functionals
such as mapcar. In practice, all Lisp macros have names, and they are usually defined with
the special form defmacro.

Special Formdefmacro name argument-list body-forms. . .
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

(Note that the cdr of this list is a function—a lambda expression.) This macro object
is stored in the function cell of name. The value returned by evaluating the defmacro
form is name, but usually we ignore this value.
The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 12.2.3 [Argument List], page 158).
Macros may have a documentation string, but any interactive declaration is ignored
since macros cannot be called interactively.

13.5 Backquote

Macros often need to construct large list structures from a mixture of constants and
nonconstant parts. To make this easier, use the ‘‘’ syntax (usually called backquote).

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 9.2 [Quoting], page 113).
For example, these two forms yield identical results:

‘(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

’(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. Backquote evaluates the argument of ‘,’ and puts the value in the list structure:

(list ’a ’list ’of (+ 2 3) ’elements)
⇒ (a list of 5 elements)

‘(a list of ,(+ 2 3) elements)
⇒ (a list of 5 elements)

Substitution with ‘,’ is allowed at deeper levels of the list structure also. For example:
(defmacro t-becomes-nil (variable)
‘(if (eq ,variable t)

(setq ,variable nil)))

174 GNU Emacs Lisp Reference Manual

(t-becomes-nil foo)
≡ (if (eq foo t) (setq foo nil))

You can also splice an evaluated value into the resulting list, using the special marker
‘,@’. The elements of the spliced list become elements at the same level as the other elements
of the resulting list. The equivalent code without using ‘‘’ is often unreadable. Here are
some examples:

(setq some-list ’(2 3))
⇒ (2 3)

(cons 1 (append some-list ’(4) some-list))
⇒ (1 2 3 4 2 3)

‘(1 ,@some-list 4 ,@some-list)
⇒ (1 2 3 4 2 3)

(setq list ’(hack foo bar))
⇒ (hack foo bar)

(cons ’use
(cons ’the
(cons ’words (append (cdr list) ’(as elements)))))
⇒ (use the words foo bar as elements)

‘(use the words ,@(cdr list) as elements)
⇒ (use the words foo bar as elements)

In old Emacs versions, before version 19.29, ‘‘’ used a different syntax which required
an extra level of parentheses around the entire backquote construct. Likewise, each ‘,’ or
‘,@’ substitution required an extra level of parentheses surrounding both the ‘,’ or ‘,@’ and
the following expression. The old syntax required whitespace between the ‘‘’, ‘,’ or ‘,@’
and the following expression.

This syntax is still accepted, for compatibility with old Emacs versions, but we recom-
mend not using it in new programs.

13.6 Common Problems Using Macros

The basic facts of macro expansion have counterintuitive consequences. This section
describes some important consequences that can lead to trouble, and rules to follow to
avoid trouble.

13.6.1 Wrong Time

The most common problem in writing macros is doing too some of the real work
prematurely—while expanding the macro, rather than in the expansion itself. For instance,
one real package had this nmacro definition:

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)

(set-buffer-multibyte arg)))

With this erroneous macro definition, the program worked fine when interpreted but
failed when compiled. This macro definition called set-buffer-multibyte during compi-
lation, which was wrong, and then did nothing when the compiled package was run. The
definition that the programmer really wanted was this:

Chapter 13: Macros 175

(defmacro my-set-buffer-multibyte (arg)
(if (fboundp ’set-buffer-multibyte)

‘(set-buffer-multibyte ,arg)))

This macro expands, if appropriate, into a call to set-buffer-multibyte that will be
executed when the compiled program is actually run.

13.6.2 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments
will be evaluated when the expansion is executed. The following macro (used to facilitate
iteration) illustrates the problem. This macro allows us to write a simple “for” loop such
as one might find in Pascal.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))

(cons ’while (cons (list ’<= var final)
(append body (list (list ’inc var)))))))

⇒ for

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\n%d %d" i square)))

7→
(let ((i 1))
(while (<= i 3)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

a 1 1
a 2 4
a 3 9

⇒ nil

The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely
ignored. The idea is that you will write noise words (such as from, to, and do) in those
positions in the macro call.

Here’s an equivalent definition simplified through use of backquote:
(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."
‘(let ((,var ,init))

(while (<= ,var ,final)
,@body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that
final is evaluated on every iteration. If final is a constant, this is not a problem. If it is a

176 GNU Emacs Lisp Reference Manual

more complex form, say (long-complex-calculation x), this can slow down the execution
significantly. If final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an
expansion that evaluates the argument expressions exactly once unless repeated evaluation
is part of the intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((i 1)
(max 3))

(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

Here is a macro definition that creates this expansion:
(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)

(max ,final))
(while (<= ,var max)

,@body
(inc ,var))))

Unfortunately, this fix introduces another problem, described in the following section.

13.6.3 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max
which the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do
(let ((this (frob x)))
(if (< max this)

(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 8.3
[Creating Symbols], page 101). The uninterned symbol can be bound and referred to just
like any other symbol, but since it is created by for, we know that it cannot already appear
in the user’s program. Since it is not interned, there is no way the user can put it into the
program later. It will never appear anywhere except where put by for. Here is a definition
of for that works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))
‘(let ((,var ,init)

(,tempvar ,final))
(while (<= ,var ,tempvar)
,@body
(inc ,var)))))

Chapter 13: Macros 177

This creates an uninterned symbol named max and puts it in the expansion instead of the
usual interned symbol max that appears in expressions ordinarily.

13.6.4 Evaluating Macro Arguments in Expansion

Another problem can happen if the macro definition itself evaluates any of the macro
argument expressions, such as by calling eval (see Section 9.3 [Eval], page 113). If the
argument is supposed to refer to the user’s variables, you may have trouble if the user
happens to use a variable with the same name as one of the macro arguments. Inside the
macro body, the macro argument binding is the most local binding of this variable, so any
references inside the form being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(list ’setq (eval a) t))

⇒ foo
(setq x ’b)
(foo x) 7→ (setq b t)

⇒ t ; and b has been set.
;; but
(setq a ’c)
(foo a) 7→ (setq a t)

⇒ t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts
with the macro argument variable a.

Another problem with calling eval in a macro definition is that it probably won’t do
what you intend in a compiled program. The byte-compiler runs macro definitions while
compiling the program, when the program’s own computations (which you might have
wished to access with eval) don’t occur and its local variable bindings don’t exist.

To avoid these problems, don’t evaluate an argument expression while computing the
macro expansion. Instead, substitute the expression into the macro expansion, so that its
value will be computed as part of executing the expansion. This is how the other examples
in this chapter work.

13.6.5 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it
is evaluated in an interpreted function, but is expanded only once (during compilation)
for a compiled function. If the macro definition has side effects, they will work differently
depending on how many times the macro is expanded.

Therefore, you should avoid side effects in computation of the macro expansion, unless
you really know what you are doing.

One special kind of side effect can’t be avoided: constructing Lisp objects. Almost all
macro expansions include constructed lists; that is the whole point of most macros. This is
usually safe; there is just one case where you must be careful: when the object you construct
is part of a quoted constant in the macro expansion.

178 GNU Emacs Lisp Reference Manual

If the macro is expanded just once, in compilation, then the object is constructed just
once, during compilation. But in interpreted execution, the macro is expanded each time
the macro call runs, and this means a new object is constructed each time.

In most clean Lisp code, this difference won’t matter. It can matter only if you perform
side-effects on the objects constructed by the macro definition. Thus, to avoid trouble,
avoid side effects on objects constructed by macro definitions. Here is an example of how
such side effects can get you into trouble:

(defmacro empty-object ()
(list ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))
(if condition

(setcar object condition))
object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is
called. Thus, no side effect survives between calls. If initialize is compiled, then the
macro empty-object is expanded during compilation, producing a single “constant” (nil)
that is reused and altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny
kind of constant, not as a memory allocation construct. You wouldn’t use setcar on a
constant such as ’(nil), so naturally you won’t use it on (empty-object) either.

Chapter 14: Writing Customization Definitions 179

14 Writing Customization Definitions

This chapter describes how to declare user options for customization, and also customiza-
tion groups for classifying them. We use the term customization item to include both kinds
of customization definitions—as well as face definitions (see Section 38.11.2 [Defining Faces],
page 679).

14.1 Common Item Keywords

All kinds of customization declarations (for variables and groups, and for faces) accept
keyword arguments for specifying various information. This section describes some keywords
that apply to all kinds.

All of these keywords, except :tag, can be used more than once in a given item. Each
use of the keyword has an independent effect. The keyword :tag is an exception because
any given item can only display one name.

:tag label Use label, a string, instead of the item’s name, to label the item in customization
menus and buffers.

:group group
Put this customization item in group group. When you use :group in a
defgroup, it makes the new group a subgroup of group.
If you use this keyword more than once, you can put a single item into more
than one group. Displaying any of those groups will show this item. Please
don’t overdo this, since the result would be annoying.

:link link-data
Include an external link after the documentation string for this item. This is a
sentence containing an active field which references some other documentation.
There are three alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in "(emacs)Top". The link appears as ‘[manual]’ in the
customization buffer.

(info-link info-node)
Like custom-manual except that the link appears in the customiza-
tion buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the url. The
link appears in the customization buffer as url.

(emacs-commentary-link library)
Link to the commentary section of a library; library is a string
which specifies the library name.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-link :tag

180 GNU Emacs Lisp Reference Manual

"foo" "(emacs)Top") makes a link to the Emacs manual which appears in the
buffer as ‘foo’.
An item can have more than one external link; however, most items have none
at all.

:load file Load file file (a string) before displaying this customization item. Loading is
done with load-library, and only if the file is not already loaded.

:require feature
Require feature feature (a symbol) when installing a value for this item (an
option or a face) that was saved using the customization feature. This is done
by calling require.
The most common reason to use :require is when a variable enables a feature
such as a minor mode, and just setting the variable won’t have any effect unless
the code which implements the mode is loaded.

14.2 Defining Custom Groups

Each Emacs Lisp package should have one main customization group which contains all
the options, faces and other groups in the package. If the package has a small number of
options and faces, use just one group and put everything in it. When there are more than
twelve or so options and faces, then you should structure them into subgroups, and put
the subgroups under the package’s main customization group. It is OK to put some of the
options and faces in the package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one
or more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

Macrodefgroup group members doc [keyword value]...
Declare group as a customization group containing members. Do not quote the symbol
group. The argument doc specifies the documentation string for the group. It should
not start with a ‘*’ as in defcustom; that convention is for variables only.

The argument members is a list specifying an initial set of customization items to
be members of the group. However, most often members is nil, and you specify the
group’s members by using the :group keyword when defining those members.

If you want to specify group members through members, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing
that symbol. Useful widgets are custom-variable for a variable, custom-face for a
face, and custom-group for a group.

When a new group is introduced into Emacs, use this keyword in defgroup:

:version version
This option specifies that the group was first introduced in Emacs version
version. The value version must be a string.

Chapter 14: Writing Customization Definitions 181

Tag the group with a version like this when it is introduced, rather than the individual
members (see Section 14.3 [Variable Definitions], page 181).
In addition to the common keywords (see Section 14.1 [Common Keywords],
page 179), you can also use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, then the tag for
that item is constructed (by default) by omitting prefix.
One group can have any number of prefixes.

The prefix-discarding feature is currently turned off, which means that :prefix currently
has no effect. We did this because we found that discarding the specified prefixes often led
to confusing names for options. This happened because the people who wrote the defgroup
definitions for various groups added :prefix keywords whenever they make logical sense—
that is, whenever the variables in the library have a common prefix.

In order to obtain good results with :prefix, it would be necessary to check the specific
effects of discarding a particular prefix, given the specific items in a group and their names
and documentation. If the resulting text is not clear, then :prefix should not be used in
that case.

It should be possible to recheck all the customization groups, delete the :prefix spec-
ifications which give unclear results, and then turn this feature back on, if someone would
like to do the work.

14.3 Defining Customization Variables

Use defcustom to declare user-editable variables.

Macrodefcustom option default doc [keyword value]. . .
Declare option as a customizable user option variable. Do not quote option. The
argument doc specifies the documentation string for the variable. It should often
start with a ‘*’ to mark it as a user option (see Section 11.5 [Defining Variables],
page 137). Do not start the documentation string with ‘*’ for options which cannot
or normally should not be set with set-variable; examples of the former are global
minor mode options such as global-font-lock-mode and examples of the latter are
hooks.
If option is void, defcustom initializes it to default. default should be an expression
to compute the value; be careful in writing it, because it can be evaluated on more
than one occasion. You should normally avoid using backquotes in default because
they are not expanded when editing the value, causing list values to appear to have
the wrong structure.
When you evaluate a defcustom form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun arranges to set the variable unconditionally, without
testing whether its value is void. (The same feature applies to defvar.) See Sec-
tion 11.5 [Defining Variables], page 137.

defcustom accepts the following additional keywords:

182 GNU Emacs Lisp Reference Manual

:type type
Use type as the data type for this option. It specifies which values are legitimate,
and how to display the value. See Section 14.4 [Customization Types], page 184,
for more information.

:options list
Specify list as the list of reasonable values for use in this option. The user
is not restricted to using only these values, but they are offered as convenient
alternatives.
This is meaningful only for certain types, currently including hook, plist and
alist. See the definition of the individual types for a description of how to use
:options.

:version version
This option specifies that the variable was first introduced, or its default value
was changed, in Emacs version version. The value version must be a string.
For example,

(defcustom foo-max 34
"*Maximum number of foo’s allowed."
:type ’integer
:group ’foo
:version "20.3")

:set setfunction
Specify setfunction as the way to change the value of this option. The function
setfunction should take two arguments, a symbol and the new value, and should
do whatever is necessary to update the value properly for this option (which
may not mean simply setting the option as a Lisp variable). The default for
setfunction is set-default.

:get getfunction
Specify getfunction as the way to extract the value of this option. The function
getfunction should take one argument, a symbol, and should return the “current
value” for that symbol (which need not be the symbol’s Lisp value). The default
is default-value.

:initialize function
function should be a function used to initialize the variable when the defcustom
is evaluated. It should take two arguments, the symbol and value. Here are
some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable, but do
not reinitialize it if it is already non-void. This is the default
:initialize function.

custom-initialize-default
Like custom-initialize-set, but use the function set-default
to set the variable, instead of the variable’s :set function. This
is the usual choice for a variable whose :set function enables or
disables a minor mode; with this choice, defining the variable will

Chapter 14: Writing Customization Definitions 183

not call the minor mode function, but customizing the variable will
do so.

custom-initialize-reset
Always use the :set function to initialize the variable. If the vari-
able is already non-void, reset it by calling the :set function using
the current value (returned by the :get method).

custom-initialize-changed
Use the :set function to initialize the variable, if it is already set
or has been customized; otherwise, just use set-default.

:set-after variables
When setting variables according to saved customizations, make sure to set the
variables variables before this one; in other words, delay setting this variable
until after those others have been handled. Use :set-after if setting this
variable won’t work properly unless those other variables already have their
intended values.

The :require option is useful for an option that turns on the operation of a certain
feature. Assuming that the package is coded to check the value of the option, you still need
to arrange for the package to be loaded. You can do that with :require. See Section 14.1
[Common Keywords], page 179. Here is an example, from the library ‘paren.el’:

(defcustom show-paren-mode nil
"Toggle Show Paren mode..."
:set (lambda (symbol value)

(show-paren-mode (or value 0)))
:initialize ’custom-initialize-default
:type ’boolean
:group ’paren-showing
:require ’paren)

If a customization item has a type such as hook or alist, which supports :options,
you can add additional options to the item, outside the defcustom declaration, by calling
custom-add-option. For example, if you define a function my-lisp-mode-initialization
intended to be called from emacs-lisp-mode-hook, you might want to add that to the list
of options for emacs-lisp-mode-hook, but not by editing its definition. You can do it thus:

(custom-add-option ’emacs-lisp-mode-hook
’my-lisp-mode-initialization)

Functioncustom-add-option symbol option
To the customization symbol, add option.

The precise effect of adding option depends on the customization type of symbol.

Internally, defcustom uses the symbol property standard-value to record the expres-
sion for the default value, and saved-value to record the value saved by the user with the
customization buffer. The saved-value property is actually a list whose car is an expression
which evaluates to the value.

184 GNU Emacs Lisp Reference Manual

14.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display
the value in the customization buffer for editing.

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated; since types that vary at run time are rarely useful, normally you use
a quoted constant. For example:

(defcustom diff-command "diff"
"*The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number
of arguments, depending on the symbol. Between the type symbol and its arguments, you
can optionally write keyword-value pairs (see Section 14.4.4 [Type Keywords], page 190).

Some of the type symbols do not use any arguments; those are called simple types. For
a simple type, if you do not use any keyword-value pairs, you can omit the parentheses
around the type symbol. For example just string as a customization type is equivalent to
(string).

14.4.1 Simple Types

This section describes all the simple customization types.

sexp The value may be any Lisp object that can be printed and read back. You can
use sexp as a fall-back for any option, if you don’t want to take the time to
work out a more specific type to use.

integer The value must be an integer, and is represented textually in the customization
buffer.

number The value must be a number, and is represented textually in the customization
buffer.

string The value must be a string, and the customization buffer shows just the con-
tents, with no delimiting ‘"’ characters and no quoting with ‘\’.

regexp Like string except that the string must be a valid regular expression.

character
The value must be a character code. A character code is actually an integer,
but this type shows the value by inserting the character in the buffer, rather
than by showing the number.

file The value must be a file name, and you can do completion with M-〈TAB〉.

(file :must-match t)
The value must be a file name for an existing file, and you can do completion
with M-〈TAB〉.

Chapter 14: Writing Customization Definitions 185

directory
The value must be a directory name, and you can do completion with M-〈TAB〉.

hook The value must be a list of functions (or a single function, but that is obso-
lete usage). This customization type is used for hook variables. You can use
the :options keyword in a hook variable’s defcustom to specify a list of func-
tions recommended for use in the hook; see Section 14.3 [Variable Definitions],
page 181.

alist The value must be a list of cons-cells, the car of each cell representing a key,
and the cdr of the same cell representing an associated value. The user can
add and delete key/value pairs, and edit both the key and the value of each
pair.
You can specify the key and value types like this:

(alist :key-type key-type :value-type value-type)

where key-type and value-type are customization type specifications. The de-
fault key type is sexp, and the default value type is sexp.
The user can add any key matching the specified key type, but you can give
some keys a preferential treatment by specifying them with the :options (see
Section 14.3 [Variable Definitions], page 181). The specified keys will always be
shown in the customize buffer (together with a suitable value), with a checkbox
to include or exclude or disable the key/value pair from the alist. The user will
not be able to edit the keys specified by the :options keyword argument.
The argument to the :options keywords should be a list of option specifica-
tions. Ordinarily, the options are simply atoms, which are the specified keys.
For example:

:options ’("foo" "bar" "baz")

specifies that there are three “known” keys, namely "foo", "bar" and "baz",
which will always be shown first.
You may want to restrict the value type for specific keys, for example, the value
associated with the "bar" key can only be an integer. You can specify this by
using a list instead of an atom in the option specification. The first element
will specify the key, like before, while the second element will specify the value
type.

:options ’("foo" ("bar" integer) "baz")

Finally, you may want to change how the key is presented. By default, the
key is simply shown as a const, since the user cannot change the special keys
specified with the :options keyword. However, you may want to use a more
specialized type for presenting the key, like function-item if you know it is a
symbol with a function binding. This is done by using a customization type
specification instead of a symbol for the key.

:options ’("foo" ((function-item some-function) integer) "baz")

Many alists use lists with two elements, instead of cons cells. For example,
(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE).")

instead of

186 GNU Emacs Lisp Reference Manual

(defcustom cons-alist ’(("foo" . 1) ("bar" . 2) ("baz" . 3))
"Each element is a cons-cell (KEY . VALUE).")

Because of the way lists are implemented on top of cons cells, you can treat
list-alist in the example above as a cons cell alist, where the value type is a
list with a single element containing the real value.

(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))
"Each element is a list of the form (KEY VALUE)."
:type ’(alist :value-type (group integer)))

The group widget is used here instead of list only because the formatting is
better suited for the purpose.
Similarily, you can have alists with more values associated with each key, using
variations of this trick:

(defcustom person-data ’(("brian" 50 t)
("dorith" 55 nil)
("ken" 52 t))

"Alist of basic info about people.
Each element has the form (NAME AGE MALE-FLAG)."
:type ’(alist :value-type (group age boolean)))

(defcustom pets ’(("brian")
("dorith" "dog" "guppy")
("ken" "cat"))

"Alist of people’s pets.
In an element (KEY . VALUE), KEY is the person’s name,
and the VALUE is a list of that person’s pets."
:type ’(alist :value-type (repeat string)))

plist The plist custom type is similar to the alist (see above), except that the
information is stored as a property list, i.e. a list of this form:

(key value key value key value ...)

The default :key-type for plist is symbol, rather than sexp.

symbol The value must be a symbol. It appears in the customization buffer as the
name of the symbol.

function The value must be either a lambda expression or a function name. When it is
a function name, you can do completion with M-〈TAB〉.

variable The value must be a variable name, and you can do completion with M-〈TAB〉.
face The value must be a symbol which is a face name, and you can do completion

with M-〈TAB〉.
boolean The value is boolean—either nil or t. Note that by using choice and const

together (see the next section), you can specify that the value must be nil or
t, but also specify the text to describe each value in a way that fits the specific
meaning of the alternative.

coding-system
The value must be a coding-system name, and you can do completion with
M-〈TAB〉.

Chapter 14: Writing Customization Definitions 187

color The value must be a valid color name, and you can do completion with M-〈TAB〉.
A sample is provided,

14.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build
new types from other types. Here are several ways of doing that:

(restricted-sexp :match-alternatives criteria)
The value may be any Lisp object that satisfies one of criteria. criteria should
be a list, and each element should be one of these possibilities:
• A predicate—that is, a function of one argument that has no side effects,

and returns either nil or non-nil according to the argument. Using a
predicate in the list says that objects for which the predicate returns non-
nil are acceptable.

• A quoted constant—that is, ’object. This sort of element in the list says
that object itself is an acceptable value.

For example,
(restricted-sexp :match-alternatives

(integerp ’t ’nil))

allows integers, t and nil as legitimate values.
The customization buffer shows all legitimate values using their read syntax,
and the user edits them textually.

(cons car-type cdr-type)
The value must be a cons cell, its car must fit car-type, and its cdr must fit
cdr-type. For example, (cons string symbol) is a customization type which
matches values such as ("foo" . foo).
In the customization buffer, the car and the cdr are displayed and edited
separately, each according to the type that you specify for it.

(list element-types...)
The value must be a list with exactly as many elements as the element-types
you have specified; and each element must fit the corresponding element-type.
For example, (list integer string function) describes a list of three ele-
ments; the first element must be an integer, the second a string, and the third
a function.
In the customization buffer, each element is displayed and edited separately,
according to the type specified for it.

(vector element-types...)
Like list except that the value must be a vector instead of a list. The elements
work the same as in list.

(choice alternative-types...)
The value must fit at least one of alternative-types. For example, (choice
integer string) allows either an integer or a string.

188 GNU Emacs Lisp Reference Manual

In the customization buffer, the user selects one of the alternatives using a
menu, and can then edit the value in the usual way for that alternative.

Normally the strings in this menu are determined automatically from the
choices; however, you can specify different strings for the menu by including
the :tag keyword in the alternatives. For example, if an integer stands for a
number of spaces, while a string is text to use verbatim, you might write the
customization type this way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal Text’.

In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword.
See Section 14.4.4 [Type Keywords], page 190.

(radio element-types...)
This is similar to choice, except that the choices are displayed using ‘radio
buttons’ rather than a menu. This has the advantage of displaying documenta-
tion for the choices when applicable and so is often a good choice for a choice
between constant functions (function-item customization types).

(const value)
The value must be value—nothing else is allowed.

The main use of const is inside of choice. For example, (choice integer
(const nil)) allows either an integer or nil.

:tag is often used with const, inside of choice. For example,
(choice (const :tag "Yes" t)

(const :tag "No" nil)
(const :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and foo means “ask.”

(other value)
This alternative can match any Lisp value, but if the user chooses this alterna-
tive, that selects the value value.

The main use of other is as the last element of choice. For example,
(choice (const :tag "Yes" t)

(const :tag "No" nil)
(other :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and anything else
means “ask.” If the user chooses ‘Ask’ from the menu of alternatives, that
specifies the value foo; but any other value (not t, nil or foo) displays as
‘Ask’, just like foo.

(function-item function)
Like const, but used for values which are functions. This displays the docu-
mentation string as well as the function name. The documentation string is
either the one you specify with :doc, or function’s own documentation string.

Chapter 14: Writing Customization Definitions 189

(variable-item variable)
Like const, but used for values which are variable names. This displays the
documentation string as well as the variable name. The documentation string
is either the one you specify with :doc, or variable’s own documentation string.

(set types...)
The value must be a list, and each element of the list must match one of the
types specified.
This appears in the customization buffer as a checklist, so that each of types
may have either one corresponding element or none. It is not possible to specify
two different elements that match the same one of types. For example, (set
integer symbol) allows one integer and/or one symbol in the list; it does
not allow multiple integers or multiple symbols. As a result, it is rare to use
nonspecific types such as integer in a set.
Most often, the types in a set are const types, as shown here:

(set (const :bold) (const :italic))

Sometimes they describe possible elements in an alist:
(set (cons :tag "Height" (const height) integer)

(cons :tag "Width" (const width) integer))

That lets the user specify a height value optionally and a width value optionally.

(repeat element-type)
The value must be a list and each element of the list must fit the type element-
type. This appears in the customization buffer as a list of elements, with ‘[INS]’
and ‘[DEL]’ buttons for adding more elements or removing elements.

14.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of
a list or vector. You use it in a set, choice or repeat type which appears among the
element-types of a list or vector.

Normally, each of the element-types in a list or vector describes one and only one
element of the list or vector. Thus, if an element-type is a repeat, that specifies a list of
unspecified length which appears as one element.

But when the element-type uses :inline, the value it matches is merged directly into the
containing sequence. For example, if it matches a list with three elements, those become
three elements of the overall sequence. This is analogous to using ‘,@’ in the backquote
construct.

For example, to specify a list whose first element must be t and whose remaining argu-
ments should be zero or more of foo and bar, use this customization type:

(list (const t) (set :inline t foo bar))

This matches values such as (t), (t foo), (t bar) and (t foo bar).
When the element-type is a choice, you use :inline not in the choice itself, but in

(some of) the alternatives of the choice. For example, to match a list which must start
with a file name, followed either by the symbol t or two strings, use this customization
type:

190 GNU Emacs Lisp Reference Manual

(list file
(choice (const t)

(list :inline t string string)))

If the user chooses the first alternative in the choice, then the overall list has two elements
and the second element is t. If the user chooses the second alternative, then the overall list
has three elements and the second and third must be strings.

14.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name
symbol. Here are the keywords you can use, and their meanings:

:value default
This is used for a type that appears as an alternative inside of choice; it
specifies the default value to use, at first, if and when the user selects this
alternative with the menu in the customization buffer.
Of course, if the actual value of the option fits this alternative, it will appear
showing the actual value, not default.
If nil is not a valid value for the alternative, then it is essential to specify a
valid default with :value.

:format format-string
This string will be inserted in the buffer to represent the value corresponding
to the type. The following ‘%’ escapes are available for use in format-string:

‘%[button%]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is a
function which takes two arguments—the widget which the button
appears in, and the event.
There is no way to specify two different buttons with different ac-
tions.

‘%{sample%}’
Show sample in a special face specified by :sample-face.

‘%v’ Substitute the item’s value. How the value is represented depends
on the kind of item, and (for variables) on the customization type.

‘%d’ Substitute the item’s documentation string.

‘%h’ Like ‘%d’, but if the documentation string is more than one line,
add an active field to control whether to show all of it or just the
first line.

‘%t’ Substitute the tag here. You specify the tag with the :tag keyword.

‘%%’ Display a literal ‘%’.

:action action
Perform action if the user clicks on a button.

Chapter 14: Writing Customization Definitions 191

:button-face face
Use the face face (a face name or a list of face names) for button text displayed
with ‘%[...%]’.

:button-prefix prefix
:button-suffix suffix

These specify the text to display before and after a button. Each can be:

nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

:tag tag Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value
for :format, and use ‘%d’ or ‘%h’ in that value.
The usual reason to specify a documentation string for a type is to provide
more information about the meanings of alternatives inside a :choice type or
the parts of some other composite type.

:help-echo motion-doc
When you move to this item with widget-forward or widget-backward, it
will display the string motion-doc in the echo area. In addition, motion-doc is
used as the mouse help-echo string and may actually be a function or form
evaluated to yield a help string as for help-echo text properties.

:match function
Specify how to decide whether a value matches the type. The corresponding
value, function, should be a function that accepts two arguments, a widget and
a value; it should return non-nil if the value is acceptable.

192 GNU Emacs Lisp Reference Manual

Chapter 15: Loading 193

15 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the
form of Lisp objects. Emacs finds and opens the file, reads the text, evaluates each form,
and then closes the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer
function evaluates all the expressions in a buffer. The difference is that the load functions
read and evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled
code. Each form in the file is called a top-level form. There is no special format for the
forms in a loadable file; any form in a file may equally well be typed directly into a buffer
and evaluated there. (Indeed, most code is tested this way.) Most often, the forms are
function definitions and variable definitions.

A file containing Lisp code is often called a library. Thus, the “Rmail library” is a file
containing code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files
containing Lisp code.

15.1 How Programs Do Loading

Emacs Lisp has several interfaces for loading. For example, autoload creates a place-
holder object for a function defined in a file; trying to call the autoloading function loads
the file to get the function’s real definition (see Section 15.4 [Autoload], page 197). require
loads a file if it isn’t already loaded (see Section 15.6 [Named Features], page 200). Ulti-
mately, all these facilities call the load function to do the work.

Functionload filename &optional missing-ok nomessage nosuffix must-suffix
This function finds and opens a file of Lisp code, evaluates all the forms in it, and
closes the file.
To find the file, load first looks for a file named ‘filename.elc’, that is, for a file
whose name is filename with ‘.elc’ appended. If such a file exists, it is loaded. If
there is no file by that name, then load looks for a file named ‘filename.el’. If that
file exists, it is loaded. Finally, if neither of those names is found, load looks for
a file named filename with nothing appended, and loads it if it exists. (The load
function is not clever about looking at filename. In the perverse case of a file named
‘foo.el.el’, evaluation of (load "foo.el") will indeed find it.)
If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el’ are
not tried. In this case, you must specify the precise file name you want. By specifying
the precise file name and using t for nosuffix, you can prevent perverse file names
such as ‘foo.el.el’ from being tried.
If the optional argument must-suffix is non-nil, then load insists that the file name
used must end in either ‘.el’ or ‘.elc’, unless it contains an explicit directory name.
If filename does not contain an explicit directory name, and does not end in a suffix,
then load insists on adding one.
If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for
the file using the variable load-path. It appends filename to each of the directories

194 GNU Emacs Lisp Reference Manual

listed in load-path, and loads the first file it finds whose name matches. The current
default directory is tried only if it is specified in load-path, where nil stands for
the default directory. load tries all three possible suffixes in the first directory in
load-path, then all three suffixes in the second directory, and so on. See Section 15.2
[Library Search], page 195.
If you get a warning that ‘foo.elc’ is older than ‘foo.el’, it means you should
consider recompiling ‘foo.el’. See Chapter 16 [Byte Compilation], page 205.
When loading a source file (not compiled), load performs character set translation
just as Emacs would do when visiting the file. See Section 33.10 [Coding Systems],
page 590.
Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area
during loading unless nomessage is non-nil.
Any unhandled errors while loading a file terminate loading. If the load was done for
the sake of autoload, any function definitions made during the loading are undone.
If load can’t find the file to load, then normally it signals the error file-error
(with ‘Cannot open load file filename’). But if missing-ok is non-nil, then load
just returns nil.
You can use the variable load-read-function to specify a function for load to use
instead of read for reading expressions. See below.
load returns t if the file loads successfully.

Commandload-file filename
This command loads the file filename. If filename is a relative file name, then the
current default directory is assumed. load-path is not used, and suffixes are not
appended. Use this command if you wish to specify precisely the file name to load.

Commandload-library library
This command loads the library named library. It is equivalent to load, except in
how it reads its argument interactively.

Variableload-in-progress
This variable is non-nil if Emacs is in the process of loading a file, and it is nil
otherwise.

Variableload-read-function
This variable specifies an alternate expression-reading function for load and eval-
region to use instead of read. The function should accept one argument, just as
read does.
Normally, the variable’s value is nil, which means those functions should use read.
Note: Instead of using this variable, it is cleaner to use another, newer feature: to
pass the function as the read-function argument to eval-region. See Section 9.3
[Eval], page 113.

For information about how load is used in building Emacs, see Section E.1 [Building
Emacs], page 777.

Chapter 15: Loading 195

15.2 Library Search

When Emacs loads a Lisp library, it searches for the library in a list of directories specified
by the variable load-path.

User Optionload-path
The value of this variable is a list of directories to search when loading files with load.
Each element is a string (which must be a directory name) or nil (which stands for
the current working directory).

The value of load-path is initialized from the environment variable EMACSLOADPATH, if
that exists; otherwise its default value is specified in ‘emacs/src/paths.h’ when Emacs is
built. Then the list is expanded by adding subdirectories of the directories in the list.

The syntax of EMACSLOADPATH is the same as used for PATH; ‘:’ (or ‘;’, according to
the operating system) separates directory names, and ‘.’ is used for the current default
directory. Here is an example of how to set your EMACSLOADPATH variable from a csh
‘.login’ file:

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/local/share/emacs/20.3/lisp

Here is how to set it using sh:
export EMACSLOADPATH
EMACSLOADPATH=.:/user/bil/emacs:/usr/local/share/emacs/20.3/lisp

Here is an example of code you can place in your init file (see Section 40.1.2 [Init File],
page 722) to add several directories to the front of your default load-path:

(setq load-path
(append (list nil "/user/bil/emacs"

"/usr/local/lisplib"
"~/emacs")

load-path))

In this example, the path searches the current working directory first, followed then by
the ‘/user/bil/emacs’ directory, the ‘/usr/local/lisplib’ directory, and the ‘~/emacs’
directory, which are then followed by the standard directories for Lisp code.

Dumping Emacs uses a special value of load-path. If the value of load-path at the end
of dumping is unchanged (that is, still the same special value), the dumped Emacs switches
to the ordinary load-path value when it starts up, as described above. But if load-path
has any other value at the end of dumping, that value is used for execution of the dumped
Emacs also.

Therefore, if you want to change load-path temporarily for loading a few libraries in
‘site-init.el’ or ‘site-load.el’, you should bind load-path locally with let around
the calls to load.

The default value of load-path, when running an Emacs which has been installed on
the system, includes two special directories (and their subdirectories as well):

"/usr/local/share/emacs/version/site-lisp"

and
"/usr/local/share/emacs/site-lisp"

196 GNU Emacs Lisp Reference Manual

The first one is for locally installed packages for a particular Emacs version; the second is
for locally installed packages meant for use with all installed Emacs versions.

There are several reasons why a Lisp package that works well in one Emacs version can
cause trouble in another. Sometimes packages need updating for incompatible changes in
Emacs; sometimes they depend on undocumented internal Emacs data that can change
without notice; sometimes a newer Emacs version incorporates a version of the package,
and should be used only with that version.

Emacs finds these directories’ subdirectories and adds them to load-path when it starts
up. Both immediate subdirectories and subdirectories multiple levels down are added to
load-path.

Not all subdirectories are included, though. Subdirectories whose names do not start
with a letter or digit are excluded. Subdirectories named ‘RCS’ or ‘CVS’ are excluded.
Also, a subdirectory which contains a file named ‘.nosearch’ is excluded. You can use
these methods to prevent certain subdirectories of the ‘site-lisp’ directories from being
searched.

If you run Emacs from the directory where it was built—that is, an executable that has
not been formally installed—then load-path normally contains two additional directories.
These are the lisp and site-lisp subdirectories of the main build directory. (Both are
represented as absolute file names.)

Commandlocate-library library &optional nosuffix path interactive-call
This command finds the precise file name for library library. It searches for the library
in the same way load does, and the argument nosuffix has the same meaning as in
load: don’t add suffixes ‘.elc’ or ‘.el’ to the specified name library.
If the path is non-nil, that list of directories is used instead of load-path.
When locate-library is called from a program, it returns the file name as a string.
When the user runs locate-library interactively, the argument interactive-call is t,
and this tells locate-library to display the file name in the echo area.

15.3 Loading Non-ascii Characters

When Emacs Lisp programs contain string constants with non-ascii characters, these
can be represented within Emacs either as unibyte strings or as multibyte strings (see
Section 33.1 [Text Representations], page 583). Which representation is used depends on
how the file is read into Emacs. If it is read with decoding into multibyte representation, the
text of the Lisp program will be multibyte text, and its string constants will be multibyte
strings. If a file containing Latin-1 characters (for example) is read without decoding, the
text of the program will be unibyte text, and its string constants will be unibyte strings.
See Section 33.10 [Coding Systems], page 590.

To make the results more predictable, Emacs always performs decoding into the multi-
byte representation when loading Lisp files, even if it was started with the ‘--unibyte’
option. This means that string constants with non-ascii characters translate into multi-
byte strings. The only exception is when a particular file specifies no decoding.

The reason Emacs is designed this way is so that Lisp programs give predictable results,
regardless of how Emacs was started. In addition, this enables programs that depend on

Chapter 15: Loading 197

using multibyte text to work even in a unibyte Emacs. Of course, such programs should be
designed to notice whether the user prefers unibyte or multibyte text, by checking default-
enable-multibyte-characters, and convert representations appropriately.

In most Emacs Lisp programs, the fact that non-ascii strings are multibyte strings
should not be noticeable, since inserting them in unibyte buffers converts them to unibyte
automatically. However, if this does make a difference, you can force a particular Lisp file
to be interpreted as unibyte by writing ‘-*-unibyte: t;-*-’ in a comment on the file’s first
line. With that designator, the file will unconditionally be interpreted as unibyte, even in an
ordinary multibyte Emacs session. This can matter when making keybindings to non-ascii
characters written as ?vliteral.

15.4 Autoload

The autoload facility allows you to make a function or macro known in Lisp, but put off
loading the file that defines it. The first call to the function automatically reads the proper
file to install the real definition and other associated code, then runs the real definition as
if it had been loaded all along.

There are two ways to set up an autoloaded function: by calling autoload, and by
writing a special “magic” comment in the source before the real definition. autoload is
the low-level primitive for autoloading; any Lisp program can call autoload at any time.
Magic comments are the most convenient way to make a function autoload, for packages
installed along with Emacs. These comments do nothing on their own, but they serve as a
guide for the command update-file-autoloads, which constructs calls to autoload and
arranges to execute them when Emacs is built.

Functionautoload function filename &optional docstring interactive type
This function defines the function (or macro) named function so as to load automat-
ically from filename. The string filename specifies the file to load to get the real
definition of function.
If filename does not contain either a directory name, or the suffix .el or .elc, then
autoload insists on adding one of these suffixes, and it will not load from a file whose
name is just filename with no added suffix.
The argument docstring is the documentation string for the function. Normally,
this should be identical to the documentation string in the function definition itself.
Specifying the documentation string in the call to autoload makes it possible to look
at the documentation without loading the function’s real definition.
If interactive is non-nil, that says function can be called interactively. This lets
completion in M-x work without loading function’s real definition. The complete
interactive specification is not given here; it’s not needed unless the user actually
calls function, and when that happens, it’s time to load the real definition.
You can autoload macros and keymaps as well as ordinary functions. Specify type
as macro if function is really a macro. Specify type as keymap if function is really a
keymap. Various parts of Emacs need to know this information without loading the
real definition.
An autoloaded keymap loads automatically during key lookup when a prefix key’s
binding is the symbol function. Autoloading does not occur for other kinds of access

198 GNU Emacs Lisp Reference Manual

to the keymap. In particular, it does not happen when a Lisp program gets the
keymap from the value of a variable and calls define-key; not even if the variable
name is the same symbol function.
If function already has a non-void function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of function is void, or is
already an autoload object, then it is defined as an autoload object like this:

(autoload filename docstring interactive type)

For example,
(symbol-function ’run-prolog)

⇒ (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documen-
tation string in the ‘emacs/etc/DOC-version’ file (see Section 24.1 [Documentation
Basics], page 387), t means the function is interactive, and nil that it is not a macro
or a keymap.

The autoloaded file usually contains other definitions and may require or provide one
or more features. If the file is not completely loaded (due to an error in the evaluation of
its contents), any function definitions or provide calls that occurred during the load are
undone. This is to ensure that the next attempt to call any function autoloading from this
file will try again to load the file. If not for this, then some of the functions in the file might
be defined by the aborted load, but fail to work properly for the lack of certain subroutines
not loaded successfully because they come later in the file.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment consists of ‘;;;###autoload’, on a line by itself, just before
the real definition of the function in its autoloadable source file. The command M-x update-

file-autoloads writes a corresponding autoload call into ‘loaddefs.el’. Building Emacs
loads ‘loaddefs.el’ and thus calls autoload. M-x update-directory-autoloads is even
more powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into ‘loaddefs.el’. If the form
following the magic comment is not a function-defining form or a defcustom form, it is
copied verbatim. “Function-defining forms” include define-skeleton, define-derived-
mode, define-generic-mode and define-minor-mode as well as defun and defmacro.
To save space, a defcustom form is converted to a defvar in ‘loaddefs.el’, with some
additional information if it uses :require.

You can also use a magic comment to execute a form at build time without executing
it when the file itself is loaded. To do this, write the form on the same line as the magic
comment. Since it is in a comment, it does nothing when you load the source file; but M-x
update-file-autoloads copies it to ‘loaddefs.el’, where it is executed while building
Emacs.

The following example shows how doctor is prepared for autoloading with a magic
comment:

;;;###autoload
(defun doctor ()
"Switch to *doctor* buffer and start giving psychotherapy."

Chapter 15: Loading 199

(interactive)
(switch-to-buffer "*doctor*")
(doctor-mode))

Here’s what that produces in ‘loaddefs.el’:
(autoload ’doctor "doctor" "\
Switch to *doctor* buffer and start giving psychotherapy."
t)

The backslash and newline immediately following the double-quote are a convention used
only in the preloaded uncompiled Lisp files such as ‘loaddefs.el’; they tell make-docfile
to put the documentation string in the ‘etc/DOC’ file. See Section E.1 [Building Emacs],
page 777. See also the commentary in ‘lib-src/make-docfile.c’.

15.5 Repeated Loading

You can load a given file more than once in an Emacs session. For example, after you
have rewritten and reinstalled a function definition by editing it in a buffer, you may wish
to return to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name.
If you rewrite a file that you intend to save and reinstall, you need to byte-compile the
new version; otherwise Emacs will load the older, byte-compiled file instead of your newer,
non-compiled file! If that happens, the message displayed when loading the file includes,
‘(compiled; note, source is newer)’, to remind you to recompile it.

When writing the forms in a Lisp library file, keep in mind that the file might be loaded
more than once. For example, think about whether each variable should be reinitialized
when you reload the library; defvar does not change the value if the variable is already
initialized. (See Section 11.5 [Defining Variables], page 137.)

The simplest way to add an element to an alist is like this:
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist))

But this would add multiple elements if the library is reloaded. To avoid the problem, write
this:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

To add an element to a list just once, you can also use add-to-list (see Section 11.8
[Setting Variables], page 142).

Occasionally you will want to test explicitly whether a library has already been loaded.
Here’s one way to test, in a library, whether it has been loaded before:

(defvar foo-was-loaded nil)

(unless foo-was-loaded
execute-first-time-only
(setq foo-was-loaded t))

If the library uses provide to provide a named feature, you can use featurep earlier in the
file to test whether the provide call has been executed before.

200 GNU Emacs Lisp Reference Manual

15.6 Features

provide and require are an alternative to autoload for loading files automatically.
They work in terms of named features. Autoloading is triggered by calling a specific func-
tion, but a feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The
file that defines them should provide the feature. Another program that uses them may
ensure they are defined by requiring the feature. This loads the file of definitions if it hasn’t
been loaded already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals
an error.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the
following code:

(defun run-prolog ()
"Run an inferior Prolog process, with I/O via buffer *prolog*."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’comint) loads the file ‘comint.el’ if it has not yet been loaded.
This ensures that make-comint is defined. Features are normally named after the files that
provide them, so that require need not be given the file name.

The ‘comint.el’ file contains the following top-level expression:
(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth
know that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that
file (see Chapter 16 [Byte Compilation], page 205) as well as when you load it. This is in
case the required package contains macros that the byte compiler must know about. It also
avoids byte-compiler warnings for functions and variables defined in the file loaded with
require.

Although top-level calls to require are evaluated during byte compilation, provide
calls are not. Therefore, you can ensure that a file of definitions is loaded before it is byte-
compiled by including a provide followed by a require for the same feature, as in the
following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.

(require ’my-feature) ; Evaluated by byte compiler.
The compiler ignores the provide, then processes the require by loading the file in ques-
tion. Loading the file does execute the provide call, so the subsequent require call does
nothing when the file is loaded.

Chapter 15: Loading 201

Functionprovide feature
This function announces that feature is now loaded, or being loaded, into the current
Emacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.
The direct effect of calling provide is to add feature to the front of the list features
if it is not already in the list. The argument feature must be a symbol. provide
returns feature.

features
⇒ (bar bish)

(provide ’foo)
⇒ foo

features
⇒ (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the
evaluating its contents, any function definitions or provide calls that occurred during
the load are undone. See Section 15.4 [Autoload], page 197.

Functionrequire feature &optional filename noerror
This function checks whether feature is present in the current Emacs session (using
(featurep feature); see below). The argument feature must be a symbol.
If the feature is not present, then require loads filename with load. If filename is
not supplied, then the name of the symbol feature is used as the base file name to
load. However, in this case, require insists on finding feature with an added suffix;
a file whose name is just feature won’t be used.
If loading the file fails to provide feature, require signals an error, ‘Required feature
feature was not provided’, unless noerror is non-nil.

Functionfeaturep feature
This function returns t if feature has been provided in the current Emacs session (i.e.,
if feature is a member of features.)

Variablefeatures
The value of this variable is a list of symbols that are the features loaded in the
current Emacs session. Each symbol was put in this list with a call to provide. The
order of the elements in the features list is not significant.

15.7 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for
other Lisp objects. To do this, use the function unload-feature:

Commandunload-feature feature &optional force
This command unloads the library that provided feature feature. It undefines all func-
tions, macros, and variables defined in that library with defun, defalias, defsubst,

202 GNU Emacs Lisp Reference Manual

defmacro, defconst, defvar, and defcustom. It then restores any autoloads for-
merly associated with those symbols. (Loading saves these in the autoload property
of the symbol.)

Before restoring the previous definitions, unload-feature runs remove-hook to re-
move functions in the library from certain hooks. These hooks include variables whose
names end in ‘hook’ or ‘-hooks’, plus those listed in loadhist-special-hooks. This
is to prevent Emacs from ceasing to function because important hooks refer to func-
tions that are no longer defined.

If these measures are not sufficient to prevent malfunction, a library can define an
explicit unload hook. If feature-unload-hook is defined, it is run as a normal hook
before restoring the previous definitions, instead of the usual hook-removing actions.
The unload hook ought to undo all the global state changes made by the library
that might cease to work once the library is unloaded. unload-feature can cause
problems with libraries that fail to do this, so it should be used with caution.

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the
optional argument force is non-nil, dependencies are ignored and you can unload
any library.

The unload-feature function is written in Lisp; its actions are based on the variable
load-history.

Variableload-history
This variable’s value is an alist connecting library names with the names of functions
and variables they define, the features they provide, and the features they require.

Each element is a list and describes one library. The car of the list is the name of
the library, as a string. The rest of the list is composed of these kinds of objects:

• Symbols that were defined by this library.

• Cons cells of the form (require . feature) indicating features that were required.

• Cons cells of the form (provide . feature) indicating features that were pro-
vided.

The value of load-history may have one element whose car is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element. See
Section 9.3 [Eval], page 113.

Preloaded libraries don’t contribute initially to load-history. Instead, preloading
writes information about preloaded libraries into a file, which can be loaded later on to
add information to load-history describing the preloaded files. This file is installed in
exec-directory and has a name of the form ‘fns-emacsversion.el’.

See the source for the function symbol-file, for an example of code that loads this file
to find functions in preloaded libraries.

Chapter 15: Loading 203

Variableloadhist-special-hooks
This variable holds a list of hooks to be scanned before unloading a library, to remove
functions defined in the library.

15.8 Hooks for Loading

You can ask for code to be executed if and when a particular library is loaded, by calling
eval-after-load.

Functioneval-after-load library form
This function arranges to evaluate form at the end of loading the library library, if
and when library is loaded. If library is already loaded, it evaluates form right away.
The library name library must exactly match the argument of load. To get the
proper results when an installed library is found by searching load-path, you should
not include any directory names in library.
An error in form does not undo the load, but does prevent execution of the rest of
form.

In general, well-designed Lisp programs should not use this feature. The clean and
modular ways to interact with a Lisp library are (1) examine and set the library’s variables
(those which are meant for outside use), and (2) call the library’s functions. If you wish to
do (1), you can do it immediately—there is no need to wait for when the library is loaded.
To do (2), you must load the library (preferably with require).

But it is OK to use eval-after-load in your personal customizations if you don’t feel
they must meet the design standards for programs meant for wider use.

Variableafter-load-alist
This variable holds an alist of expressions to evaluate if and when particular libraries
are loaded. Each element looks like this:

(filename forms...)

The function load checks after-load-alist in order to implement eval-after-
load.

204 GNU Emacs Lisp Reference Manual

Chapter 16: Byte Compilation 205

16 Byte Compilation

Emacs Lisp has a compiler that translates functions written in Lisp into a special rep-
resentation called byte-code that can be executed more efficiently. The compiler replaces
Lisp function definitions with byte-code. When a byte-code function is called, its definition
is evaluated by the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of
being executed directly by the machine’s hardware (as true compiled code is), byte-code
is completely transportable from machine to machine without recompilation. It is not,
however, as fast as true compiled code.

Compiling a Lisp file with the Emacs byte compiler always reads the file as multibyte
text, even if Emacs was started with ‘--unibyte’, unless the file specifies otherwise. This is
so that compilation gives results compatible with running the same file without compilation.
See Section 15.3 [Loading Non-ASCII], page 196.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true. A major incompatible change was intro-
duced in Emacs version 19.29, and files compiled with versions since that one will definitely
not run in earlier versions unless you specify a special option. See Section 16.3 [Docs and
Compilation], page 208. In addition, the modifier bits in keyboard characters were renum-
bered in Emacs 19.29; as a result, files compiled in versions before 19.29 will not work in
subsequent versions if they contain character constants with modifier bits.

See Section 18.4 [Compilation Errors], page 254, for how to investigate errors occurring
in byte compilation.

16.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))

0))
(list t1 (current-time-string))))

⇒ silly-loop

(silly-loop 100000)
⇒ ("Fri Mar 18 17:25:57 1994"

"Fri Mar 18 17:26:28 1994") ; 31 seconds

(byte-compile ’silly-loop)
⇒ [Compiled code not shown]

(silly-loop 100000)
⇒ ("Fri Mar 18 17:26:52 1994"

"Fri Mar 18 17:26:58 1994") ; 6 seconds
In this example, the interpreted code required 31 seconds to run, whereas the byte-

compiled code required 6 seconds. These results are representative, but actual results will
vary greatly.

206 GNU Emacs Lisp Reference Manual

16.2 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile
function. You can compile a whole file with byte-compile-file, or several files with
byte-recompile-directory or batch-byte-compile.

The byte compiler produces error messages and warnings about each file in a buffer
called ‘*Compile-Log*’. These report things in your program that suggest a problem but
are not necessarily erroneous.

Be careful when writing macro calls in files that you may someday byte-compile. Macro
calls are expanded when they are compiled, so the macros must already be defined for
proper compilation. For more details, see Section 13.3 [Compiling Macros], page 172. If a
program does not work the same way when compiled as it does when interpreted, erroneous
macro definitions are one likely cause (see Section 13.6 [Problems with Macros], page 174).

Normally, compiling a file does not evaluate the file’s contents or load the file. But it
does execute any require calls at top level in the file. One way to ensure that necessary
macro definitions are available during compilation is to require the file that defines them
(see Section 15.6 [Named Features], page 200). To avoid loading the macro definition files
when someone runs the compiled program, write eval-when-compile around the require
calls (see Section 16.5 [Eval During Compile], page 209).

Functionbyte-compile symbol
This function byte-compiles the function definition of symbol, replacing the previous
definition with the compiled one. The function definition of symbol must be the
actual code for the function; i.e., the compiler does not follow indirection to another
symbol. byte-compile returns the new, compiled definition of symbol.

If symbol’s definition is a byte-code function object, byte-compile does nothing and
returns nil. Lisp records only one function definition for any symbol, and if that is
already compiled, non-compiled code is not available anywhere. So there is no way
to “compile the same definition again.”

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))

⇒ factorial

(byte-compile ’factorial)
⇒
#[(integer)
"^H\301U\203^H^@\301\207\302^H\303^HS!\"\207"
[integer 1 * factorial]
4 "Compute factorial of INTEGER."]

The result is a byte-code function object. The string it contains is the actual byte-
code; each character in it is an instruction or an operand of an instruction. The vector
contains all the constants, variable names and function names used by the function,
except for certain primitives that are coded as special instructions.

Chapter 16: Byte Compilation 207

Commandcompile-defun
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install
a compiled version of that function.

Commandbyte-compile-file filename
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by changing the ‘.el’ suffix into ‘.elc’; if filename does
not end in ‘.el’, it adds ‘.elc’ to the end of filename.
Compilation works by reading the input file one form at a time. If it is a definition
of a function or macro, the compiled function or macro definition is written out.
Other forms are batched together, then each batch is compiled, and written so that
its compiled code will be executed when the file is read. All comments are discarded
when the input file is read.
This command returns t. When called interactively, it prompts for the file name.

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")
⇒ t

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc

Commandbyte-recompile-directory directory flag
This function recompiles every ‘.el’ file in directory that needs recompilation. A file
needs recompilation if a ‘.elc’ file exists but is older than the ‘.el’ file.
When a ‘.el’ file has no corresponding ‘.elc’ file, flag says what to do. If it is nil,
these files are ignored. If it is non-nil, the user is asked whether to compile each such
file.
The returned value of this command is unpredictable.

Functionbatch-byte-compile
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files, but
no output file will be generated for it, and the Emacs process will terminate with a
nonzero status code.

% emacs -batch -f batch-byte-compile *.el

Functionbyte-code code-string data-vector max-stack
This function actually interprets byte-code. A byte-compiled function is actually
defined with a body that calls byte-code. Don’t call this function yourself—only the
byte compiler knows how to generate valid calls to this function.
In Emacs version 18, byte-code was always executed by way of a call to the function
byte-code. Nowadays, byte-code is usually executed as part of a byte-code function
object, and only rarely through an explicit call to byte-code.

208 GNU Emacs Lisp Reference Manual

16.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation
strings dynamically from the file whenever needed. This saves space within Emacs, and
makes loading faster because the documentation strings themselves need not be processed
while loading the file. Actual access to the documentation strings becomes slower as a
result, but this normally is not enough to bother users.

Dynamic access to documentation strings does have drawbacks:

• If you delete or move the compiled file after loading it, Emacs can no longer access the
documentation strings for the functions and variables in the file.

• If you alter the compiled file (such as by compiling a new version), then further access
to documentation strings in this file will give nonsense results.

If your site installs Emacs following the usual procedures, these problems will never
normally occur. Installing a new version uses a new directory with a different name; as
long as the old version remains installed, its files will remain unmodified in the places where
they are expected to be.

However, if you have built Emacs yourself and use it from the directory where you built
it, you will experience this problem occasionally if you edit and recompile Lisp files. When
it happens, you can cure the problem by reloading the file after recompiling it.

Byte-compiled files made with recent versions of Emacs (since 19.29) will not load into
older versions because the older versions don’t support this feature. You can turn off this
feature at compile time by setting byte-compile-dynamic-docstrings to nil; then you
can compile files that will load into older Emacs versions. You can do this globally, or for
one source file by specifying a file-local binding for the variable. One way to do that is by
adding this string to the file’s first line:

-*-byte-compile-dynamic-docstrings: nil;-*-

Variablebyte-compile-dynamic-docstrings
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic loading of documentation strings.

The dynamic documentation string feature writes compiled files that use a special Lisp
reader construct, ‘#@count’. This construct skips the next count characters. It also uses the
‘#$’ construct, which stands for “the name of this file, as a string.” It is usually best not to
use these constructs in Lisp source files, since they are not designed to be clear to humans
reading the file.

16.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t fully
read the function definitions in the file. Instead, each function definition contains a place-
holder which refers to the file. The first time each function is called, it reads the full
definition from the file, to replace the place-holder.

Chapter 16: Byte Compilation 209

The advantage of dynamic function loading is that loading the file becomes much faster.
This is a good thing for a file which contains many separate user-callable functions, if using
one of them does not imply you will probably also use the rest. A specialized mode which
provides many keyboard commands often has that usage pattern: a user may invoke the
mode, but use only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:
• If you delete or move the compiled file after loading it, Emacs can no longer load the

remaining function definitions not already loaded.
• If you alter the compiled file (such as by compiling a new version), then trying to load

any function not already loaded will yield nonsense results.

These problems will never happen in normal circumstances with installed Emacs files.
But they are quite likely to happen with Lisp files that you are changing. The easiest
way to prevent these problems is to reload the new compiled file immediately after each
recompilation.

The byte compiler uses the dynamic function loading feature if the variable byte-
compile-dynamic is non-nil at compilation time. Do not set this variable globally, since
dynamic loading is desirable only for certain files. Instead, enable the feature for specific
source files with file-local variable bindings. For example, you could do it by writing this
text in the source file’s first line:

-*-byte-compile-dynamic: t;-*-

Variablebyte-compile-dynamic
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic function loading.

Functionfetch-bytecode function
This immediately finishes loading the definition of function from its byte-compiled
file, if it is not fully loaded already. The argument function may be a byte-code
function object or a function name.

16.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

Special Formeval-and-compile body
This form marks body to be evaluated both when you compile the containing code
and when you run it (whether compiled or not).
You can get a similar result by putting body in a separate file and referring to that
file with require. That method is preferable when body is large.

Special Formeval-when-compile body
This form marks body to be evaluated at compile time but not when the compiled
program is loaded. The result of evaluation by the compiler becomes a constant which
appears in the compiled program. If you load the source file, rather than compiling
it, body is evaluated normally.

210 GNU Emacs Lisp Reference Manual

Common Lisp Note: At top level, this is analogous to the Common Lisp idiom (eval-
when (compile eval) ...). Elsewhere, the Common Lisp ‘#.’ reader macro (but not
when interpreting) is closer to what eval-when-compile does.

16.6 Byte-Code Function Objects

Byte-compiled functions have a special data type: they are byte-code function objects.
Internally, a byte-code function object is much like a vector; however, the evaluator

handles this data type specially when it appears as a function to be called. The printed
representation for a byte-code function object is like that for a vector, with an additional
‘#’ before the opening ‘[’.

A byte-code function object must have at least four elements; there is no maximum
number, but only the first six elements have any normal use. They are:

arglist The list of argument symbols.

byte-code The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols
used as function names and variable names.

stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 24.2 [Access-
ing Documentation], page 388).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is
nil for a function that isn’t interactive.

Here’s an example of a byte-code function object, in printed representation. It is the
definition of the command backward-sexp.

#[(&optional arg)
"^H\204^F^@\301^P\302^H[!\207"
[arg 1 forward-sexp]
2
254435
"p"]

The primitive way to create a byte-code object is with make-byte-code:

Functionmake-byte-code &rest elements
This function constructs and returns a byte-code function object with elements as its
elements.

You should not try to come up with the elements for a byte-code function yourself,
because if they are inconsistent, Emacs may crash when you call the function. Always leave
it to the byte compiler to create these objects; it makes the elements consistent (we hope).

You can access the elements of a byte-code object using aref; you can also use vconcat
to create a vector with the same elements.

Chapter 16: Byte Compilation 211

16.7 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide
a disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled
code into humanly readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values
onto a stack of its own, then pops them off to use them in calculations whose results are
themselves pushed back on the stack. When a byte-code function returns, it pops a value
off the stack and returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp vari-
ables, by transferring values between variables and the stack.

Commanddisassemble object &optional stream
This function prints the disassembled code for object. If stream is supplied, then out-
put goes there. Otherwise, the disassembled code is printed to the stream standard-
output. The argument object can be a function name or a lambda expression.

As a special exception, if this function is used interactively, it outputs to a buffer
named ‘*Disassemble*’.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the
output of disassemble. These examples show unoptimized byte-code. Nowadays byte-code
is usually optimized, but we did not want to rewrite these examples, since they still serve
their purpose.

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
⇒ factorial

(factorial 4)
⇒ 24

(disassemble ’factorial)
a byte-code for factorial:

doc: Compute factorial of an integer.
args: (integer)

0 constant 1 ; Push 1 onto stack.

1 varref integer ; Get value of integer
; from the environment
; and push the value
; onto the stack.

2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.

212 GNU Emacs Lisp Reference Manual

3 goto-if-nil 10 ; Pop and test top of stack;
; if nil, go to 10,
; else continue.

6 constant 1 ; Push 1 onto top of stack.

7 goto 17 ; Go to 17 (in this case, 1 will be
; returned by the function).

10 constant * ; Push symbol * onto stack.

11 varref integer ; Push value of integer onto stack.

12 constant factorial ; Push factorial onto stack.

13 varref integer ; Push value of integer onto stack.

14 sub1 ; Pop integer, decrement value,
; push new value onto stack.

; Stack now contains:
; − decremented value of integer
; − factorial
; − value of integer
; − *

15 call 1 ; Call function factorial using
; the first (i.e., the top) element
; of the stack as the argument;
; push returned value onto stack.

; Stack now contains:
; − result of recursive
; call to factorial
; − value of integer
; − *

16 call 2 ; Using the first two
; (i.e., the top two)
; elements of the stack
; as arguments,
; call the function *,
; pushing the result onto the stack.

17 return ; Return the top element
; of the stack.

⇒ nil

The silly-loop function is somewhat more complex:

Chapter 16: Byte Compilation 213

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))

0))
(list t1 (current-time-string))))
⇒ silly-loop

(disassemble ’silly-loop)
a byte-code for silly-loop:

doc: Return time before and after N iterations of a loop.
args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string
; with no argument,
; pushing result onto stack.

2 varbind t1 ; Pop stack and bind t1
; to popped value.

3 varref n ; Get value of n from
; the environment and push
; the value onto the stack.

4 sub1 ; Subtract 1 from top of stack.

5 dup ; Duplicate the top of the stack;
; i.e., copy the top of
; the stack and push the
; copy onto the stack.

6 varset n ; Pop the top of the stack,
; and bind n to the value.

; In effect, the sequence dup varset
; copies the top of the stack
; into the value of n
; without popping it.

7 constant 0 ; Push 0 onto stack.

8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.

9 goto-if-nil-else-pop 17 ; Goto 17 if n <= 0
; (this exits the while loop).
; else pop top of stack
; and continue

214 GNU Emacs Lisp Reference Manual

12 constant nil ; Push nil onto stack
; (this is the body of the loop).

13 discard ; Discard result of the body
; of the loop (a while loop
; is always evaluated for
; its side effects).

14 goto 3 ; Jump back to beginning
; of while loop.

17 discard ; Discard result of while loop
; by popping top of stack.
; This result is the value nil that
; was not popped by the goto at 9.

18 varref t1 ; Push value of t1 onto stack.

19 constant current-time-string ; Push
; current-time-string
; onto top of stack.

20 call 0 ; Call current-time-string again.

21 list2 ; Pop top two elements off stack,
; create a list of them,
; and push list onto stack.

22 unbind 1 ; Unbind t1 in local environment.

23 return ; Return value of the top of stack.

⇒ nil

Chapter 17: Advising Emacs Lisp Functions 215

17 Advising Emacs Lisp Functions

The advice feature lets you add to the existing definition of a function, by advising the
function. This is a clean method for a library to customize functions defined by other parts
of Emacs—cleaner than redefining the whole function.

Each function can have multiple pieces of advice, separately defined. Each defined piece
of advice can be enabled or disabled explicitly. All the enabled pieces of advice for any
given function actually take effect when you activate advice for that function, or when you
define or redefine the function. Note that enabling a piece of advice and activating advice
for a function are not the same thing.

Usage Note: Advice is useful for altering the behavior of existing calls to an existing
function. If you want the new behavior for new calls, or for key bindings, it is cleaner to
define a new function (or a new command) which uses the existing function.

17.1 A Simple Advice Example

The command next-line moves point down vertically one or more lines; it is the stan-
dard binding of C-n. When used on the last line of the buffer, this command inserts a
newline to create a line to move to if next-line-add-newlines is non-nil (its default is
nil.)

Suppose you wanted to add a similar feature to previous-line, which would insert a
new line at the beginning of the buffer for the command to move to. How could you do
this?

You could do it by redefining the whole function, but that is not modular. The advice
feature provides a cleaner alternative: you can effectively add your code to the existing
function definition, without actually changing or even seeing that definition. Here is how
to do this:

(defadvice previous-line (before next-line-at-end (arg))
"Insert an empty line when moving up from the top line."
(if (and next-line-add-newlines (= arg 1)

(save-excursion (beginning-of-line) (bobp)))
(progn
(beginning-of-line)
(newline))))

This expression defines a piece of advice for the function previous-line. This piece of
advice is named next-line-at-end, and the symbol before says that it is before-advice
which should run before the regular definition of previous-line. (arg) specifies how the
advice code can refer to the function’s arguments.

When this piece of advice runs, it creates an additional line, in the situation where that
is appropriate, but does not move point to that line. This is the correct way to write the
advice, because the normal definition will run afterward and will move back to the newly
inserted line.

Defining the advice doesn’t immediately change the function previous-line. That
happens when you activate the advice, like this:

216 GNU Emacs Lisp Reference Manual

(ad-activate ’previous-line)

This is what actually begins to use the advice that has been defined so far for the function
previous-line. Henceforth, whenever that function is run, whether invoked by the user
with C-p or M-x, or called from Lisp, it runs the advice first, and its regular definition
second.

This example illustrates before-advice, which is one class of advice: it runs before the
function’s base definition. There are two other advice classes: after-advice, which runs after
the base definition, and around-advice, which lets you specify an expression to wrap around
the invocation of the base definition.

17.2 Defining Advice

To define a piece of advice, use the macro defadvice. A call to defadvice has the
following syntax, which is based on the syntax of defun and defmacro, but adds more:

(defadvice function (class name
[position] [arglist]
flags...)

[documentation-string]
[interactive-form]
body-forms...)

Here, function is the name of the function (or macro or special form) to be advised. From
now on, we will write just “function” when describing the entity being advised, but this
always includes macros and special forms.

class specifies the class of the advice—one of before, after, or around. Before-advice
runs before the function itself; after-advice runs after the function itself; around-advice is
wrapped around the execution of the function itself. After-advice and around-advice can
override the return value by setting ad-return-value.

Variablead-return-value
While advice is executing, after the function’s original definition has been executed,
this variable holds its return value, which will ultimately be returned to the caller
after finishing all the advice. After-advice and around-advice can arrange to return
some other value by storing it in this variable.

The argument name is the name of the advice, a non-nil symbol. The advice name
uniquely identifies one piece of advice, within all the pieces of advice in a particular class
for a particular function. The name allows you to refer to the piece of advice—to redefine
it, or to enable or disable it.

In place of the argument list in an ordinary definition, an advice definition calls for
several different pieces of information.

The optional position specifies where, in the current list of advice of the specified class,
this new advice should be placed. It should be either first, last or a number that specifies
a zero-based position (first is equivalent to 0). If no position is specified, the default is
first. Position values outside the range of existing positions in this class are mapped to
the beginning or the end of the range, whichever is closer. The position value is ignored
when redefining an existing piece of advice.

Chapter 17: Advising Emacs Lisp Functions 217

The optional arglist can be used to define the argument list for the sake of advice.
This becomes the argument list of the combined definition that is generated in order to
run the advice (see Section 17.10 [Combined Definition], page 224). Therefore, the advice
expressions can use the argument variables in this list to access argument values.

The argument list used in advice need not be the same as the argument list used in
the original function, but must be compatible with it, so that it can handle the ways the
function is actually called. If two pieces of advice for a function both specify an argument
list, they must specify the same argument list.

See Section 17.8 [Argument Access in Advice], page 222, for more information about
argument lists and advice, and a more flexible way for advice to access the arguments.

The remaining elements, flags, are symbols that specify further information about how
to use this piece of advice. Here are the valid symbols and their meanings:

activate Activate the advice for function now. Changes in a function’s advice always
take effect the next time you activate advice for the function; this flag says to
do so, for function, immediately after defining this piece of advice.
This flag has no immediate effect if function itself is not defined yet (a situation
known as forward advice), because it is impossible to activate an undefined
function’s advice. However, defining function will automatically activate its
advice.

protect Protect this piece of advice against non-local exits and errors in preceding code
and advice. Protecting advice places it as a cleanup in an unwind-protect
form, so that it will execute even if the previous code gets an error or uses
throw. See Section 10.5.4 [Cleanups], page 131.

compile Compile the combined definition that is used to run the advice. This flag is
ignored unless activate is also specified. See Section 17.10 [Combined Defini-
tion], page 224.

disable Initially disable this piece of advice, so that it will not be used unless subse-
quently explicitly enabled. See Section 17.6 [Enabling Advice], page 221.

preactivate
Activate advice for function when this defadvice is compiled or macroex-
panded. This generates a compiled advised definition according to the cur-
rent advice state, which will be used during activation if appropriate. See
Section 17.7 [Preactivation], page 221.
This is useful only if this defadvice is byte-compiled.

The optional documentation-string serves to document this piece of advice. When advice
is active for function, the documentation for function (as returned by documentation)
combines the documentation strings of all the advice for function with the documentation
string of its original function definition.

The optional interactive-form form can be supplied to change the interactive behavior
of the original function. If more than one piece of advice has an interactive-form, then the
first one (the one with the smallest position) found among all the advice takes precedence.

The possibly empty list of body-forms specifies the body of the advice. The body of an
advice can access or change the arguments, the return value, the binding environment, and
perform any other kind of side effect.

218 GNU Emacs Lisp Reference Manual

Warning: When you advise a macro, keep in mind that macros are expanded when a
program is compiled, not when a compiled program is run. All subroutines used by the
advice need to be available when the byte compiler expands the macro.

Commandad-unadvise function
This command deletes the advice from function.

Commandad-unadvise-all
This command deletes all pieces of advice from all functions.

17.3 Around-Advice

Around-advice lets you “wrap” a Lisp expression “around” the original function defini-
tion. You specify where the original function definition should go by means of the special
symbol ad-do-it. Where this symbol occurs inside the around-advice body, it is replaced
with a progn containing the forms of the surrounded code. Here is an example:

(defadvice foo (around foo-around)
"Ignore case in ‘foo’."
(let ((case-fold-search t))
ad-do-it))

Its effect is to make sure that case is ignored in searches when the original definition of foo
is run.

Variablead-do-it
This is not really a variable, but it is somewhat used like one in around-advice. It
specifies the place to run the function’s original definition and other “earlier” around-
advice.

If the around-advice does not use ad-do-it, then it does not run the original function
definition. This provides a way to override the original definition completely. (It also
overrides lower-positioned pieces of around-advice).

If the around-advice uses ad-do-it more than once, the original definition is run at each
place. In this way, around-advice can execute the original definition (and lower-positioned
pieces of around-advice) several times. Another way to do that is by using ad-do-it inside
of a loop.

17.4 Computed Advice

The macro defadvice resembles defun in that the code for the advice, and all other
information about it, are explicitly stated in the source code. You can also create advice
whose details are computed, using the function ad-add-advice.

Functionad-add-advice function advice class position
Calling ad-add-advice adds advice as a piece of advice to function in class class.
The argument advice has this form:

Chapter 17: Advising Emacs Lisp Functions 219

(name protected enabled definition)

Here protected and enabled are flags, and definition is the expression that says what
the advice should do. If enabled is nil, this piece of advice is initially disabled (see
Section 17.6 [Enabling Advice], page 221).
If function already has one or more pieces of advice in the specified class, then position
specifies where in the list to put the new piece of advice. The value of position can
either be first, last, or a number (counting from 0 at the beginning of the list).
Numbers outside the range are mapped to the beginning or the end of the range,
whichever is closer. The position value is ignored when redefining an existing piece
of advice.
If function already has a piece of advice with the same name, then the position
argument is ignored and the old advice is replaced with the new one.

17.5 Activation of Advice

By default, advice does not take effect when you define it—only when you activate
advice for the function that was advised. You can request the activation of advice for a
function when you define the advice, by specifying the activate flag in the defadvice.
But normally you activate the advice for a function by calling the function ad-activate or
one of the other activation commands listed below.

Separating the activation of advice from the act of defining it permits you to add several
pieces of advice to one function efficiently, without redefining the function over and over
as each advice is added. More importantly, it permits defining advice for a function before
that function is actually defined.

When a function’s advice is first activated, the function’s original definition is saved,
and all enabled pieces of advice for that function are combined with the original definition
to make a new definition. (Pieces of advice that are currently disabled are not used; see
Section 17.6 [Enabling Advice], page 221.) This definition is installed, and optionally byte-
compiled as well, depending on conditions described below.

In all of the commands to activate advice, if compile is t, the command also compiles
the combined definition which implements the advice.

Commandad-activate function &optional compile
This command activates all the advice defined for function.

To activate advice for a function whose advice is already active is not a no-op. It is
a useful operation which puts into effect any changes in that function’s advice since the
previous activation of advice for that function.

Commandad-deactivate function
This command deactivates the advice for function.

Commandad-update function &optional compile
This command activates the advice for function if its advice is already activated. This
is useful if you change the advice.

220 GNU Emacs Lisp Reference Manual

Commandad-activate-all &optional compile
This command activates the advice for all functions.

Commandad-deactivate-all
This command deactivates the advice for all functions.

Commandad-update-all &optional compile
This command activates the advice for all functions whose advice is already activated.
This is useful if you change the advice of some functions.

Commandad-activate-regexp regexp &optional compile
This command activates all pieces of advice whose names match regexp. More pre-
cisely, it activates all advice for any function which has at least one piece of advice
that matches regexp.

Commandad-deactivate-regexp regexp
This command deactivates all pieces of advice whose names match regexp. More
precisely, it deactivates all advice for any function which has at least one piece of
advice that matches regexp.

Commandad-update-regexp regexp &optional compile
This command activates pieces of advice whose names match regexp, but only those
for functions whose advice is already activated.
Reactivating a function’s advice is useful for putting into effect all the changes that
have been made in its advice (including enabling and disabling specific pieces of ad-
vice; see Section 17.6 [Enabling Advice], page 221) since the last time it was activated.

Commandad-start-advice
Turn on automatic advice activation when a function is defined or redefined. If you
turn on this mode, then advice takes effect immediately when defined.

Commandad-stop-advice
Turn off automatic advice activation when a function is defined or redefined.

User Optionad-default-compilation-action
This variable controls whether to compile the combined definition that results from
activating advice for a function.
A value of always specifies to compile unconditionally. A value of nil specifies never
compile the advice.
A value of maybe specifies to compile if the byte-compiler is already loaded. A value of
like-original specifies to compile the advice if the original definition of the advised
function is compiled or a built-in function.
This variable takes effect only if the compile argument of ad-activate (or any of the
above functions) was supplied as nil. If that argument is non-nil, that means to
compile the advice regardless.

Chapter 17: Advising Emacs Lisp Functions 221

If the advised definition was constructed during “preactivation” (see Section 17.7 [Pre-
activation], page 221), then that definition must already be compiled, because it was
constructed during byte-compilation of the file that contained the defadvice with the
preactivate flag.

17.6 Enabling and Disabling Advice

Each piece of advice has a flag that says whether it is enabled or not. By enabling or
disabling a piece of advice, you can turn it on and off without having to undefine and redefine
it. For example, here is how to disable a particular piece of advice named my-advice for
the function foo:

(ad-disable-advice ’foo ’before ’my-advice)

This function by itself only changes the enable flag for a piece of advice. To make the
change take effect in the advised definition, you must activate the advice for foo again:

(ad-activate ’foo)

Commandad-disable-advice function class name
This command disables the piece of advice named name in class class on function.

Commandad-enable-advice function class name
This command enables the piece of advice named name in class class on function.

You can also disable many pieces of advice at once, for various functions, using a regular
expression. As always, the changes take real effect only when you next reactivate advice for
the functions in question.

Commandad-disable-regexp regexp
This command disables all pieces of advice whose names match regexp, in all classes,
on all functions.

Commandad-enable-regexp regexp
This command enables all pieces of advice whose names match regexp, in all classes,
on all functions.

17.7 Preactivation

Constructing a combined definition to execute advice is moderately expensive. When a
library advises many functions, this can make loading the library slow. In that case, you
can use preactivation to construct suitable combined definitions in advance.

To use preactivation, specify the preactivate flag when you define the advice with
defadvice. This defadvice call creates a combined definition which embodies this piece
of advice (whether enabled or not) plus any other currently enabled advice for the same
function, and the function’s own definition. If the defadvice is compiled, that compiles
the combined definition also.

When the function’s advice is subsequently activated, if the enabled advice for the func-
tion matches what was used to make this combined definition, then the existing combined

222 GNU Emacs Lisp Reference Manual

definition is used, thus avoiding the need to construct one. Thus, preactivation never causes
wrong results—but it may fail to do any good, if the enabled advice at the time of activation
doesn’t match what was used for preactivation.

Here are some symptoms that can indicate that a preactivation did not work properly,
because of a mismatch.

• Activation of the advised function takes longer than usual.

• The byte-compiler gets loaded while an advised function gets activated.

• byte-compile is included in the value of features even though you did not ever
explicitly use the byte-compiler.

Compiled preactivated advice works properly even if the function itself is not defined
until later; however, the function needs to be defined when you compile the preactivated
advice.

There is no elegant way to find out why preactivated advice is not being used. What you
can do is to trace the function ad-cache-id-verification-code (with the function trace-
function-background) before the advised function’s advice is activated. After activation,
check the value returned by ad-cache-id-verification-code for that function: verified
means that the preactivated advice was used, while other values give some information about
why they were considered inappropriate.

Warning: There is one known case that can make preactivation fail, in that a precon-
structed combined definition is used even though it fails to match the current state of advice.
This can happen when two packages define different pieces of advice with the same name,
in the same class, for the same function. But you should avoid that anyway.

17.8 Argument Access in Advice

The simplest way to access the arguments of an advised function in the body of a piece
of advice is to use the same names that the function definition uses. To do this, you need
to know the names of the argument variables of the original function.

While this simple method is sufficient in many cases, it has a disadvantage: it is not
robust, because it hard-codes the argument names into the advice. If the definition of the
original function changes, the advice might break.

Another method is to specify an argument list in the advice itself. This avoids the need
to know the original function definition’s argument names, but it has a limitation: all the
advice on any particular function must use the same argument list, because the argument
list actually used for all the advice comes from the first piece of advice for that function.

A more robust method is to use macros that are translated into the proper access forms
at activation time, i.e., when constructing the advised definition. Access macros access
actual arguments by position regardless of how these actual arguments get distributed onto
the argument variables of a function. This is robust because in Emacs Lisp the meaning of
an argument is strictly determined by its position in the argument list.

Macroad-get-arg position
This returns the actual argument that was supplied at position.

Chapter 17: Advising Emacs Lisp Functions 223

Macroad-get-args position
This returns the list of actual arguments supplied starting at position.

Macroad-set-arg position value
This sets the value of the actual argument at position to value

Macroad-set-args position value-list
This sets the list of actual arguments starting at position to value-list.

Now an example. Suppose the function foo is defined as
(defun foo (x y &optional z &rest r) ...)

and is then called with
(foo 0 1 2 3 4 5 6)

which means that x is 0, y is 1, z is 2 and r is (3 4 5 6) within the body of foo. Here is
what ad-get-arg and ad-get-args return in this case:

(ad-get-arg 0) ⇒ 0
(ad-get-arg 1) ⇒ 1
(ad-get-arg 2) ⇒ 2
(ad-get-arg 3) ⇒ 3
(ad-get-args 2) ⇒ (2 3 4 5 6)
(ad-get-args 4) ⇒ (4 5 6)

Setting arguments also makes sense in this example:
(ad-set-arg 5 "five")

has the effect of changing the sixth argument to "five". If this happens in advice executed
before the body of foo is run, then r will be (3 4 "five" 6) within that body.

Here is an example of setting a tail of the argument list:
(ad-set-args 0 ’(5 4 3 2 1 0))

If this happens in advice executed before the body of foo is run, then within that body, x
will be 5, y will be 4, z will be 3, and r will be (2 1 0) inside the body of foo.

These argument constructs are not really implemented as Lisp macros. Instead they are
implemented specially by the advice mechanism.

17.9 Definition of Subr Argument Lists

When the advice facility constructs the combined definition, it needs to know the argu-
ment list of the original function. This is not always possible for primitive functions. When
advice cannot determine the argument list, it uses (&rest ad-subr-args), which always
works but is inefficient because it constructs a list of the argument values. You can use
ad-define-subr-args to declare the proper argument names for a primitive function:

Functionad-define-subr-args function arglist
This function specifies that arglist should be used as the argument list for function
function.

For example,
(ad-define-subr-args ’fset ’(sym newdef))

specifies the argument list for the function fset.

224 GNU Emacs Lisp Reference Manual

17.10 The Combined Definition

Suppose that a function has n pieces of before-advice (numbered from 0 through n−1),
m pieces of around-advice and k pieces of after-advice. Assuming no piece of advice is
protected, the combined definition produced to implement the advice for a function looks
like this:

(lambda arglist
[[advised-docstring] [(interactive ...)]]
(let (ad-return-value)

before-0-body-form...
....

before-n−1-body-form...
around-0-body-form...

around-1-body-form...
....

around-m−1-body-form...
(setq ad-return-value

apply original definition to arglist)
end-of-around-m−1-body-form...

....
end-of-around-1-body-form...

end-of-around-0-body-form...
after-0-body-form...

....
after-k−1-body-form...
ad-return-value))

Macros are redefined as macros, which means adding macro to the beginning of the
combined definition.

The interactive form is present if the original function or some piece of advice specifies
one. When an interactive primitive function is advised, advice uses a special method: it
calls the primitive with call-interactively so that it will read its own arguments. In
this case, the advice cannot access the arguments.

The body forms of the various advice in each class are assembled according to their
specified order. The forms of around-advice l are included in one of the forms of around-
advice l − 1.

The innermost part of the around advice onion is
apply original definition to arglist

whose form depends on the type of the original function. The variable ad-return-value is
set to whatever this returns. The variable is visible to all pieces of advice, which can access
and modify it before it is actually returned from the advised function.

The semantic structure of advised functions that contain protected pieces of advice is the
same. The only difference is that unwind-protect forms ensure that the protected advice
gets executed even if some previous piece of advice had an error or a non-local exit. If any
around-advice is protected, then the whole around-advice onion is protected as a result.

Chapter 18: Debugging Lisp Programs 225

18 Debugging Lisp Programs

There are three ways to investigate a problem in an Emacs Lisp program, depending on
what you are doing with the program when the problem appears.
• If the problem occurs when you run the program, you can use a Lisp debugger to

investigate what is happening during execution. In addition to the ordinary debugger,
Emacs comes with a source level debugger, Edebug. This chapter describes both of
them.

• If the problem is syntactic, so that Lisp cannot even read the program, you can use
the Emacs facilities for editing Lisp to localize it.

• If the problem occurs when trying to compile the program with the byte compiler, you
need to know how to examine the compiler’s input buffer.

Another useful debugging tool is the dribble file. When a dribble file is open, Emacs
copies all keyboard input characters to that file. Afterward, you can examine the file to
find out what input was used. See Section 40.8 [Terminal Input], page 738.

For debugging problems in terminal descriptions, the open-termscript function can be
useful. See Section 40.9 [Terminal Output], page 742.

18.1 The Lisp Debugger

The ordinary Lisp debugger provides the ability to suspend evaluation of a form. While
evaluation is suspended (a state that is commonly known as a break), you may examine the
run time stack, examine the values of local or global variables, or change those values. Since
a break is a recursive edit, all the usual editing facilities of Emacs are available; you can
even run programs that will enter the debugger recursively. See Section 21.12 [Recursive
Editing], page 319.

18.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This
allows you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently cause Lisp errors when invoked inappropriately (such as C-f at the end of the
buffer), and during ordinary editing it would be very inconvenient to enter the debugger
each time this happens. So if you want errors to enter the debugger, set the variable debug-
on-error to non-nil. (The command toggle-debug-on-error provides an easy way to
do this.)

User Optiondebug-on-error
This variable determines whether the debugger is called when an error is signaled and
not handled. If debug-on-error is t, all kinds of errors call the debugger (except
those listed in debug-ignored-errors). If it is nil, none call the debugger.
The value can also be a list of error conditions that should call the debugger. For
example, if you set it to the list (void-variable), then only errors about a variable
that has no value invoke the debugger.

226 GNU Emacs Lisp Reference Manual

When this variable is non-nil, Emacs does not create an error handler around process
filter functions and sentinels. Therefore, errors in these functions also invoke the
debugger. See Chapter 37 [Processes], page 641.

User Optiondebug-ignored-errors
This variable specifies certain kinds of errors that should not enter the debugger. Its
value is a list of error condition symbols and/or regular expressions. If the error has
any of those condition symbols, or if the error message matches any of the regular
expressions, then that error does not enter the debugger, regardless of the value of
debug-on-error.

The normal value of this variable lists several errors that happen often during editing
but rarely result from bugs in Lisp programs. However, “rarely” is not “never”; if your
program fails with an error that matches this list, you will need to change this list in
order to debug the error. The easiest way is usually to set debug-ignored-errors
to nil.

User Optiondebug-on-signal
Normally, errors that are caught by condition-case never run the debugger, even
if debug-on-error is non-nil. In other words, condition-case gets a chance to
handle the error before the debugger gets a chance.

If you set debug-on-signal to a non-nil value, then the debugger gets the first chance
at every error; an error will invoke the debugger regardless of any condition-case,
if it fits the criteria specified by the values of debug-on-error and debug-ignored-
errors.

Warning: This variable is strong medicine! Various parts of Emacs handle errors in
the normal course of affairs, and you may not even realize that errors happen there.
If you set debug-on-signal to a non-nil value, those errors will enter the debugger.

Warning: debug-on-signal has no effect when debug-on-error is nil.

To debug an error that happens during loading of the init file, use the option
‘--debug-init’. This binds debug-on-error to t while loading the init file, and bypasses
the condition-case which normally catches errors in the init file.

If your init file sets debug-on-error, the effect may not last past the end of loading the
init file. (This is an undesirable byproduct of the code that implements the ‘--debug-init’
command line option.) The best way to make the init file set debug-on-error permanently
is with after-init-hook, like this:

(add-hook ’after-init-hook
(lambda () (setq debug-on-error t)))

18.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the
loop. On most operating systems, you can do this with C-g, which causes a quit.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not

Chapter 18: Debugging Lisp Programs 227

considered an error, and debug-on-error has no effect on the handling of C-g. Likewise,
debug-on-quit has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed
from the debugger using the stepping commands. If you step through the entire loop, you
will probably get enough information to solve the problem.

User Optiondebug-on-quit
This variable determines whether the debugger is called when quit is signaled and
not handled. If debug-on-quit is non-nil, then the debugger is called whenever you
quit (that is, type C-g). If debug-on-quit is nil, then the debugger is not called
when you quit. See Section 21.10 [Quitting], page 316.

18.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function
in which the problem occurs, and then step through the function, or you can do this to a
function called shortly before the problem, step quickly over the call to that function, and
then step through its caller.

Commanddebug-on-entry function-name
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first
form.

Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. If the function is a command, it will enter
the debugger when called from Lisp and when called interactively (after the reading
of the arguments). You can’t debug primitive functions (i.e., those written in C) this
way.

When debug-on-entry is called interactively, it prompts for function-name in the
minibuffer. If the function is already set up to invoke the debugger on entry, debug-
on-entry does nothing. debug-on-entry always returns function-name.

Note: if you redefine a function after using debug-on-entry on it, the code to enter
the debugger is discarded by the redefinition. In effect, redefining the function cancels
the break-on-entry feature for that function.

(defun fact (n)
(if (zerop n) 1

(* n (fact (1- n)))))
⇒ fact

(debug-on-entry ’fact)
⇒ fact

(fact 3)

228 GNU Emacs Lisp Reference Manual

------ Buffer: *Backtrace* ------
Entering:
* fact(3)
eval-region(4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)
eval-insert-last-sexp(nil)

* call-interactively(eval-insert-last-sexp)
------ Buffer: *Backtrace* ------

(symbol-function ’fact)
⇒ (lambda (n)

(debug (quote debug))
(if (zerop n) 1 (* n (fact (1- n)))))

Commandcancel-debug-on-entry function-name
This function undoes the effect of debug-on-entry on function-name. When called
interactively, it prompts for function-name in the minibuffer. If function-name is nil
or the empty string, it cancels break-on-entry for all functions.

Calling cancel-debug-on-entry does nothing to a function which is not currently
set up to break on entry. It always returns function-name.

18.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’
at the proper place, and type C-M-x. Warning: if you do this for temporary debugging
purposes, be sure to undo this insertion before you save the file!

The place where you insert ‘(debug)’ must be a place where an additional form can
be evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the
execution of the program!) The most common suitable places are inside a progn or an
implicit progn (see Section 10.1 [Sequencing], page 117).

18.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window
and a buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one
line for each level of Lisp function execution currently going on. At the beginning of this
buffer is a message describing the reason that the debugger was invoked (such as the error
message and associated data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in
which letters are defined as debugger commands. The usual Emacs editing commands are
available; thus, you can switch windows to examine the buffer that was being edited at the
time of the error, switch buffers, visit files, or do any other sort of editing. However, the
debugger is a recursive editing level (see Section 21.12 [Recursive Editing], page 319) and
it is wise to go back to the backtrace buffer and exit the debugger (with the q command)

Chapter 18: Debugging Lisp Programs 229

when you are finished with it. Exiting the debugger gets out of the recursive edit and kills
the backtrace buffer.

The backtrace buffer shows you the functions that are executing and their argument
values. It also allows you to specify a stack frame by moving point to the line describing
that frame. (A stack frame is the place where the Lisp interpreter records information
about a particular invocation of a function.) The frame whose line point is on is considered
the current frame. Some of the debugger commands operate on the current frame.

The debugger itself must be run byte-compiled, since it makes assumptions about how
many stack frames are used for the debugger itself. These assumptions are false if the
debugger is running interpreted.

18.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addi-
tion to the usual cursor motion commands. (Keep in mind that all the usual facilities of
Emacs, such as switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that
you can see how control flows. The debugger can step through the control structures of an
interpreted function, but cannot do so in a byte-compiled function. If you would like to
step through a byte-compiled function, replace it with an interpreted definition of the same
function. (To do this, visit the source for the function and type C-M-x on its definition.)

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. When continuing is possible, it
resumes execution of the program as if the debugger had never been entered
(aside from any side-effects that you caused by changing variable values or data
structures while inside the debugger).
Continuing is possible after entry to the debugger due to function entry or
exit, explicit invocation, or quitting. You cannot continue if the debugger was
entered because of an error.

d Continue execution, but enter the debugger the next time any Lisp function is
called. This allows you to step through the subexpressions of an expression,
seeing what values the subexpressions compute, and what else they do.
The stack frame made for the function call which enters the debugger in this
way will be flagged automatically so that the debugger will be called again when
the frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame
is exited. Frames flagged in this way are marked with stars in the backtrace
buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b

command on that frame. The visible effect is to remove the star from the line
in the backtrace buffer.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current
buffer, as part of its operation; e temporarily restores their values from outside

230 GNU Emacs Lisp Reference Manual

the debugger, so you can examine and change them. This makes the debugger
more transparent. By contrast, M-: does nothing special in the debugger; it
shows you the variable values within the debugger.

R Like e, but also save the result of evaluation in the buffer ‘*Debugger-record*’.

q Terminate the program being debugged; return to top-level Emacs command
execution.

If the debugger was entered due to a C-g but you really want to quit, and not
debug, use the q command.

r Return a value from the debugger. The value is computed by reading an ex-
pression with the minibuffer and evaluating it.

The r command is useful when the debugger was invoked due to exit from a
Lisp call frame (as requested with b or by entering the frame with d); then the
value specified in the r command is used as the value of that frame. It is also
useful if you call debug and use its return value. Otherwise, r has the same
effect as c, and the specified return value does not matter.

You can’t use r when the debugger was entered due to an error.

18.1.7 Invoking the Debugger

Here we describe in full detail the function debug that is used to invoke the debugger.

Functiondebug &rest debugger-args
This function enters the debugger. It switches buffers to a buffer named
‘*Backtrace*’ (or ‘*Backtrace*<2>’ if it is the second recursive entry to the
debugger, etc.), and fills it with information about the stack of Lisp function calls.
It then enters a recursive edit, showing the backtrace buffer in Debugger mode.

The Debugger mode c and r commands exit the recursive edit; then debug switches
back to the previous buffer and returns to whatever called debug. This is the only
way the function debug can return to its caller.

The use of the debugger-args is that debug displays the rest of its arguments at the
top of the ‘*Backtrace*’ buffer, so that the user can see them. Except as described
below, this is the only way these arguments are used.

However, certain values for first argument to debug have a special significance. (Nor-
mally, these values are used only by the internals of Emacs, and not by programmers
calling debug.) Here is a table of these special values:

lambda A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Entering:’ as a line of text at the top of the buffer.

debug debug as first argument indicates a call to debug because of entry to
a function that was set to debug on entry. The debugger displays
‘Entering:’, just as in the lambda case. It also marks the stack frame
for that function so that it will invoke the debugger when exited.

Chapter 18: Debugging Lisp Programs 231

t When the first argument is t, this indicates a call to debug due to evalu-
ation of a list form when debug-on-next-call is non-nil. The debugger
displays the following as the top line in the buffer:

Beginning evaluation of function call form:

exit When the first argument is exit, it indicates the exit of a stack frame
previously marked to invoke the debugger on exit. The second argument
given to debug in this case is the value being returned from the frame. The
debugger displays ‘Return value:’ in the top line of the buffer, followed
by the value being returned.

error When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by dis-
playing ‘Signaling:’ followed by the error signaled and any arguments
to signal. For example,

(let ((debug-on-error t))
(/ 1 0))

------ Buffer: *Backtrace* ------
Signaling: (arith-error)
/(1 0)

...
------ Buffer: *Backtrace* ------

If an error was signaled, presumably the variable debug-on-error is non-
nil. If quit was signaled, then presumably the variable debug-on-quit
is non-nil.

nil Use nil as the first of the debugger-args when you want to enter the
debugger explicitly. The rest of the debugger-args are printed on the
top line of the buffer. You can use this feature to display messages—for
example, to remind yourself of the conditions under which debug is called.

18.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

Variabledebugger
The value of this variable is the function to call to invoke the debugger. Its value
must be a function of any number of arguments, or, more typically, the name of a
function. This function should invoke some kind of debugger. The default value of
the variable is debug.
The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

Commandbacktrace
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must
have access to the stack to determine which function calls are active. The return
value is always nil.

232 GNU Emacs Lisp Reference Manual

In the following example, a Lisp expression calls backtrace explicitly. This prints
the backtrace to the stream standard-output, which, in this case, is the buffer
‘backtrace-output’.
Each line of the backtrace represents one function call. The line shows the values of
the function’s arguments if they are all known; if they are still being computed, the
line says so. The arguments of special forms are elided.

(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))
(save-excursion
(setq var (eval ’(progn

(1+ var)
(list ’testing (backtrace))))))))

⇒ nil

----------- Buffer: backtrace-output ------------
backtrace()
(list ...computing arguments...)
(progn ...)
eval((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(let ...)
(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)

* call-interactively(eval-print-last-sexp)
----------- Buffer: backtrace-output ------------

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

Variabledebug-on-next-call
If this variable is non-nil, it says to call the debugger before the next eval, apply
or funcall. Entering the debugger sets debug-on-next-call to nil.
The d command in the debugger works by setting this variable.

Functionbacktrace-debug level flag
This function sets the debug-on-exit flag of the stack frame level levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered
when that frame later exits. Even a nonlocal exit through that frame will enter the
debugger.
This function is used only by the debugger.

Variablecommand-debug-status
This variable records the debugging status of the current interactive command. Each
time a command is called interactively, this variable is bound to nil. The debugger
can set this variable to leave information for future debugger invocations during the
same command invocation.

Chapter 18: Debugging Lisp Programs 233

The advantage of using this variable rather than an ordinary global variable is that
the data will never carry over to a subsequent command invocation.

Functionbacktrace-frame frame-number
The function backtrace-frame is intended for use in Lisp debuggers. It returns
information about what computation is happening in the stack frame frame-number
levels down.
If that frame has not evaluated the arguments yet, or is a special form, the value is
(nil function arg-forms...).
If that frame has evaluated its arguments and called its function already, the return
value is (t function arg-values...).
In the return value, function is whatever was supplied as the car of the evaluated
list, or a lambda expression in the case of a macro call. If the function has a &rest
argument, that is represented as the tail of the list arg-values.
If frame-number is out of range, backtrace-frame returns nil.

18.2 Edebug

Edebug is a source-level debugger for Emacs Lisp programs with which you can:
• Step through evaluation, stopping before and after each expression.
• Set conditional or unconditional breakpoints.
• Stop when a specified condition is true (the global break event).
• Trace slow or fast, stopping briefly at each stop point, or at each breakpoint.
• Display expression results and evaluate expressions as if outside of Edebug.
• Automatically re-evaluate a list of expressions and display their results each time Ede-

bug updates the display.
• Output trace info on function enter and exit.
• Stop when an error occurs.
• Display a backtrace, omitting Edebug’s own frames.
• Specify argument evaluation for macros and defining forms.
• Obtain rudimentary coverage testing and frequency counts.

The first three sections below should tell you enough about Edebug to enable you to use
it.

18.2.1 Using Edebug

To debug a Lisp program with Edebug, you must first instrument the Lisp code that
you want to debug. A simple way to do this is to first move point into the definition of
a function or macro and then do C-u C-M-x (eval-defun with a prefix argument). See
Section 18.2.2 [Instrumenting], page 234, for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Depending
on which Edebug execution mode you have selected, activating Edebug may stop execution
and let you step through the function, or it may update the display and continue execution

234 GNU Emacs Lisp Reference Manual

while checking for debugging commands. The default execution mode is step, which stops
execution. See Section 18.2.3 [Edebug Execution Modes], page 235.

Within Edebug, you normally view an Emacs buffer showing the source of the Lisp code
you are debugging. This is referred to as the source code buffer, and it is temporarily
read-only.

An arrow at the left margin indicates the line where the function is executing. Point
initially shows where within the line the function is executing, but this ceases to be true if
you move point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is
what you would normally see. Point is at the open-parenthesis before if.

(defun fac (n)
=>?(if (< 0 n)

(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points.
These occur both before and after each subexpression that is a list, and also after each
variable reference. Here we use periods to show the stop points in the function fac:

(defun fac (n)
.(if .(< 0 n.).

.(* n. .(fac (1- n.).).).
1).)

The special commands of Edebug are available in the source code buffer in addition to
the commands of Emacs Lisp mode. For example, you can type the Edebug command 〈SPC〉
to execute until the next stop point. If you type 〈SPC〉 once after entry to fac, here is the
display you will see:

(defun fac (n)
=>(if ?(< 0 n)

(* n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in
the echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute
until a breakpoint is reached, and q to exit Edebug and return to the top-level command
loop. Type ? to display a list of all Edebug commands.

18.2.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instru-
menting code inserts additional code into it, to invoke Edebug at the proper places.

Once you have loaded Edebug, the command C-M-x (eval-defun) is redefined so that
when invoked with a prefix argument on a definition, it instruments the definition before
evaluating it. (The source code itself is not modified.) If the variable edebug-all-defs is
non-nil, that inverts the meaning of the prefix argument: in this case, C-M-x instruments
the definition unless it has a prefix argument. The default value of edebug-all-defs is nil.
The command M-x edebug-all-defs toggles the value of the variable edebug-all-defs.

Chapter 18: Debugging Lisp Programs 235

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-
buffer, and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-
all-forms controls whether eval-region should instrument any form, even non-defining
forms. This doesn’t apply to loading or evaluations in the minibuffer. The command M-x

edebug-all-forms toggles this option.
Another command, M-x edebug-eval-top-level-form, is available to instrument any

top-level form regardless of the values of edebug-all-defs and edebug-all-forms.
While Edebug is active, the command I (edebug-instrument-callee) instruments the

definition of the function or macro called by the list form after point, if is not already instru-
mented. This is possible only if Edebug knows where to find the source for that function;
for this reading, after loading Edebug, eval-region records the position of every defini-
tion it evaluates, even if not instrumenting it. See also the i command (see Section 18.2.4
[Jumping], page 236), which steps into the call after instrumenting the function.

Edebug knows how to instrument all the standard special forms, interactive forms
with an expression argument, anonymous lambda expressions, and other defining forms.
However, Edebug cannot determine on its own what a user-defined macro will do with
the arguments of a macro call, so you must provide that information; see Section 18.2.15
[Instrumenting Macro Calls], page 246, for details.

When Edebug is about to instrument code for the first time in a session, it runs the hook
edebug-setup-hook, then sets it to nil. You can use this to load Edebug specifications
(see Section 18.2.15 [Instrumenting Macro Calls], page 246) associated with a package you
are using, but only when you use Edebug.

To remove instrumentation from a definition, simply re-evaluate its definition in a way
that does not instrument. There are two ways of evaluating forms that never instrument
them: from a file with load, and from the minibuffer with eval-expression (M-:).

If Edebug detects a syntax error while instrumenting, it leaves point at the erroneous
code and signals an invalid-read-syntax error.

See Section 18.2.9 [Edebug Eval], page 240, for other evaluation functions available inside
of Edebug.

18.2.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging.
We call these alternatives Edebug execution modes; do not confuse them with major or
minor modes. The current Edebug execution mode determines how far Edebug continues
execution before stopping—whether it stops at each stop point, or continues to the next
breakpoint, for example—and how much Edebug displays the progress of the evaluation
before it stops.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands; all except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program, but wait for more Edebug com-
mands (edebug-stop).

〈SPC〉 Step: stop at the next stop point encountered (edebug-step-mode).

236 GNU Emacs Lisp Reference Manual

n Next: stop at the next stop point encountered after an expression (edebug-
next-mode). Also see edebug-forward-sexp in Section 18.2.5 [Edebug Misc],
page 237.

t Trace: pause one second at each Edebug stop point (edebug-trace-mode).

T Rapid trace: update the display at each stop point, but don’t actually pause
(edebug-Trace-fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 18.2.6
[Breakpoints], page 238.

c Continue: pause one second at each breakpoint, and then continue (edebug-
continue-mode).

C Rapid continue: move point to each breakpoint, but don’t pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still
stop the program by typing S, or any editing command.

In general, the execution modes earlier in the above list run the program more slowly or
stop sooner than the modes later in the list.

While executing or tracing, you can interrupt the execution by typing any Edebug com-
mand. Edebug stops the program at the next stop point and then executes the command
you typed. For example, typing t during execution switches to trace mode at the next stop
point. You can use S to stop execution without doing anything else.

If your function happens to read input, a character you type intending to interrupt
execution may be read by the function instead. You can avoid such unintended results by
paying attention to when your program wants input.

Keyboard macros containing the commands in this section do not completely work:
exiting from Edebug, to resume the program, loses track of the keyboard macro. This
is not easy to fix. Also, defining or executing a keyboard macro outside of Edebug does
not affect commands inside Edebug. This is usually an advantage. See also the edebug-
continue-kbd-macro option (see Section 18.2.16 [Edebug Options], page 251).

When you enter a new Edebug level, the initial execution mode comes from the value
of the variable edebug-initial-mode. By default, this specifies step mode. Note that you
may reenter the same Edebug level several times if, for example, an instrumented function
is called several times from one command.

18.2.4 Jumping

The commands described in this section execute until they reach a specified location.
All except i make a temporary breakpoint to establish the place to stop, then switch to go
mode. Any other breakpoint reached before the intended stop point will also stop execution.
See Section 18.2.6 [Breakpoints], page 238, for the details on breakpoints.

These commands may fail to work as expected in case of nonlocal exit, as that can bypass
the temporary breakpoint where you expected the program to stop.

h Proceed to the stop point near where point is (edebug-goto-here).

Chapter 18: Debugging Lisp Programs 237

f Run the program forward over one expression (edebug-forward-sexp).

o Run the program until the end of the containing sexp.

i Step into the function or macro called by the form after point.

The h command proceeds to the stop point near the current location of point, using a
temporary breakpoint. See Section 18.2.6 [Breakpoints], page 238, for more information
about breakpoints.

The f command runs the program forward over one expression. More precisely, it sets
a temporary breakpoint at the position that C-M-f would reach, then executes in go mode
so that the program will stop at breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point. If
the containing list ends before n more elements, then the place to stop is after the containing
expression.

You must check that the position C-M-f finds is a place that the program will really get
to. In cond, for example, this may not be true.

For flexibility, the f command does forward-sexp starting at point, rather than at the
stop point. If you want to execute one expression from the current stop point, first type w,
to move point there, and then type f.

The o command continues “out of” an expression. It places a temporary breakpoint at
the end of the sexp containing point. If the containing sexp is a function definition itself, o
continues until just before the last sexp in the definition. If that is where you are now, it
returns from the function and then stops. In other words, this command does not exit the
currently executing function unless you are positioned after the last sexp.

The i command steps into the function or macro called by the list form after point, and
stops at its first stop point. Note that the form need not be the one about to be evaluated.
But if the form is a function call about to be evaluated, remember to use this command
before any of the arguments are evaluated, since otherwise it will be too late.

The i command instruments the function or macro it’s supposed to step into, if it isn’t
instrumented already. This is convenient, but keep in mind that the function or macro
remains instrumented unless you explicitly arrange to deinstrument it.

18.2.5 Miscellaneous Edebug Commands

Some miscellaneous Edebug commands are described here.

? Display the help message for Edebug (edebug-help).

C-] Abort one level back to the previous command level (abort-recursive-edit).

q Return to the top level editor command loop (top-level). This exits all re-
cursive editing levels, including all levels of Edebug activity. However, instru-
mented code protected with unwind-protect or condition-case forms may
resume debugging.

Q Like q, but don’t stop even for protected code (top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

238 GNU Emacs Lisp Reference Manual

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).
You cannot use debugger commands in the backtrace buffer in Edebug as you
would in the standard debugger.
The backtrace buffer is killed automatically when you continue execution.

You can invoke commands from Edebug that activate Edebug again recursively. When-
ever Edebug is active, you can quit to the top level with q or abort one recursive edit level
with C-]. You can display a backtrace of all the pending evaluations with d.

18.2.6 Breakpoints

Edebug’s step mode stops execution when the next stop point is reached. There are
three other ways to stop Edebug execution once it has started: breakpoints, the global
break condition, and source breakpoints.

While using Edebug, you can specify breakpoints in the program you are testing: these
are places where execution should stop. You can set a breakpoint at any stop point, as
defined in Section 18.2.1 [Using Edebug], page 233. For setting and unsetting breakpoints,
the stop point that is affected is the first one at or after point in the source code buffer.
Here are the Edebug commands for breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint).
If you use a prefix argument, the breakpoint is temporary—it turns off the first
time it stops the program.

u Unset the breakpoint (if any) at the stop point at or after point (edebug-unset-
breakpoint).

x condition 〈RET〉
Set a conditional breakpoint which stops the program only if condition evaluates
to a non-nil value (edebug-set-conditional-breakpoint). With a prefix
argument, the breakpoint is temporary.

B Move point to the next breakpoint in the current definition (edebug-next-
breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First move
point to the Edebug stop point of your choice, then type b or u to set or unset a breakpoint
there. Unsetting a breakpoint where none has been set has no effect.

Re-evaluating or reinstrumenting a definition removes all of its previous breakpoints.

A conditional breakpoint tests a condition each time the program gets there. Any errors
that occur as a result of evaluating the condition are ignored, as if the result were nil. To
set a conditional breakpoint, use x, and specify the condition expression in the minibuffer.
Setting a conditional breakpoint at a stop point that has a previously established conditional
breakpoint puts the previous condition expression in the minibuffer so you can edit it.

You can make a conditional or unconditional breakpoint temporary by using a prefix
argument with the command to set the breakpoint. When a temporary breakpoint stops
the program, it is automatically unset.

Chapter 18: Debugging Lisp Programs 239

Edebug always stops or pauses at a breakpoint, except when the Edebug mode is Go-
nonstop. In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use the B command, which moves point to the
next breakpoint following point, within the same function, or to the first breakpoint if there
are no following breakpoints. This command does not continue execution—it just moves
point in the buffer.

18.2.6.1 Global Break Condition

A global break condition stops execution when a specified condition is satisfied, no matter
where that may occur. Edebug evaluates the global break condition at every stop point; if
it evaluates to a non-nil value, then execution stops or pauses depending on the execution
mode, as if a breakpoint had been hit. If evaluating the condition gets an error, execution
does not stop.

The condition expression is stored in edebug-global-break-condition. You can spec-
ify a new expression using the X command (edebug-set-global-break-condition).

The global break condition is the simplest way to find where in your code some event
occurs, but it makes code run much more slowly. So you should reset the condition to nil
when not using it.

18.2.6.2 Source Breakpoints

All breakpoints in a definition are forgotten each time you reinstrument it. If you wish
to make a breakpoint that won’t be forgotten, you can write a source breakpoint, which is
simply a call to the function edebug in your source code. You can, of course, make such
a call conditional. For example, in the fac function, you can insert the first line as shown
below, to stop when the argument reaches zero:

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)

(* n (fac (1- n)))
1))

When the fac definition is instrumented and the function is called, the call to edebug
acts as a breakpoint. Depending on the execution mode, Edebug stops or pauses there.

If no instrumented code is being executed when edebug is called, that function calls
debug.

18.2.7 Trapping Errors

Emacs normally displays an error message when an error is signaled and not handled with
condition-case. While Edebug is active and executing instrumented code, it normally
responds to all unhandled errors. You can customize this with the options edebug-on-
error and edebug-on-quit; see Section 18.2.16 [Edebug Options], page 251.

When Edebug responds to an error, it shows the last stop point encountered before the
error. This may be the location of a call to a function which was not instrumented, and
within which the error actually occurred. For an unbound variable error, the last known

240 GNU Emacs Lisp Reference Manual

stop point might be quite distant from the offending variable reference. In that case, you
might want to display a full backtrace (see Section 18.2.5 [Edebug Misc], page 237).

If you change debug-on-error or debug-on-quit while Edebug is active, these changes
will be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s recursive
edit, these variables are bound to the values they had outside of Edebug.

18.2.8 Edebug Views

These Edebug commands let you view aspects of the buffer and window status as they
were before entry to Edebug. The outside window configuration is the collection of windows
and contents that were in effect outside of Edebug.

v Temporarily view the outside window configuration (edebug-view-outside).

p Temporarily display the outside current buffer with point at its outside posi-
tion (edebug-bounce-point). With a prefix argument n, pause for n seconds
instead.

w Move point back to the current stop point in the source code buffer (edebug-
where).
If you use this command in a different window displaying the same buffer, that
window will be used instead to display the current definition in the future.

W Toggle whether Edebug saves and restores the outside window configuration
(edebug-toggle-save-windows).
With a prefix argument, W only toggles saving and restoring of the selected
window. To specify a window that is not displaying the source code buffer, you
must use C-x X W from the global keymap.

You can view the outside window configuration with v or just bounce to the point in
the current buffer with p, even if it is not normally displayed. After moving point, you may
wish to jump back to the stop point with w from a source code buffer.

Each time you use W to turn saving off, Edebug forgets the saved outside window
configuration—so that even if you turn saving back on, the current window configuration
remains unchanged when you next exit Edebug (by continuing the program). However, the
automatic redisplay of ‘*edebug*’ and ‘*edebug-trace*’ may conflict with the buffers you
wish to see unless you have enough windows open.

18.2.9 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running.
Edebug tries to be invisible to the expression’s evaluation and printing. Evaluation of
expressions that cause side effects will work as expected, except for changes to data that
Edebug explicitly saves and restores. See Section 18.2.14 [The Outside Context], page 244,
for details on this process.

e exp 〈RET〉
Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). That is, Edebug tries to minimize its interference with the
evaluation.

Chapter 18: Debugging Lisp Programs 241

M-: exp 〈RET〉
Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound sym-
bols created by the following constructs in ‘cl.el’ (version 2.03 or later): lexical-let,
macrolet, and symbol-macrolet.

18.2.10 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interac-
tively. You can also set up the evaluation list of expressions to be evaluated automatically
each time Edebug updates the display.

E Switch to the evaluation list buffer ‘*edebug*’ (edebug-visit-eval-list).

In the ‘*edebug*’ buffer you can use the commands of Lisp Interaction mode (see section
“Lisp Interaction” in The GNU Emacs Manual) as well as these special commands:

C-j Evaluate the expression before point, in the outside context, and insert the
value in the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the contents of the buffer (edebug-update-
eval-list).

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).

C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with C-j or C-x C-e, just as
you would in ‘*scratch*’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue
execution; but you can set up an evaluation list consisting of expressions to be evaluated
each time execution stops.

To do this, write one or more evaluation list groups in the evaluation list buffer. An
evaluation list group consists of one or more Lisp expressions. Groups are separated by
comment lines.

The command C-c C-u (edebug-update-eval-list) rebuilds the evaluation list, scan-
ning the buffer and using the first expression of each group. (The idea is that the second
expression of the group is the value previously computed and displayed.)

Each entry to Edebug redisplays the evaluation list by inserting each expression in the
buffer, followed by its current value. It also inserts comment lines so that each expression
becomes its own group. Thus, if you type C-c C-u again without changing the buffer text,
the evaluation list is effectively unchanged.

If an error occurs during an evaluation from the evaluation list, the error message is
displayed in a string as if it were the result. Therefore, expressions that use variables not
currently valid do not interrupt your debugging.

242 GNU Emacs Lisp Reference Manual

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

(current-buffer)
#<buffer *scratch*>
;---
(selected-window)
#<window 16 on *scratch*>
;---
(point)
196
;---
bad-var
"Symbol’s value as variable is void: bad-var"
;---
(recursion-depth)
0
;---
this-command
eval-last-sexp
;---

To delete a group, move point into it and type C-c C-d, or simply delete the text for
the group and update the evaluation list with C-c C-u. To add a new expression to the
evaluation list, insert the expression at a suitable place, insert a new comment line, then
type C-c C-u. You need not insert dashes in the comment line—its contents don’t matter.

After selecting ‘*edebug*’, you can return to the source code buffer with C-c C-w. The
‘*edebug*’ buffer is killed when you continue execution, and recreated next time it is needed.

18.2.11 Printing in Edebug

If an expression in your program produces a value containing circular list structure, you
may get an error when Edebug attempts to print it.

One way to cope with circular structure is to set print-length or print-level to trun-
cate the printing. Edebug does this for you; it binds print-length and print-level to 50
if they were nil. (Actually, the variables edebug-print-length and edebug-print-level
specify the values to use within Edebug.) See Section 19.6 [Output Variables], page 262.

User Optionedebug-print-length
If non-nil, Edebug binds print-length to this value while printing results. The
default value is 50.

User Optionedebug-print-level
If non-nil, Edebug binds print-level to this value while printing results. The
default value is 50.

You can also print circular structures and structures that share elements more informa-
tively by binding print-circle to a non-nil value.

Here is an example of code that creates a circular structure:

Chapter 18: Debugging Lisp Programs 243

(setq a ’(x y))
(setcar a a)

Custom printing prints this as ‘Result: #1=(#1# y)’. The ‘#1=’ notation labels the struc-
ture that follows it with the label ‘1’, and the ‘#1#’ notation references the previously labeled
structure. This notation is used for any shared elements of lists or vectors.

User Optionedebug-print-circle
If non-nil, Edebug binds print-circle to this value while printing results. The
default value is nil.

Other programs can also use custom printing; see ‘cust-print.el’ for details.

18.2.12 Trace Buffer

Edebug can record an execution trace, storing it in a buffer named ‘*edebug-trace*’.
This is a log of function calls and returns, showing the function names and their arguments
and values. To enable trace recording, set edebug-trace to a non-nil value.

Making a trace buffer is not the same thing as using trace execution mode (see Sec-
tion 18.2.3 [Edebug Execution Modes], page 235).

When trace recording is enabled, each function entry and exit adds lines to the trace
buffer. A function entry record consists of ‘::::{’, followed by the function name and
argument values. A function exit record consists of ‘::::}’, followed by the function name
and result of the function.

The number of ‘:’s in an entry shows its recursion depth. You can use the braces in the
trace buffer to find the matching beginning or end of function calls.

You can customize trace recording for function entry and exit by redefining the functions
edebug-print-trace-before and edebug-print-trace-after.

Macroedebug-tracing string body. . .
This macro requests additional trace information around the execution of the body
forms. The argument string specifies text to put in the trace buffer. All the arguments
are evaluated, and edebug-tracing returns the value of the last form in body.

Functionedebug-trace format-string &rest format-args
This function inserts text in the trace buffer. It computes the text with (apply
’format format-string format-args). It also appends a newline to separate entries.

edebug-tracing and edebug-trace insert lines in the trace buffer whenever they are
called, even if Edebug is not active. Adding text to the trace buffer also scrolls its window
to show the last lines inserted.

18.2.13 Coverage Testing

Edebug provides rudimentary coverage testing and display of execution frequency.
Coverage testing works by comparing the result of each expression with the previous

result; each form in the program is considered “covered” if it has returned two different

244 GNU Emacs Lisp Reference Manual

values since you began testing coverage in the current Emacs session. Thus, to do coverage
testing on your program, execute it under various conditions and note whether it behaves
correctly; Edebug will tell you when you have tried enough different conditions that each
form has returned two different values.

Coverage testing makes execution slower, so it is only done if edebug-test-coverage
is non-nil. Frequency counting is performed for all execution of an instrumented function,
even if the execution mode is Go-nonstop, and regardless of whether coverage testing is
enabled.

Use M-x edebug-display-freq-count to display both the coverage information and the
frequency counts for a definition.

Commandedebug-display-freq-count
This command displays the frequency count data for each line of the current definition.
The frequency counts appear as comment lines after each line of code, and you can
undo all insertions with one undo command. The counts appear under the ‘(’ before
an expression or the ‘)’ after an expression, or on the last character of a variable.
To simplify the display, a count is not shown if it is equal to the count of an earlier
expression on the same line.
The character ‘=’ following the count for an expression says that the expression has
returned the same value each time it was evaluated. In other words, it is not yet
“covered” for coverage testing purposes.
To clear the frequency count and coverage data for a definition, simply reinstrument
it with eval-defun.

For example, after evaluating (fac 5) with a source breakpoint, and setting edebug-
test-coverage to t, when the breakpoint is reached, the frequency data looks like this:

(defun fac (n)
(if (= n 0) (edebug))

;#6 1 0 =5
(if (< 0 n)

;#5 =
(* n (fac (1- n)))

;# 5 0
1))

;# 0

The comment lines show that fac was called 6 times. The first if statement returned
5 times with the same result each time; the same is true of the condition on the second if.
The recursive call of fac did not return at all.

18.2.14 The Outside Context

Edebug tries to be transparent to the program you are debugging, but it does not succeed
completely. Edebug also tries to be transparent when you evaluate expressions with e or
with the evaluation list buffer, by temporarily restoring the outside context. This section
explains precisely what context Edebug restores, and how Edebug fails to be completely
transparent.

Chapter 18: Debugging Lisp Programs 245

18.2.14.1 Checking Whether to Stop

Whenever Edebug is entered, it needs to save and restore certain data before even
deciding whether to make trace information or stop the program.
• max-lisp-eval-depth and max-specpdl-size are both incremented once to reduce

Edebug’s impact on the stack. You could, however, still run out of stack space when
using Edebug.

• The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-macro is bound to edebug-continue-kbd-macro.

18.2.14.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current
window configuration from “outside” Edebug (see Section 28.17 [Window Configurations],
page 479). When you exit Edebug (by continuing the program), it restores the previous
window configuration.

Emacs redisplays only when it pauses. Usually, when you continue execution, the pro-
gram re-enters Edebug at a breakpoint or after stepping, without pausing or reading input
in between. In such cases, Emacs never gets a chance to redisplay the “outside” configura-
tion. Consequently, what you see is the same window configuration as the last time Edebug
was active, with no interruption.

Entry to Edebug for displaying something also saves and restores the following data
(though some of them are deliberately not restored if an error or quit signal occurs).
• Which buffer is current, and the positions of point and the mark in the current buffer,

are saved and restored.
• The outside window configuration is saved and restored if edebug-save-windows is

non-nil (see Section 18.2.14.2 [Edebug Display Update], page 245).
The window configuration is not restored on error or quit, but the outside selected
window is reselected even on error or quit in case a save-excursion is active. If the
value of edebug-save-windows is a list, only the listed windows are saved and restored.
The window start and horizontal scrolling of the source code buffer are not restored,
however, so that the display remains coherent within Edebug.

• The value of point in each displayed buffer is saved and restored if edebug-save-
displayed-buffer-points is non-nil.

• The variables overlay-arrow-position and overlay-arrow-string are saved and
restored. So you can safely invoke Edebug from the recursive edit elsewhere in the
same buffer.

• cursor-in-echo-area is locally bound to nil so that the cursor shows up in the
window.

18.2.14.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:
• The current match data. See Section 34.6 [Match Data], page 615.

246 GNU Emacs Lisp Reference Manual

• last-command, this-command, last-command-char, last-input-char, last-input-
event, last-command-event, last-event-frame, last-nonmenu-event, and track-
mouse. Commands used within Edebug do not affect these variables outside of Edebug.
The key sequence returned by this-command-keys is changed by executing commands
within Edebug and there is no way to reset the key sequence from Lisp.
Edebug cannot save and restore the value of unread-command-events. Entering Ede-
bug while this variable has a nontrivial value can interfere with execution of the program
you are debugging.

• Complex commands executed while in Edebug are added to the variable command-
history. In rare cases this can alter execution.

• Within Edebug, the recursion depth appears one deeper than the recursion depth
outside Edebug. This is not true of the automatically updated evaluation list window.

• standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

• The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

18.2.15 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional
information about the macro to do the job properly. This is because there is no a-priori
way to tell which subexpressions of the macro call are forms to be evaluated. (Evaluation
may occur explicitly in the macro body, or when the resulting expansion is evaluated, or
any time later.)

Therefore, you must define an Edebug specification for each macro that Edebug will
encounter, to explain the format of calls to that macro. To do this, use def-edebug-spec.

Macrodef-edebug-spec macro specification
Specify which expressions of a call to macro macro are forms to be evaluated. For
simple macros, the specification often looks very similar to the formal argument list of
the macro definition, but specifications are much more general than macro arguments.
The macro argument can actually be any symbol, not just a macro name.

Here is a simple example that defines the specification for the for example macro (see
Section 13.6.2 [Argument Evaluation], page 175), followed by an alternative, equivalent
specification.

(def-edebug-spec for
(symbolp "from" form "to" form "do" &rest form))

(def-edebug-spec for
(symbolp [’from form] [’to form] [’do body]))

Here is a table of the possibilities for specification and how each directs processing of
arguments.

t All arguments are instrumented for evaluation.

0 None of the arguments is instrumented.

Chapter 18: Debugging Lisp Programs 247

a symbol The symbol must have an Edebug specification which is used instead. This
indirection is repeated until another kind of specification is found. This allows
you to inherit the specification from another macro.

a list The elements of the list describe the types of the arguments of a calling form.
The possible elements of a specification list are described in the following sec-
tions.

18.2.15.1 Specification List

A specification list is required for an Edebug specification if some arguments of a macro
call are evaluated while others are not. Some elements in a specification list match one or
more arguments, but others modify the processing of all following elements. The latter,
called specification keywords, are symbols beginning with ‘&’ (such as &optional).

A specification list may contain sublists which match arguments that are themselves
lists, or it may contain vectors used for grouping. Sublists and groups thus subdivide
the specification list into a hierarchy of levels. Specification keywords apply only to the
remainder of the sublist or group they are contained in.

When a specification list involves alternatives or repetition, matching it against an actual
macro call may require backtracking. See Section 18.2.15.2 [Backtracking], page 249, for
more details.

Edebug specifications provide the power of regular expression matching, plus some
context-free grammar constructs: the matching of sublists with balanced parentheses, re-
cursive processing of forms, and recursion via indirect specifications.

Here’s a table of the possible elements of a specification list, with their meanings:

sexp A single unevaluated Lisp object, which is not instrumented.

form A single evaluated expression, which is instrumented.

place A place to store a value, as in the Common Lisp setf construct.

body Short for &rest form. See &rest below.

function-form
A function form: either a quoted function symbol, a quoted lambda expression,
or a form (that should evaluate to a function symbol or lambda expression).
This is useful when an argument that’s a lambda expression might be quoted
with quote rather than function, since it instruments the body of the lambda
expression either way.

lambda-expr
A lambda expression with no quoting.

&optional
All following elements in the specification list are optional; as soon as one does
not match, Edebug stops matching at this level.
To make just a few elements optional followed by non-optional elements, use
[&optional specs...]. To specify that several elements must all match or
none, use &optional [specs...]. See the defun example below.

248 GNU Emacs Lisp Reference Manual

&rest All following elements in the specification list are repeated zero or more times.
In the last repetition, however, it is not a problem if the expression runs out
before matching all of the elements of the specification list.

To repeat only a few elements, use [&rest specs...]. To specify several ele-
ments that must all match on every repetition, use &rest [specs...].

&or Each of the following elements in the specification list is an alternative. One of
the alternatives must match, or the &or specification fails.

Each list element following &or is a single alternative. To group two or more
list elements as a single alternative, enclose them in [...].

¬ Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

&define Indicates that the specification is for a defining form. The defining form itself
is not instrumented (that is, Edebug does not stop before and after the defining
form), but forms inside it typically will be instrumented. The &define keyword
should be the first element in a list specification.

nil This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example below.

gate No argument is matched but backtracking through the gate is disabled while
matching the remainder of the specifications at this level. This is primarily
used to generate more specific syntax error messages. See Section 18.2.15.2
[Backtracking], page 249, for more details. Also see the let example below.

other-symbol
Any other symbol in a specification list may be a predicate or an indirect
specification.

If the symbol has an Edebug specification, this indirect specification should
be either a list specification that is used in place of the symbol, or a function
that is called to process the arguments. The specification may be defined with
def-edebug-spec just as for macros. See the defun example below.

Otherwise, the symbol should be a predicate. The predicate is called with the
argument and the specification fails if the predicate returns nil. In either case,
that argument is not instrumented.

Some suitable predicates include symbolp, integerp, stringp, vectorp, and
atom.

[elements...]
A vector of elements groups the elements into a single group specification. Its
meaning has nothing to do with vectors.

"string" The argument should be a symbol named string. This specification is equivalent
to the quoted symbol, ’symbol, where the name of symbol is the string, but
the string form is preferred.

Chapter 18: Debugging Lisp Programs 249

(vector elements...)
The argument should be a vector whose elements must match the elements in
the specification. See the backquote example below.

(elements...)
Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.
A sublist specification may be a dotted list and the corresponding list argu-
ment may then be a dotted list. Alternatively, the last cdr of a dotted list
specification may be another sublist specification (via a grouping or an indi-
rect specification, e.g., (spec . [(more specs...)])) whose elements match
the non-dotted list arguments. This is useful in recursive specifications such as
in the backquote example below. Also see the description of a nil specification
above for terminating such recursion.
Note that a sublist specification written as (specs . nil) is equivalent to
(specs), and (specs . (sublist-elements...)) is equivalent to (specs
sublist-elements...).

Here is a list of additional specifications that may appear only after &define. See the
defun example below.

name The argument, a symbol, is the name of the defining form.
A defining form is not required to have a name field; and it may have multiple
name fields.

:name This construct does not actually match an argument. The element following
:name should be a symbol; it is used as an additional name component for the
definition. You can use this to add a unique, static component to the name of
the definition. It may be used more than once.

arg The argument, a symbol, is the name of an argument of the defining form.
However, lambda-list keywords (symbols starting with ‘&’) are not allowed.

lambda-list
This matches a lambda list—the argument list of a lambda expression.

def-body The argument is the body of code in a definition. This is like body, described
above, but a definition body must be instrumented with a different Edebug call
that looks up information associated with the definition. Use def-body for the
highest level list of forms within the definition.

def-form The argument is a single, highest-level form in a definition. This is like def-
body, except use this to match a single form rather than a list of forms. As a
special case, def-form also means that tracing information is not output when
the form is executed. See the interactive example below.

18.2.15.2 Backtracking in Specifications

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been

250 GNU Emacs Lisp Reference Manual

exhausted. Eventually every element of the argument list must be matched by some ele-
ment in the specification, and every required element in the specification must match some
argument.

When a syntax error is detected, it might not be reported until much later after higher-
level alternatives have been exhausted, and with the point positioned further from the real
error. But if backtracking is disabled when an error occurs, it can be reported immediately.
Note that backtracking is also reenabled automatically in several situations; it is reenabled
when a new alternative is established by &optional, &rest, or &or, or at the start of
processing a sublist, group, or indirect specification. The effect of enabling or disabling
backtracking is limited to the remainder of the level currently being processed and lower
levels.

Backtracking is disabled while matching any of the form specifications (that is, form,
body, def-form, and def-body). These specifications will match any form so any error
must be in the form itself rather than at a higher level.

Backtracking is also disabled after successfully matching a quoted symbol or string spec-
ification, since this usually indicates a recognized construct. But if you have a set of alter-
native constructs that all begin with the same symbol, you can usually work around this
constraint by factoring the symbol out of the alternatives, e.g., ["foo" &or [first case]
[second case] ...].

Most needs are satisfied by these two ways that bactracking is automatically disabled,
but occasionally it is useful to explicitly disable backtracking by using the gate specification.
This is useful when you know that no higher alternatives could apply. See the example of
the let specification.

18.2.15.3 Specification Examples

It may be easier to understand Edebug specifications by studying the examples provided
here.

A let special form has a sequence of bindings and a body. Each of the bindings is either
a symbol or a sublist with a symbol and optional expression. In the specification below,
notice the gate inside of the sublist to prevent backtracking once a sublist is found.

(def-edebug-spec let
((&rest
&or symbolp (gate symbolp &optional form))

body))

Edebug uses the following specifications for defun and defmacro and the associated
argument list and interactive specifications. It is necessary to handle interactive forms
specially since an expression argument it is actually evaluated outside of the function body.

(def-edebug-spec defmacro defun) ; Indirect ref to defun spec.
(def-edebug-spec defun
(&define name lambda-list

[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]
def-body))

(def-edebug-spec lambda-list

Chapter 18: Debugging Lisp Programs 251

(([&rest arg]
[&optional ["&optional" arg &rest arg]]
&optional ["&rest" arg]
)))

(def-edebug-spec interactive
(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil
to terminate recursion. It also illustrates how components of a vector may be matched.
(The actual specification defined by Edebug does not support dotted lists because doing so
causes very deep recursion that could fail.)

(def-edebug-spec ‘ (backquote-form)) ; Alias just for clarity.

(def-edebug-spec backquote-form
(&or ([&or "," ",@"] &or ("quote" backquote-form) form)

(backquote-form . [&or nil backquote-form])
(vector &rest backquote-form)
sexp))

18.2.16 Edebug Options

These options affect the behavior of Edebug:

User Optionedebug-setup-hook
Functions to call before Edebug is used. Each time it is set to a new value, Edebug
will call those functions once and then edebug-setup-hook is reset to nil. You could
use this to load up Edebug specifications associated with a package you are using but
only when you also use Edebug. See Section 18.2.2 [Instrumenting], page 234.

User Optionedebug-all-defs
If this is non-nil, normal evaluation of defining forms such as defun and defmacro
instruments them for Edebug. This applies to eval-defun, eval-region, eval-
buffer, and eval-current-buffer.
Use the command M-x edebug-all-defs to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 234.

User Optionedebug-all-forms
If this is non-nil, the commands eval-defun, eval-region, eval-buffer, and eval-
current-buffer instrument all forms, even those that don’t define anything. This
doesn’t apply to loading or evaluations in the minibuffer.
Use the command M-x edebug-all-forms to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 234.

User Optionedebug-save-windows
If this is non-nil, Edebug saves and restores the window configuration. That takes
some time, so if your program does not care what happens to the window configura-
tions, it is better to set this variable to nil.

252 GNU Emacs Lisp Reference Manual

If the value is a list, only the listed windows are saved and restored.
You can use the W command in Edebug to change this variable interactively. See
Section 18.2.14.2 [Edebug Display Update], page 245.

User Optionedebug-save-displayed-buffer-points
If this is non-nil, Edebug saves and restores point in all displayed buffers.
Saving and restoring point in other buffers is necessary if you are debugging code that
changes the point of a buffer which is displayed in a non-selected window. If Edebug
or the user then selects the window, point in that buffer will move to the window’s
value of point.
Saving and restoring point in all buffers is expensive, since it requires selecting each
window twice, so enable this only if you need it. See Section 18.2.14.2 [Edebug Display
Update], page 245.

User Optionedebug-initial-mode
If this variable is non-nil, it specifies the initial execution mode for Edebug when it is
first activated. Possible values are step, next, go, Go-nonstop, trace, Trace-fast,
continue, and Continue-fast.
The default value is step. See Section 18.2.3 [Edebug Execution Modes], page 235.

User Optionedebug-trace
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘*edebug-trace*’, one function entry or exit per line, indented by
the recursion level.
The default value is nil.
Also see edebug-tracing, in Section 18.2.12 [Trace Buffer], page 243.

User Optionedebug-test-coverage
If non-nil, Edebug tests coverage of all expressions debugged. See Section 18.2.13
[Coverage Testing], page 243.

User Optionedebug-continue-kbd-macro
If non-nil, continue defining or executing any keyboard macro that is executing
outside of Edebug. Use this with caution since it is not debugged. See Section 18.2.3
[Edebug Execution Modes], page 235.

User Optionedebug-on-error
Edebug binds debug-on-error to this value, if debug-on-error was previously nil.
See Section 18.2.7 [Trapping Errors], page 239.

User Optionedebug-on-quit
Edebug binds debug-on-quit to this value, if debug-on-quit was previously nil.
See Section 18.2.7 [Trapping Errors], page 239.

If you change the values of edebug-on-error or edebug-on-quit while Edebug is active,
their values won’t be used until the next time Edebug is invoked via a new command.

Chapter 18: Debugging Lisp Programs 253

User Optionedebug-global-break-condition
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 18.2.6.1 [Global Break Condition], page 239.

18.3 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an
excess of open parentheses (or square brackets). The reader detects this imbalance at the
end of the file, but it cannot figure out where the close parenthesis should have been.
Likewise, “Invalid read syntax: ")"” indicates an excess close parenthesis or missing open
parenthesis, but does not say where the missing parenthesis belongs. How, then, to find
what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try
C-M-e at the beginning of each defun, and see if it goes to the place where that defun
appears to end. If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we
can give further advice for those cases. (In addition, just moving point through the code
with Show Paren mode enabled might find the mismatch.)

18.3.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open paren-
thesis, the way to do this is to go to the end of the file and type C-u C-M-u. This will move
you to the beginning of the defun that is unbalanced.

The next step is to determine precisely what is wrong. There is no way to be sure of this
except by studying the program, but often the existing indentation is a clue to where the
parentheses should have been. The easiest way to use this clue is to reindent with C-M-q

and see what moves. But don’t do this yet! Keep reading, first.
Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q

will get an error, or will reindent all the rest of the file until the end. So move to the end of
the defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that
too will fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from
a certain point to the end of the function will shift to the right. There is probably a missing
close parenthesis, or a superfluous open parenthesis, near that point. (However, don’t
assume this is true; study the code to make sure.) Once you have found the discrepancy,
undo the C-M-q with C-_, since the old indentation is probably appropriate to the intended
parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fit the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

18.3.2 Excess Close Parentheses

To deal with an excess close parenthesis, first go to the beginning of the file, then type
C-u -1 C-M-u to find the end of the unbalanced defun.

254 GNU Emacs Lisp Reference Manual

Then find the actual matching close parenthesis by typing C-M-f at the beginning of
that defun. This will leave you somewhere short of the place where the defun ought to end.
It is possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at
the beginning of the defun. A range of lines will probably shift left; if so, the missing
open parenthesis or spurious close parenthesis is probably near the first of those lines.
(However, don’t assume this is true; study the code to make sure.) Once you have found
the discrepancy, undo the C-M-q with C-_, since the old indentation is probably appropriate
to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fits the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

18.4 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax
in the program you are compiling. The compiler prints a suitable error message in the
‘*Compile-Log*’ buffer, and then stops. The message may state a function name in which
the error was found, or it may not. Either way, here is how to find out where in the file the
error occurred.

What you should do is switch to the buffer ‘ *Compiler Input*’. (Note that the buffer
name starts with a space, so it does not show up in M-x list-buffers.) This buffer contains
the program being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax
was detected. The cause of the error is not necessarily near by! Use the techniques in the
previous section to find the error.

If the error was detected while compiling a form that had been read successfully, then
point is located at the end of the form. In this case, this technique can’t localize the error
precisely, but can still show you which function to check.

Chapter 19: Reading and Printing Lisp Objects 255

19 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and
vice versa. They use the printed representations and read syntax described in Chapter 2
[Lisp Data Types], page 9.

This chapter describes the Lisp functions for reading and printing. It also describes
streams, which specify where to get the text (if reading) or where to put it (if printing).

19.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code.
We call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read
syntax for a cons cell whose car is a and whose cdr is the number 5.

Printing a Lisp object means producing text that represents that object—converting
the object to its printed representation (see Section 2.1 [Printed Representation], page 9).
Printing the cons cell described above produces the text ‘(a . 5)’.

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that
results from printing an object usually produces a similar-looking object. For example,
printing the symbol foo produces the text ‘foo’, and reading that text returns the symbol
foo. Printing a list whose elements are a and b produces the text ‘(a b)’, and reading that
text produces a list (but not the same list) with elements a and b.

However, these two operations are not precisely inverse to each other. There are three
kinds of exceptions:
• Printing can produce text that cannot be read. For example, buffers, windows, frames,

subprocesses and markers print as text that starts with ‘#’; if you try to read this text,
you get an error. There is no way to read those data types.

• One object can have multiple textual representations. For example, ‘1’ and ‘01’ rep-
resent the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading
will accept any of the alternatives, but printing must choose one of them.

• Comments can appear at certain points in the middle of an object’s read sequence
without affecting the result of reading it.

19.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The
input stream specifies where or how to get the characters of the text to be read. Here are
the possible types of input stream:

buffer The input characters are read from buffer, starting with the character directly
after point. Point advances as characters are read.

marker The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters
are read. The value of point in the buffer has no effect when the stream is a
marker.

256 GNU Emacs Lisp Reference Manual

string The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

function The input characters are generated by function, which must support two kinds
of calls:
• When it is called with no arguments, it should return the next character.
• When it is called with one argument (always a character), function should

save the argument and arrange to return it on the next call. This is called
unreading the character; it happens when the Lisp reader reads one char-
acter too many and wants to “put it back where it came from”. In this
case, it makes no difference what value function returns.

t t used as a stream means that the input is read from the minibuffer. In fact,
the minibuffer is invoked once and the text given by the user is made into a
string that is then used as the input stream. If Emacs is running in batch mode,
standard input is used instead of the minibuffer. For example,

(message "%s" (read t))

will read a Lisp expression from standard input and print the result to standard
output.

nil nil supplied as an input stream means to use the value of standard-input
instead; that value is the default input stream, and must be a non-nil input
stream.

symbol A symbol as input stream is equivalent to the symbol’s function definition (if
any).

Here is an example of reading from a stream that is a buffer, showing where point is
located before and after:

---------- Buffer: foo ----------
This? is the contents of foo.
---------- Buffer: foo ----------

(read (get-buffer "foo"))
⇒ is

(read (get-buffer "foo"))
⇒ the

---------- Buffer: foo ----------
This is the? contents of foo.
---------- Buffer: foo ----------

Note that the first read skips a space. Reading skips any amount of whitespace preceding
the significant text.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

Chapter 19: Reading and Printing Lisp Objects 257

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
⇒ #<marker at 1 in foo>

(read m)
⇒ This

m
⇒ #<marker at 5 in foo> ;; Before the first space.

Here we read from the contents of a string:
(read "(When in) the course")

⇒ (When in)

The following example reads from the minibuffer. The prompt is: ‘Lisp expression: ’.
(That is always the prompt used when you read from the stream t.) The user’s input is
shown following the prompt.

(read t)
⇒ 23

---------- Buffer: Minibuffer ----------
Lisp expression: 23 〈RET〉
---------- Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream.
Before we use the stream, we initialize the variable useless-list to a list of characters.
Then each call to the function useless-stream obtains the next character in the list or
unreads a character by adding it to the front of the list.

(setq useless-list (append "XY()" nil))
⇒ (88 89 40 41)

(defun useless-stream (&optional unread)
(if unread

(setq useless-list (cons unread useless-list))
(prog1 (car useless-list)

(setq useless-list (cdr useless-list)))))
⇒ useless-stream

Now we read using the stream thus constructed:
(read ’useless-stream)

⇒ XY

useless-list
⇒ (40 41)

Note that the open and close parentheses remain in the list. The Lisp reader encountered
the open parenthesis, decided that it ended the input, and unread it. Another attempt to
read from the stream at this point would read ‘()’ and return nil.

Functionget-file-char
This function is used internally as an input stream to read from the input file opened
by the function load. Don’t use this function yourself.

19.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.

258 GNU Emacs Lisp Reference Manual

In the functions below, stream stands for an input stream (see the previous section). If
stream is nil or omitted, it defaults to the value of standard-input.

An end-of-file error is signaled if reading encounters an unterminated list, vector, or
string.

Functionread &optional stream
This function reads one textual Lisp expression from stream, returning it as a Lisp
object. This is the basic Lisp input function.

Functionread-from-string string &optional start end
This function reads the first textual Lisp expression from the text in string. It returns
a cons cell whose car is that expression, and whose cdr is an integer giving the
position of the next remaining character in the string (i.e., the first one not read).
If start is supplied, then reading begins at index start in the string (where the first
character is at index 0). If you specify end, then reading is forced to stop just before
that index, as if the rest of the string were not there.
For example:

(read-from-string "(setq x 55) (setq y 5)")
⇒ ((setq x 55) . 11)

(read-from-string "\"A short string\"")
⇒ ("A short string" . 16)

;; Read starting at the first character.
(read-from-string "(list 112)" 0)

⇒ ((list 112) . 10)
;; Read starting at the second character.
(read-from-string "(list 112)" 1)

⇒ (list . 5)
;; Read starting at the seventh character,
;; and stopping at the ninth.
(read-from-string "(list 112)" 6 8)

⇒ (11 . 8)

Variablestandard-input
This variable holds the default input stream—the stream that read uses when the
stream argument is nil.

19.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most
print functions accept an output stream as an optional argument. Here are the possible
types of output stream:

buffer The output characters are inserted into buffer at point. Point advances as
characters are inserted.

marker The output characters are inserted into the buffer that marker points into, at
the marker position. The marker position advances as characters are inserted.

Chapter 19: Reading and Printing Lisp Objects 259

The value of point in the buffer has no effect on printing when the stream is a
marker, and this kind of printing does not move point.

function The output characters are passed to function, which is responsible for storing
them away. It is called with a single character as argument, as many times as
there are characters to be output, and is responsible for storing the characters
wherever you want to put them.

t The output characters are displayed in the echo area.

nil nil specified as an output stream means to use the value of standard-output
instead; that value is the default output stream, and must not be nil.

symbol A symbol as output stream is equivalent to the symbol’s function definition (if
any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore more a matter of how you use a Lisp object, than of
different types of object.

Here is an example of a buffer used as an output stream. Point is initially located as
shown immediately before the ‘h’ in ‘the’. At the end, point is located directly before that
same ‘h’.

---------- Buffer: foo ----------
This is t?he contents of foo.
---------- Buffer: foo ----------

(print "This is the output" (get-buffer "foo"))
⇒ "This is the output"

---------- Buffer: foo ----------
This is t
"This is the output"
?he contents of foo.
---------- Buffer: foo ----------

Now we show a use of a marker as an output stream. Initially, the marker is in buffer
foo, between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has advanced over
the inserted text so that it remains positioned before the same ‘h’. Note that the location
of point, shown in the usual fashion, has no effect.

---------- Buffer: foo ----------
This is the ?output
---------- Buffer: foo ----------

(setq m (copy-marker 10))
⇒ #<marker at 10 in foo>

(print "More output for foo." m)
⇒ "More output for foo."

---------- Buffer: foo ----------
This is t
"More output for foo."
he ?output
---------- Buffer: foo ----------

260 GNU Emacs Lisp Reference Manual

m
⇒ #<marker at 34 in foo>

The following example shows output to the echo area:
(print "Echo Area output" t)

⇒ "Echo Area output"
---------- Echo Area ----------
"Echo Area output"
---------- Echo Area ----------

Finally, we show the use of a function as an output stream. The function eat-output
takes each character that it is given and conses it onto the front of the list last-output
(see Section 5.5 [Building Lists], page 68). At the end, the list contains all the characters
output, but in reverse order.

(setq last-output nil)
⇒ nil

(defun eat-output (c)
(setq last-output (cons c last-output)))

⇒ eat-output

(print "This is the output" ’eat-output)
⇒ "This is the output"

last-output
⇒ (10 34 116 117 112 116 117 111 32 101 104

116 32 115 105 32 115 105 104 84 34 10)

Now we can put the output in the proper order by reversing the list:
(concat (nreverse last-output))

⇒ "
\"This is the output\"
"

Calling concat converts the list to a string so you can see its contents more clearly.

19.5 Output Functions

This section describes the Lisp functions for printing Lisp objects—converting objects
into their printed representation.

Some of the Emacs printing functions add quoting characters to the output when nec-
essary so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they
distinguish strings from symbols, and prevent punctuation characters in strings and sym-
bols from being taken as delimiters when reading. See Section 2.1 [Printed Representation],
page 9, for full details. You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then you should print with quoting characters
to avoid ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp
programmer. However, if the purpose of the output is to look nice for humans, then it is
usually better to print without quoting.

Lisp objects can refer to themselves. Printing a self-referential object in the normal way
would require an infinite amount of text, and the attempt could cause infinite recursion.

Chapter 19: Reading and Printing Lisp Objects 261

Emacs detects such recursion and prints ‘#level’ instead of recursively printing an object
already being printed. For example, here ‘#0’ indicates a recursive reference to the object
at level 0 of the current print operation:

(setq foo (list nil))
⇒ (nil)

(setcar foo foo)
⇒ (#0)

In the functions below, stream stands for an output stream. (See the previous section
for a description of output streams.) If stream is nil or omitted, it defaults to the value of
standard-output.

Functionprint object &optional stream
The print function is a convenient way of printing. It outputs the printed represen-
tation of object to stream, printing in addition one newline before object and another
after it. Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)
(print "the hat")
(print " came back"))

a
a The\ cat\ in
a
a "the hat"
a
a " came back"
a
⇒ " came back"

Functionprin1 object &optional stream
This function outputs the printed representation of object to stream. It does not
print newlines to separate output as print does, but it does use quoting characters
just like print. It returns object.

(progn (prin1 ’The\ cat\ in)
(prin1 "the hat")
(prin1 " came back"))

a The\ cat\ in"the hat"" came back"
⇒ " came back"

Functionprinc object &optional stream
This function outputs the printed representation of object to stream. It returns
object.
This function is intended to produce output that is readable by people, not by read,
so it doesn’t insert quoting characters and doesn’t put double-quotes around the
contents of strings. It does not add any spacing between calls.

(progn
(princ ’The\ cat)
(princ " in the \"hat\""))

a The cat in the "hat"
⇒ " in the \"hat\""

262 GNU Emacs Lisp Reference Manual

Functionterpri &optional stream
This function outputs a newline to stream. The name stands for “terminate print”.

Functionwrite-char character &optional stream
This function outputs character to stream. It returns character.

Functionprin1-to-string object &optional noescape
This function returns a string containing the text that prin1 would have printed for
the same argument.

(prin1-to-string ’foo)
⇒ "foo"

(prin1-to-string (mark-marker))
⇒ "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This
argument is supported in Emacs versions 19 and later.)

(prin1-to-string "foo")
⇒ "\"foo\""

(prin1-to-string "foo" t)
⇒ "foo"

See format, in Section 4.6 [String Conversion], page 55, for other ways to obtain the
printed representation of a Lisp object as a string.

Macrowith-output-to-string body...
This macro executes the body forms with standard-output set up to feed output
into a string. Then it returns that string.

For example, if the current buffer name is ‘foo’,
(with-output-to-string
(princ "The buffer is ")
(princ (buffer-name)))

returns "The buffer is foo".

19.6 Variables Affecting Output

Variablestandard-output
The value of this variable is the default output stream—the stream that print func-
tions use when the stream argument is nil.

Variableprint-escape-newlines
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.

This variable affects the print functions prin1 and print that print with quoting. It
does not affect princ. Here is an example using prin1:

Chapter 19: Reading and Printing Lisp Objects 263

(prin1 "a\nb")
a "a
a b"
⇒ "a

b"

(let ((print-escape-newlines t))
(prin1 "a\nb"))

a "a\nb"
⇒ "a

b"

In the second expression, the local binding of print-escape-newlines is in effect
during the call to prin1, but not during the printing of the result.

Variableprint-escape-nonascii
If this variable is non-nil, then unibyte non-ascii characters in strings are uncondi-
tionally printed as backslash sequences by the print functions prin1 and print that
print with quoting.
Those functions also use backslash sequences for unibyte non-ascii characters, re-
gardless of the value of this variable, when the output stream is a multibyte buffer or
a marker pointing into one.

Variableprint-escape-multibyte
If this variable is non-nil, then multibyte non-ascii characters in strings are uncon-
ditionally printed as backslash sequences by the print functions prin1 and print that
print with quoting.
Those functions also use backslash sequences for multibyte non-ascii characters, re-
gardless of the value of this variable, when the output stream is a unibyte buffer or a
marker pointing into one.

Variableprint-length
The value of this variable is the maximum number of elements to print in any list,
vector or bool-vector. If an object being printed has more than this many elements,
it is abbreviated with an ellipsis.
If the value is nil (the default), then there is no limit.

(setq print-length 2)
⇒ 2

(print ’(1 2 3 4 5))
a (1 2 ...)
⇒ (1 2 ...)

Variableprint-level
The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with
an ellipsis. A value of nil (which is the default) means no limit.

These variables are used for detecting and reporting circular and shared structure—but
they are only defined in Emacs 21.

264 GNU Emacs Lisp Reference Manual

Variableprint-circle
If non-nil, this variable enables detection of circular and shared structure in printing.

Variableprint-gensym
If non-nil, this variable enables detection of uninterned symbols (see Section 8.3
[Creating Symbols], page 101) in printing. When this is enabled, uninterned symbols
print with the prefix ‘#:’, which tells the Lisp reader to produce an uninterned symbol.

Chapter 20: Minibuffers 265

20 Minibuffers

A minibuffer is a special buffer that Emacs commands use to read arguments more
complicated than the single numeric prefix argument. These arguments include file names,
buffer names, and command names (as in M-x). The minibuffer is displayed on the bottom
line of the frame, in the same place as the echo area, but only while it is in use for reading
an argument.

20.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal Emacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for
managing buffers do not apply to minibuffers. The name of a minibuffer always has the
form ‘ *Minibuf-number’, and it cannot be changed. Minibuffers are displayed only in
special windows used only for minibuffers; these windows always appear at the bottom of
a frame. (Sometimes frames have no minibuffer window, and sometimes a special kind of
frame contains nothing but a minibuffer window; see Section 29.8 [Minibuffers and Frames],
page 495.)

The text in the minibuffer always starts with the prompt string, the text that was spec-
ified by the program that is using the minibuffer to tell the user what sort of input to type.
This text is marked read-only so you won’t accidentally delete or change it. It is also marked
as a field (see Section 32.19.10 [Fields], page 574), so that certain motion functions, including
beginning-of-line, forward-word, forward-sentence, and forward-paragraph, stop at
the boundary between the prompt and the actual text. (In older Emacs versions, the prompt
was displayed using a special mechanism and was not part of the buffer contents.)

The minibuffer’s window is normally a single line; it grows automatically if necessary if
the contents require more space. You can explicitly resize it temporarily with the window
sizing commands; it reverts to its normal size when the minibuffer is exited. You can resize
it permanently by using the window sizing commands in the frame’s other window, when
the minibuffer is not active. If the frame contains just a minibuffer, you can change the
minibuffer’s size by changing the frame’s size.

If a command uses a minibuffer while there is an active minibuffer, this is called a
recursive minibuffer. The first minibuffer is named ‘ *Minibuf-0*’. Recursive minibuffers
are named by incrementing the number at the end of the name. (The names begin with a
space so that they won’t show up in normal buffer lists.) Of several recursive minibuffers,
the innermost (or most recently entered) is the active minibuffer. We usually call this “the”
minibuffer. You can permit or forbid recursive minibuffers by setting the variable enable-
recursive-minibuffers or by putting properties of that name on command symbols (see
Section 20.9 [Minibuffer Misc], page 284).

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 22
[Keymaps], page 325); these contain various exit commands and in some cases completion
commands (see Section 20.5 [Completion], page 271).
• minibuffer-local-map is for ordinary input (no completion).
• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like 〈RET〉. This is

used mainly for Mocklisp compatibility.

266 GNU Emacs Lisp Reference Manual

• minibuffer-local-completion-map is for permissive completion.
• minibuffer-local-must-match-map is for strict completion and for cautious comple-

tion.

When Emacs is running in batch mode, any request to read from the minibuffer actually
reads a line from the standard input descriptor that was supplied when Emacs was started.

20.2 Reading Text Strings with the Minibuffer

Most often, the minibuffer is used to read text as a string. It can also be used to read a
Lisp object in textual form. The most basic primitive for minibuffer input is read-from-
minibuffer; it can do either one.

In most cases, you should not call minibuffer input functions in the middle of a Lisp
function. Instead, do all minibuffer input as part of reading the arguments for a command,
in the interactive specification. See Section 21.2 [Defining Commands], page 288.

Functionread-from-minibuffer prompt-string &optional initial-contents
keymap read hist default inherit-input-method

This function is the most general way to get input through the minibuffer. By default,
it accepts arbitrary text and returns it as a string; however, if read is non-nil, then
it uses read to convert the text into a Lisp object (see Section 19.3 [Input Functions],
page 257).
The first thing this function does is to activate a minibuffer and display it with
prompt-string as the prompt. This value must be a string. Then the user can edit
text in the minibuffer.
When the user types a command to exit the minibuffer, read-from-minibuffer
constructs the return value from the text in the minibuffer. Normally it returns a
string containing that text. However, if read is non-nil, read-from-minibuffer
reads the text and returns the resulting Lisp object, unevaluated. (See Section 19.3
[Input Functions], page 257, for information about reading.)
The argument default specifies a default value to make available through the history
commands. It should be a string, or nil. If read is non-nil, then default is also
used as the input to read, if the user enters empty input. However, in the usual case
(where read is nil), read-from-minibuffer does not return default when the user
enters empty input; it returns an empty string, "". In this respect, it is different from
all the other minibuffer input functions in this chapter.
If keymap is non-nil, that keymap is the local keymap to use in the minibuffer.
If keymap is omitted or nil, the value of minibuffer-local-map is used as the
keymap. Specifying a keymap is the most important way to customize the minibuffer
for various applications such as completion.
The argument hist specifies which history list variable to use for saving the input and
for history commands used in the minibuffer. It defaults to minibuffer-history.
See Section 20.4 [Minibuffer History], page 270.
If the variable minibuffer-allow-text-properties is non-nil, then the string
which is returned includes whatever text properties were present in the minibuffer.
Otherwise all the text properties are stripped when the value is returned.

Chapter 20: Minibuffers 267

If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.11 [Input Methods], page 599) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations], page 583)
from whichever buffer was current before entering the minibuffer.
If initial-contents is a string, read-from-minibuffer inserts it into the minibuffer,
leaving point at the end, before the user starts to edit the text. The minibuffer
appears with this text as its initial contents.
Alternatively, initial-contents can be a cons cell of the form (string . position). This
means to insert string in the minibuffer but put point position characters from the
beginning, rather than at the end.
Usage note: The initial-contents argument and the default argument are two alter-
native features for more or less the same job. It does not make sense to use both
features in a single call to read-from-minibuffer. In general, we recommend using
default, since this permits the user to insert the default value when it is wanted, but
does not burden the user with deleting it from the minibuffer on other occasions.

Functionread-string prompt &optional initial history default
inherit-input-method

This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer. The keymap used is minibuffer-
local-map.
The optional argument history, if non-nil, specifies a history list and optionally the
initial position in the list. The optional argument default specifies a default value
to return if the user enters null input; it should be a string. The optional argument
inherit-input-method specifies whether to inherit the current buffer’s input method.
This function is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial history default inherit)
≡
(let ((value

(read-from-minibuffer prompt initial nil nil
history default inherit)))

(if (equal value "")
default

value))

Variableminibuffer-allow-text-properties
If this variable is nil, then read-from-minibuffer strips all text properties from
the minibuffer input before returning it. Since all minibuffer input uses read-from-
minibuffer, this variable applies to all minibuffer input.
Note that the completion functions discard text properties unconditionally, regardless
of the value of this variable.

Variableminibuffer-local-map
This is the default local keymap for reading from the minibuffer. By default, it makes
the following bindings:

268 GNU Emacs Lisp Reference Manual

C-j exit-minibuffer

〈RET〉 exit-minibuffer

C-g abort-recursive-edit

M-n next-history-element

M-p previous-history-element

M-r next-matching-history-element

M-s previous-matching-history-element

Functionread-no-blanks-input prompt &optional initial inherit-input-method
This function reads a string from the minibuffer, but does not allow whitespace char-
acters as part of the input: instead, those characters terminate the input. The
arguments prompt, initial, and inherit-input-method are used as in read-from-
minibuffer.
This is a simplified interface to the read-from-minibuffer function, and passes the
value of the minibuffer-local-ns-map keymap as the keymap argument for that
function. Since the keymap minibuffer-local-ns-map does not rebind C-q, it is
possible to put a space into the string, by quoting it.

(read-no-blanks-input prompt initial)
≡
(read-from-minibuffer prompt initial minibuffer-local-ns-map)

Variableminibuffer-local-ns-map
This built-in variable is the keymap used as the minibuffer local keymap in the func-
tion read-no-blanks-input. By default, it makes the following bindings, in addition
to those of minibuffer-local-map:

〈SPC〉 exit-minibuffer

〈TAB〉 exit-minibuffer

? self-insert-and-exit

20.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

Functionread-minibuffer prompt &optional initial
This function reads a Lisp object using the minibuffer, and returns it without evalu-
ating it. The arguments prompt and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)
≡
(read-from-minibuffer prompt initial nil t)

Here is an example in which we supply the string "(testing)" as initial input:

Chapter 20: Minibuffers 269

(read-minibuffer
"Enter an expression: " (format "%s" ’(testing)))

;; Here is how the minibuffer is displayed:

---------- Buffer: Minibuffer ----------
Enter an expression: (testing)?
---------- Buffer: Minibuffer ----------

The user can type 〈RET〉 immediately to use the initial input as a default, or can edit
the input.

Functioneval-minibuffer prompt &optional initial
This function reads a Lisp expression using the minibuffer, evaluates it, then returns
the result. The arguments prompt and initial are used as in read-from-minibuffer.

This function simply evaluates the result of a call to read-minibuffer:

(eval-minibuffer prompt initial)
≡
(eval (read-minibuffer prompt initial))

Functionedit-and-eval-command prompt form
This function reads a Lisp expression in the minibuffer, and then evaluates it. The
difference between this command and eval-minibuffer is that here the initial form is
not optional and it is treated as a Lisp object to be converted to printed representation
rather than as a string of text. It is printed with prin1, so if it is a string, double-
quote characters (‘"’) appear in the initial text. See Section 19.5 [Output Functions],
page 260.

The first thing edit-and-eval-command does is to activate the minibuffer with
prompt as the prompt. Then it inserts the printed representation of form in the
minibuffer, and lets the user edit it. When the user exits the minibuffer, the edited
text is read with read and then evaluated. The resulting value becomes the value of
edit-and-eval-command.

In the following example, we offer the user an expression with initial text which is a
valid form already:

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Please edit: (forward-word 1)?
---------- Buffer: Minibuffer ----------

Typing 〈RET〉 right away would exit the minibuffer and evaluate the expression, thus
moving point forward one word. edit-and-eval-command returns nil in this exam-
ple.

270 GNU Emacs Lisp Reference Manual

20.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them
conveniently. A history list is actually a symbol, not a list; it is a variable whose value is a
list of strings (previous inputs), most recent first.

There are many separate history lists, used for different kinds of inputs. It’s the Lisp
programmer’s job to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read
both accept an optional argument named hist which is how you specify the history list.
Here are the possible values:

variable Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (an integer, counting from zero which specifies the most
recent element of the history).
If you specify startpos, then you should also specify that element of the history
as the initial minibuffer contents, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For
other standard history lists, see below. You can also create your own history list variable;
just initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history
list automatically, and provide commands to allow the user to reuse items on the list. The
only thing your program needs to do to use a history list is to initialize it and to pass its
name to the input functions when you wish. But it is safe to modify the list by hand when
the minibuffer input functions are not using it.

Here are some of the standard minibuffer history list variables:

Variableminibuffer-history
The default history list for minibuffer history input.

Variablequery-replace-history
A history list for arguments to query-replace (and similar arguments to other com-
mands).

Variablefile-name-history
A history list for file-name arguments.

Variablebuffer-name-history
A history list for buffer-name arguments.

Variableregexp-history
A history list for regular expression arguments.

Variableextended-command-history
A history list for arguments that are names of extended commands.

Chapter 20: Minibuffers 271

Variableshell-command-history
A history list for arguments that are shell commands.

Variableread-expression-history
A history list for arguments that are Lisp expressions to evaluate.

20.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation
for it. Completion works by comparing the user’s input against a list of valid names and
determining how much of the name is determined uniquely by what the user has typed.
For example, when you type C-x b (switch-to-buffer) and then type the first few letters
of the name of the buffer to which you wish to switch, and then type 〈TAB〉 (minibuffer-
complete), Emacs extends the name as far as it can.

Standard Emacs commands offer completion for names of symbols, files, buffers, and
processes; with the functions in this section, you can implement completion for other kinds
of names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call
to completing-read specifies how to determine the list of valid names. The function then
activates the minibuffer with a local keymap that binds a few keys to commands useful for
completion. Other functions provide convenient simple interfaces for reading certain kinds
of names with completion.

20.5.1 Basic Completion Functions

The two functions try-completion and all-completions have nothing in themselves
to do with minibuffers. We describe them in this chapter so as to keep them near the
higher-level completion features that do use the minibuffer.

Functiontry-completion string collection &optional predicate
This function returns the longest common substring of all possible completions of
string in collection. The value of collection must be an alist, an obarray, or a function
that implements a virtual set of strings (see below).
Completion compares string against each of the permissible completions specified by
collection; if the beginning of the permissible completion equals string, it matches.
If no permissible completions match, try-completion returns nil. If only one per-
missible completion matches, and the match is exact, then try-completion returns
t. Otherwise, the value is the longest initial sequence common to all the permissible
completions that match.
If collection is an alist (see Section 5.8 [Association Lists], page 79), the cars of the
alist elements form the set of permissible completions.
If collection is an obarray (see Section 8.3 [Creating Symbols], page 101), the names
of all symbols in the obarray form the set of permissible completions. The global
variable obarray holds an obarray containing the names of all interned Lisp symbols.

272 GNU Emacs Lisp Reference Manual

Note that the only valid way to make a new obarray is to create it empty and then
add symbols to it one by one using intern. Also, you cannot intern a given symbol
in more than one obarray.
If the argument predicate is non-nil, then it must be a function of one argument.
It is used to test each possible match, and the match is accepted only if predicate
returns non-nil. The argument given to predicate is either a cons cell from the alist
(the car of which is a string) or else it is a symbol (not a symbol name) from the
obarray.
You can also use a symbol that is a function as collection. Then the function is
solely responsible for performing completion; try-completion returns whatever this
function returns. The function is called with three arguments: string, predicate and
nil. (The reason for the third argument is so that the same function can be used
in all-completions and do the appropriate thing in either case.) See Section 20.5.6
[Programmed Completion], page 279.
In the first of the following examples, the string ‘foo’ is matched by three of the alist
cars. All of the matches begin with the characters ‘fooba’, so that is the result. In
the second example, there is only one possible match, and it is exact, so the value is
t.

(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))

⇒ "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
⇒ t

In the following example, numerous symbols begin with the characters ‘forw’, and all
of them begin with the word ‘forward’. In most of the symbols, this is followed with
a ‘-’, but not in all, so no more than ‘forward’ can be completed.

(try-completion "forw" obarray)
⇒ "forward"

Finally, in the following example, only two of the three possible matches pass the
predicate test (the string ‘foobaz’ is too short). Both of those begin with the string
‘foobar’.

(defun test (s)
(> (length (car s)) 6))

⇒ test
(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ "foobar"

Functionall-completions string collection &optional predicate nospace
This function returns a list of all possible completions of string. The arguments to this
function (aside from nospace) are the same as those of try-completion. If nospace
is non-nil, completions that start with a space are ignored unless string also starts
with a space.

Chapter 20: Minibuffers 273

If collection is a function, it is called with three arguments: string, predicate and
t; then all-completions returns whatever the function returns. See Section 20.5.6
[Programmed Completion], page 279.
Here is an example, using the function test shown in the example for
try-completion:

(defun test (s)
(> (length (car s)) 6))

⇒ test

(all-completions
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ ("foobar1" "foobar2")

Variablecompletion-ignore-case
If the value of this variable is non-nil, Emacs does not consider case significant in
completion.

20.5.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

Functioncompleting-read prompt collection &optional predicate require-match
initial hist default inherit-input-method

This function reads a string in the minibuffer, assisting the user by providing com-
pletion. It activates the minibuffer with prompt prompt, which must be a string.
The actual completion is done by passing collection and predicate to the function
try-completion. This happens in certain commands bound in the local keymaps
used for completion.
If require-match is nil, the exit commands work regardless of the input in the mini-
buffer. If require-match is t, the usual minibuffer exit commands won’t exit unless
the input completes to an element of collection. If require-match is neither nil nor
t, then the exit commands won’t exit unless the input already in the buffer matches
an element of collection.
However, empty input is always permitted, regardless of the value of require-match;
in that case, completing-read returns default. The value of default (if non-nil) is
also available to the user through the history commands.
The user can exit with null input by typing 〈RET〉 with an empty minibuffer. Then
completing-read returns "". This is how the user requests whatever default the
command uses for the value being read. The user can return using 〈RET〉 in this way
regardless of the value of require-match, and regardless of whether the empty string
is included in collection.
The function completing-read works by calling read-minibuffer. It uses
minibuffer-local-completion-map as the keymap if require-match is nil,
and uses minibuffer-local-must-match-map if require-match is non-nil. See
Section 20.5.3 [Completion Commands], page 274.

274 GNU Emacs Lisp Reference Manual

The argument hist specifies which history list variable to use for saving the input
and for minibuffer history commands. It defaults to minibuffer-history. See Sec-
tion 20.4 [Minibuffer History], page 270.
If initial is non-nil, completing-read inserts it into the minibuffer as part of the
input. Then it allows the user to edit the input, providing several commands to
attempt completion. In most cases, we recommend using default, and not initial.
We discourage use of a non-nil value for initial, because it is an intrusive interface.
The history list feature (which did not exist when we introduced initial) offers a far
more convenient and general way for the user to get the default and edit it, and it is
always available.
If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.11 [Input Methods], page 599) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations], page 583)
from whichever buffer was current before entering the minibuffer.
Completion ignores case when comparing the input against the possible matches, if
the built-in variable completion-ignore-case is non-nil. See Section 20.5.1 [Basic
Completion], page 271.
Here’s an example of using completing-read:

(completing-read
"Complete a foo: "
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Complete a foo: fo?
---------- Buffer: Minibuffer ----------

If the user then types 〈DEL〉 〈DEL〉 b 〈RET〉, completing-read returns barfoo.
The completing-read function binds three variables to pass informa-
tion to the commands that actually do completion. These variables are
minibuffer-completion-table, minibuffer-completion-predicate and
minibuffer-completion-confirm. For more information about them, see
Section 20.5.3 [Completion Commands], page 274.

20.5.3 Minibuffer Commands that Do Completion

This section describes the keymaps, commands and user options used in the minibuffer
to do completion.

Variableminibuffer-local-completion-map
completing-read uses this value as the local keymap when an exact match of one
of the completions is not required. By default, this keymap makes the following
bindings:

? minibuffer-completion-help

Chapter 20: Minibuffers 275

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

with other characters bound as in minibuffer-local-map (see Section 20.2 [Text
from Minibuffer], page 266).

Variableminibuffer-local-must-match-map
completing-read uses this value as the local keymap when an exact match of one of
the completions is required. Therefore, no keys are bound to exit-minibuffer, the
command that exits the minibuffer unconditionally. By default, this keymap makes
the following bindings:

? minibuffer-completion-help

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

C-j minibuffer-complete-and-exit

〈RET〉 minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

Variableminibuffer-completion-table
The value of this variable is the alist or obarray used for completion in the mini-
buffer. This is the global variable that contains what completing-read passes to
try-completion. It is used by minibuffer completion commands such as minibuffer-
complete-word.

Variableminibuffer-completion-predicate
This variable’s value is the predicate that completing-read passes to try-
completion. The variable is also used by the other minibuffer completion
functions.

Commandminibuffer-complete-word
This function completes the minibuffer contents by at most a single word. Even if
the minibuffer contents have only one completion, minibuffer-complete-word does
not add any characters beyond the first character that is not a word constituent. See
Chapter 35 [Syntax Tables], page 621.

Commandminibuffer-complete
This function completes the minibuffer contents as far as possible.

Commandminibuffer-complete-and-exit
This function completes the minibuffer contents, and exits if confirmation is not
required, i.e., if minibuffer-completion-confirm is nil. If confirmation is required,
it is given by repeating this command immediately—the command is programmed to
work without confirmation when run twice in succession.

276 GNU Emacs Lisp Reference Manual

Variableminibuffer-completion-confirm
When the value of this variable is non-nil, Emacs asks for confirmation of a com-
pletion before exiting the minibuffer. The function minibuffer-complete-and-exit
checks the value of this variable before it exits.

Commandminibuffer-completion-help
This function creates a list of the possible completions of the current minibuffer
contents. It works by calling all-completions using the value of the variable
minibuffer-completion-table as the collection argument, and the value of
minibuffer-completion-predicate as the predicate argument. The list of
completions is displayed as text in a buffer named ‘*Completions*’.

Functiondisplay-completion-list completions
This function displays completions to the stream in standard-output, usually a
buffer. (See Chapter 19 [Read and Print], page 255, for more information about
streams.) The argument completions is normally a list of completions just returned
by all-completions, but it does not have to be. Each element may be a symbol or
a string, either of which is simply printed, or a list of two strings, which is printed as
if the strings were concatenated.

This function is called by minibuffer-completion-help. The most common way to
use it is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer "*Completions*"
(display-completion-list
(all-completions (buffer-string) my-alist)))

User Optioncompletion-auto-help
If this variable is non-nil, the completion commands automatically display a list of
possible completions whenever nothing can be completed because the next character
is not uniquely determined.

20.5.4 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of
names with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive specification. See Section 21.2 [Defining Commands], page 288.

Functionread-buffer prompt &optional default existing
This function reads the name of a buffer and returns it as a string. The argument
default is the default name to use, the value to return if the user exits with an empty
minibuffer. If non-nil, it should be a string or a buffer. It is mentioned in the prompt,
but is not inserted in the minibuffer as initial input.

If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and 〈RET〉

Chapter 20: Minibuffers 277

does completion to attempt to find a valid name. (However, default is not checked
for validity; it is returned, whatever it is, if the user exits with the minibuffer empty.)

In the following example, the user enters ‘minibuffer.t’, and then types 〈RET〉. The
argument existing is t, and the only buffer name starting with the given input is
‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)
;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Buffer name? (default foo) ?
---------- Buffer: Minibuffer ----------

;; The user types minibuffer.t 〈RET〉.
⇒ "minibuffer.texi"

Variableread-buffer-function
This variable specifies how to read buffer names. For example, if you set this variable
to iswitchb-read-buffer, all Emacs commands that call read-buffer to read a
buffer name will actually use the iswitchb package to read it.

Functionread-command prompt &optional default
This function reads the name of a command and returns it as a Lisp symbol. The
argument prompt is used as in read-from-minibuffer. Recall that a command is
anything for which commandp returns t, and a command name is a symbol for which
commandp returns t. See Section 21.3 [Interactive Call], page 292.

The argument default specifies what to return if the user enters null input. It can be
a symbol or a string; if it is a string, read-command interns it before returning it. If
default is nil, that means no default has been specified; then if the user enters null
input, the return value is nil.

(read-command "Command name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Command name?
---------- Buffer: Minibuffer ----------

If the user types forward-c 〈RET〉, then this function returns forward-char.

The read-command function is a simplified interface to completing-read. It uses the
variable obarray so as to complete in the set of extant Lisp symbols, and it uses the
commandp predicate so as to accept only command names:

(read-command prompt)
≡
(intern (completing-read prompt obarray

’commandp t nil))

278 GNU Emacs Lisp Reference Manual

Functionread-variable prompt &optional default
This function reads the name of a user variable and returns it as a symbol.

The argument default specifies what to return if the user enters null input. It can be
a symbol or a string; if it is a string, read-variable interns it before returning it. If
default is nil, that means no default has been specified; then if the user enters null
input, the return value is nil.

(read-variable "Variable name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Variable name? ?
---------- Buffer: Minibuffer ----------

If the user then types fill-p 〈RET〉, read-variable returns fill-prefix.

This function is similar to read-command, but uses the predicate user-variable-p
instead of commandp:

(read-variable prompt)
≡
(intern
(completing-read prompt obarray

’user-variable-p t nil))

See also the functions read-coding-system and read-non-nil-coding-system, in Sec-
tion 33.10.4 [User-Chosen Coding Systems], page 593.

20.5.5 Reading File Names

Here is another high-level completion function, designed for reading a file name. It
provides special features including automatic insertion of the default directory.

Functionread-file-name prompt &optional directory default existing initial
This function reads a file name in the minibuffer, prompting with prompt and pro-
viding completion. If default is non-nil, then the function returns default if the user
just types 〈RET〉. default is not checked for validity; it is returned, whatever it is, if
the user exits with the minibuffer empty.

If existing is non-nil, then the user must specify the name of an existing file; 〈RET〉
performs completion to make the name valid if possible, and then refuses to exit if
it is not valid. If the value of existing is neither nil nor t, then 〈RET〉 also requires
confirmation after completion. If existing is nil, then the name of a nonexistent file
is acceptable.

The argument directory specifies the directory to use for completion of relative file
names. If insert-default-directory is non-nil, directory is also inserted in the
minibuffer as initial input. It defaults to the current buffer’s value of default-
directory.

Chapter 20: Minibuffers 279

If you specify initial, that is an initial file name to insert in the buffer (after directory,
if that is inserted). In this case, point goes at the beginning of initial. The default for
initial is nil—don’t insert any file name. To see what initial does, try the command
C-x C-v. Note: we recommend using default rather than initial in most cases.
Here is an example:

(read-file-name "The file is ")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/?
---------- Buffer: Minibuffer ----------

Typing manual 〈TAB〉 results in the following:
---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/manual.texi?
---------- Buffer: Minibuffer ----------

If the user types 〈RET〉, read-file-name returns the file name as the string
"/gp/gnu/elisp/manual.texi".

User Optioninsert-default-directory
This variable is used by read-file-name. Its value controls whether read-file-
name starts by placing the name of the default directory in the minibuffer, plus the
initial file name if any. If the value of this variable is nil, then read-file-name does
not place any initial input in the minibuffer (unless you specify initial input with the
initial argument). In that case, the default directory is still used for completion of
relative file names, but is not displayed.
For example:

;; Here the minibuffer starts out with the default directory.
(let ((insert-default-directory t))
(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ~lewis/manual/?
---------- Buffer: Minibuffer ----------

;; Here the minibuffer is empty and only the prompt
;; appears on its line.
(let ((insert-default-directory nil))
(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ?
---------- Buffer: Minibuffer ----------

20.5.6 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended
possible completions. In such a case, you can supply your own function to compute the
completion of a given string. This is called programmed completion.

280 GNU Emacs Lisp Reference Manual

To use this feature, pass a symbol with a function definition as the collection argument
to completing-read. The function completing-read arranges to pass your completion
function along to try-completion and all-completions, which will then let your function
do all the work.

The completion function should accept three arguments:

• The string to be completed.

• The predicate function to filter possible matches, or nil if none. Your function should
call the predicate for each possible match, and ignore the possible match if the predicate
returns nil.

• A flag specifying the type of operation.

There are three flag values for three operations:

• nil specifies try-completion. The completion function should return the completion
of the specified string, or t if the string is a unique and exact match already, or nil if
the string matches no possibility.

If the string is an exact match for one possibility, but also matches other longer possi-
bilities, the function should return the string, not t.

• t specifies all-completions. The completion function should return a list of all pos-
sible completions of the specified string.

• lambda specifies a test for an exact match. The completion function should return t if
the specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions
(lists that are functions) as well as function symbols as collection, but this is impossible.
Lists as completion tables are already assigned another meaning—as alists. It would be
unreliable to fail to handle an alist normally because it is also a possible function. So
you must arrange for any function you wish to use for completion to be encapsulated in a
symbol.

Emacs uses programmed completion when completing file names. See Section 25.8.6
[File Name Completion], page 420.

20.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function
y-or-n-p can be answered with a single character; it is useful for questions where an
inadvertent wrong answer will not have serious consequences. yes-or-no-p is suitable for
more momentous questions, since it requires three or four characters to answer.

If either of these functions is called in a command that was invoked using the mouse—
more precisely, if last-nonmenu-event (see Section 21.4 [Command Loop Info], page 295)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
Otherwise, it uses keyboard input. You can force use of the mouse or use of keyboard input
by binding last-nonmenu-event to a suitable value around the call.

Strictly speaking, yes-or-no-p uses the minibuffer and y-or-n-p does not; but it seems
best to describe them together.

Chapter 20: Minibuffers 281

Functiony-or-n-p prompt
This function asks the user a question, expecting input in the echo area. It returns
t if the user types y, nil if the user types n. This function also accepts 〈SPC〉 to
mean yes and 〈DEL〉 to mean no. It accepts C-] to mean “quit”, like C-g, because the
question might look like a minibuffer and for that reason the user might try to use
C-] to get out. The answer is a single character, with no 〈RET〉 needed to terminate
it. Upper and lower case are equivalent.

“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, 〈SPC〉, 〈DEL〉, or
something that quits), the function responds ‘Please answer y or n.’, and repeats
the request.

This function does not actually use the minibuffer, since it does not allow editing
of the answer. It actually uses the echo area (see Section 38.4 [The Echo Area],
page 663), which uses the same screen space as the minibuffer. The cursor moves to
the echo area while the question is being asked.

The answers and their meanings, even ‘y’ and ‘n’, are not hardwired. The keymap
query-replace-map specifies them. See Section 34.5 [Search and Replace], page 614.

In the following example, the user first types q, which is invalid. At the next prompt
the user types y.

(y-or-n-p "Do you need a lift? ")

;; After evaluation of the preceding expression,
;; the following prompt appears in the echo area:

---------- Echo area ----------
Do you need a lift? (y or n)
---------- Echo area ----------

;; If the user then types q, the following appears:

---------- Echo area ----------
Please answer y or n. Do you need a lift? (y or n)
---------- Echo area ----------

;; When the user types a valid answer,
;; it is displayed after the question:

---------- Echo area ----------
Do you need a lift? (y or n) y
---------- Echo area ----------

We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

Functiony-or-n-p-with-timeout prompt seconds default-value
Like y-or-n-p, except that if the user fails to answer within seconds seconds, this
function stops waiting and returns default-value. It works by setting up a timer;
see Section 40.7 [Timers], page 736. The argument seconds may be an integer or a
floating point number.

282 GNU Emacs Lisp Reference Manual

Functionyes-or-no-p prompt
This function asks the user a question, expecting input in the minibuffer. It returns t
if the user enters ‘yes’, nil if the user types ‘no’. The user must type 〈RET〉 to finalize
the response. Upper and lower case are equivalent.

yes-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) ’.
The user must type one of the expected responses; otherwise, the function responds
‘Please answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for
more crucial decisions.

Here is an example:
(yes-or-no-p "Do you really want to remove everything? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: minibuffer ----------
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

If the user first types y 〈RET〉, which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

---------- Buffer: minibuffer ----------
Please answer yes or no.
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

20.7 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save
this buffer” for each buffer in turn, you should use map-y-or-n-p to ask the collection
of questions, rather than asking each question individually. This gives the user certain
convenient facilities such as the ability to answer the whole series at once.

Functionmap-y-or-n-p prompter actor list &optional help action-alist
no-cursor-in-echo-area

This function asks the user a series of questions, reading a single-character answer in
the echo area for each one.

The value of list specifies the objects to ask questions about. It should be either a list
of objects or a generator function. If it is a function, it should expect no arguments,
and should return either the next object to ask about, or nil meaning stop asking
questions.

The argument prompter specifies how to ask each question. If prompter is a string,
the question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).

Chapter 20: Minibuffers 283

If not a string, prompter should be a function of one argument (the next object to
ask about) and should return the question text. If the value is a string, that is the
question to ask the user. The function can also return t meaning do act on this object
(and don’t ask the user), or nil meaning ignore this object (and don’t ask the user).

The argument actor says how to act on the answers that the user gives. It should be
a function of one argument, and it is called with each object that the user says yes
for. Its argument is always an object obtained from list.

If the argument help is given, it should be a list of this form:
(singular plural action)

where singular is a string containing a singular noun that describes the objects con-
ceptually being acted on, plural is the corresponding plural noun, and action is a
transitive verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or 〈SPC〉 to act on that object;
n, N, or 〈DEL〉 to skip that object; ! to act on all following objects; 〈ESC〉 or q to exit
(skip all following objects); . (period) to act on the current object and then exit;
or C-h to get help. These are the same answers that query-replace accepts. The
keymap query-replace-map defines their meaning for map-y-or-n-p as well as for
query-replace; see Section 34.5 [Search and Replace], page 614.

You can use action-alist to specify additional possible answers and what they mean.
It is an alist of elements of the form (char function help), each of which defines one
additional answer. In this element, char is a character (the answer); function is a
function of one argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-
nil, the object is considered “acted upon”, and map-y-or-n-p advances to the next
object in list. If it returns nil, the prompt is repeated for the same object.

Normally, map-y-or-n-p binds cursor-in-echo-area while prompting. But if no-
cursor-in-echo-area is non-nil, it does not do that.

If map-y-or-n-p is called in a command that was invoked using the mouse—more
precisely, if last-nonmenu-event (see Section 21.4 [Command Loop Info], page 295)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
In this case, it does not use keyboard input or the echo area. You can force use of the
mouse or use of keyboard input by binding last-nonmenu-event to a suitable value
around the call.

The return value of map-y-or-n-p is the number of objects acted on.

20.8 Reading a Password

To read a password to pass to another program, you can use the function read-passwd.

Functionread-passwd prompt &optional confirm default
This function reads a password, prompting with prompt. It does not echo the pass-
word as the user types it; instead, it echoes ‘.’ for each character in the password.

284 GNU Emacs Lisp Reference Manual

The optional argument confirm, if non-nil, says to read the password twice and insist
it must be the same both times. If it isn’t the same, the user has to type it over and
over until the last two times match.

The optional argument default specifies the default password to return if the user
enters empty input. If default is nil, then read-passwd returns the null string in
that case.

20.9 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

Commandexit-minibuffer
This command exits the active minibuffer. It is normally bound to keys in minibuffer
local keymaps.

Commandself-insert-and-exit
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 21.4 [Command Loop Info],
page 295).

Commandprevious-history-element n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element.

Commandnext-history-element n
This command replaces the minibuffer contents with the value of the nth more recent
history element.

Commandprevious-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element that matches pattern (a regular expression).

Commandnext-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the nth next (newer)
history element that matches pattern (a regular expression).

Functionminibuffer-prompt
This function returns the prompt string of the currently active minibuffer. If no
minibuffer is active, it returns nil.

Functionminibuffer-prompt-end
This function, available starting in Emacs 21, returns the current position of the
end of the minibuffer prompt, if a minibuffer is current. Otherwise, it returns the
minimum valid buffer position.

Chapter 20: Minibuffers 285

Functionminibuffer-contents
This function, available starting in Emacs 21, returns the editable contents of the
minibuffer (that is, everything except the prompt) as a string, if a minibuffer is
current. Otherwise, it returns the entire contents of the current buffer.

Functionminibuffer-contents-no-properties
This is like minibuffer-contents, except that it does not copy text properties, just
the characters themselves. See Section 32.19 [Text Properties], page 562.

Functiondelete-minibuffer-contents
This function, available starting in Emacs 21, erases the editable contents of the mini-
buffer (that is, everything except the prompt), if a minibuffer is current. Otherwise,
it erases the entire buffer.

Functionminubuffer-prompt-width
This function returns the current display-width of the minibuffer prompt, if a mini-
buffer is current. Otherwise, it returns zero.

Variableminibuffer-setup-hook
This is a normal hook that is run whenever the minibuffer is entered. See Section 23.6
[Hooks], page 383.

Variableminibuffer-exit-hook
This is a normal hook that is run whenever the minibuffer is exited. See Section 23.6
[Hooks], page 383.

Variableminibuffer-help-form
The current value of this variable is used to rebind help-form locally inside the
minibuffer (see Section 24.5 [Help Functions], page 393).

Functionactive-minibuffer-window
This function returns the currently active minibuffer window, or nil if none is cur-
rently active.

Functionminibuffer-window &optional frame
This function returns the minibuffer window used for frame frame. If frame is nil,
that stands for the current frame. Note that the minibuffer window used by a frame
need not be part of that frame—a frame that has no minibuffer of its own necessarily
uses some other frame’s minibuffer window.

Functionwindow-minibuffer-p window
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it
with the result of (minibuffer-window), because there can be more than one minibuffer
window if there is more than one frame.

286 GNU Emacs Lisp Reference Manual

Functionminibuffer-window-active-p window
This function returns non-nil if window, assumed to be a minibuffer window, is
currently active.

Variableminibuffer-scroll-window
If the value of this variable is non-nil, it should be a window object. When the
function scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 21.12
[Recursive Editing], page 319):

Functionminibuffer-depth
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

User Optionenable-recursive-minibuffers
If this variable is non-nil, you can invoke commands (such as find-file) that use
minibuffers even while the minibuffer window is active. Such invocation produces a
recursive editing level for a new minibuffer. The outer-level minibuffer is invisible
while you are editing the inner one.
If this variable is nil, you cannot invoke minibuffer commands when the minibuffer
window is active, not even if you switch to another window to do it.

If a command name has a property enable-recursive-minibuffers that is non-nil,
then the command can use the minibuffer to read arguments even if it is invoked from the
minibuffer. The minibuffer command next-matching-history-element (normally M-s in
the minibuffer) uses this feature.

Chapter 21: Command Loop 287

21 Command Loop

When you run Emacs, it enters the editor command loop almost immediately. This loop
reads key sequences, executes their definitions, and displays the results. In this chapter,
we describe how these things are done, and the subroutines that allow Lisp programs to do
them.

21.1 Command Loop Overview

The first thing the command loop must do is read a key sequence, which is a sequence
of events that translates into a command. It does this by calling the function read-key-
sequence. Your Lisp code can also call this function (see Section 21.7.1 [Key Sequence
Input], page 309). Lisp programs can also do input at a lower level with read-event (see
Section 21.7.2 [Reading One Event], page 311) or discard pending input with discard-
input (see Section 21.7.5 [Event Input Misc], page 313).

The key sequence is translated into a command through the currently active keymaps.
See Section 22.7 [Key Lookup], page 333, for information on how this is done. The result
should be a keyboard macro or an interactively callable function. If the key is M-x, then
it reads the name of another command, which it then calls. This is done by the command
execute-extended-command (see Section 21.3 [Interactive Call], page 292).

To execute a command requires first reading the arguments for it. This is done by calling
command-execute (see Section 21.3 [Interactive Call], page 292). For commands written
in Lisp, the interactive specification says how to read the arguments. This may use the
prefix argument (see Section 21.11 [Prefix Command Arguments], page 317) or may read
with prompting in the minibuffer (see Chapter 20 [Minibuffers], page 265). For example,
the command find-file has an interactive specification which says to read a file name
using the minibuffer. The command’s function body does not use the minibuffer; if you
call this command from Lisp code as a function, you must supply the file name string as an
ordinary Lisp function argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is
used to execute it. You can call this function yourself (see Section 21.15 [Keyboard Macros],
page 322).

To terminate the execution of a running command, type C-g. This character causes
quitting (see Section 21.10 [Quitting], page 316).

Variablepre-command-hook
The editor command loop runs this normal hook before each command. At that
time, this-command contains the command that is about to run, and last-command
describes the previous command. See Section 23.6 [Hooks], page 383.

Variablepost-command-hook
The editor command loop runs this normal hook after each command (including com-
mands terminated prematurely by quitting or by errors), and also when the command
loop is first entered. At that time, this-command describes the command that just
ran, and last-command describes the command before that. See Section 23.6 [Hooks],
page 383.

288 GNU Emacs Lisp Reference Manual

Quitting is suppressed while running pre-command-hook and post-command-hook. If
an error happens while executing one of these hooks, it terminates execution of the hook,
and clears the hook variable to nil so as to prevent an infinite loop of errors.

21.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form that
calls the special form interactive. This form does nothing when actually executed, but
its presence serves as a flag to indicate that interactive calling is permitted. Its argument
controls the reading of arguments for an interactive call.

21.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function
an interactively-callable command, and how to examine a commands’s interactive form.

Special Forminteractive arg-descriptor
This special form declares that the function in which it appears is a command, and
that it may therefore be called interactively (via M-x or by entering a key sequence
bound to it). The argument arg-descriptor declares how to compute the arguments
to the command when the command is called interactively.
A command may be called from Lisp programs like any other function, but then the
caller supplies the arguments and arg-descriptor has no effect.
The interactive form has its effect because the command loop (actually, its sub-
routine call-interactively) scans through the function definition looking for it,
before calling the function. Once the function is called, all its body forms including
the interactive form are executed, but at this time interactive simply returns
nil without even evaluating its argument.

There are three possibilities for the argument arg-descriptor:
• It may be omitted or nil; then the command is called with no arguments. This leads

quickly to an error if the command requires one or more arguments.
• It may be a Lisp expression that is not a string; then it should be a form that is

evaluated to get a list of arguments to pass to the command.
If this expression reads keyboard input (this includes using the minibuffer), keep in
mind that the integer value of point or the mark before reading input may be incorrect
after reading input. This is because the current buffer may be receiving subprocess
output; if subprocess output arrives while the command is waiting for input, it could
relocate point and the mark.
Here’s an example of what not to do:

(interactive
(list (region-beginning) (region-end)

(read-string "Foo: " nil ’my-history)))

Here’s how to avoid the problem, by examining point and the mark only after reading
the keyboard input:

Chapter 21: Command Loop 289

(interactive
(let ((string (read-string "Foo: " nil ’my-history)))
(list (region-beginning) (region-end) string)))

• It may be a string; then its contents should consist of a code character followed by a
prompt (which some code characters use and some ignore). The prompt ends either
with the end of the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The
buffer name is the sole argument passed to the command. The rest of the string is a
prompt.
If there is a newline character in the string, it terminates the prompt. If the string
does not end there, then the rest of the string should contain another code character
and prompt, specifying another argument. You can specify any number of arguments
in this way.
The prompt string can use ‘%’ to include previous argument values (starting with the
first argument) in the prompt. This is done using format (see Section 4.7 [Formatting
Strings], page 56). For example, here is how you could read the name of an existing
buffer followed by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")

If the first character in the string is ‘*’, then an error is signaled if the buffer is read-only.
If the first character in the string is ‘@’, and if the key sequence used to invoke the
command includes any mouse events, then the window associated with the first of
those events is selected before the command is run.
You can use ‘*’ and ‘@’ together; the order does not matter. Actual reading of arguments
is controlled by the rest of the prompt string (starting with the first character that is
not ‘*’ or ‘@’).

Functioninteractive-form function
This function returns the interactive form of function. If function is a command (see
Section 21.3 [Interactive Call], page 292), the value is a list of the form (interactive
spec), where spec is the descriptor specification used by the command’s interactive
form to compute the function’s arguments (see Section 21.2.1 [Using Interactive],
page 288). If function is not a command, interactive-form returns nil.

21.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as
follows:

Completion
Provide completion. 〈TAB〉, 〈SPC〉, and 〈RET〉 perform name completion because
the argument is read using completing-read (see Section 20.5 [Completion],
page 271). ? displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

290 GNU Emacs Lisp Reference Manual

Default A default value of some sort is used if the user enters no text in the minibuffer.
The default depends on the code character.

No I/O This code letter computes an argument without reading any input. Therefore,
it does not use a prompt string, and any prompt string you supply is ignored.
Even though the code letter doesn’t use a prompt string, you must follow it
with a newline if it is not the last code character in the string.

Prompt A prompt immediately follows the code character. The prompt ends either with
the end of the string or with a newline.

Special This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

‘*’ Signal an error if the current buffer is read-only. Special.

‘@’ Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

‘a’ A function name (i.e., a symbol satisfying fboundp). Existing, Completion,
Prompt.

‘b’ The name of an existing buffer. By default, uses the name of the current buffer
(see Chapter 27 [Buffers], page 439). Existing, Completion, Default, Prompt.

‘B’ A buffer name. The buffer need not exist. By default, uses the name of a re-
cently used buffer other than the current buffer. Completion, Default, Prompt.

‘c’ A character. The cursor does not move into the echo area. Prompt.

‘C’ A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

‘d’ The position of point, as an integer (see Section 30.1 [Point], page 509). No
I/O.

‘D’ A directory name. The default is the current default directory of the current
buffer, default-directory (see Section 40.3 [System Environment], page 728).
Existing, Completion, Default, Prompt.

‘e’ The first or next mouse event in the key sequence that invoked the command.
More precisely, ‘e’ gets events that are lists, so you can look at the data in the
lists. See Section 21.6 [Input Events], page 297. No I/O.
You can use ‘e’ more than once in a single command’s interactive specification.
If the key sequence that invoked the command has n events that are lists, the
nth ‘e’ provides the nth such event. Events that are not lists, such as function
keys and ascii characters, do not count where ‘e’ is concerned.

‘f’ A file name of an existing file (see Section 25.8 [File Names], page 414). The de-
fault directory is default-directory. Existing, Completion, Default, Prompt.

‘F’ A file name. The file need not exist. Completion, Default, Prompt.

Chapter 21: Command Loop 291

‘i’ An irrelevant argument. This code always supplies nil as the argument’s value.
No I/O.

‘k’ A key sequence (see Section 22.1 [Keymap Terminology], page 325). This keeps
reading events until a command (or undefined command) is found in the current
key maps. The key sequence argument is represented as a string or vector. The
cursor does not move into the echo area. Prompt.
This kind of input is used by commands such as describe-key and global-
set-key.

‘K’ A key sequence, whose definition you intend to change. This works like ‘k’,
except that it suppresses, for the last input event in the key sequence, the
conversions that are normally used (when necessary) to convert an undefined
key into a defined one.

‘m’ The position of the mark, as an integer. No I/O.

‘M’ Arbitrary text, read in the minibuffer using the current buffer’s input method,
and returned as a string (see section “Input Methods” in The GNU Emacs
Manual). Prompt.

‘n’ A number read with the minibuffer. If the input is not a number, the user is
asked to try again. The prefix argument, if any, is not used. Prompt.

‘N’ The numeric prefix argument; but if there is no prefix argument, read a number
as with n. Requires a number. See Section 21.11 [Prefix Command Arguments],
page 317. Prompt.

‘p’ The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

‘P’ The raw prefix argument. (Note that this ‘P’ is upper case.) No I/O.

‘r’ Point and the mark, as two numeric arguments, smallest first. This is the only
code letter that specifies two successive arguments rather than one. No I/O.

‘s’ Arbitrary text, read in the minibuffer and returned as a string (see Section 20.2
[Text from Minibuffer], page 266). Terminate the input with either C-j or 〈RET〉.
(C-q may be used to include either of these characters in the input.) Prompt.

‘S’ An interned symbol whose name is read in the minibuffer. Any whitespace char-
acter terminates the input. (Use C-q to include whitespace in the string.) Other
characters that normally terminate a symbol (e.g., parentheses and brackets)
do not do so here. Prompt.

‘v’ A variable declared to be a user option (i.e., satisfying the predicate user-
variable-p). See Section 20.5.4 [High-Level Completion], page 276. Existing,
Completion, Prompt.

‘x’ A Lisp object, specified with its read syntax, terminated with a C-j or 〈RET〉.
The object is not evaluated. See Section 20.3 [Object from Minibuffer],
page 268. Prompt.

‘X’ A Lisp form is read as with x, but then evaluated so that its value becomes the
argument for the command. Prompt.

292 GNU Emacs Lisp Reference Manual

‘z’ A coding system name (a symbol). If the user enters null input, the argu-
ment value is nil. See Section 33.10 [Coding Systems], page 590. Completion,
Existing, Prompt.

‘Z’ A coding system name (a symbol)—but only if this command has a prefix
argument. With no prefix argument, ‘Z’ provides nil as the argument value.
Completion, Existing, Prompt.

21.2.3 Examples of Using interactive

Here are some examples of interactive:

(defun foo1 () ; foo1 takes no arguments,
(interactive) ; just moves forward two words.
(forward-word 2))
⇒ foo1

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))
⇒ foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))
⇒ foo3

(defun three-b (b1 b2 b3)
"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBuffer1:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)
(split-window (selected-window) 8)
(switch-to-buffer b1)
(other-window 1)
(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)
(switch-to-buffer b3))
⇒ three-b

(three-b "*scratch*" "declarations.texi" "*mail*")
⇒ nil

21.3 Interactive Call

After the command loop has translated a key sequence into a command it invokes that
command using the function command-execute. If the command is a function, command-
execute calls call-interactively, which reads the arguments and calls the command.
You can also call these functions yourself.

Chapter 21: Command Loop 293

Functioncommandp object
Returns t if object is suitable for calling interactively; that is, if object is a command.
Otherwise, returns nil.
The interactively callable objects include strings and vectors (treated as keyboard
macros), lambda expressions that contain a top-level call to interactive, byte-code
function objects made from such lambda expressions, autoload objects that are de-
clared as interactive (non-nil fourth argument to autoload), and some of the prim-
itive functions.
A symbol satisfies commandp if its function definition satisfies commandp.
Keys and keymaps are not commands. Rather, they are used to look up commands
(see Chapter 22 [Keymaps], page 325).
See documentation in Section 24.2 [Accessing Documentation], page 388, for a real-
istic example of using commandp.

Functioncall-interactively command &optional record-flag keys
This function calls the interactively callable function command, reading arguments
according to its interactive calling specifications. An error is signaled if command is
not a function or if it cannot be called interactively (i.e., is not a command). Note
that keyboard macros (strings and vectors) are not accepted, even though they are
considered commands, because they are not functions.
If record-flag is non-nil, then this command and its arguments are unconditionally
added to the list command-history. Otherwise, the command is added only if it uses
the minibuffer to read an argument. See Section 21.14 [Command History], page 321.
The argument keys, if given, specifies the sequence of events to supply if the command
inquires which events were used to invoke it.

Functioncommand-execute command &optional record-flag keys special
This function executes command. The argument command must satisfy the commandp
predicate; i.e., it must be an interactively callable function or a keyboard macro.
A string or vector as command is executed with execute-kbd-macro. A function is
passed to call-interactively, along with the optional record-flag.
A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interac-
tively callable function. Such a definition is handled by loading the specified library
and then rechecking the definition of the symbol.
The argument keys, if given, specifies the sequence of events to supply if the command
inquires which events were used to invoke it.
The argument special, if given, means to ignore the prefix argument and not clear it.
This is used for executing special events (see Section 21.8 [Special Events], page 314).

Commandexecute-extended-command prefix-argument
This function reads a command name from the minibuffer using completing-read
(see Section 20.5 [Completion], page 271). Then it uses command-execute to call the
specified command. Whatever that command returns becomes the value of execute-
extended-command.

294 GNU Emacs Lisp Reference Manual

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument
is used for prefix-argument, and thus passed on to whatever command is run.
execute-extended-command is the normal definition of M-x, so it uses the string
‘M-x ’ as a prompt. (It would be better to take the prompt from the events used to
invoke execute-extended-command, but that is painful to implement.) A description
of the value of the prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)
---------- Buffer: Minibuffer ----------
1 M-x forward-word RET
---------- Buffer: Minibuffer ----------

⇒ t

Functioninteractive-p
This function returns t if the containing function (the one whose code includes the call
to interactive-p) was called interactively, with the function call-interactively.
(It makes no difference whether call-interactively was called from Lisp or di-
rectly from the editor command loop.) If the containing function was called by Lisp
evaluation (or with apply or funcall), then it was not called interactively.

The most common use of interactive-p is for deciding whether to print an informative
message. As a special exception, interactive-p returns nil whenever a keyboard macro is
being run. This is to suppress the informative messages and speed execution of the macro.

For example:
(defun foo ()
(interactive)
(when (interactive-p)
(message "foo")))
⇒ foo

(defun bar ()
(interactive)
(setq foobar (list (foo) (interactive-p))))

⇒ bar

;; Type M-x foo.
a foo

;; Type M-x bar.
;; This does not print anything.

foobar
⇒ (nil t)

The other way to do this sort of job is to make the command take an argument print-
message which should be non-nil in an interactive call, and use the interactive spec to
make sure it is non-nil. Here’s how:

(defun foo (&optional print-message)
(interactive "p")
(when print-message
(message "foo")))

Chapter 21: Command Loop 295

The numeric prefix argument, provided by ‘p’, is never nil.

21.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and
for commands that are run.

Variablelast-command
This variable records the name of the previous command executed by the command
loop (the one before the current command). Normally the value is a symbol with a
function definition, but this is not guaranteed.

The value is copied from this-command when a command returns to the command
loop, except when the command has specified a prefix argument for the following
command.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

Variablereal-last-command
This variable is set up by Emacs just like last-command, but never altered by Lisp
programs.

Variablethis-command
This variable records the name of the command now being executed by the editor
command loop. Like last-command, it is normally a symbol with a function definition.

The command loop sets this variable just before running a command, and copies its
value into last-command when the command finishes (unless the command specified
a prefix argument for the following command).

Some commands set this variable during their execution, as a flag for whatever com-
mand runs next. In particular, the functions for killing text set this-command to
kill-region so that any kill commands immediately following will know to append
the killed text to the previous kill.

If you do not want a particular command to be recognized as the previous command in
the case where it got an error, you must code that command to prevent this. One way is
to set this-command to t at the beginning of the command, and set this-command back to
its proper value at the end, like this:

(defun foo (args...)
(interactive ...)
(let ((old-this-command this-command))
(setq this-command t)
. . .do the work. . .
(setq this-command old-this-command)))

We do not bind this-command with let because that would restore the old value in case
of error—a feature of let which in this case does precisely what we want to avoid.

296 GNU Emacs Lisp Reference Manual

Functionthis-command-keys
This function returns a string or vector containing the key sequence that invoked the
present command, plus any previous commands that generated the prefix argument
for this command. The value is a string if all those events were characters. See
Section 21.6 [Input Events], page 297.

(this-command-keys)
;; Now use C-u C-x C-e to evaluate that.

⇒ "^U^X^E"

Functionthis-command-keys-vector
Like this-command-keys, except that it always returns the events in a vector, so
you don’t need to deal with the complexities of storing input events in a string (see
Section 21.6.14 [Strings of Events], page 308).

Functionclear-this-command-keys
This function empties out the table of events for this-command-keys to return, and
also empties the records that the function recent-keys (see Section 40.8.3 [Recording
Input], page 742) will subsequently return. This is useful after reading a password,
to prevent the password from echoing inadvertently as part of the next command in
certain cases.

Variablelast-nonmenu-event
This variable holds the last input event read as part of a key sequence, not counting
events resulting from mouse menus.

One use of this variable is for telling x-popup-menu where to pop up a menu. It is
also used internally by y-or-n-p (see Section 20.6 [Yes-or-No Queries], page 280).

Variablelast-command-event
Variablelast-command-char

This variable is set to the last input event that was read by the command loop as
part of a command. The principal use of this variable is in self-insert-command,
which uses it to decide which character to insert.

last-command-event
;; Now use C-u C-x C-e to evaluate that.

⇒ 5

The value is 5 because that is the ascii code for C-e.

The alias last-command-char exists for compatibility with Emacs version 18.

Variablelast-event-frame
This variable records which frame the last input event was directed to. Usually this
is the frame that was selected when the event was generated, but if that frame has
redirected input focus to another frame, the value is the frame to which the event was
redirected. See Section 29.9 [Input Focus], page 495.

Chapter 21: Command Loop 297

21.5 Adjusting Point After Commands

It is not easy to display a value of point in the middle of a sequence of text that has
the display or composition property. So after a command finishes and returns to the
command loop, if point is within such a sequence, the command loop normally moves point
to the edge of the sequence.

A command can inhibit this feature by setting the variable disable-point-adjustment:

Variabledisable-point-adjustment
If this variable is non-nil when a command returns to the command loop, then the
command loop does not check for text properties such as display and composition,
and does not move point out of sequences that have these properties.

The command loop sets this variable to nil before each command, so if a command
sets it, the effect applies only to that command.

Variableglobal-disable-point-adjustment
If you set this variable to a non-nil value, the feature of moving point out of these
sequences is completely turned off.

21.6 Input Events

The Emacs command loop reads a sequence of input events that represent keyboard or
mouse activity. The events for keyboard activity are characters or symbols; mouse events
are always lists. This section describes the representation and meaning of input events in
detail.

Functioneventp object
This function returns non-nil if object is an input event or event type.

Note that any symbol might be used as an event or an event type. eventp cannot
distinguish whether a symbol is intended by Lisp code to be used as an event. Instead,
it distinguishes whether the symbol has actually been used in an event that has been
read as input in the current Emacs session. If a symbol has not yet been so used,
eventp returns nil.

21.6.1 Keyboard Events

There are two kinds of input you can get from the keyboard: ordinary keys, and function
keys. Ordinary keys correspond to characters; the events they generate are represented in
Lisp as characters. The event type of a character event is the character itself (an integer);
see Section 21.6.12 [Classifying Events], page 305.

An input character event consists of a basic code between 0 and 524287, plus any or all
of these modifier bits:

meta The 227 bit in the character code indicates a character typed with the meta key
held down.

298 GNU Emacs Lisp Reference Manual

control The 226 bit in the character code indicates a non-ascii control character.
ascii control characters such as C-a have special basic codes of their own, so
Emacs needs no special bit to indicate them. Thus, the code for C-a is just 1.
But if you type a control combination not in ascii, such as % with the control
key, the numeric value you get is the code for % plus 226 (assuming the terminal
supports non-ascii control characters).

shift The 225 bit in the character code indicates an ascii control character typed
with the shift key held down.
For letters, the basic code itself indicates upper versus lower case; for digits and
punctuation, the shift key selects an entirely different character with a different
basic code. In order to keep within the ascii character set whenever possible,
Emacs avoids using the 225 bit for those characters.
However, ascii provides no way to distinguish C-A from C-a, so Emacs uses the
225 bit in C-A and not in C-a.

hyper The 224 bit in the character code indicates a character typed with the hyper
key held down.

super The 223 bit in the character code indicates a character typed with the super
key held down.

alt The 222 bit in the character code indicates a character typed with the alt key
held down. (On some terminals, the key labeled 〈ALT〉 is actually the meta key.)

It is best to avoid mentioning specific bit numbers in your program. To test the modifier
bits of a character, use the function event-modifiers (see Section 21.6.12 [Classifying
Events], page 305). When making key bindings, you can use the read syntax for characters
with modifier bits (‘\C-’, ‘\M-’, and so on). For making key bindings with define-key,
you can use lists such as (control hyper ?x) to specify the characters (see Section 22.9
[Changing Key Bindings], page 337). The function event-convert-list converts such a
list into an event type (see Section 21.6.12 [Classifying Events], page 305).

21.6.2 Function Keys

Most keyboards also have function keys—keys that have names or symbols that are not
characters. Function keys are represented in Emacs Lisp as symbols; the symbol’s name is
the function key’s label, in lower case. For example, pressing a key labeled 〈F1〉 places the
symbol f1 in the input stream.

The event type of a function key event is the event symbol itself. See Section 21.6.12
[Classifying Events], page 305.

Here are a few special cases in the symbol-naming convention for function keys:

backspace, tab, newline, return, delete
These keys correspond to common ascii control characters that have special
keys on most keyboards.
In ascii, C-i and 〈TAB〉 are the same character. If the terminal can distinguish
between them, Emacs conveys the distinction to Lisp programs by representing
the former as the integer 9, and the latter as the symbol tab.

Chapter 21: Command Loop 299

Most of the time, it’s not useful to distinguish the two. So normally function-
key-map (see Section 40.8.2 [Translating Input], page 739) is set up to map tab
into 9. Thus, a key binding for character code 9 (the character C-i) also applies
to tab. Likewise for the other symbols in this group. The function read-char
likewise converts these events into characters.
In ascii, 〈BS〉 is really C-h. But backspace converts into the character code 127
(〈DEL〉), not into code 8 (〈BS〉). This is what most users prefer.

left, up, right, down
Cursor arrow keys

kp-add, kp-decimal, kp-divide, . . .
Keypad keys (to the right of the regular keyboard).

kp-0, kp-1, . . .
Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

kp-home, kp-left, kp-up, kp-right, kp-down
Keypad arrow keys. Emacs normally translates these into the corresponding
non-keypad keys home, left, . . .

kp-prior, kp-next, kp-end, kp-begin, kp-insert, kp-delete
Additional keypad duplicates of keys ordinarily found elsewhere. Emacs nor-
mally translates these into the like-named non-keypad keys.

You can use the modifier keys 〈ALT〉, 〈CTRL〉, 〈HYPER〉, 〈META〉, 〈SHIFT〉, and 〈SUPER〉 with
function keys. The way to represent them is with prefixes in the symbol name:

‘A-’ The alt modifier.

‘C-’ The control modifier.

‘H-’ The hyper modifier.

‘M-’ The meta modifier.

‘S-’ The shift modifier.

‘s-’ The super modifier.

Thus, the symbol for the key 〈F3〉 with 〈META〉 held down is M-f3. When you use more
than one prefix, we recommend you write them in alphabetical order; but the order does
not matter in arguments to the key-binding lookup and modification functions.

21.6.3 Mouse Events

Emacs supports four kinds of mouse events: click events, drag events, button-down
events, and motion events. All mouse events are represented as lists. The car of the list
is the event type; this says which mouse button was involved, and which modifier keys
were used with it. The event type can also distinguish double or triple button presses (see
Section 21.6.7 [Repeat Events], page 302). The rest of the list elements give position and
time information.

300 GNU Emacs Lisp Reference Manual

For key lookup, only the event type matters: two events of the same type necessarily
run the same command. The command can access the full values of these events using the
‘e’ interactive code. See Section 21.2.2 [Interactive Codes], page 289.

A key sequence that starts with a mouse event is read using the keymaps of the buffer
in the window that the mouse was in, not the current buffer. This does not imply that
clicking in a window selects that window or its buffer—that is entirely under the control of
the command binding of the key sequence.

21.6.4 Click Events

When the user presses a mouse button and releases it at the same location, that generates
a click event. Mouse click events have this form:

(event-type
(window buffer-pos (x . y) timestamp)
click-count)

Here is what the elements normally mean:

event-type This is a symbol that indicates which mouse button was used. It is one of the
symbols mouse-1, mouse-2, . . . , where the buttons are numbered left to right.
You can also use prefixes ‘A-’, ‘C-’, ‘H-’, ‘M-’, ‘S-’ and ‘s-’ for modifiers alt,
control, hyper, meta, shift and super, just as you would with function keys.
This symbol also serves as the event type of the event. Key bindings describe
events by their types; thus, if there is a key binding for mouse-1, that binding
would apply to all events whose event-type is mouse-1.

window This is the window in which the click occurred.

x, y These are the pixel-denominated coordinates of the click, relative to the top
left corner of window, which is (0 . 0).

buffer-pos This is the buffer position of the character clicked on.

timestamp
This is the time at which the event occurred, in milliseconds. (Since this value
wraps around the entire range of Emacs Lisp integers in about five hours, it is
useful only for relating the times of nearby events.)

click-count
This is the number of rapid repeated presses so far of the same mouse button.
See Section 21.6.7 [Repeat Events], page 302.

The meanings of buffer-pos, x and y are somewhat different when the event location is
in a special part of the screen, such as the mode line or a scroll bar.

If the location is in a scroll bar, then buffer-pos is the symbol vertical-scroll-bar or
horizontal-scroll-bar, and the pair (x . y) is replaced with a pair (portion . whole),
where portion is the distance of the click from the top or left end of the scroll bar, and
whole is the length of the entire scroll bar.

If the position is on a mode line or the vertical line separating window from its neighbor
to the right, then buffer-pos is the symbol mode-line, header-line, or vertical-line.

Chapter 21: Command Loop 301

For the mode line, y does not have meaningful data. For the vertical line, x does not have
meaningful data.

In one special case, buffer-pos is a list containing a symbol (one of the symbols listed
above) instead of just the symbol. This happens after the imaginary prefix keys for the event
are inserted into the input stream. See Section 21.7.1 [Key Sequence Input], page 309.

21.6.5 Drag Events

With Emacs, you can have a drag event without even changing your clothes. A drag
event happens every time the user presses a mouse button and then moves the mouse to a
different character position before releasing the button. Like all mouse events, drag events
are represented in Lisp as lists. The lists record both the starting mouse position and the
final position, like this:

(event-type
(window1 buffer-pos1 (x1 . y1) timestamp1)
(window2 buffer-pos2 (x2 . y2) timestamp2)
click-count)

For a drag event, the name of the symbol event-type contains the prefix ‘drag-’. For
example, dragging the mouse with button 2 held down generates a drag-mouse-2 event.
The second and third elements of the event give the starting and ending position of the drag.
Aside from that, the data have the same meanings as in a click event (see Section 21.6.4
[Click Events], page 300). You can access the second element of any mouse event in the
same way, with no need to distinguish drag events from others.

The ‘drag-’ prefix follows the modifier key prefixes such as ‘C-’ and ‘M-’.
If read-key-sequence receives a drag event that has no key binding, and the corre-

sponding click event does have a binding, it changes the drag event into a click event at the
drag’s starting position. This means that you don’t have to distinguish between click and
drag events unless you want to.

21.6.6 Button-Down Events

Click and drag events happen when the user releases a mouse button. They cannot
happen earlier, because there is no way to distinguish a click from a drag until the button
is released.

If you want to take action as soon as a button is pressed, you need to handle button-down
events.1 These occur as soon as a button is pressed. They are represented by lists that
look exactly like click events (see Section 21.6.4 [Click Events], page 300), except that the
event-type symbol name contains the prefix ‘down-’. The ‘down-’ prefix follows modifier
key prefixes such as ‘C-’ and ‘M-’.

The function read-key-sequence ignores any button-down events that don’t have com-
mand bindings; therefore, the Emacs command loop ignores them too. This means that you
need not worry about defining button-down events unless you want them to do something.
The usual reason to define a button-down event is so that you can track mouse motion (by
reading motion events) until the button is released. See Section 21.6.8 [Motion Events],
page 303.

1 Button-down is the conservative antithesis of drag.

302 GNU Emacs Lisp Reference Manual

21.6.7 Repeat Events

If you press the same mouse button more than once in quick succession without moving
the mouse, Emacs generates special repeat mouse events for the second and subsequent
presses.

The most common repeat events are double-click events. Emacs generates a double-click
event when you click a button twice; the event happens when you release the button (as is
normal for all click events).

The event type of a double-click event contains the prefix ‘double-’. Thus, a double
click on the second mouse button with 〈meta〉 held down comes to the Lisp program as M-
double-mouse-2. If a double-click event has no binding, the binding of the corresponding
ordinary click event is used to execute it. Thus, you need not pay attention to the double
click feature unless you really want to.

When the user performs a double click, Emacs generates first an ordinary click event, and
then a double-click event. Therefore, you must design the command binding of the double
click event to assume that the single-click command has already run. It must produce the
desired results of a double click, starting from the results of a single click.

This is convenient, if the meaning of a double click somehow “builds on” the meaning
of a single click—which is recommended user interface design practice for double clicks.

If you click a button, then press it down again and start moving the mouse with the
button held down, then you get a double-drag event when you ultimately release the button.
Its event type contains ‘double-drag’ instead of just ‘drag’. If a double-drag event has no
binding, Emacs looks for an alternate binding as if the event were an ordinary drag.

Before the double-click or double-drag event, Emacs generates a double-down event when
the user presses the button down for the second time. Its event type contains ‘double-down’
instead of just ‘down’. If a double-down event has no binding, Emacs looks for an alternate
binding as if the event were an ordinary button-down event. If it finds no binding that way
either, the double-down event is ignored.

To summarize, when you click a button and then press it again right away, Emacs
generates a down event and a click event for the first click, a double-down event when you
press the button again, and finally either a double-click or a double-drag event.

If you click a button twice and then press it again, all in quick succession, Emacs gener-
ates a triple-down event, followed by either a triple-click or a triple-drag. The event types
of these events contain ‘triple’ instead of ‘double’. If any triple event has no binding,
Emacs uses the binding that it would use for the corresponding double event.

If you click a button three or more times and then press it again, the events for the
presses beyond the third are all triple events. Emacs does not have separate event types
for quadruple, quintuple, etc. events. However, you can look at the event list to find out
precisely how many times the button was pressed.

Functionevent-click-count event
This function returns the number of consecutive button presses that led up to event.
If event is a double-down, double-click or double-drag event, the value is 2. If event
is a triple event, the value is 3 or greater. If event is an ordinary mouse event (not a
repeat event), the value is 1.

Chapter 21: Command Loop 303

Variabledouble-click-fuzz
To generate repeat events, successive mouse button presses must be at approximately
the same screen position. The value of double-click-fuzz specifies the maximum
number of pixels the mouse may be moved between two successive clicks to make a
double-click.

Variabledouble-click-time
To generate repeat events, the number of milliseconds between successive button
presses must be less than the value of double-click-time. Setting double-click-
time to nil disables multi-click detection entirely. Setting it to t removes the time
limit; Emacs then detects multi-clicks by position only.

21.6.8 Motion Events

Emacs sometimes generates mouse motion events to describe motion of the mouse with-
out any button activity. Mouse motion events are represented by lists that look like this:

(mouse-movement (window buffer-pos (x . y) timestamp))

The second element of the list describes the current position of the mouse, just as in a
click event (see Section 21.6.4 [Click Events], page 300).

The special form track-mouse enables generation of motion events within its body.
Outside of track-mouse forms, Emacs does not generate events for mere motion of the
mouse, and these events do not appear. See Section 29.13 [Mouse Tracking], page 498.

21.6.9 Focus Events

Window systems provide general ways for the user to control which window gets keyboard
input. This choice of window is called the focus. When the user does something to switch
between Emacs frames, that generates a focus event. The normal definition of a focus event,
in the global keymap, is to select a new frame within Emacs, as the user would expect. See
Section 29.9 [Input Focus], page 495.

Focus events are represented in Lisp as lists that look like this:

(switch-frame new-frame)

where new-frame is the frame switched to.

Most X window managers are set up so that just moving the mouse into a window is
enough to set the focus there. Emacs appears to do this, because it changes the cursor to
solid in the new frame. However, there is no need for the Lisp program to know about the
focus change until some other kind of input arrives. So Emacs generates a focus event only
when the user actually types a keyboard key or presses a mouse button in the new frame;
just moving the mouse between frames does not generate a focus event.

A focus event in the middle of a key sequence would garble the sequence. So Emacs
never generates a focus event in the middle of a key sequence. If the user changes focus in
the middle of a key sequence—that is, after a prefix key—then Emacs reorders the events
so that the focus event comes either before or after the multi-event key sequence, and not
within it.

304 GNU Emacs Lisp Reference Manual

21.6.10 Miscellaneous Window System Events

A few other event types represent occurrences within the window system.

(delete-frame (frame))
This kind of event indicates that the user gave the window manager a command
to delete a particular window, which happens to be an Emacs frame.
The standard definition of the delete-frame event is to delete frame.

(iconify-frame (frame))
This kind of event indicates that the user iconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
iconified, Emacs has no work to do. The purpose of this event type is so that
you can keep track of such events if you want to.

(make-frame-visible (frame))
This kind of event indicates that the user deiconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
made visible, Emacs has no work to do.

(mouse-wheel position delta)
This kind of event is generated by moving a wheel on a mouse (such as the MS
Intellimouse). Its effect is typically a kind of scroll or zoom.
The element delta describes the amount and direction of the wheel rotation.
Its absolute value is the number of increments by which the wheel was rotated.
A negative delta indicates that the wheel was rotated backwards, towards the
user, and a positive delta indicates that the wheel was rotated forward, away
from the user.
The element position is a list describing the position of the event, in the same
format as used in a mouse-click event.
This kind of event is generated only on some kinds of systems.

(drag-n-drop position files)
This kind of event is generated when a group of files is selected in an application
outside of Emacs, and then dragged and dropped onto an Emacs frame.
The element position is a list describing the position of the event, in the same
format as used in a mouse-click event, and files is the list of file names that
were dragged and dropped. The usual way to handle this event is by visiting
these files.
This kind of event is generated, at present, only on some kinds of systems.

If one of these events arrives in the middle of a key sequence—that is, after a prefix
key—then Emacs reorders the events so that this event comes either before or after the
multi-event key sequence, not within it.

21.6.11 Event Examples

If the user presses and releases the left mouse button over the same location, that
generates a sequence of events like this:

Chapter 21: Command Loop 305

(down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))
(mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864180))

While holding the control key down, the user might hold down the second mouse button,
and drag the mouse from one line to the next. That produces two events, as shown here:

(C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))
(C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)

(#<window 18 on NEWS> 3510 (0 . 28) -729648))

While holding down the meta and shift keys, the user might press the second mouse
button on the window’s mode line, and then drag the mouse into another window. That
produces a pair of events like these:

(M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))
(M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)

(#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)
-453816))

21.6.12 Classifying Events

Every event has an event type, which classifies the event for key binding purposes. For a
keyboard event, the event type equals the event value; thus, the event type for a character
is the character, and the event type for a function key symbol is the symbol itself. For
events that are lists, the event type is the symbol in the car of the list. Thus, the event
type is always a symbol or a character.

Two events of the same type are equivalent where key bindings are concerned; thus, they
always run the same command. That does not necessarily mean they do the same things,
however, as some commands look at the whole event to decide what to do. For example,
some commands use the location of a mouse event to decide where in the buffer to act.

Sometimes broader classifications of events are useful. For example, you might want
to ask whether an event involved the 〈META〉 key, regardless of which other key or mouse
button was used.

The functions event-modifiers and event-basic-type are provided to get such infor-
mation conveniently.

Functionevent-modifiers event
This function returns a list of the modifiers that event has. The modifiers are symbols;
they include shift, control, meta, alt, hyper and super. In addition, the modifiers
list of a mouse event symbol always contains one of click, drag, and down.
The argument event may be an entire event object, or just an event type.
Here are some examples:

(event-modifiers ?a)
⇒ nil

(event-modifiers ?\C-a)
⇒ (control)

(event-modifiers ?\C-%)
⇒ (control)

(event-modifiers ?\C-\S-a)

306 GNU Emacs Lisp Reference Manual

⇒ (control shift)
(event-modifiers ’f5)

⇒ nil
(event-modifiers ’s-f5)

⇒ (super)
(event-modifiers ’M-S-f5)

⇒ (meta shift)
(event-modifiers ’mouse-1)

⇒ (click)
(event-modifiers ’down-mouse-1)

⇒ (down)

The modifiers list for a click event explicitly contains click, but the event symbol
name itself does not contain ‘click’.

Functionevent-basic-type event
This function returns the key or mouse button that event describes, with all modifiers
removed. For example:

(event-basic-type ?a)
⇒ 97

(event-basic-type ?A)
⇒ 97

(event-basic-type ?\C-a)
⇒ 97

(event-basic-type ?\C-\S-a)
⇒ 97

(event-basic-type ’f5)
⇒ f5

(event-basic-type ’s-f5)
⇒ f5

(event-basic-type ’M-S-f5)
⇒ f5

(event-basic-type ’down-mouse-1)
⇒ mouse-1

Functionmouse-movement-p object
This function returns non-nil if object is a mouse movement event.

Functionevent-convert-list list
This function converts a list of modifier names and a basic event type to an event
type which specifies all of them. For example,

(event-convert-list ’(control ?a))
⇒ 1

(event-convert-list ’(control meta ?a))
⇒ -134217727

(event-convert-list ’(control super f1))
⇒ C-s-f1

Chapter 21: Command Loop 307

21.6.13 Accessing Events

This section describes convenient functions for accessing the data in a mouse button or
motion event.

These two functions return the starting or ending position of a mouse-button event, as
a list of this form:

(window buffer-position (x . y) timestamp)

Functionevent-start event
This returns the starting position of event.
If event is a click or button-down event, this returns the location of the event. If
event is a drag event, this returns the drag’s starting position.

Functionevent-end event
This returns the ending position of event.
If event is a drag event, this returns the position where the user released the mouse
button. If event is a click or button-down event, the value is actually the starting
position, which is the only position such events have.

These five functions take a position list as described above, and return various parts of
it.

Functionposn-window position
Return the window that position is in.

Functionposn-point position
Return the buffer position in position. This is an integer.

Functionposn-x-y position
Return the pixel-based x and y coordinates in position, as a cons cell (x . y).

Functionposn-col-row position
Return the row and column (in units of characters) of position, as a cons cell (col .
row). These are computed from the x and y values actually found in position.

Functionposn-timestamp position
Return the timestamp in position.

These functions are useful for decoding scroll bar events.

Functionscroll-bar-event-ratio event
This function returns the fractional vertical position of a scroll bar event within the
scroll bar. The value is a cons cell (portion . whole) containing two integers whose
ratio is the fractional position.

308 GNU Emacs Lisp Reference Manual

Functionscroll-bar-scale ratio total
This function multiplies (in effect) ratio by total, rounding the result to an integer.
The argument ratio is not a number, but rather a pair (num . denom)—typically a
value returned by scroll-bar-event-ratio.

This function is handy for scaling a position on a scroll bar into a buffer position.
Here’s how to do that:

(+ (point-min)
(scroll-bar-scale

(posn-x-y (event-start event))
(- (point-max) (point-min))))

Recall that scroll bar events have two integers forming a ratio, in place of a pair of x
and y coordinates.

21.6.14 Putting Keyboard Events in Strings

In most of the places where strings are used, we conceptualize the string as containing
text characters—the same kind of characters found in buffers or files. Occasionally Lisp
programs use strings that conceptually contain keyboard characters; for example, they may
be key sequences or keyboard macro definitions. However, storing keyboard characters in
a string is a complex matter, for reasons of historical compatibility, and it is not always
possible.

We recommend that new programs avoid dealing with these complexities by not storing
keyboard events in strings. Here is how to do that:

• Use vectors instead of strings for key sequences, when you plan to use them for any-
thing other than as arguments to lookup-key and define-key. For example, you can
use read-key-sequence-vector instead of read-key-sequence, and this-command-
keys-vector instead of this-command-keys.

• Use vectors to write key sequence constants containing meta characters, even when
passing them directly to define-key.

• When you have to look at the contents of a key sequence that might be a string,
use listify-key-sequence (see Section 21.7.5 [Event Input Misc], page 313) first, to
convert it to a list.

The complexities stem from the modifier bits that keyboard input characters can include.
Aside from the Meta modifier, none of these modifier bits can be included in a string, and
the Meta modifier is allowed only in special cases.

The earliest GNU Emacs versions represented meta characters as codes in the range of
128 to 255. At that time, the basic character codes ranged from 0 to 127, so all keyboard
character codes did fit in a string. Many Lisp programs used ‘\M-’ in string constants to
stand for meta characters, especially in arguments to define-key and similar functions,
and key sequences and sequences of events were always represented as strings.

When we added support for larger basic character codes beyond 127, and additional
modifier bits, we had to change the representation of meta characters. Now the flag that
represents the Meta modifier in a character is 227 and such numbers cannot be included in
a string.

Chapter 21: Command Loop 309

To support programs with ‘\M-’ in string constants, there are special rules for including
certain meta characters in a string. Here are the rules for interpreting a string as a sequence
of input characters:
• If the keyboard character value is in the range of 0 to 127, it can go in the string

unchanged.
• The meta variants of those characters, with codes in the range of 227 to 227 + 127, can

also go in the string, but you must change their numeric values. You must set the 27

bit instead of the 227 bit, resulting in a value between 128 and 255. Only a unibyte
string can include these codes.

• Non-ascii characters above 256 can be included in a multibyte string.
• Other keyboard character events cannot fit in a string. This includes keyboard events

in the range of 128 to 255.

Functions such as read-key-sequence that construct strings of keyboard input charac-
ters follow these rules: they construct vectors instead of strings, when the events won’t fit
in a string.

When you use the read syntax ‘\M-’ in a string, it produces a code in the range of 128
to 255—the same code that you get if you modify the corresponding keyboard event to put
it in the string. Thus, meta events in strings work consistently regardless of how they get
into the strings.

However, most programs would do well to avoid these issues by following the recommen-
dations at the beginning of this section.

21.7 Reading Input

The editor command loop reads key sequences using the function read-key-sequence,
which uses read-event. These and other functions for event input are also available for
use in Lisp programs. See also momentary-string-display in Section 38.8 [Temporary
Displays], page 669, and sit-for in Section 21.9 [Waiting], page 315. See Section 40.8
[Terminal Input], page 738, for functions and variables for controlling terminal input modes
and debugging terminal input. See Section 40.8.2 [Translating Input], page 739, for features
you can use for translating or modifying input events while reading them.

For higher-level input facilities, see Chapter 20 [Minibuffers], page 265.

21.7.1 Key Sequence Input

The command loop reads input a key sequence at a time, by calling read-key-sequence.
Lisp programs can also call this function; for example, describe-key uses it to read the
key to describe.

Functionread-key-sequence prompt
This function reads a key sequence and returns it as a string or vector. It keeps
reading events until it has accumulated a complete key sequence; that is, enough to
specify a non-prefix command using the currently active keymaps.
If the events are all characters and all can fit in a string, then read-key-sequence
returns a string (see Section 21.6.14 [Strings of Events], page 308). Otherwise, it

310 GNU Emacs Lisp Reference Manual

returns a vector, since a vector can hold all kinds of events—characters, symbols, and
lists. The elements of the string or vector are the events in the key sequence.

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt.

In the example below, the prompt ‘?’ is displayed in the echo area, and the user types
C-x C-f.

(read-key-sequence "?")

---------- Echo Area ----------
?C-x C-f
---------- Echo Area ----------

⇒ "^X^F"

The function read-key-sequence suppresses quitting: C-g typed while reading with
this function works like any other character, and does not set quit-flag. See Sec-
tion 21.10 [Quitting], page 316.

Functionread-key-sequence-vector prompt
This is like read-key-sequence except that it always returns the key sequence as a
vector, never as a string. See Section 21.6.14 [Strings of Events], page 308.

If an input character is an upper-case letter and has no key binding, but its lower-case
equivalent has one, then read-key-sequence converts the character to lower case. Note
that lookup-key does not perform case conversion in this way.

The function read-key-sequence also transforms some mouse events. It converts un-
bound drag events into click events, and discards unbound button-down events entirely. It
also reshuffles focus events and miscellaneous window events so that they never appear in
a key sequence with any other events.

When mouse events occur in special parts of a window, such as a mode line or a scroll bar,
the event type shows nothing special—it is the same symbol that would normally represent
that combination of mouse button and modifier keys. The information about the window
part is kept elsewhere in the event—in the coordinates. But read-key-sequence translates
this information into imaginary “prefix keys”, all of which are symbols: header-line,
horizontal-scroll-bar, menu-bar, mode-line, vertical-line, and vertical-scroll-
bar. You can define meanings for mouse clicks in special window parts by defining key
sequences using these imaginary prefix keys.

For example, if you call read-key-sequence and then click the mouse on the window’s
mode line, you get two events, like this:

(read-key-sequence "Click on the mode line: ")
⇒ [mode-line

(mouse-1
(#<window 6 on NEWS> mode-line
(40 . 63) 5959987))]

Chapter 21: Command Loop 311

Variablenum-input-keys
This variable’s value is the number of key sequences processed so far in this Emacs
session. This includes key sequences read from the terminal and key sequences read
from keyboard macros being executed.

Variablenum-nonmacro-input-events
This variable holds the total number of input events received so far from the
terminal—not counting those generated by keyboard macros.

21.7.2 Reading One Event

The lowest level functions for command input are those that read a single event.

Functionread-event &optional prompt inherit-input-method
This function reads and returns the next event of command input, waiting if necessary
until an event is available. Events can come directly from the user or from a keyboard
macro.
If the optional argument prompt is non-nil, it should be a string to display in the echo
area as a prompt. Otherwise, read-event does not display any message to indicate
it is waiting for input; instead, it prompts by echoing: it displays descriptions of the
events that led to or were read by the current command. See Section 38.4 [The Echo
Area], page 663.
If inherit-input-method is non-nil, then the current input method (if any) is employed
to make it possible to enter a non-ascii character. Otherwise, input method handling
is disabled for reading this event.
If cursor-in-echo-area is non-nil, then read-event moves the cursor temporarily
to the echo area, to the end of any message displayed there. Otherwise read-event
does not move the cursor.
If read-event gets an event that is defined as a help character, in some cases read-
event processes the event directly without returning. See Section 24.5 [Help Func-
tions], page 393. Certain other events, called special events, are also processed directly
within read-event (see Section 21.8 [Special Events], page 314).
Here is what happens if you call read-event and then press the right-arrow function
key:

(read-event)
⇒ right

Functionread-char &optional prompt inherit-input-method
This function reads and returns a character of command input. If the user generates
an event which is not a character (i.e. a mouse click or function key event), read-char
signals an error. The arguments work as in read-event.
In the first example, the user types the character 1 (ascii code 49). The second
example shows a keyboard macro definition that calls read-char from the minibuffer
using eval-expression. read-char reads the keyboard macro’s very next character,
which is 1. Then eval-expression displays its return value in the echo area.

312 GNU Emacs Lisp Reference Manual

(read-char)
⇒ 49

;; We assume here you use M-: to evaluate this.
(symbol-function ’foo)

⇒ "^[:(read-char)^M1"
(execute-kbd-macro ’foo)

a 49
⇒ nil

Functionread-char-exclusive &optional prompt inherit-input-method
This function reads and returns a character of command input. If the user generates
an event which is not a character, read-char-exclusive ignores it and reads another
event, until it gets a character. The arguments work as in read-event.

21.7.3 Invoking the Input Method

The event-reading functions invoke the current input method, if any (see Section 33.11
[Input Methods], page 599). If the value of input-method-function is non-nil, it should be
a function; when read-event reads a printing character (including 〈SPC〉) with no modifier
bits, it calls that function, passing the character as an argument.

Variableinput-method-function
If this is non-nil, its value specifies the current input method function.
Note: Don’t bind this variable with let. It is often buffer-local, and if you bind it
around reading input (which is exactly when you would bind it), switching buffers
asynchronously while Emacs is waiting will cause the value to be restored in the wrong
buffer.

The input method function should return a list of events which should be used as input.
(If the list is nil, that means there is no input, so read-event waits for another event.)
These events are processed before the events in unread-command-events (see Section 21.7.5
[Event Input Misc], page 313). Events returned by the input method function are not passed
to the input method function again, even if they are printing characters with no modifier
bits.

If the input method function calls read-event or read-key-sequence, it should bind
input-method-function to nil first, to prevent recursion.

The input method function is not called when reading the second and subsequent events
of a key sequence. Thus, these characters are not subject to input method processing. The
input method function should test the values of overriding-local-map and overriding-
terminal-local-map; if either of these variables is non-nil, the input method should put
its argument into a list and return that list with no further processing.

21.7.4 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an
octal character code. The command quoted-insert uses this function.

Chapter 21: Command Loop 313

Functionread-quoted-char &optional prompt
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads any number of octal digits (but stopping if a non-octal digit is found),
and returns the character represented by that numeric character code.
Quitting is suppressed when the first character is read, so that the user can enter a
C-g. See Section 21.10 [Quitting], page 316.
If prompt is supplied, it specifies a string for prompting the user. The prompt string
is always displayed in the echo area, followed by a single ‘-’.
In the following example, the user types in the octal number 177 (which is 127 in
decimal).

(read-quoted-char "What character")

---------- Echo Area ----------
What character-177
---------- Echo Area ----------

⇒ 127

21.7.5 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to
check for pending input, and how to discard pending input. See also the function read-
passwd (see Section 20.8 [Reading a Password], page 283).

Variableunread-command-events
This variable holds a list of events waiting to be read as command input. The events
are used in the order they appear in the list, and removed one by one as they are
used.
The variable is needed because in some cases a function reads an event and then
decides not to use it. Storing the event in this variable causes it to be processed
normally, by the command loop or by the functions to read command input.
For example, the function that implements numeric prefix arguments reads any num-
ber of digits. When it finds a non-digit event, it must unread the event so that it
can be read normally by the command loop. Likewise, incremental search uses this
feature to unread events with no special meaning in a search, because these events
should exit the search and then execute normally.
The reliable and easy way to extract events from a key sequence so as to put them
in unread-command-events is to use listify-key-sequence (see Section 21.6.14
[Strings of Events], page 308).
Normally you add events to the front of this list, so that the events most recently
unread will be reread first.

Functionlistify-key-sequence key
This function converts the string or vector key to a list of individual events, which
you can put in unread-command-events.

314 GNU Emacs Lisp Reference Manual

Variableunread-command-char
This variable holds a character to be read as command input. A value of -1 means
“empty”.
This variable is mostly obsolete now that you can use unread-command-events in-
stead; it exists only to support programs written for Emacs versions 18 and earlier.

Functioninput-pending-p
This function determines whether any command input is currently available to be
read. It returns immediately, with value t if there is available input, nil otherwise.
On rare occasions it may return t when no input is available.

Variablelast-input-event
Variablelast-input-char

This variable records the last terminal input event read, whether as part of a command
or explicitly by a Lisp program.
In the example below, the Lisp program reads the character 1, ascii code 49. It
becomes the value of last-input-event, while C-e (we assume C-x C-e command is
used to evaluate this expression) remains the value of last-command-event.

(progn (print (read-char))
(print last-command-event)
last-input-event)

a 49
a 5
⇒ 49

The alias last-input-char exists for compatibility with Emacs version 18.

Functiondiscard-input
This function discards the contents of the terminal input buffer and cancels any
keyboard macro that might be in the process of definition. It returns nil.
In the following example, the user may type a number of characters right after starting
the evaluation of the form. After the sleep-for finishes sleeping, discard-input
discards any characters typed during the sleep.

(progn (sleep-for 2)
(discard-input))

⇒ nil

21.8 Special Events

Special events are handled at a very low level—as soon as they are read. The read-event
function processes these events itself, and never returns them.

Events that are handled in this way do not echo, they are never grouped into key se-
quences, and they never appear in the value of last-command-event or (this-command-
keys). They do not discard a numeric argument, they cannot be unread with unread-
command-events, they may not appear in a keyboard macro, and they are not recorded in
a keyboard macro while you are defining one.

Chapter 21: Command Loop 315

These events do, however, appear in last-input-event immediately after they are read,
and this is the way for the event’s definition to find the actual event.

The events types iconify-frame, make-frame-visible and delete-frame are nor-
mally handled in this way. The keymap which defines how to handle special events—and
which events are special—is in the variable special-event-map (see Section 22.6 [Active
Keymaps], page 330).

21.9 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until
there is input. For example, you may wish to pause in the middle of a computation to allow
the user time to view the display. sit-for pauses and updates the screen, and returns
immediately if input comes in, while sleep-for pauses without updating the screen.

Functionsit-for seconds &optional millisec nodisp
This function performs redisplay (provided there is no pending input from the user),
then waits seconds seconds, or until input is available. The value is t if sit-for
waited the full time with no input arriving (see input-pending-p in Section 21.7.5
[Event Input Misc], page 313). Otherwise, the value is nil.
The argument seconds need not be an integer. If it is a floating point number, sit-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.
The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. If the system doesn’t
support waiting fractions of a second, you get an error if you specify nonzero millisec.
The expression (sit-for 0) is a convenient way to request a redisplay, without any
delay. See Section 38.2 [Forcing Redisplay], page 661.
If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as
input is available (or when the timeout elapses).
Iconifying or deiconifying a frame makes sit-for return, because that generates an
event. See Section 21.6.10 [Misc Events], page 304.
The usual purpose of sit-for is to give the user time to read text that you display.

Functionsleep-for seconds &optional millisec
This function simply pauses for seconds seconds without updating the display. It
pays no attention to available input. It returns nil.
The argument seconds need not be an integer. If it is a floating point number, sleep-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.
The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. If the system doesn’t
support waiting fractions of a second, you get an error if you specify nonzero millisec.
Use sleep-for when you wish to guarantee a delay.

See Section 40.5 [Time of Day], page 732, for functions to get the current time.

316 GNU Emacs Lisp Reference Manual

21.10 Quitting

Typing C-g while a Lisp function is running causes Emacs to quit whatever it is doing.
This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit;
it acts as an ordinary input character. In the simplest case, you cannot tell the difference,
because C-g normally runs the command keyboard-quit, whose effect is to quit. However,
when C-g follows a prefix key, they combine to form an undefined key. The effect is to
cancel the prefix key as well as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This
means, in effect, that it exits the minibuffer and then quits. (Simply quitting would return
to the command loop within the minibuffer.) The reason why C-g does not quit directly
when the command reader is reading input is so that its meaning can be redefined in the
minibuffer in this way. C-g following a prefix key is not redefined in the minibuffer, and it
has its normal effect of canceling the prefix key and prefix argument. This too would not
be possible if C-g always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. Emacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag
non-nil in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave
an inconsistency in Emacs’s internal state. Because quitting is delayed until a safe place,
quitting cannot make Emacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting
entirely even though they wait for input. Instead of quitting, C-g serves as the requested
input. In the case of read-key-sequence, this serves to bring about the special behavior
of C-g in the command loop. In the case of read-quoted-char, this is so that C-q can be
used to quote a C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable
inhibit-quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual,
the usual result of this—a quit—is prevented. Eventually, inhibit-quit will become nil
again, such as when its binding is unwound at the end of a let form. At that time, if
quit-flag is still non-nil, the requested quit happens immediately. This behavior is ideal
when you wish to make sure that quitting does not happen within a “critical section” of
the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that
does not involve quitting. This is done by reading the input with inhibit-quit bound to
t, and setting quit-flag to nil before inhibit-quit becomes nil again. This excerpt
from the definition of read-quoted-char shows how this is done; it also shows that normal
quitting is permitted after the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation..."
(let ((message-log-max nil) done (first t) (code 0) char)
(while (not done)
(let ((inhibit-quit first)

...)

Chapter 21: Command Loop 317

(and prompt (message "%s-" prompt))
(setq char (read-event))
(if inhibit-quit (setq quit-flag nil)))

. . . set the variable code. . .)
code))

Variablequit-flag
If this variable is non-nil, then Emacs quits immediately, unless inhibit-quit is
non-nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

Variableinhibit-quit
This variable determines whether Emacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

Commandkeyboard-quit
This function signals the quit condition with (signal ’quit nil). This is the same
thing that quitting does. (See signal in Section 10.5.3 [Errors], page 125.)

You can specify a character other than C-g to use for quitting. See the function set-
input-mode in Section 40.8 [Terminal Input], page 738.

21.11 Prefix Command Arguments

Most Emacs commands can use a prefix argument, a number specified before the com-
mand itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is at
all times represented by a value, which may be nil, meaning there is currently no prefix
argument. Each command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor
command loop uses the raw representation internally, and so do the Lisp variables that
store the information, but commands can request either representation.

Here are the possible values of a raw prefix argument:
• nil, meaning there is no prefix argument. Its numeric value is 1, but numerous com-

mands make a distinction between nil and the integer 1.
• An integer, which stands for itself.
• A list of one element, which is an integer. This form of prefix argument results from

one or a succession of C-u’s with no digits. The numeric value is the integer in the list,
but some commands make a distinction between such a list and an integer alone.

• The symbol -. This indicates that M-- or C-u - was typed, without following digits.
The equivalent numeric value is −1, but some commands make a distinction between
the integer −1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:
(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:

318 GNU Emacs Lisp Reference Manual

M-x display-prefix a nil

C-u M-x display-prefix a (4)

C-u C-u M-x display-prefix a (16)

C-u 3 M-x display-prefix a 3

M-3 M-x display-prefix a 3 ; (Same as C-u 3.)

C-u - M-x display-prefix a -

M-- M-x display-prefix a - ; (Same as C-u -.)

C-u - 7 M-x display-prefix a -7

M-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)
Emacs uses two variables to store the prefix argument: prefix-arg and current-

prefix-arg. Commands such as universal-argument that set up prefix arguments for
other commands store them in prefix-arg. In contrast, current-prefix-arg conveys the
prefix argument to the current command, so setting it has no effect on the prefix arguments
for future commands.

Normally, commands specify which representation to use for the prefix argument, either
numeric or raw, in the interactive declaration. (See Section 21.2.1 [Using Interactive],
page 288.) Alternatively, functions may look at the value of the prefix argument directly in
the variable current-prefix-arg, but this is less clean.

Functionprefix-numeric-value arg
This function returns the numeric meaning of a valid raw prefix argument value,
arg. The argument may be a symbol, a number, or a list. If it is nil, the value 1 is
returned; if it is -, the value −1 is returned; if it is a number, that number is returned;
if it is a list, the car of that list (which should be a number) is returned.

Variablecurrent-prefix-arg
This variable holds the raw prefix argument for the current command. Commands
may examine it directly, but the usual method for accessing it is with (interactive
"P").

Variableprefix-arg
The value of this variable is the raw prefix argument for the next editing command.
Commands such as universal-argument that specify prefix arguments for the fol-
lowing command work by setting this variable.

Variablelast-prefix-arg
The raw prefix argument value used by the previous command.

The following commands exist to set up prefix arguments for the following command.
Do not call them for any other reason.

Chapter 21: Command Loop 319

Commanduniversal-argument
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

Commanddigit-argument arg
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute
the updated prefix argument. Don’t call this command yourself unless you know what
you are doing.

Commandnegative-argument arg
This command adds to the numeric argument for the next command. The argument
arg is the raw prefix argument as it was before this command; its value is negated
to form the new prefix argument. Don’t call this command yourself unless you know
what you are doing.

21.12 Recursive Editing

The Emacs command loop is entered automatically when Emacs starts up. This top-level
invocation of the command loop never exits; it keeps running as long as Emacs does. Lisp
programs can also invoke the command loop. Since this makes more than one activation of
the command loop, we call it recursive editing. A recursive editing level has the effect of
suspending whatever command invoked it and permitting the user to do arbitrary editing
before resuming that command.

The commands available during recursive editing are the same ones available in the
top-level editing loop and defined in the keymaps. Only a few special commands exit
the recursive editing level; the others return to the recursive editing level when they finish.
(The special commands for exiting are always available, but they do nothing when recursive
editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that
an error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such
as enabling display of the minibuffer and the minibuffer window, but fewer than you might
suppose. Certain keys behave differently in the minibuffer, but that is only because of the
minibuffer’s local map; if you switch windows, you get the usual Emacs commands.

To invoke a recursive editing level, call the function recursive-edit. This function
contains the command loop; it also contains a call to catch with tag exit, which makes it
possible to exit the recursive editing level by throwing to exit (see Section 10.5.1 [Catch
and Throw], page 123). If you throw a value other than t, then recursive-edit returns
normally to the function that called it. The command C-M-c (exit-recursive-edit) does
this. Throwing a t value causes recursive-edit to quit, so that control returns to the
command loop one level up. This is called aborting, and is done by C-] (abort-recursive-
edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current

320 GNU Emacs Lisp Reference Manual

buffer temporarily to a special major mode, which should have a command to go back to
the previous mode. (The e command in Rmail uses this technique.) Or, if you wish to give
the user different text to edit “recursively”, create and select a new buffer in a special mode.
In this mode, define a command to complete the processing and go back to the previous
buffer. (The m command in Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x

q (kbd-macro-query).

Functionrecursive-edit
This function invokes the editor command loop. It is called automatically by the ini-
tialization of Emacs, to let the user begin editing. When called from a Lisp program,
it enters a recursive editing level.

In the following example, the function simple-rec first advances point one word,
then enters a recursive edit, printing out a message in the echo area. The user can
then do any editing desired, and then type C-M-c to exit and continue executing
simple-rec.

(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress")
(recursive-edit)
(forward-word 1))

⇒ simple-rec
(simple-rec)

⇒ nil

Commandexit-recursive-edit
This function exits from the innermost recursive edit (including minibuffer input).
Its definition is effectively (throw ’exit nil).

Commandabort-recursive-edit
This function aborts the command that requested the innermost recursive edit (includ-
ing minibuffer input), by signaling quit after exiting the recursive edit. Its definition
is effectively (throw ’exit t). See Section 21.10 [Quitting], page 316.

Commandtop-level
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

Functionrecursion-depth
This function returns the current depth of recursive edits. When no recursive edit is
active, it returns 0.

Chapter 21: Command Loop 321

21.13 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can
be executed. Disabling is used for commands which might be confusing to beginning users,
to prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. These properties are normally set up by the user’s
init file (see Section 40.1.2 [Init File], page 722) with Lisp expressions such as this:

(put ’upcase-region ’disabled t)

For a few commands, these properties are present by default (you can remove them in your
init file if you wish).

If the value of the disabled property is a string, the message saying the command is
disabled includes that string. For example:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

See section “Disabling” in The GNU Emacs Manual, for the details on what happens
when a disabled command is invoked interactively. Disabling a command has no effect on
calling it as a function from Lisp programs.

Commandenable-command command
Allow command to be executed without special confirmation from now on, and (if
the user confirms) alter the user’s init file (see Section 40.1.2 [Init File], page 722) so
that this will apply to future sessions.

Commanddisable-command command
Require special confirmation to execute command from now on, and (if the user
confirms) alter the user’s init file so that this will apply to future sessions.

Variabledisabled-command-hook
When the user invokes a disabled command interactively, this normal hook is run
instead of the disabled command. The hook functions can use this-command-keys
to determine what the user typed to run the command, and thus find the command
itself. See Section 23.6 [Hooks], page 383.

By default, disabled-command-hook contains a function that asks the user whether
to proceed.

21.14 Command History

The command loop keeps a history of the complex commands that have been executed,
to make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:

command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does
not cause the command to be considered complex.

322 GNU Emacs Lisp Reference Manual

Variablecommand-history
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of
the editing session, but when it reaches the maximum size (specified by the variable
history-length), the oldest elements are deleted as new ones are added.

command-history
⇒ ((switch-to-buffer "chistory.texi")

(describe-key "^X^[")
(visit-tags-table "~/emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 20.4 [Mini-
buffer History], page 270), with one special twist: the elements are expressions rather than
strings.

There are a number of commands devoted to the editing and recall of previous com-
mands. The commands repeat-complex-command, and list-command-history are de-
scribed in the user manual (see section “Repetition” in The GNU Emacs Manual). Within
the minibuffer, the usual minibuffer history commands are available.

21.15 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a com-
mand and made the definition of a key. The Lisp representation of a keyboard macro is a
string or vector containing the events. Don’t confuse keyboard macros with Lisp macros
(see Chapter 13 [Macros], page 171).

Functionexecute-kbd-macro kbdmacro &optional count
This function executes kbdmacro as a sequence of events. If kbdmacro is a string or
vector, then the events in it are executed exactly as if they had been input by the
user. The sequence is not expected to be a single key sequence; normally a keyboard
macro definition consists of several key sequences concatenated.

If kbdmacro is a symbol, then its function definition is used in place of kbdmacro. If
that is another symbol, this process repeats. Eventually the result should be a string
or vector. If the result is not a symbol, string, or vector, an error is signaled.

The argument count is a repeat count; kbdmacro is executed that many times. If
count is omitted or nil, kbdmacro is executed once. If it is 0, kbdmacro is executed
over and over until it encounters an error or a failing search.

See Section 21.7.2 [Reading One Event], page 311, for an example of using execute-
kbd-macro.

Variableexecuting-macro
This variable contains the string or vector that defines the keyboard macro that is
currently executing. It is nil if no macro is currently executing. A command can
test this variable so as to behave differently when run from an executing macro. Do
not set this variable yourself.

Chapter 21: Command Loop 323

Variabledefining-kbd-macro
This variable indicates whether a keyboard macro is being defined. A command can
test this variable so as to behave differently while a macro is being defined. The
commands start-kbd-macro and end-kbd-macro set this variable—do not set it
yourself.
The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

Variablelast-kbd-macro
This variable is the definition of the most recently defined keyboard macro. Its value
is a string or vector, or nil.
The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

Variablekbd-macro-termination-hook
This normal hook (see Appendix I [Standard Hooks], page 809) is run when a keyboard
macro terminates, regardless of what caused it to terminate (reaching the macro end
or an error which ended the macro prematurely).

324 GNU Emacs Lisp Reference Manual

Chapter 22: Keymaps 325

22 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either
to another keymap or to a command. When an event type is bound to a keymap, that
keymap is used to look up the next input event; this continues until a command is found.
The whole process is called key lookup.

22.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects,
though only certain types are meaningful for execution by the command loop). Given an
event (or an event type) and a keymap, Emacs can get the event’s definition. Events include
characters, function keys, and mouse actions (see Section 21.6 [Input Events], page 297).

A sequence of input events that form a unit is called a key sequence, or key for short.
A sequence of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence
is a single event, its binding is the definition of the event in the keymap. The binding of
a key sequence of more than one event is found by an iterative process: the binding of the
first event is found, and must be a keymap; then the second event’s binding is found in that
keymap, and so on until all the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key.
Otherwise, we call it a complete key (because no more events can be added to it). If the
binding is nil, we call the key undefined. Examples of prefix keys are C-c, C-x, and C-x

4. Examples of defined complete keys are X, 〈RET〉, and C-x 4 C-f. Examples of undefined
complete keys are C-x C-g, and C-c 3. See Section 22.5 [Prefix Keys], page 329, for more
details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really one key sequence. In other words, removing one or
more events from the end of any valid key sequence must always yield a prefix key. For
example, C-f C-n is not a key sequence; C-f is not a prefix key, so a longer sequence starting
with C-f cannot be a key sequence.

The set of possible multi-event key sequences depends on the bindings for prefix keys;
therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not
depend on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor
mode keymaps shadow both local and global keymaps. See Section 22.6 [Active Keymaps],
page 330, for details.

326 GNU Emacs Lisp Reference Manual

22.2 Format of Keymaps

A keymap is a list whose car is the symbol keymap. The remaining elements of the
list define the key bindings of the keymap. Use the function keymapp (see below) to test
whether an object is a keymap.

Several kinds of elements may appear in a keymap, after the symbol keymap that begins
it:

(type . binding)
This specifies one binding, for events of type type. Each ordinary binding
applies to events of a particular event type, which is always a character or a
symbol. See Section 21.6.12 [Classifying Events], page 305.

(t . binding)
This specifies a default key binding ; any event not bound by other elements of
the keymap is given binding as its binding. Default bindings allow a keymap to
bind all possible event types without having to enumerate all of them. A keymap
that has a default binding completely masks any lower-precedence keymap.

vector If an element of a keymap is a vector, the vector counts as bindings for all the
ascii characters, codes 0 through 127; vector element n is the binding for the
character with code n. This is a compact way to record lots of bindings. A
keymap with such a vector is called a full keymap. Other keymaps are called
sparse keymaps.
When a keymap contains a vector, it always defines a binding for each ascii
character, even if the vector contains nil for that character. Such a binding
of nil overrides any default key binding in the keymap, for ascii characters.
However, default bindings are still meaningful for events other than ascii char-
acters. A binding of nil does not override lower-precedence keymaps; thus, if
the local map gives a binding of nil, Emacs uses the binding from the global
map.

string Aside from bindings, a keymap can also have a string as an element. This is
called the overall prompt string and makes it possible to use the keymap as a
menu. See Section 22.12.1 [Defining Menus], page 343.

Keymaps do not directly record bindings for the meta characters. Instead, meta char-
acters are regarded for purposes of key lookup as sequences of two characters, the first of
which is 〈ESC〉 (or whatever is currently the value of meta-prefix-char). Thus, the key
M-a is internally represented as 〈ESC〉 a, and its global binding is found at the slot for a in
esc-map (see Section 22.5 [Prefix Keys], page 329).

This conversion applies only to characters, not to function keys or other input events;
thus, M-〈end〉 has nothing to do with 〈ESC〉 〈end〉.

Here as an example is the local keymap for Lisp mode, a sparse keymap. It defines
bindings for 〈DEL〉 and 〈TAB〉, plus C-c C-l, M-C-q, and M-C-x.

lisp-mode-map
⇒
(keymap
;; 〈TAB〉
(9 . lisp-indent-line)

Chapter 22: Keymaps 327

;; 〈DEL〉
(127 . backward-delete-char-untabify)
(3 keymap

;; C-c C-l
(12 . run-lisp))

(27 keymap
;; M-C-q, treated as 〈ESC〉 C-q
(17 . indent-sexp)
;; M-C-x, treated as 〈ESC〉 C-x
(24 . lisp-send-defun)))

Functionkeymapp object
This function returns t if object is a keymap, nil otherwise. More precisely, this
function tests for a list whose car is keymap.

(keymapp ’(keymap))
⇒ t

(keymapp (current-global-map))
⇒ t

22.3 Creating Keymaps

Here we describe the functions for creating keymaps.

Functionmake-keymap &optional prompt
This function creates and returns a new full keymap. That keymap contains a char-
table (see Section 6.6 [Char-Tables], page 89) with 384 slots: the first 128 slots are for
defining all the ascii characters, the next 128 slots are for 8-bit European characters,
and each one of the final 128 slots is for one character set of non-ascii characters
supported by Emacs. The new keymap initially binds all these characters to nil, and
does not bind any other kind of event.

(make-keymap)
⇒ (keymap [nil nil nil ... nil nil])

If you specify prompt, that becomes the overall prompt string for the keymap. The
prompt string should be provided for menu keymaps (see Section 22.12.1 [Defining
Menus], page 343).

Functionmake-sparse-keymap &optional prompt
This function creates and returns a new sparse keymap with no entries. The new
keymap does not contain a char-table, unlike make-keymap, and does not bind any
events. The argument prompt specifies a prompt string, as in make-keymap.

(make-sparse-keymap)
⇒ (keymap)

Functioncopy-keymap keymap
This function returns a copy of keymap. Any keymaps that appear directly as bindings
in keymap are also copied recursively, and so on to any number of levels. However,

328 GNU Emacs Lisp Reference Manual

recursive copying does not take place when the definition of a character is a symbol
whose function definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))
⇒ (keymap

;; (This implements meta characters.)
(27 keymap

(83 . center-paragraph)
(115 . center-line))

(9 . tab-to-tab-stop))

(eq map (current-local-map))
⇒ nil

(equal map (current-local-map))
⇒ t

22.4 Inheritance and Keymaps

A keymap can inherit the bindings of another keymap, which we call the parent keymap.
Such a keymap looks like this:

(keymap bindings... . parent-keymap)

The effect is that this keymap inherits all the bindings of parent-keymap, whatever they
may be at the time a key is looked up, but can add to them or override them with bindings.

If you change the bindings in parent-keymap using define-key or other key-binding
functions, these changes are visible in the inheriting keymap unless shadowed by bindings.
The converse is not true: if you use define-key to change the inheriting keymap, that
affects bindings, but has no effect on parent-keymap.

The proper way to construct a keymap with a parent is to use set-keymap-parent; if
you have code that directly constructs a keymap with a parent, please convert the program
to use set-keymap-parent instead.

Functionkeymap-parent keymap
This returns the parent keymap of keymap. If keymap has no parent, keymap-parent
returns nil.

Functionset-keymap-parent keymap parent
This sets the parent keymap of keymap to parent, and returns parent. If parent is
nil, this function gives keymap no parent at all.

If keymap has submaps (bindings for prefix keys), they too receive new parent
keymaps that reflect what parent specifies for those prefix keys.

Here is an example showing how to make a keymap that inherits from text-mode-map:

(let ((map (make-sparse-keymap)))
(set-keymap-parent map text-mode-map)
map)

Chapter 22: Keymaps 329

22.5 Prefix Keys

A prefix key is a key sequence whose binding is a keymap. The keymap defines what to
do with key sequences that extend the prefix key. For example, C-x is a prefix key, and it
uses a keymap that is also stored in the variable ctl-x-map. This keymap defines bindings
for key sequences starting with C-x.

Some of the standard Emacs prefix keys use keymaps that are also found in Lisp variables:
• esc-map is the global keymap for the 〈ESC〉 prefix key. Thus, the global definitions of

all meta characters are actually found here. This map is also the function definition of
ESC-prefix.

• help-map is the global keymap for the C-h prefix key.
• mode-specific-map is the global keymap for the prefix key C-c. This map is actually

global, not mode-specific, but its name provides useful information about C-c in the
output of C-h b (display-bindings), since the main use of this prefix key is for mode-
specific bindings.

• ctl-x-map is the global keymap used for the C-x prefix key. This map is found via the
function cell of the symbol Control-X-prefix.

• mule-keymap is the global keymap used for the C-x 〈RET〉 prefix key.
• ctl-x-4-map is the global keymap used for the C-x 4 prefix key.
• ctl-x-5-map is the global keymap used for the C-x 5 prefix key.
• 2C-mode-map is the global keymap used for the C-x 6 prefix key.
• vc-prefix-map is the global keymap used for the C-x v prefix key.
• facemenu-keymap is the global keymap used for the M-g prefix key.
• The other Emacs prefix keys are C-x @, C-x a i, C-x 〈ESC〉 and 〈ESC〉 〈ESC〉. They use

keymaps that have no special names.

The keymap binding of a prefix key is used for looking up the event that follows the
prefix key. (It may instead be a symbol whose function definition is a keymap. The effect is
the same, but the symbol serves as a name for the prefix key.) Thus, the binding of C-x is
the symbol Control-X-prefix, whose function cell holds the keymap for C-x commands.
(The same keymap is also the value of ctl-x-map.)

Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h
and 〈ESC〉 as prefix keys appear in the global map, so these prefix keys are always available.
Major and minor modes can redefine a key as a prefix by putting a prefix key definition for
it in the local map or the minor mode’s map. See Section 22.6 [Active Keymaps], page 330.

If a key is defined as a prefix in more than one active map, then its various definitions
are in effect merged: the commands defined in the minor mode keymaps come first, followed
by those in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way
that C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just
like C-x C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
⇒ nil

(local-set-key "\C-p" ctl-x-map)
⇒ nil

330 GNU Emacs Lisp Reference Manual

(key-binding "\C-p\C-f")
⇒ find-file

(key-binding "\C-p6")
⇒ nil

Functiondefine-prefix-command symbol &optional mapvar prompt
This function prepares symbol for use as a prefix key’s binding: it creates a sparse
keymap and stores it as symbol’s function definition. Subsequently binding a key
sequence to symbol will make that key sequence into a prefix key. The return value
is symbol.

This function also sets symbol as a variable, with the keymap as its value. But if
mapvar is non-nil, it sets mapvar as a variable instead.

If prompt is non-nil, that becomes the overall prompt string for the keymap. The
prompt string should be given for menu keymaps (see Section 22.12.1 [Defining
Menus], page 343).

22.6 Active Keymaps

Emacs normally contains many keymaps; at any given time, just a few of them are active
in that they participate in the interpretation of user input. These are the global keymap,
the current buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current
buffer, such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or
overriding definitions for keys. The current buffer’s local keymap is always active except
when overriding-local-map overrides it. Text properties can specify an alternative local
map for certain parts of the buffer; see Section 32.19.4 [Special Properties], page 567.

Each minor mode can have a keymap; if it does, the keymap is active when the minor
mode is enabled.

The variable overriding-local-map, if non-nil, specifies another local keymap that
overrides the buffer’s local map and all the minor mode keymaps.

All the active keymaps are used together to determine what command to execute when
a key is entered. Emacs searches these maps one by one, in order of decreasing precedence,
until it finds a binding in one of the maps. The procedure for searching a single keymap is
called key lookup; see Section 22.7 [Key Lookup], page 333.

Normally, Emacs first searches for the key in the minor mode maps, in the order specified
by minor-mode-map-alist; if they do not supply a binding for the key, Emacs searches
the local map; if that too has no binding, Emacs then searches the global map. However, if
overriding-local-map is non-nil, Emacs searches that map first, before the global map.

Since every buffer that uses the same major mode normally uses the same local keymap,
you can think of the keymap as local to the mode. A change to the local keymap of a
buffer (using local-set-key, for example) is seen also in the other buffers that share that
keymap.

Chapter 22: Keymaps 331

The local keymaps that are used for Lisp mode and some other major modes exist even
if they have not yet been used. These local maps are the values of variables such as lisp-
mode-map. For most major modes, which are less frequently used, the local keymap is
constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit com-
mands. See Section 20.1 [Intro to Minibuffers], page 265.

Emacs has other keymaps that are used in a different way—translating events within
read-key-sequence. See Section 40.8.2 [Translating Input], page 739.

See Appendix H [Standard Keymaps], page 805, for a list of standard keymaps.

Variableglobal-map
This variable contains the default global keymap that maps Emacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap
is a full keymap that binds self-insert-command to all of the printing characters.

It is normal practice to change the bindings in the global map, but you should not
assign this variable any value other than the keymap it starts out with.

Functioncurrent-global-map
This function returns the current global keymap. This is the same as the value of
global-map unless you change one or the other.

(current-global-map)
⇒ (keymap [set-mark-command beginning-of-line ...

delete-backward-char])

Functioncurrent-local-map
This function returns the current buffer’s local keymap, or nil if it has none. In
the following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction
mode) is a sparse keymap in which the entry for 〈ESC〉, ascii code 27, is another sparse
keymap.

(current-local-map)
⇒ (keymap

(10 . eval-print-last-sexp)
(9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap

(24 . eval-defun)
(17 . indent-sexp)))

Functioncurrent-minor-mode-maps
This function returns a list of the keymaps of currently enabled minor modes.

Functionuse-global-map keymap
This function makes keymap the new current global keymap. It returns nil.

It is very unusual to change the global keymap.

332 GNU Emacs Lisp Reference Manual

Functionuse-local-map keymap
This function makes keymap the new local keymap of the current buffer. If keymap is
nil, then the buffer has no local keymap. use-local-map returns nil. Most major
mode commands use this function.

Variableminor-mode-map-alist
This variable is an alist describing keymaps that may or may not be active according
to the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically
variable is the variable that enables or disables a minor mode. See Section 23.2.2
[Keymaps and Minor Modes], page 367.

Note that elements of minor-mode-map-alist do not have the same structure as
elements of minor-mode-alist. The map must be the cdr of the element; a list with
the map as the second element will not do. The cdr can be either a keymap (a list)
or a symbol whose function definition is a keymap.

When more than one minor mode keymap is active, their order of priority is the order
of minor-mode-map-alist. But you should design minor modes so that they don’t
interfere with each other. If you do this properly, the order will not matter.

See Section 23.2.2 [Keymaps and Minor Modes], page 367, for more information about
minor modes. See also minor-mode-key-binding (see Section 22.8 [Functions for Key
Lookup], page 335).

Variableminor-mode-overriding-map-alist
This variable allows major modes to override the key bindings for particular minor
modes. The elements of this alist look like the elements of minor-mode-map-alist:
(variable . keymap).

If a variable appears as an element of minor-mode-overriding-map-alist, the map
specified by that element totally replaces any map specified for the same variable in
minor-mode-map-alist.

minor-mode-overriding-map-alist is automatically buffer-local in all buffers.

Variableoverriding-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap
and instead of all the minor mode keymaps. This keymap, if any, overrides all other
maps that would have been active, except for the current global map.

Variableoverriding-terminal-local-map
If non-nil, this variable holds a keymap to use instead of overriding-local-map,
the buffer’s local keymap and all the minor mode keymaps.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484. It is used to implement incremental search
mode.

Chapter 22: Keymaps 333

Variableoverriding-local-map-menu-flag
If this variable is non-nil, the value of overriding-local-map or overriding-
terminal-local-map can affect the display of the menu bar. The default value is
nil, so those map variables have no effect on the menu bar.
Note that these two map variables do affect the execution of key sequences entered
using the menu bar, even if they do not affect the menu bar display. So if a menu
bar key sequence comes in, you should clear the variables before looking up and
executing that key sequence. Modes that use the variables would typically do this
anyway; normally they respond to events that they do not handle by “unreading”
them and exiting.

Variablespecial-event-map
This variable holds a keymap for special events. If an event type has a binding in this
keymap, then it is special, and the binding for the event is run directly by read-event.
See Section 21.8 [Special Events], page 314.

22.7 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
Actual execution of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the
event is ignored. In fact, a key sequence used for key lookup may designate mouse events
with just their types (symbols) instead of with entire mouse events (lists). See Section 21.6
[Input Events], page 297. Such a “key-sequence” is insufficient for command-execute to
run, but it is sufficient for looking up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events
sequentially: the binding of the first event is found, and must be a keymap; then the second
event’s binding is found in that keymap, and so on until all the events in the key sequence
are used up. (The binding thus found for the last event may or may not be a keymap.)
Thus, the process of key lookup is defined in terms of a simpler process for looking up a
single event in a keymap. How that is done depends on the type of object associated with
the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event type
in a keymap. (This doesn’t include the item string and other extra elements in menu key
bindings, because lookup-key and other key lookup functions don’t include them in the
returned value.) While any Lisp object may be stored in a keymap as a keymap entry, not
all make sense for key lookup. Here is a table of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key.
When a keymap fails to mention an event type at all, and has no default binding,
that is equivalent to a binding of nil for that event type.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 12.1 [What Is a Function], page 155.

array The array (either a string or a vector) is a keyboard macro. The events used
so far in the lookup form a complete key, and the array is its binding. See
Section 21.15 [Keyboard Macros], page 322, for more information.

334 GNU Emacs Lisp Reference Manual

keymap The events used so far in the lookup form a prefix key. The next event of the
key sequence is looked up in keymap.

list The meaning of a list depends on the types of the elements of the list.
• If the car of list is the symbol keymap, then the list is a keymap, and is

treated as a keymap (see above).
• If the car of list is lambda, then the list is a lambda expression. This is

presumed to be a command, and is treated as such (see above).
• If the car of list is a keymap and the cdr is an event type, then this is an

indirect entry:
(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the
binding of othertype in othermap and uses that.
This feature permits you to define one key as an alias for another key.
For example, an entry whose car is the keymap called esc-map and whose
cdr is 32 (the code for 〈SPC〉) means, “Use the global binding of Meta-〈SPC〉,
whatever that may be.”

symbol The function definition of symbol is used in place of symbol. If that too is a
symbol, then this process is repeated, any number of times. Ultimately this
should lead to an object that is a keymap, a command, or a keyboard macro.
A list is allowed if it is a keymap or a command, but indirect entries are not
understood when found via symbols.
Note that keymaps and keyboard macros (strings and vectors) are not valid
functions, so a symbol with a keymap, string, or vector as its function definition
is invalid as a function. It is, however, valid as a key binding. If the definition
is a keyboard macro, then the symbol is also valid as an argument to command-
execute (see Section 21.3 [Interactive Call], page 292).
The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically
for an undefined key: it rings the bell (by calling ding) but does not signal an
error.
undefined is used in local keymaps to override a global key binding and make
the key “undefined” locally. A local binding of nil would fail to do this because
it would not override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form
a complete key, and the object is its binding, but the binding is not executable
as a command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol
that leads to one of them, or an indirection or nil. Here is an example of a sparse keymap
with two characters bound to commands and one bound to another keymap. This map is
the normal value of emacs-lisp-mode-map. Note that 9 is the code for 〈TAB〉, 127 for 〈DEL〉,
27 for 〈ESC〉, 17 for C-q and 24 for C-x.

Chapter 22: Keymaps 335

(keymap (9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap (17 . indent-sexp) (24 . eval-defun)))

22.8 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

Functionlookup-key keymap key &optional accept-defaults
This function returns the definition of key in keymap. All the other functions de-
scribed in this chapter that look up keys use lookup-key. Here are examples:

(lookup-key (current-global-map) "\C-x\C-f")
⇒ find-file

(lookup-key (current-global-map) "\C-x\C-f12345")
⇒ 2

If the string or vector key is not a valid key sequence according to the prefix keys
specified in keymap, it must be “too long” and have extra events at the end that do
not fit into a single key sequence. Then the value is a number, the number of events
at the front of key that compose a complete key.
If accept-defaults is non-nil, then lookup-key considers default bindings as well as
bindings for the specific events in key. Otherwise, lookup-key reports only bindings
for the specific sequence key, ignoring default bindings except when you explicitly ask
about them. (To do this, supply t as an element of key ; see Section 22.2 [Format of
Keymaps], page 326.)
If key contains a meta character (not a function key), that character is implicitly
replaced by a two-character sequence: the value of meta-prefix-char, followed by
the corresponding non-meta character. Thus, the first example below is handled by
conversion into the second example.

(lookup-key (current-global-map) "\M-f")
⇒ forward-word

(lookup-key (current-global-map) "\ef")
⇒ forward-word

Unlike read-key-sequence, this function does not modify the specified events in
ways that discard information (see Section 21.7.1 [Key Sequence Input], page 309).
In particular, it does not convert letters to lower case and it does not change drag
events to clicks.

Commandundefined
Used in keymaps to undefine keys. It calls ding, but does not cause an error.

Functionkey-binding key &optional accept-defaults
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.
The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).
An error is signaled if key is not a string or a vector.

336 GNU Emacs Lisp Reference Manual

(key-binding "\C-x\C-f")
⇒ find-file

Functionlocal-key-binding key &optional accept-defaults
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.
The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Functionglobal-key-binding key &optional accept-defaults
This function returns the binding for command key in the current global keymap, or
nil if it is undefined there.
The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Functionminor-mode-key-binding key &optional accept-defaults
This function returns a list of all the active minor mode bindings of key. More
precisely, it returns an alist of pairs (modename . binding), where modename is the
variable that enables the minor mode, and binding is key ’s binding in that mode. If
key has no minor-mode bindings, the value is nil.
If the first binding found is not a prefix definition (a keymap or a symbol defined as
a keymap), all subsequent bindings from other minor modes are omitted, since they
would be completely shadowed. Similarly, the list omits non-prefix bindings that
follow prefix bindings.
The argument accept-defaults controls checking for default bindings, as in lookup-
key (above).

Variablemeta-prefix-char
This variable is the meta-prefix character code. It is used when translating a meta
character to a two-character sequence so it can be looked up in a keymap. For useful
results, the value should be a prefix event (see Section 22.5 [Prefix Keys], page 329).
The default value is 27, which is the ascii code for 〈ESC〉.
As long as the value of meta-prefix-char remains 27, key lookup translates M-b into
〈ESC〉 b, which is normally defined as the backward-word command. However, if you
were to set meta-prefix-char to 24, the code for C-x, then Emacs will translate
M-b into C-x b, whose standard binding is the switch-to-buffer command. (Don’t
actually do this!) Here is an illustration of what would happen:

meta-prefix-char ; The default value.
⇒ 27

(key-binding "\M-b")
⇒ backward-word

?\C-x ; The print representation
⇒ 24 ; of a character.

(setq meta-prefix-char 24)
⇒ 24

Chapter 22: Keymaps 337

(key-binding "\M-b")
⇒ switch-to-buffer ; Now, typing M-b is

; like typing C-x b.

(setq meta-prefix-char 27) ; Avoid confusion!
⇒ 27 ; Restore the default value!

This translation of one event into two happens only for characters, not for other kinds
of input events. Thus, M-〈F1〉, a function key, is not converted into 〈ESC〉 〈F1〉.

22.9 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding
in the global keymap, the change is effective in all buffers (though it has no direct effect
in buffers that shadow the global binding with a local one). If you change the current
buffer’s local map, that usually affects all buffers using the same major mode. The global-
set-key and local-set-key functions are convenient interfaces for these operations (see
Section 22.10 [Key Binding Commands], page 340). You can also use define-key, a more
general function; then you must specify explicitly the map to change.

In writing the key sequence to rebind, it is good to use the special escape sequences for
control and meta characters (see Section 2.3.8 [String Type], page 18). The syntax ‘\C-’
means that the following character is a control character and ‘\M-’ means that the following
character is a meta character. Thus, the string "\M-x" is read as containing a single M-x,
"\C-f" is read as containing a single C-f, and "\M-\C-x" and "\C-\M-x" are both read
as containing a single C-M-x. You can also use this escape syntax in vectors, as well as
others that aren’t allowed in strings; one example is ‘[?\C-\H-x home]’. See Section 2.3.3
[Character Type], page 11.

The key definition and lookup functions accept an alternate syntax for event types in
a key sequence that is a vector: you can use a list containing modifier names plus one
base event (a character or function key name). For example, (control ?a) is equivalent to
?\C-a and (hyper control left) is equivalent to C-H-left. One advantage of such lists
is that the precise numeric codes for the modifier bits don’t appear in compiled files.

For the functions below, an error is signaled if keymap is not a keymap or if key is
not a string or vector representing a key sequence. You can use event types (symbols) as
shorthand for events that are lists.

Functiondefine-key keymap key binding
This function sets the binding for key in keymap. (If key is more than one event long,
the change is actually made in another keymap reached from keymap.) The argument
binding can be any Lisp object, but only certain types are meaningful. (For a list of
meaningful types, see Section 22.7 [Key Lookup], page 333.) The value returned by
define-key is binding.
Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined;
otherwise an error is signaled. If some prefix of key is undefined, then define-key
defines it as a prefix key so that the rest of key can be defined as specified.
If there was previously no binding for key in keymap, the new binding is added at
the beginning of keymap. The order of bindings in a keymap makes no difference in

338 GNU Emacs Lisp Reference Manual

most cases, but it does matter for menu keymaps (see Section 22.12 [Menu Keymaps],
page 343).

Here is an example that creates a sparse keymap and makes a number of bindings in it:
(setq map (make-sparse-keymap))

⇒ (keymap)
(define-key map "\C-f" ’forward-char)

⇒ forward-char
map

⇒ (keymap (6 . forward-char))

;; Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)

⇒ forward-word
map
⇒ (keymap

(24 keymap ; C-x
(102 . forward-word)) ; f

(6 . forward-char)) ; C-f

;; Bind C-p to the ctl-x-map.
(define-key map "\C-p" ctl-x-map)
;; ctl-x-map
⇒ [nil ... find-file ... backward-kill-sentence]

;; Bind C-f to foo in the ctl-x-map.
(define-key map "\C-p\C-f" ’foo)
⇒ ’foo
map
⇒ (keymap ; Note foo in ctl-x-map.

(16 keymap [nil ... foo ... backward-kill-sentence])
(24 keymap

(102 . forward-word))
(6 . forward-char))

Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-
x-map, and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the
default global map.

Functionsubstitute-key-definition olddef newdef keymap &optional oldmap
This function replaces olddef with newdef for any keys in keymap that were bound
to olddef. In other words, olddef is replaced with newdef wherever it appears. The
function returns nil.
For example, this redefines C-x C-f, if you do it in an Emacs with standard bindings:

(substitute-key-definition
’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, that changes the behavior of substitute-key-definition:
the bindings in oldmap determine which keys to rebind. The rebindings still happen
in keymap, not in oldmap. Thus, you can change one map under the control of the
bindings in another. For example,

Chapter 22: Keymaps 339

(substitute-key-definition
’delete-backward-char ’my-funny-delete
my-map global-map)

puts the special deletion command in my-map for whichever keys are globally bound
to the standard deletion command.

Here is an example showing a keymap before and after substitution:

(setq map ’(keymap
(?1 . olddef-1)
(?2 . olddef-2)
(?3 . olddef-1)))

⇒ (keymap (49 . olddef-1) (50 . olddef-2) (51 . olddef-1))

(substitute-key-definition ’olddef-1 ’newdef map)
⇒ nil
map
⇒ (keymap (49 . newdef) (50 . olddef-2) (51 . newdef))

Functionsuppress-keymap keymap &optional nodigits
This function changes the contents of the full keymap keymap by making all the print-
ing characters undefined. More precisely, it binds them to the command undefined.
This makes ordinary insertion of text impossible. suppress-keymap returns nil.

If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and
- to run negative-argument. Otherwise it makes them undefined like the rest of the
printing characters.

The suppress-keymap function does not make it impossible to modify a buffer, as
it does not suppress commands such as yank and quoted-insert. To prevent any
modification of a buffer, make it read-only (see Section 27.7 [Read Only Buffers],
page 447).

Since this function modifies keymap, you would normally use it on a newly created
keymap. Operating on an existing keymap that is used for some other purpose is likely
to cause trouble; for example, suppressing global-map would make it impossible to
use most of Emacs.

Most often, suppress-keymap is used to initialize local keymaps of modes such as
Rmail and Dired where insertion of text is not desirable and the buffer is read-only.
Here is an example taken from the file ‘emacs/lisp/dired.el’, showing how the local
keymap for Dired mode is set up:

(setq dired-mode-map (make-keymap))
(suppress-keymap dired-mode-map)
(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)
...

340 GNU Emacs Lisp Reference Manual

22.10 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings.
They work by calling define-key.

People often use global-set-key in their init files (see Section 40.1.2 [Init File],
page 722) for simple customization. For example,

(global-set-key "\C-x\C-\\" ’next-line)

or

(global-set-key [?\C-x ?\C-\\] ’next-line)

or

(global-set-key [(control ?x) (control ?\\)] ’next-line)

redefines C-x C-\ to move down a line.

(global-set-key [M-mouse-1] ’mouse-set-point)

redefines the first (leftmost) mouse button, typed with the Meta key, to set point where
you click.

Be careful when using non-ascii text characters in Lisp specifications of keys to bind.
If these are read as multibyte text, as they usually will be in a Lisp file (see Section 15.3
[Loading Non-ASCII], page 196), you must type the keys as multibyte too. For instance, if
you use this:

(global-set-key "ö" ’my-function) ; bind o-umlaut

or

(global-set-key ?ö ’my-function) ; bind o-umlaut

and your language environment is multibyte Latin-1, these commands actually bind the
multibyte character with code 2294, not the unibyte Latin-1 character with code 246 (M-v).
In order to use this binding, you need to enter the multibyte Latin-1 character as keyboard
input. One way to do this is by using an appropriate input method (see section “Input
Methods” in The GNU Emacs Manual).

If you want to use a unibyte character in the key binding, you can construct the key
sequence string using multibyte-char-to-unibyte or string-make-unibyte (see Sec-
tion 33.2 [Converting Representations], page 584).

Commandglobal-set-key key definition
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)
≡
(define-key (current-global-map) key definition)

Commandglobal-unset-key key
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:

Chapter 22: Keymaps 341

(global-unset-key "\C-l")
⇒ nil

(global-set-key "\C-l\C-l" ’redraw-display)
⇒ nil

This function is implemented simply using define-key:
(global-unset-key key)
≡
(define-key (current-global-map) key nil)

Commandlocal-set-key key definition
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)
≡
(define-key (current-local-map) key definition)

Commandlocal-unset-key key
This function removes the binding of key from the current local map.

(local-unset-key key)
≡
(define-key (current-local-map) key nil)

22.11 Scanning Keymaps

This section describes functions used to scan all the current keymaps for the sake of
printing help information.

Functionaccessible-keymaps keymap &optional prefix
This function returns a list of all the keymaps that can be reached (via zero or more
prefix keys) from keymap. The value is an association list with elements of the form
(key . map), where key is a prefix key whose definition in keymap is map.
The elements of the alist are ordered so that the key increases in length. The first
element is always ("" . keymap), because the specified keymap is accessible from
itself with a prefix of no events.
If prefix is given, it should be a prefix key sequence; then accessible-keymaps
includes only the submaps whose prefixes start with prefix. These elements look just
as they do in the value of (accessible-keymaps); the only difference is that some
elements are omitted.
In the example below, the returned alist indicates that the key 〈ESC〉, which is displayed
as ‘^[’, is a prefix key whose definition is the sparse keymap (keymap (83 . center-
paragraph) (115 . foo)).

(accessible-keymaps (current-local-map))
⇒(("" keymap

(27 keymap ; Note this keymap for 〈ESC〉 is repeated below.
(83 . center-paragraph)
(115 . center-line))

(9 . tab-to-tab-stop))

342 GNU Emacs Lisp Reference Manual

("^[" keymap
(83 . center-paragraph)
(115 . foo)))

In the following example, C-h is a prefix key that uses a sparse keymap starting with
(keymap (118 . describe-variable)...). Another prefix, C-x 4, uses a keymap
which is also the value of the variable ctl-x-4-map. The event mode-line is one of
several dummy events used as prefixes for mouse actions in special parts of a window.

(accessible-keymaps (current-global-map))
⇒ (("" keymap [set-mark-command beginning-of-line ...

delete-backward-char])
("^H" keymap (118 . describe-variable) ...
(8 . help-for-help))

("^X" keymap [x-flush-mouse-queue ...
backward-kill-sentence])

("^[" keymap [mark-sexp backward-sexp ...
backward-kill-word])

("^X4" keymap (15 . display-buffer) ...)
([mode-line] keymap
(S-mouse-2 . mouse-split-window-horizontally) ...))

These are not all the keymaps you would see in actuality.

Functionwhere-is-internal command &optional keymap firstonly noindirect
This function is a subroutine used by the where-is command (see section “Help” in
The GNU Emacs Manual). It returns a list of key sequences (of any length) that are
bound to command in a set of keymaps.

The argument command can be any object; it is compared with all keymap entries
using eq.

If keymap is nil, then the maps used are the current active keymaps, disregarding
overriding-local-map (that is, pretending its value is nil). If keymap is non-nil,
then the maps searched are keymap and the global keymap. If keymap is a list of
keymaps, only those keymaps are searched.

Usually it’s best to use overriding-local-map as the expression for keymap. Then
where-is-internal searches precisely the keymaps that are active. To search only
the global map, pass (keymap) (an empty keymap) as keymap.

If firstonly is non-ascii, then the value is a single string representing the first key
sequence found, rather than a list of all possible key sequences. If firstonly is t, then
the value is the first key sequence, except that key sequences consisting entirely of
ascii characters (or meta variants of ascii characters) are preferred to all other key
sequences.

If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.

(where-is-internal ’describe-function)
⇒ ("\^hf" "\^hd")

Chapter 22: Keymaps 343

Commanddescribe-bindings &optional prefix
This function creates a listing of all current key bindings, and displays it in a buffer
named ‘*Help*’. The text is grouped by modes—minor modes first, then the major
mode, then global bindings.
If prefix is non-nil, it should be a prefix key; then the listing includes only keys that
start with prefix.
The listing describes meta characters as 〈ESC〉 followed by the corresponding non-meta
character.
When several characters with consecutive ascii codes have the same definition, they
are shown together, as ‘firstchar..lastchar’. In this instance, you need to know the
ascii codes to understand which characters this means. For example, in the default
global map, the characters ‘〈SPC〉 .. ~’ are described by a single line. 〈SPC〉 is ascii
32, ~ is ascii 126, and the characters between them include all the normal printing
characters, (e.g., letters, digits, punctuation, etc.); all these characters are bound to
self-insert-command.

22.12 Menu Keymaps

A keymap can define a menu as well as bindings for keyboard keys and mouse button.
Menus are usually actuated with the mouse, but they can work with the keyboard also.

22.12.1 Defining Menus

A keymap is suitable for menu use if it has an overall prompt string, which is a string that
appears as an element of the keymap. (See Section 22.2 [Format of Keymaps], page 326.)
The string should describe the purpose of the menu’s commands. Emacs displays the overall
prompt string as the menu title in some cases, depending on the toolkit (if any) used for
displaying menus.1 Keyboard menus also display the overall prompt string.

The easiest way to construct a keymap with a prompt string is to specify the string as an
argument when you call make-keymap, make-sparse-keymap or define-prefix-command
(see Section 22.3 [Creating Keymaps], page 327).

The order of items in the menu is the same as the order of bindings in the keymap. Since
define-key puts new bindings at the front, you should define the menu items starting at the
bottom of the menu and moving to the top, if you care about the order. When you add an
item to an existing menu, you can specify its position in the menu using define-key-after
(see Section 22.12.7 [Modifying Menus], page 353).

22.12.1.1 Simple Menu Items

The simpler and older way to define a menu keymap binding looks like this:
(item-string . real-binding)

The car, item-string, is the string to be displayed in the menu. It should be short—
preferably one to three words. It should describe the action of the command it corresponds
to.

You can also supply a second string, called the help string, as follows:

1 It is required for menus which do not use a toolkit, e.g. under MS-DOS.

344 GNU Emacs Lisp Reference Manual

(item-string help . real-binding)

help specifies a “help-echo” string to display while the mouse is on that item in the same
way as help-echo text properties (see [Help display], page 570).

As far as define-key is concerned, item-string and help-string are part of the event’s
binding. However, lookup-key returns just real-binding, and only real-binding is used for
executing the key.

If real-binding is nil, then item-string appears in the menu but cannot be selected.

If real-binding is a symbol and has a non-nil menu-enable property, that property is
an expression that controls whether the menu item is enabled. Every time the keymap is
used to display a menu, Emacs evaluates the expression, and it enables the menu item only
if the expression’s value is non-nil. When a menu item is disabled, it is displayed in a
“fuzzy” fashion, and cannot be selected.

The menu bar does not recalculate which items are enabled every time you look at a
menu. This is because the X toolkit requires the whole tree of menus in advance. To force
recalculation of the menu bar, call force-mode-line-update (see Section 23.3 [Mode Line
Format], page 368).

You’ve probably noticed that menu items show the equivalent keyboard key sequence (if
any) to invoke the same command. To save time on recalculation, menu display caches this
information in a sublist in the binding, like this:

(item-string [help-string] (key-binding-data) . real-binding)

Don’t put these sublists in the menu item yourself; menu display calculates them automat-
ically. Don’t mention keyboard equivalents in the item strings themselves, since that is
redundant.

22.12.1.2 Extended Menu Items

An extended-format menu item is a more flexible and also cleaner alternative to the
simple format. It consists of a list that starts with the symbol menu-item. To define a
non-selectable string, the item looks like this:

(menu-item item-name)

A string starting with two or more dashes specifies a separator line; see Section 22.12.1.3
[Menu Separators], page 346.

To define a real menu item which can be selected, the extended format item looks like
this:

(menu-item item-name real-binding
. item-property-list)

Here, item-name is an expression which evaluates to the menu item string. Thus, the string
need not be a constant. The third element, real-binding, is the command to execute. The
tail of the list, item-property-list, has the form of a property list which contains other
information. Here is a table of the properties that are supported:

:enable form
The result of evaluating form determines whether the item is enabled (non-nil
means yes). If the item is not enabled, you can’t really click on it.

Chapter 22: Keymaps 345

:visible form
The result of evaluating form determines whether the item should actually
appear in the menu (non-nil means yes). If the item does not appear, then the
menu is displayed as if this item were not defined at all.

:help help
The value of this property, help, specifies a “help-echo” string to display while
the mouse is on that item. This is displayed in the same way as help-echo text
properties (see [Help display], page 570). Note that this must be a constant
string, unlike the help-echo property for text and overlays.

:button (type . selected)
This property provides a way to define radio buttons and toggle buttons. The
car, type, says which: it should be :toggle or :radio. The cdr, selected,
should be a form; the result of evaluating it says whether this button is currently
selected.
A toggle is a menu item which is labeled as either “on” or “off” according to
the value of selected. The command itself should toggle selected, setting it to
t if it is nil, and to nil if it is t. Here is how the menu item to toggle the
debug-on-error flag is defined:

(menu-item "Debug on Error" toggle-debug-on-error
:button (:toggle

. (and (boundp ’debug-on-error)
debug-on-error)))

This works because toggle-debug-on-error is defined as a command which
toggles the variable debug-on-error.
Radio buttons are a group of menu items, in which at any time one and only
one is “selected.” There should be a variable whose value says which one is
selected at any time. The selected form for each radio button in the group
should check whether the variable has the right value for selecting that button.
Clicking on the button should set the variable so that the button you clicked
on becomes selected.

:key-sequence key-sequence
This property specifies which key sequence is likely to be bound to the same
command invoked by this menu item. If you specify the right key sequence,
that makes preparing the menu for display run much faster.
If you specify the wrong key sequence, it has no effect; before Emacs displays
key-sequence in the menu, it verifies that key-sequence is really equivalent to
this menu item.

:key-sequence nil
This property indicates that there is normally no key binding which is equivalent
to this menu item. Using this property saves time in preparing the menu for
display, because Emacs does not need to search the keymaps for a keyboard
equivalent for this menu item.
However, if the user has rebound this item’s definition to a key sequence, Emacs
ignores the :keys property and finds the keyboard equivalent anyway.

346 GNU Emacs Lisp Reference Manual

:keys string
This property specifies that string is the string to display as the keyboard equiv-
alent for this menu item. You can use the ‘\\[...]’ documentation construct
in string.

:filter filter-fn
This property provides a way to compute the menu item dynamically. The
property value filter-fn should be a function of one argument; when it is called,
its argument will be real-binding. The function should return the binding to
use instead.

22.12.1.3 Menu Separators

A menu separator is a kind of menu item that doesn’t display any text–instead, it
divides the menu into subparts with a horizontal line. A separator looks like this in the
menu keymap:

(menu-item separator-type)

where separator-type is a string starting with two or more dashes.

In the simplest case, separator-type consists of only dashes. That specifies the default
kind of separator. (For compatibility, "" and - also count as separators.)

Starting in Emacs 21, certain other values of separator-type specify a different style of
separator. Here is a table of them:

"--no-line"
"--space"

An extra vertical space, with no actual line.

"--single-line"
A single line in the menu’s foreground color.

"--double-line"
A double line in the menu’s foreground color.

"--single-dashed-line"
A single dashed line in the menu’s foreground color.

"--double-dashed-line"
A double dashed line in the menu’s foreground color.

"--shadow-etched-in"
A single line with a 3D sunken appearance. This is the default, used separators
consisting of dashes only.

"--shadow-etched-out"
A single line with a 3D raised appearance.

"--shadow-etched-in-dash"
A single dashed line with a 3D sunken appearance.

"--shadow-etched-out-dash"
A single dashed line with a 3D raised appearance.

Chapter 22: Keymaps 347

"--shadow-double-etched-in"
Two lines with a 3D sunken appearance.

"--shadow-double-etched-out"
Two lines with a 3D raised appearance.

"--shadow-double-etched-in-dash"
Two dashed lines with a 3D sunken appearance.

"--shadow-double-etched-out-dash"
Two dashed lines with a 3D raised appearance.

You can also give these names in another style, adding a colon after the double-dash
and replacing each single dash with capitalization of the following word. Thus,
"--:singleLine", is equivalent to "--single-line".

Some systems and display toolkits don’t really handle all of these separator types. If
you use a type that isn’t supported, the menu displays a similar kind of separator that is
supported.

22.12.1.4 Alias Menu Items

Sometimes it is useful to make menu items that use the “same” command but with
different enable conditions. The best way to do this in Emacs now is with extended menu
items; before that feature existed, it could be done by defining alias commands and using
them in menu items. Here’s an example that makes two aliases for toggle-read-only and
gives them different enable conditions:

(defalias ’make-read-only ’toggle-read-only)
(put ’make-read-only ’menu-enable ’(not buffer-read-only))
(defalias ’make-writable ’toggle-read-only)
(put ’make-writable ’menu-enable ’buffer-read-only)

When using aliases in menus, often it is useful to display the equivalent key bindings
for the “real” command name, not the aliases (which typically don’t have any key bindings
except for the menu itself). To request this, give the alias symbol a non-nil menu-alias
property. Thus,

(put ’make-read-only ’menu-alias t)
(put ’make-writable ’menu-alias t)

causes menu items for make-read-only and make-writable to show the keyboard bindings
for toggle-read-only.

22.12.2 Menus and the Mouse

The usual way to make a menu keymap produce a menu is to make it the definition of a
prefix key. (A Lisp program can explicitly pop up a menu and receive the user’s choice—see
Section 29.15 [Pop-Up Menus], page 500.)

If the prefix key ends with a mouse event, Emacs handles the menu keymap by popping
up a visible menu, so that the user can select a choice with the mouse. When the user clicks
on a menu item, the event generated is whatever character or symbol has the binding that
brought about that menu item. (A menu item may generate a series of events if the menu
has multiple levels or comes from the menu bar.)

348 GNU Emacs Lisp Reference Manual

It’s often best to use a button-down event to trigger the menu. Then the user can select
a menu item by releasing the button.

A single keymap can appear as multiple menu panes, if you explicitly arrange for this.
The way to do this is to make a keymap for each pane, then create a binding for each of
those maps in the main keymap of the menu. Give each of these bindings an item string
that starts with ‘@’. The rest of the item string becomes the name of the pane. See the file
‘lisp/mouse.el’ for an example of this. Any ordinary bindings with ‘@’-less item strings
are grouped into one pane, which appears along with the other panes explicitly created for
the submaps.

X toolkit menus don’t have panes; instead, they can have submenus. Every nested
keymap becomes a submenu, whether the item string starts with ‘@’ or not. In a toolkit
version of Emacs, the only thing special about ‘@’ at the beginning of an item string is that
the ‘@’ doesn’t appear in the menu item.

You can also produce multiple panes or submenus from separate keymaps. The full
definition of a prefix key always comes from merging the definitions supplied by the various
active keymaps (minor mode, local, and global). When more than one of these keymaps
is a menu, each of them makes a separate pane or panes (when Emacs does not use an
X-toolkit) or a separate submenu (when using an X-toolkit). See Section 22.6 [Active
Keymaps], page 330.

22.12.3 Menus and the Keyboard

When a prefix key ending with a keyboard event (a character or function key) has a
definition that is a menu keymap, the user can use the keyboard to choose a menu item.

Emacs displays the menu’s overall prompt string followed by the alternatives (the item
strings of the bindings) in the echo area. If the bindings don’t all fit at once, the user can
type 〈SPC〉 to see the next line of alternatives. Successive uses of 〈SPC〉 eventually get to
the end of the menu and then cycle around to the beginning. (The variable menu-prompt-
more-char specifies which character is used for this; 〈SPC〉 is the default.)

When the user has found the desired alternative from the menu, he or she should type
the corresponding character—the one whose binding is that alternative.

This way of using menus in an Emacs-like editor was inspired by the Hierarkey system.

Variablemenu-prompt-more-char
This variable specifies the character to use to ask to see the next line of a menu. Its
initial value is 32, the code for 〈SPC〉.

22.12.4 Menu Example

Here is a complete example of defining a menu keymap. It is the definition of the ‘Print’
submenu in the ‘Tools’ menu in the menu bar, and it uses the simple menu item format
(see Section 22.12.1.1 [Simple Menu Items], page 343). First we create the keymap, and
give it a name:

(defvar menu-bar-print-menu (make-sparse-keymap "Print"))

Next we define the menu items:

Chapter 22: Keymaps 349

(define-key menu-bar-print-menu [ps-print-region]
’("Postscript Print Region" . ps-print-region-with-faces))

(define-key menu-bar-print-menu [ps-print-buffer]
’("Postscript Print Buffer" . ps-print-buffer-with-faces))

(define-key menu-bar-print-menu [separator-ps-print]
’("--"))

(define-key menu-bar-print-menu [print-region]
’("Print Region" . print-region))

(define-key menu-bar-print-menu [print-buffer]
’("Print Buffer" . print-buffer))

Note the symbols which the bindings are “made for”; these appear inside square brackets,
in the key sequence being defined. In some cases, this symbol is the same as the command
name; sometimes it is different. These symbols are treated as “function keys”, but they are
not real function keys on the keyboard. They do not affect the functioning of the menu
itself, but they are “echoed” in the echo area when the user selects from the menu, and
they appear in the output of where-is and apropos.

The binding whose definition is ("--") is a separator line. Like a real menu item,
the separator has a key symbol, in this case separator-ps-print. If one menu has two
separators, they must have two different key symbols.

Here is code to define enable conditions for two of the commands in the menu:

(put ’print-region ’menu-enable ’mark-active)
(put ’ps-print-region-with-faces ’menu-enable ’mark-active)

Here is how we make this menu appear as an item in the parent menu:

(define-key menu-bar-tools-menu [print]
(cons "Print" menu-bar-print-menu))

Note that this incorporates the submenu keymap, which is the value of the variable menu-
bar-print-menu, rather than the symbol menu-bar-print-menu itself. Using that symbol
in the parent menu item would be meaningless because menu-bar-print-menu is not a
command.

If you wanted to attach the same print menu to a mouse click, you can do it this way:

(define-key global-map [C-S-down-mouse-1]
menu-bar-print-menu)

We could equally well use an extended menu item (see Section 22.12.1.2 [Extended Menu
Items], page 344) for print-region, like this:

(define-key menu-bar-print-menu [print-region]
’(menu-item "Print Region" print-region

:enable mark-active))

With the extended menu item, the enable condition is specified inside the menu item itself.
If we wanted to make this item disappear from the menu entirely when the mark is inactive,
we could do it this way:

(define-key menu-bar-print-menu [print-region]
’(menu-item "Print Region" print-region

:visible mark-active))

350 GNU Emacs Lisp Reference Manual

22.12.5 The Menu Bar

Most window systems allow each frame to have a menu bar—a permanently displayed
menu stretching horizontally across the top of the frame. The items of the menu bar are the
subcommands of the fake “function key” menu-bar, as defined by all the active keymaps.

To add an item to the menu bar, invent a fake “function key” of your own (let’s call it
key), and make a binding for the key sequence [menu-bar key]. Most often, the binding
is a menu keymap, so that pressing a button on the menu bar item leads to another menu.

When more than one active keymap defines the same fake function key for the menu bar,
the item appears just once. If the user clicks on that menu bar item, it brings up a single,
combined menu containing all the subcommands of that item—the global subcommands,
the local subcommands, and the minor mode subcommands.

The variable overriding-local-map is normally ignored when determining the menu
bar contents. That is, the menu bar is computed from the keymaps that would be active if
overriding-local-map were nil. See Section 22.6 [Active Keymaps], page 330.

In order for a frame to display a menu bar, its menu-bar-lines parameter must be
greater than zero. Emacs uses just one line for the menu bar itself; if you specify more than
one line, the other lines serve to separate the menu bar from the windows in the frame.
We recommend 1 or 2 as the value of menu-bar-lines. See Section 29.3.3 [Window Frame
Parameters], page 486.

Here’s an example of setting up a menu bar item:
(modify-frame-parameters (selected-frame)

’((menu-bar-lines . 2)))

;; Make a menu keymap (with a prompt string)
;; and make it the menu bar item’s definition.
(define-key global-map [menu-bar words]
(cons "Words" (make-sparse-keymap "Words")))

;; Define specific subcommands in this menu.
(define-key global-map
[menu-bar words forward]
’("Forward word" . forward-word))

(define-key global-map
[menu-bar words backward]
’("Backward word" . backward-word))

A local keymap can cancel a menu bar item made by the global keymap by rebinding
the same fake function key with undefined as the binding. For example, this is how Dired
suppresses the ‘Edit’ menu bar item:

(define-key dired-mode-map [menu-bar edit] ’undefined)

edit is the fake function key used by the global map for the ‘Edit’ menu bar item. The
main reason to suppress a global menu bar item is to regain space for mode-specific items.

Variablemenu-bar-final-items
Normally the menu bar shows global items followed by items defined by the local
maps.

Chapter 22: Keymaps 351

This variable holds a list of fake function keys for items to display at the end of the
menu bar rather than in normal sequence. The default value is (help-menu); thus,
the ‘Help’ menu item normally appears at the end of the menu bar, following local
menu items.

Variablemenu-bar-update-hook
This normal hook is run whenever the user clicks on the menu bar, before displaying
a submenu. You can use it to update submenus whose contents should vary.

22.12.6 Tool bars

A tool bar is a row of icons at the top of a frame, that execute commands when you
click on them—in effect, a kind of graphical menu bar. Emacs supports tool bars starting
with version 21.

The frame parameter tool-bar-lines (X resource ‘toolBar’) controls how many lines’
worth of height to reserve for the tool bar. A zero value suppresses the tool bar. If the value
is nonzero, and auto-resize-tool-bars is non-nil, the tool bar expands and contracts
automatically as needed to hold the specified contents.

The tool bar contents are controlled by a menu keymap attached to a fake “function
key” called tool-bar (much like the way the menu bar is controlled). So you define a tool
bar item using define-key, like this:

(define-key global-map [tool-bar key] item)

where key is a fake “function key” to distinguish this item from other items, and item is
a menu item key binding (see Section 22.12.1.2 [Extended Menu Items], page 344), which
says how to display this item and how it behaves.

The usual menu keymap item properties, :visible, :enable, :button, and :filter,
are useful in tool bar bindings and have their normal meanings. The real-binding in the
item must be a command, not a keymap; in other words, it does not work to define a tool
bar icon as a prefix key.

The :help property specifies a “help-echo” string to display while the mouse is on that
item. This is displayed in the same way as help-echo text properties (see [Help display],
page 570).

In addition, you should use the :image property; this is how you specify the image to
display in the tool bar:

:image image
images is either a single image specification or a vector of four image specifica-
tions. If you use a vector of four, one of them is used, depending on circum-
stances:

item 0 Used when the item is enabled and selected.

item 1 Used when the item is enabled and deselected.

item 2 Used when the item is disabled and selected.

item 3 Used when the item is disabled and deselected.

352 GNU Emacs Lisp Reference Manual

If image is a single image specification, Emacs draws the tool bar button in disabled
state by applying an edge-detection algorithm to the image.

The default tool bar is defined so that items specific to editing do not appear for major
modes whose command symbol has a mode-class property of special (see Section 23.1.1
[Major Mode Conventions], page 356). Major modes may add items to the global bar by
binding [tool-bar foo] in their local map. It makes sense for some major modes to replace
the default tool bar items completely, since not many can be accommodated conveniently,
and the default bindings make this easy by using an indirection through tool-bar-map.

Variabletool-bar-map
By default, the global map binds [tool-bar] as follows:

(global-set-key [tool-bar]
’(menu-item "tool bar" ignore

:filter (lambda (ignore) tool-bar-map)))

Thus the tool bar map is derived dynamically from the value of variable tool-bar-
map and you should normally adjust the default (global) tool bar by changing that
map. Major modes may replace the global bar completely by making tool-bar-map
buffer-local and set to a keymap containing only the desired items. Info mode provides
an example.

There are two convenience functions for defining tool bar items, as follows.

Functiontool-bar-add-item icon def key &rest props
This function adds an item to the tool bar by modifying tool-bar-map. The image
to use is defined by icon, which is the base name of an XPM, XBM or PBM image file
to located by find-image. Given a value ‘"exit"’, say, ‘exit.xpm’, ‘exit.pbm’ and
‘exit.xbm’ would be searched for in that order on a color display. On a monochrome
display, the search order is ‘.pbm’, ‘.xbm’ and ‘.xpm’. The binding to use is the
command def, and key is the fake function key symbol in the prefix keymap. The
remaining arguments props are additional property list elements to add to the menu
item specification.
To define items in some local map, bind ‘tool-bar-map with let around calls of this
function:

(defvar foo-tool-bar-map
(let ((tool-bar-map (make-sparse-keymap)))
(tool-bar-add-item ...)
...
tool-bar-map))

Functiontool-bar-add-item-from-menu command icon &optional map &rest
props

This command is a convenience for defining tool bar items which are consistent with
existing menu bar bindings. The binding of command is looked up in the menu bar in
map (default global-map) and modified to add an image specification for icon, which
is looked for in the same way as by tool-bar-add-item. The resulting binding is
then placed in tool-bar-map. map must contain an appropriate keymap bound to

Chapter 22: Keymaps 353

[menu-bar]. The remaining arguments props are additional property list elements
to add to the menu item specification.

Variableauto-resize-tool-bar
If this variable is non-nil, the tool bar automatically resizes to show all defined tool
bar items—but not larger than a quarter of the frame’s height.

Variableauto-raise-tool-bar-items
If this variable is non-nil, tool bar items display in raised form when the mouse
moves over them.

Variabletool-bar-item-margin
This variable specifies an extra margin to add around tool bar items. The value is an
integer, a number of pixels. The default is 1.

Variabletool-bar-item-relief
This variable specifies the shadow width for tool bar items. The value is an integer,
a number of pixels. The default is 3.

You can define a special meaning for clicking on a tool bar item with the shift, control,
meta, etc., modifiers. You do this by setting up additional items that relate to the origi-
nal item through the fake function keys. Specifically, the additional items should use the
modified versions of the same fake function key used to name the original item.

Thus, if the original item was defined this way,

(define-key global-map [tool-bar shell]
’(menu-item "Shell" shell

:image (image :type xpm :file "shell.xpm")))

then here is how you can define clicking on the same tool bar image with the shift modifier:

(define-key global-map [tool-bar S-shell] ’some-command)

See Section 21.6.2 [Function Keys], page 298, for more information about how to add
modifiers to function keys.

22.12.7 Modifying Menus

When you insert a new item in an existing menu, you probably want to put it in a
particular place among the menu’s existing items. If you use define-key to add the item,
it normally goes at the front of the menu. To put it elsewhere in the menu, use define-
key-after:

354 GNU Emacs Lisp Reference Manual

Functiondefine-key-after map key binding &optional after
Define a binding in map for key, with value binding, just like define-key, but position
the binding in map after the binding for the event after. The argument key should be
of length one—a vector or string with just one element. But after should be a single
event type—a symbol or a character, not a sequence. The new binding goes after the
binding for after. If after is t or is omitted, then the new binding goes last, at the
end of the keymap. However, new bindings are added before any inherited keymap.
Here is an example:

(define-key-after my-menu [drink]
’("Drink" . drink-command) ’eat)

makes a binding for the fake function key 〈DRINK〉 and puts it right after the binding
for 〈EAT〉.
Here is how to insert an item called ‘Work’ in the ‘Signals’ menu of Shell mode, after
the item break:

(define-key-after
(lookup-key shell-mode-map [menu-bar signals])
[work] ’("Work" . work-command) ’break)

Chapter 23: Major and Minor Modes 355

23 Major and Minor Modes

A mode is a set of definitions that customize Emacs and can be turned on and off while
you edit. There are two varieties of modes: major modes, which are mutually exclusive
and used for editing particular kinds of text, and minor modes, which provide features that
users can enable individually.

This chapter describes how to write both major and minor modes, how to indicate them
in the mode line, and how they run hooks supplied by the user. For related topics such as
keymaps and syntax tables, see Chapter 22 [Keymaps], page 325, and Chapter 35 [Syntax
Tables], page 621.

23.1 Major Modes

Major modes specialize Emacs for editing particular kinds of text. Each buffer has only
one major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific definitions or variable settings, so each Emacs command behaves in its default
manner, and each option is in its default state. All other major modes redefine various
keys and options. For example, Lisp Interaction mode provides special key bindings for C-j
(eval-print-last-sexp), 〈TAB〉 (lisp-indent-line), and other keys.

When you need to write several editing commands to help you perform a specialized
editing task, creating a new major mode is usually a good idea. In practice, writing a
major mode is easy (in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to
serve two purposes, since it may become harder to use and maintain. Instead, copy and
rename an existing major mode definition and alter the copy—or define a derived mode
(see Section 23.1.5 [Derived Modes], page 364). For example, Rmail Edit mode, which is
in ‘emacs/lisp/mail/rmailedit.el’, is a major mode that is very similar to Text mode
except that it provides two additional commands. Its definition is distinct from that of Text
mode, but uses that of Text mode.

Even if the new mode is not an obvious derivative of any other mode, it can be conve-
nient to define it as a derivative of fundamental-mode, so that define-derived-mode can
automatically enforce the most important coding conventions for you.

Rmail Edit mode offers an example of changing the major mode temporarily for a buffer,
so it can be edited in a different way (with ordinary Emacs commands rather than Rmail
commands). In such cases, the temporary major mode usually provides a command to
switch back to the buffer’s usual mode (Rmail mode, in this case). You might be tempted
to present the temporary redefinitions inside a recursive edit and restore the usual ones
when the user exits; but this is a bad idea because it constrains the user’s options when
it is done in more than one buffer: recursive edits must be exited most-recently-entered
first. Using an alternative major mode avoids this limitation. See Section 21.12 [Recursive
Editing], page 319.

The standard GNU Emacs Lisp library directory tree contains the code for several major
modes, in files such as ‘text-mode.el’, ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and
‘rmail.el’. They are found in various subdirectories of the ‘lisp’ directory. You can study

356 GNU Emacs Lisp Reference Manual

these libraries to see how modes are written. Text mode is perhaps the simplest major
mode aside from Fundamental mode. Rmail mode is a complicated and specialized mode.

23.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including con-
ventions for local keymap and syntax table initialization, global names, and hooks. Please
follow these conventions when you define a new major mode.

This list of conventions is only partial, because each major mode should aim for con-
sistency in general with other Emacs major modes. This makes Emacs as a whole more
coherent. It is impossible to list here all the possible points where this issue might come
up; if the Emacs developers point out an area where your major mode deviates from the
usual conventions, please make it compatible.
• Define a command whose name ends in ‘-mode’, with no arguments, that switches to

the new mode in the current buffer. This command should set up the keymap, syntax
table, and buffer-local variables in an existing buffer, without changing the buffer’s
contents.

• Write a documentation string for this command that describes the special commands
available in this mode. C-h m (describe-mode) in your mode will display this string.
The documentation string may include the special documentation substrings, ‘\[com-
mand]’, ‘\{keymap}’, and ‘\<keymap>’, which enable the documentation to adapt
automatically to the user’s own key bindings. See Section 24.3 [Keys in Documenta-
tion], page 390.

• The major mode command should start by calling kill-all-local-variables. This
is what gets rid of the buffer-local variables of the major mode previously in effect.

• The major mode command should set the variable major-mode to the major mode
command symbol. This is how describe-mode discovers which documentation to print.

• The major mode command should set the variable mode-name to the “pretty” name of
the mode, as a string. This string appears in the mode line.

• Since all global names are in the same name space, all the global variables, constants,
and functions that are part of the mode should have names that start with the major
mode name (or with an abbreviation of it if the name is long). See Section D.1 [Coding
Conventions], page 765.

• In a major mode for editing some kind of structured text, such as a programming
language, indentation of text according to structure is probably useful. So the mode
should set indent-line-function to a suitable function, and probably customize other
variables for indentation.

• The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode command should call use-local-map to
install this local map. See Section 22.6 [Active Keymaps], page 330, for more informa-
tion.
This keymap should be stored permanently in a global variable named modename-
mode-map. Normally the library that defines the mode sets this variable.
See Section 11.6 [Tips for Defining], page 139, for advice about how to write the code
to set up the mode’s keymap variable.

Chapter 23: Major and Minor Modes 357

• The key sequences bound in a major mode keymap should usually start with C-c,
followed by a control character, a digit, or {, }, <, >, : or ;. The other punctuation
characters are reserved for minor modes, and ordinary letters are reserved for users.
It is reasonable for a major mode to rebind a key sequence with a standard meaning, if
it implements a command that does “the same job” in a way that fits the major mode
better. For example, a major mode for editing a programming language might redefine
C-M-a to “move to the beginning of a function” in a way that works better for that
language.
Major modes such as Dired or Rmail that do not allow self-insertion of text can rea-
sonably redefine letters and other printing characters as editing commands. Dired and
Rmail both do this.

• Major modes must not define 〈RET〉 to do anything other than insert a newline. The
command to insert a newline and then indent is C-j. Please keep this distinction
uniform for all major modes.

• Major modes should not alter options that are primary a matter of user preference, such
as whether Auto-Fill mode is enabled. Leave this to each user to decide. However, a
major mode should customize other variables so that Auto-Fill mode will work usefully
if the user decides to use it.

• The mode may have its own syntax table or may share one with other related modes. If
it has its own syntax table, it should store this in a variable named modename-mode-
syntax-table. See Chapter 35 [Syntax Tables], page 621.

• If the mode handles a language that has a syntax for comments, it should set the
variables that define the comment syntax. See section “Options Controlling Comments”
in The GNU Emacs Manual.

• The mode may have its own abbrev table or may share one with other related modes.
If it has its own abbrev table, it should store this in a variable named modename-
mode-abbrev-table. See Section 36.2 [Abbrev Tables], page 635.

• The mode should specify how to do highlighting for Font Lock mode, by setting up a
buffer-local value for the variable font-lock-defaults (see Section 23.5 [Font Lock
Mode], page 377).

• The mode should specify how Imenu should find the definitions or sections of a buffer, by
setting up a buffer-local value for the variable imenu-generic-expression or imenu-
create-index-function (see Section 23.4 [Imenu], page 375).

• Use defvar or defcustom to set mode-related variables, so that they are not reinitial-
ized if they already have a value. (Such reinitialization could discard customizations
made by the user.)

• To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set,
which would affect buffers that do not use this mode. It is undesirable for a mode to
have such global effects. See Section 11.10 [Buffer-Local Variables], page 146.
With rare exceptions, the only reasonable way to use make-variable-buffer-local
in a Lisp package is for a variable which is used only within that package. Using it on
a variable used by other packages would interfere with them.

358 GNU Emacs Lisp Reference Manual

• Each major mode should have a mode hook named modename-mode-hook. The major
mode command should run that hook, with run-hooks, as the very last thing it does.
See Section 23.6 [Hooks], page 383.

• The major mode command may also run the hooks of some more basic modes. For
example, indented-text-mode runs text-mode-hook as well as indented-text-mode-
hook. It may run these other hooks immediately before the mode’s own hook (that is,
after everything else), or it may run them earlier.

• If something special should be done if the user switches a buffer from this mode to any
other major mode, this mode can set up a buffer-local value for change-major-mode-
hook (see Section 11.10.2 [Creating Buffer-Local], page 148).

• If this mode is appropriate only for specially-prepared text, then the major mode
command symbol should have a property named mode-class with value special, put
on as follows:

(put ’funny-mode ’mode-class ’special)

This tells Emacs that new buffers created while the current buffer is in Funny mode
should not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this
feature.

• If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names. If you
define the mode command to autoload, you should add this element in the same file
that calls autoload. Otherwise, it is sufficient to add the element in the file that
contains the mode definition. See Section 23.1.3 [Auto Major Mode], page 361.

• In the documentation, you should provide a sample autoload form and an example
of how to add to auto-mode-alist, that users can include in their init files (see Sec-
tion 40.1.2 [Init File], page 722).

• The top-level forms in the file defining the mode should be written so that they may
be evaluated more than once without adverse consequences. Even if you never load the
file more than once, someone else will.

23.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts
from ‘text-mode.el’ that illustrate many of the conventions listed above:

;; Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
() ; Do not change the table if it is already set up.

(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry ?\" ". " text-mode-syntax-table)
(modify-syntax-entry ?\\ ". " text-mode-syntax-table)
(modify-syntax-entry ?’ "w " text-mode-syntax-table))

(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")

(define-abbrev-table ’text-mode-abbrev-table ())

Chapter 23: Major and Minor Modes 359

(defvar text-mode-map nil ; Create a mode-specific keymap.
"Keymap for Text mode.

Many other modes, such as Mail mode, Outline mode and Indented Text mode,
inherit all the commands defined in this map.")

(if text-mode-map
() ; Do not change the keymap if it is already set up.

(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\e\t" ’ispell-complete-word)
(define-key text-mode-map "\t" ’indent-relative)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:

(defun text-mode ()
"Major mode for editing text intended for humans to read...

Special commands: \\{text-mode-map}
Turning on text-mode runs the hook ‘text-mode-hook’."
(interactive)
(kill-all-local-variables)
(use-local-map text-mode-map)
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(make-local-variable ’paragraph-start)
(setq paragraph-start (concat "[\t]*$\\|" page-delimiter))
(make-local-variable ’paragraph-separate)
(setq paragraph-separate paragraph-start)
(make-local-variable ’indent-line-function)
(setq indent-line-function ’indent-relative-maybe)
(setq mode-name "Text")
(setq major-mode ’text-mode)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to

; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have
more features than Text mode and the code is correspondingly more complicated. Here are
excerpts from ‘lisp-mode.el’ that illustrate how these modes are written.

;; Create mode-specific table variables.
(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")

(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.

(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

360 GNU Emacs Lisp Reference Manual

;; Set syntax of chars up to 0 to class of chars that are
;; part of symbol names but not words.
;; (The number 0 is 48 in the ascii character set.)
(while (< i ?0)
(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ i)))

...
;; Set the syntax for other characters.
(modify-syntax-entry ? " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\t " " emacs-lisp-mode-syntax-table)
...
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)
...))

;; Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())

Much code is shared among the three Lisp modes. The following function sets various
variables; it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
(cond (lisp-syntax
(set-syntax-table lisp-mode-syntax-table)))
(setq local-abbrev-table lisp-mode-abbrev-table)
...

Functions such as forward-paragraph use the value of the paragraph-start variable.
Since Lisp code is different from ordinary text, the paragraph-start variable needs to be
set specially to handle Lisp. Also, comments are indented in a special fashion in Lisp and
the Lisp modes need their own mode-specific comment-indent-function. The code to set
these variables is the rest of lisp-mode-variables.

(make-local-variable ’paragraph-start)
(setq paragraph-start (concat page-delimiter "\\|$"))
(make-local-variable ’paragraph-separate)
(setq paragraph-separate paragraph-start)
...
(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))
...

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-z to run-lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following code sets up the common commands:

(defvar shared-lisp-mode-map ()
"Keymap for commands shared by all sorts of Lisp modes.")

(if shared-lisp-mode-map
()

(setq shared-lisp-mode-map (make-sparse-keymap))
(define-key shared-lisp-mode-map "\e\C-q" ’indent-sexp)
(define-key shared-lisp-mode-map "\177"

’backward-delete-char-untabify))

Chapter 23: Major and Minor Modes 361

And here is the code to set up the keymap for Lisp mode:

(defvar lisp-mode-map ()
"Keymap for ordinary Lisp mode...")

(if lisp-mode-map
()

(setq lisp-mode-map (make-sparse-keymap))
(set-keymap-parent lisp-mode-map shared-lisp-mode-map)
(define-key lisp-mode-map "\e\C-x" ’lisp-eval-defun)
(define-key lisp-mode-map "\C-c\C-z" ’run-lisp))

Finally, here is the complete major mode function definition for Lisp mode.

(defun lisp-mode ()
"Major mode for editing Lisp code for Lisps other than GNU Emacs Lisp.

Commands:
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{lisp-mode-map}
Note that ‘run-lisp’ may be used either to start an inferior Lisp job
or to switch back to an existing one.

Entry to this mode calls the value of ‘lisp-mode-hook’
if that value is non-nil."
(interactive)
(kill-all-local-variables)
(use-local-map lisp-mode-map) ; Select the mode’s keymap.
(setq major-mode ’lisp-mode) ; This is how describe-mode

; finds out what to describe.
(setq mode-name "Lisp") ; This goes into the mode line.
(lisp-mode-variables t) ; This defines various variables.
(setq imenu-case-fold-search t)
(set-syntax-table lisp-mode-syntax-table)
(run-hooks ’lisp-mode-hook)) ; This permits the user to use a

; hook to customize the mode.

23.1.3 How Emacs Chooses a Major Mode

Based on information in the file name or in the file itself, Emacs automatically selects
a major mode for the new buffer when a file is visited. It also processes local variables
specified in the file text.

Commandfundamental-mode
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their defini-
tions say what to change, starting from Fundamental mode. The fundamental-mode
function does not run any hooks; you’re not supposed to customize it. (If you want
Emacs to behave differently in Fundamental mode, change the global state of Emacs.)

362 GNU Emacs Lisp Reference Manual

Commandnormal-mode &optional find-file
This function establishes the proper major mode and buffer-local variable bindings for
the current buffer. First it calls set-auto-mode, then it runs hack-local-variables
to parse, and bind or evaluate as appropriate, the file’s local variables.

If the find-file argument to normal-mode is non-nil, normal-mode assumes that the
find-file function is calling it. In this case, it may process a local variables list
at the end of the file and in the ‘-*-’ line. The variable enable-local-variables
controls whether to do so. See section “Local Variables in Files” in The GNU Emacs
Manual, for the syntax of the local variables section of a file.

If you run normal-mode interactively, the argument find-file is normally nil. In this
case, normal-mode unconditionally processes any local variables list.

normal-mode uses condition-case around the call to the major mode function, so
errors are caught and reported as a ‘File mode specification error’, followed by
the original error message.

Functionset-auto-mode
This function selects the major mode that is appropriate for the current buffer. It
may base its decision on the value of the ‘-*-’ line, on the visited file name (using
auto-mode-alist), on the ‘#!’ line (using interpreter-mode-alist), or on the file’s
local variables list. However, this function does not look for the ‘mode:’ local variable
near the end of a file; the hack-local-variables function does that. See section
“How Major Modes are Chosen” in The GNU Emacs Manual.

User Optiondefault-major-mode
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.

If the value of default-major-mode is nil, Emacs uses the (previously) current
buffer’s major mode for the major mode of a new buffer. However, if that major
mode symbol has a mode-class property with value special, then it is not used for
new buffers; Fundamental mode is used instead. The modes that have this property
are those such as Dired and Rmail that are useful only with text that has been
specially prepared.

Functionset-buffer-major-mode buffer
This function sets the major mode of buffer to the value of default-major-mode. If
that variable is nil, it uses the current buffer’s major mode (if that is suitable).

The low-level primitives for creating buffers do not use this function, but medium-
level commands such as switch-to-buffer and find-file-noselect use it whenever
they create buffers.

Variableinitial-major-mode
The value of this variable determines the major mode of the initial ‘*scratch*’ buffer.
The value should be a symbol that is a major mode command. The default value is
lisp-interaction-mode.

Chapter 23: Major and Minor Modes 363

Variableauto-mode-alist
This variable contains an association list of file name patterns (regular expressions;
see Section 34.2 [Regular Expressions], page 602) and corresponding major mode
commands. Usually, the file name patterns test for suffixes, such as ‘.el’ and ‘.c’,
but this need not be the case. An ordinary element of the alist looks like (regexp .
mode-function).

For example,

(("\\‘/tmp/fol/" . text-mode)
("\\.texinfo\\’" . texinfo-mode)
("\\.texi\\’" . texinfo-mode)
("\\.el\\’" . emacs-lisp-mode)
("\\.c\\’" . c-mode)
("\\.h\\’" . c-mode)
...)

When you visit a file whose expanded file name (see Section 25.8.4 [File Name Ex-
pansion], page 417) matches a regexp, set-auto-mode calls the corresponding mode-
function. This feature enables Emacs to select the proper major mode for most files.

If an element of auto-mode-alist has the form (regexp function t), then after calling
function, Emacs searches auto-mode-alist again for a match against the portion of
the file name that did not match before. This feature is useful for uncompression
packages: an entry of the form ("\\.gz\\’" function t) can uncompress the file and
then put the uncompressed file in the proper mode according to the name sans ‘.gz’.

Here is an example of how to prepend several pattern pairs to auto-mode-alist.
(You might use this sort of expression in your init file.)

(setq auto-mode-alist
(append
;; File name (within directory) starts with a dot.
’(("/\\.[^/]*\\’" . fundamental-mode)

;; File name has no dot.
("[^\\./]*\\’" . fundamental-mode)
;; File name ends in ‘.C’.
("\\.C\\’" . c++-mode))

auto-mode-alist))

Variableinterpreter-mode-alist
This variable specifies major modes to use for scripts that specify a command inter-
preter in a ‘#!’ line. Its value is a list of elements of the form (interpreter . mode);
for example, ("perl" . perl-mode) is one element present by default. The element
says to use mode mode if the file specifies an interpreter which matches interpreter.
The value of interpreter is actually a regular expression.

This variable is applicable only when the auto-mode-alist does not indicate which
major mode to use.

364 GNU Emacs Lisp Reference Manual

23.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is
normally called with C-h m. The describe-mode function uses the value of major-mode,
which is why every major mode function needs to set the major-mode variable.

Commanddescribe-mode
This function displays the documentation of the current major mode.
The describe-mode function calls the documentation function using the value of
major-mode as an argument. Thus, it displays the documentation string of the major
mode function. (See Section 24.2 [Accessing Documentation], page 388.)

Variablemajor-mode
This variable holds the symbol for the current buffer’s major mode. This symbol
should have a function definition that is the command to switch to that major mode.
The describe-mode function uses the documentation string of the function as the
documentation of the major mode.

23.1.5 Defining Derived Modes

It’s often useful to define a new major mode in terms of an existing one. An easy way
to do this is to use define-derived-mode.

Macrodefine-derived-mode variant parent name docstring body. . .
This construct defines variant as a major mode command, using name as the string
form of the mode name.
The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:
• The new mode has its own keymap, named variant-map. define-derived-mode

initializes this map to inherit from parent-map, if it is not already set.
• The new mode has its own syntax table, kept in the variable variant-

syntax-table. define-derived-mode initializes this variable by copying
parent-syntax-table, if it is not already set.

• The new mode has its own abbrev table, kept in the variable variant-
abbrev-table. define-derived-mode initializes this variable by copying
parent-abbrev-table, if it is not already set.

• The new mode has its own mode hook, variant-hook, which it runs in standard
fashion as the very last thing that it does. (The new mode also runs the mode
hook of parent as part of calling parent.)

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides,
just before running variant-hook.
The argument docstring specifies the documentation string for the new mode. If you
omit docstring, define-derived-mode generates a documentation string.
Here is a hypothetical example:

Chapter 23: Major and Minor Modes 365

(define-derived-mode hypertext-mode
text-mode "Hypertext"
"Major mode for hypertext.

\\{hypertext-mode-map}"
(setq case-fold-search nil))

(define-key hypertext-mode-map
[down-mouse-3] ’do-hyper-link)

Do not write an interactive spec in the definition; define-derived-mode does that
automatically.

23.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the
choice of major mode. Minor modes can be enabled individually or in combination. Minor
modes would be better named “generally available, optional feature modes,” except that
such a name would be unwieldy.

A minor mode is not usually meant as a variation of a single major mode. Usually
they are general and can apply to many major modes. For example, Auto Fill mode works
with any major mode that permits text insertion. To be general, a minor mode must be
effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason
is that you should be able to activate and deactivate minor modes in any order. A minor
mode should be able to have its desired effect regardless of the major mode and regardless
of the other minor modes in effect.

Often the biggest problem in implementing a minor mode is finding a way to insert the
necessary hook into the rest of Emacs. Minor mode keymaps make this easier than it used
to be.

23.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several
of the major mode conventions apply to minor modes as well: those regarding the name of
the mode initialization function, the names of global symbols, and the use of keymaps and
other tables.

In addition, there are several conventions that are specific to minor modes.

• Make a variable whose name ends in ‘-mode’ to control the minor mode. We call this
the mode variable. The minor mode command should set this variable (nil to disable;
anything else to enable).
If possible, implement the mode so that setting the variable automatically enables or
disables the mode. Then the minor mode command does not need to do anything
except set the variable.
This variable is used in conjunction with the minor-mode-alist to display the minor
mode name in the mode line. It can also enable or disable a minor mode keymap.
Individual commands or hooks can also check the variable’s value.

366 GNU Emacs Lisp Reference Manual

If you want the minor mode to be enabled separately in each buffer, make the variable
buffer-local.

• Define a command whose name is the same as the mode variable. Its job is to enable
and disable the mode by setting the variable.

The command should accept one optional argument. If the argument is nil, it should
toggle the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the
mode on if the argument is a positive integer, a symbol other than nil or -, or a list
whose car is such an integer or symbol; it should turn the mode off otherwise.

Here is an example taken from the definition of transient-mark-mode. It shows the
use of transient-mark-mode as a variable that enables or disables the mode’s behavior,
and also shows the proper way to toggle, enable or disable the minor mode based on
the raw prefix argument value.

(setq transient-mark-mode
(if (null arg) (not transient-mark-mode)

(> (prefix-numeric-value arg) 0)))

• Add an element to minor-mode-alist for each minor mode (see Section 23.3.2 [Mode
Line Variables], page 371), if you want to indicate the minor mode in the mode line.
This element should be a list of the following form:

(mode-variable string)

Here mode-variable is the variable that controls enabling of the minor mode, and string
is a short string, starting with a space, to represent the mode in the mode line. These
strings must be short so that there is room for several of them at once.

When you add an element to minor-mode-alist, use assq to check for an existing
element, to avoid duplication. For example:

(unless (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

or like this, using add-to-list (see Section 11.8 [Setting Variables], page 142):

(add-to-list ’minor-mode-alist ’(leif-mode " Leif"))

Global minor modes distributed with Emacs should if possible support enabling and
disabling via Custom (see Chapter 14 [Customization], page 179). To do this, the first step
is to define the mode variable with defcustom, and specify :type boolean.

If just setting the variable is not sufficient to enable the mode, you should also specify a
:set method which enables the mode by invoke the mode command. Note in the variable’s
documentation string that setting the variable other than via Custom may not take effect.

Also mark the definition with an autoload cookie (see Section 15.4 [Autoload], page 197),
and specify a :require so that customizing the variable will load the library that defines
the mode. This will copy suitable definitions into ‘loaddefs.el’ so that users can use
customize-option to enable the mode. For example:

Chapter 23: Major and Minor Modes 367

;;;###autoload
(defcustom msb-mode nil
"Toggle msb-mode.

Setting this variable directly does not take effect;
use either \\[customize] or the function ‘msb-mode’."
:set (lambda (symbol value)

(msb-mode (or value 0)))
:initialize ’custom-initialize-default
:version "20.4"
:type ’boolean
:group ’msb
:require ’msb)

23.2.2 Keymaps and Minor Modes

Each minor mode can have its own keymap, which is active when the mode is enabled.
To set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist.
See Section 22.6 [Active Keymaps], page 330.

One use of minor mode keymaps is to modify the behavior of certain self-inserting
characters so that they do something else as well as self-insert. In general, this is the only
way to do that, since the facilities for customizing self-insert-command are limited to
special cases (designed for abbrevs and Auto Fill mode). (Do not try substituting your
own definition of self-insert-command for the standard one. The editor command loop
handles this function specially.)

The key sequences bound in a minor mode should consist of C-c followed by a punc-
tuation character other than {, }, <, >, :, and ;. (Those few punctuation characters are
reserved for major modes.)

23.2.3 Defining Minor Modes

The macro define-minor-mode offers a convenient way of implementing a mode in one
self-contained definition. It supports only buffer-local minor modes, not global ones.

Macrodefine-minor-mode mode doc &optional init-value mode-indicator
keymap body...

This macro defines a new minor mode whose name is mode (a symbol). It defines
a command named mode to toggle the minor mode, with doc as its documentation
string. It also defines a variable named mode, which is set to t or nil by enabling or
disabling the mode. The variable is initialized to init-value.
The command named mode finishes by executing the body forms, if any, after it has
performed the standard actions such as setting the variable named mode.
The string mode-indicator says what to display in the mode line when the mode is
enabled; if it is nil, the mode is not displayed in the mode line.
The optional argument keymap specifies the keymap for the minor mode. It can be
a variable name, whose value is the keymap, or it can be an alist specifying bindings
in this form:

368 GNU Emacs Lisp Reference Manual

(key-sequence . definition)

Here is an example of using define-minor-mode:
(define-minor-mode hungry-mode
"Toggle Hungry mode.

With no argument, this command toggles the mode.
Non-null prefix argument turns on the mode.
Null prefix argument turns off the mode.

When Hungry mode is enabled, the control delete key
gobbles all preceding whitespace except the last.
See the command \\[hungry-electric-delete]."
;; The initial value.
nil
;; The indicator for the mode line.
" Hungry"
;; The minor mode bindings.
’(("\C-\^?" . hungry-electric-delete)
("\C-\M-\^?"
. (lambda ()

(interactive)
(hungry-electric-delete t)))))

This defines a minor mode named “Hungry mode”, a command named hungry-mode to
toggle it, a variable named hungry-mode which indicates whether the mode is enabled, and
a variable named hungry-mode-map which holds the keymap that is active when the mode
is enabled. It initializes the keymap with key bindings for C-〈DEL〉 and C-M-〈DEL〉.

The name easy-mmode-define-minor-mode is an alias for this macro.

23.3 Mode Line Format

Each Emacs window (aside from minibuffer windows) typically has a mode line at the
bottom, which displays status information about the buffer displayed in the window. The
mode line contains information about the buffer, such as its name, associated file, depth
of recursive editing, and major and minor modes. A window can also have a header line,
which is much like the mode line but appears at the top of the window (starting in Emacs
21).

This section describes how to control the contents of the mode line and header line. We
include it in this chapter because much of the information displayed in the mode line relates
to the enabled major and minor modes.

mode-line-format is a buffer-local variable that holds a template used to display the
mode line of the current buffer. All windows for the same buffer use the same mode-line-
format, so their mode lines appear the same—except for scrolling percentages, and line
and column numbers, since those depend on point and on how the window is scrolled.
header-line-format is used likewise for header lines.

The mode line and header line of a window are normally updated whenever a different
buffer is shown in the window, or when the buffer’s modified-status changes from nil to
t or vice-versa. If you modify any of the variables referenced by mode-line-format (see

Chapter 23: Major and Minor Modes 369

Section 23.3.2 [Mode Line Variables], page 371), or any other variables and data structures
that affect how text is displayed (see Chapter 38 [Display], page 661), you may want to
force an update of the mode line so as to display the new information or display it in the
new way.

Functionforce-mode-line-update
Force redisplay of the current buffer’s mode line and header line.

The mode line is usually displayed in inverse video; see mode-line-inverse-video in
Section 38.15 [Inverse Video], page 702.

23.3.1 The Data Structure of the Mode Line

The mode line contents are controlled by a data structure of lists, strings, symbols, and
numbers kept in buffer-local variables. The data structure is called a mode line construct,
and it is built in recursive fashion out of simpler mode line constructs. The same data
structure is used for constructing frame titles (see Section 29.4 [Frame Titles], page 492)
and header lines (see Section 23.3.5 [Header Lines], page 375).

Variablemode-line-format
The value of this variable is a mode line construct with overall responsibility for the
mode line format. The value of this variable controls which other variables are used
to form the mode line text, and where they appear.
If you set this variable to nil in a buffer, that buffer does not have a mode line. (This
feature was added in Emacs 21.)

A mode line construct may be as simple as a fixed string of text, but it usually specifies
how to use other variables to construct the text. Many of these variables are themselves
defined to have mode line constructs as their values.

The default value of mode-line-format incorporates the values of variables such as
mode-name and minor-mode-alist. Because of this, very few modes need to alter mode-
line-format itself. For most purposes, it is sufficient to alter some of the variables that
mode-line-format refers to.

A mode line construct may be a list, a symbol, or a string. If the value is a list, each
element may be a list, a symbol, or a string.

The mode line can display various faces, if the strings that control it have the face
property. See Section 23.3.4 [Properties in Mode], page 374. In addition, the face mode-
line is used as a default for the whole mode line (see Section 38.11.1 [Standard Faces],
page 678).

string A string as a mode line construct is displayed verbatim in the mode line ex-
cept for %-constructs. Decimal digits after the ‘%’ specify the field width for
space filling on the right (i.e., the data is left justified). See Section 23.3.3
[%-Constructs], page 373.

symbol A symbol as a mode line construct stands for its value. The value of symbol is
used as a mode line construct, in place of symbol. However, the symbols t and
nil are ignored, as is any symbol whose value is void.

370 GNU Emacs Lisp Reference Manual

There is one exception: if the value of symbol is a string, it is displayed verba-
tim: the %-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list means to process all the elements
recursively and concatenate the results. This is the most common form of mode
line construct.

(:eval form)
A list whose first element is the symbol :eval says to evaluate form, and use
the result as a string to display. (This feature is new as of Emacs 21.)

(symbol then else)
A list whose first element is a symbol that is not a keyword specifies a condi-
tional. Its meaning depends on the value of symbol. If the value is non-nil,
the second element, then, is processed recursively as a mode line element. But
if the value of symbol is nil, the third element, else, is processed recursively.
You may omit else; then the mode line element displays nothing if the value of
symbol is nil.

(width rest...)
A list whose first element is an integer specifies truncation or padding of the
results of rest. The remaining elements rest are processed recursively as mode
line constructs and concatenated together. Then the result is space filled (if
width is positive) or truncated (to −width columns, if width is negative) on the
right.
For example, the usual way to show what percentage of a buffer is above the
top of the window is to use a list like this: (-3 "%p").

If you do alter mode-line-format itself, the new value should use the same variables
that appear in the default value (see Section 23.3.2 [Mode Line Variables], page 371), rather
than duplicating their contents or displaying the information in another fashion. This way,
customizations made by the user or by Lisp programs (such as display-time and major
modes) via changes to those variables remain effective.

Here is an example of a mode-line-format that might be useful for shell-mode, since
it contains the host name and default directory.

(setq mode-line-format
(list "-"
’mode-line-mule-info
’mode-line-modified
’mode-line-frame-identification
"%b--"
;; Note that this is evaluated while making the list.
;; It makes a mode line construct which is just a string.
(getenv "HOST")
":"
’default-directory
" "
’global-mode-string
" %[("

Chapter 23: Major and Minor Modes 371

’(:eval (mode-line-mode-name))
’mode-line-process
’minor-mode-alist
"%n"
")%]--"
’(which-func-mode ("" which-func-format "--"))
’(line-number-mode "L%l--")
’(column-number-mode "C%c--")
’(-3 . "%p")
"-%-"))

(The variables line-number-mode, column-number-mode and which-func-mode enable
particular minor modes; as usual, these variable names are also the minor mode command
names.)

23.3.2 Variables Used in the Mode Line

This section describes variables incorporated by the standard value of mode-line-format
into the text of the mode line. There is nothing inherently special about these variables;
any other variables could have the same effects on the mode line if mode-line-format were
changed to use them.

Variablemode-line-mule-info
This variable holds the value of the mode-line construct that displays information
about the language environment, buffer coding system, and current input method.
See Chapter 33 [Non-ASCII Characters], page 583.

Variablemode-line-modified
This variable holds the value of the mode-line construct that displays whether the
current buffer is modified.
The default value of mode-line-modified is ("%1*%1+"). This means that the mode
line displays ‘**’ if the buffer is modified, ‘--’ if the buffer is not modified, ‘%%’ if the
buffer is read only, and ‘%*’ if the buffer is read only and modified.
Changing this variable does not force an update of the mode line.

Variablemode-line-frame-identification
This variable identifies the current frame. The default value is " " if you are using a
window system which can show multiple frames, or "-%F " on an ordinary terminal
which shows only one frame at a time.

Variablemode-line-buffer-identification
This variable identifies the buffer being displayed in the window. Its default value is
("%12b"), which displays the buffer name, padded with spaces to at least 12 columns.

Variableglobal-mode-string
This variable holds a mode line spec that appears in the mode line by default, just
after the buffer name. The command display-time sets global-mode-string to

372 GNU Emacs Lisp Reference Manual

refer to the variable display-time-string, which holds a string containing the time
and load information.

The ‘%M’ construct substitutes the value of global-mode-string, but that is obsolete,
since the variable is included in the mode line from mode-line-format.

Variablemode-name
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
Each major mode should set this variable so that the mode name will appear in the
mode line.

Variableminor-mode-alist
This variable holds an association list whose elements specify how the mode line
should indicate that a minor mode is active. Each element of the minor-mode-alist
should be a two-element list:

(minor-mode-variable mode-line-string)

More generally, mode-line-string can be any mode line spec. It appears in the mode
line when the value of minor-mode-variable is non-nil, and not otherwise. These
strings should begin with spaces so that they don’t run together. Conventionally, the
minor-mode-variable for a specific mode is set to a non-nil value when that minor
mode is activated.

The default value of minor-mode-alist is:
minor-mode-alist
⇒ ((vc-mode vc-mode)

(abbrev-mode " Abbrev")
(overwrite-mode overwrite-mode)
(auto-fill-function " Fill")
(defining-kbd-macro " Def")
(isearch-mode isearch-mode))

minor-mode-alist itself is not buffer-local. Each variable mentioned in the alist
should be buffer-local if its minor mode can be enabled separately in each buffer.

Variablemode-line-process
This buffer-local variable contains the mode line information on process status in
modes used for communicating with subprocesses. It is displayed immediately follow-
ing the major mode name, with no intervening space. For example, its value in the
‘*shell*’ buffer is (":%s"), which allows the shell to display its status along with
the major mode as: ‘(Shell:run)’. Normally this variable is nil.

Some variables are used by minor-mode-alist to display a string for various minor
modes when enabled. This is a typical example:

Variablevc-mode
The variable vc-mode, buffer-local in each buffer, records whether the buffer’s visited
file is maintained with version control, and, if so, which kind. Its value is a string
that appears in the mode line, or nil for no version control.

Chapter 23: Major and Minor Modes 373

The variable default-mode-line-format is where mode-line-format usually gets its
value:

Variabledefault-mode-line-format
This variable holds the default mode-line-format for buffers that do not override it.
This is the same as (default-value ’mode-line-format).
The default value of default-mode-line-format is this list:

("-"
mode-line-mule-info
mode-line-modified
mode-line-frame-identification
mode-line-buffer-identification
" "
global-mode-string
" %[("
;; mode-line-mode-name is a function
;; that copies the mode name and adds text
;; properties to make it mouse-sensitive.
(:eval (mode-line-mode-name))
mode-line-process
minor-mode-alist
"%n"
")%]--"
(which-func-mode ("" which-func-format "--"))
(line-number-mode "L%l--")
(column-number-mode "C%c--")
(-3 . "%p")
"-%-")

23.3.3 %-Constructs in the Mode Line

The following table lists the recognized %-constructs and what they mean. In any con-
struct except ‘%%’, you can add a decimal integer after the ‘%’ to specify how many characters
to display.

%b The current buffer name, obtained with the buffer-name function. See Sec-
tion 27.3 [Buffer Names], page 442.

%c The current column number of point.

%f The visited file name, obtained with the buffer-file-name function. See Sec-
tion 27.4 [Buffer File Name], page 443.

%F The title (only on a window system) or the name of the selected frame. See
Section 29.3.3 [Window Frame Parameters], page 486.

%l The current line number of point, counting within the accessible portion of the
buffer.

%n ‘Narrow’ when narrowing is in effect; nothing otherwise (see narrow-to-region
in Section 30.4 [Narrowing], page 519).

374 GNU Emacs Lisp Reference Manual

%p The percentage of the buffer text above the top of window, or ‘Top’, ‘Bottom’
or ‘All’. Note that the default mode-line specification truncates this to three
characters.

%P The percentage of the buffer text that is above the bottom of the window (which
includes the text visible in the window, as well as the text above the top), plus
‘Top’ if the top of the buffer is visible on screen; or ‘Bottom’ or ‘All’.

%s The status of the subprocess belonging to the current buffer, obtained with
process-status. See Section 37.6 [Process Information], page 648.

%t Whether the visited file is a text file or a binary file. This is a meaningful
distinction only on certain operating systems (see Section 33.10.9 [MS-DOS
File Types], page 598).

%* ‘%’ if the buffer is read only (see buffer-read-only);
‘*’ if the buffer is modified (see buffer-modified-p);
‘-’ otherwise. See Section 27.5 [Buffer Modification], page 445.

%+ ‘*’ if the buffer is modified (see buffer-modified-p);
‘%’ if the buffer is read only (see buffer-read-only);
‘-’ otherwise. This differs from ‘%*’ only for a modified read-only buffer. See
Section 27.5 [Buffer Modification], page 445.

%& ‘*’ if the buffer is modified, and ‘-’ otherwise.

%[An indication of the depth of recursive editing levels (not counting minibuffer
levels): one ‘[’ for each editing level. See Section 21.12 [Recursive Editing],
page 319.

%] One ‘]’ for each recursive editing level (not counting minibuffer levels).

%- Dashes sufficient to fill the remainder of the mode line.

%% The character ‘%’—this is how to include a literal ‘%’ in a string in which %-
constructs are allowed.

The following two %-constructs are still supported, but they are obsolete, since you can
get the same results with the variables mode-name and global-mode-string.

%m The value of mode-name.

%M The value of global-mode-string. Currently, only display-time modifies the
value of global-mode-string.

23.3.4 Properties in the Mode Line

Starting in Emacs 21, certain text properties are meaningful in the mode line. The face
property affects the appearance of text; the help-echo property associate help strings with
the text, and local-map can make the text mouse-sensitive.

There are three ways to specify text properties for text in the mode line:
1. Put a string with the local-map property directly into the mode-line data structure.
2. Put a local-map property on a mode-line %-construct such as ‘%12b’; then the expan-

sion of the %-construct will have that same text property.

Chapter 23: Major and Minor Modes 375

3. Use a list containing :eval form in the mode-line data structure, and make form eval-
uate to a string that has a local-map property.

You use the local-map property to specify a keymap. Like any keymap, it can bind
character keys and function keys; but that has no effect, since it is impossible to move point
into the mode line. This keymap can only take real effect for mouse clicks.

23.3.5 Window Header Lines

Starting in Emacs 21, a window can have a header line at the top, just as it can have
a mode line at the bottom. The header line feature works just like the mode line feature,
except that it’s controlled by different variables.

Variableheader-line-format
This variable, local in every buffer, specifies how to display the header line, for win-
dows displaying the buffer. The format of the value is the same as for mode-line-
format (see Section 23.3.1 [Mode Line Data], page 369).

Variabledefault-header-line-format
This variable holds the default header-line-format for buffers that do not override
it. This is the same as (default-value ’header-line-format).
It is normally nil, so that ordinary buffers have no header line.

23.4 Imenu

Imenu is a feature that lets users select a definition or section in the buffer, from a
menu which lists all of them, to go directly to that location in the buffer. Imenu works by
constructing a buffer index which lists the names and buffer positions of the definitions, or
other named portions of the buffer; then the user can choose one of them and move point
to it. This section explains how to customize how Imenu finds the definitions or buffer
portions for a particular major mode.

The usual and simplest way is to set the variable imenu-generic-expression:

Variableimenu-generic-expression
This variable, if non-nil, specifies regular expressions for finding definitions for Imenu.
In the simplest case, elements should look like this:

(menu-title regexp subexp)

Here, if menu-title is non-nil, it says that the matches for this element should go in
a submenu of the buffer index; menu-title itself specifies the name for the submenu.
If menu-title is nil, the matches for this element go directly in the top level of the
buffer index.
The second item in the list, regexp, is a regular expression (see Section 34.2 [Regular
Expressions], page 602); anything in the buffer that it matches is considered a defi-
nition, something to mention in the buffer index. The third item, subexp, indicates
which subexpression in regexp matches the definition’s name.
An element can also look like this:

376 GNU Emacs Lisp Reference Manual

(menu-title regexp index function arguments...)

Each match for this element creates a special index item which, if selected by the
user, calls function with arguments consisting of the item name, the buffer position,
and arguments.
For Emacs Lisp mode, pattern could look like this:

((nil "^\\s-*(def\\(un\\|subst\\|macro\\|advice\\)\
\\s-+\\([-A-Za-z0-9+]+\\)" 2)
("*Vars*" "^\\s-*(def\\(var\\|const\\)\
\\s-+\\([-A-Za-z0-9+]+\\)" 2)
("*Types*"
"^\\s-*\

(def\\(type\\|struct\\|class\\|ine-condition\\)\
\\s-+\\([-A-Za-z0-9+]+\\)" 2))

Setting this variable makes it buffer-local in the current buffer.

Variableimenu-case-fold-search
This variable controls whether matching against imenu-generic-expression is case-
sensitive: t, the default, means matching should ignore case.
Setting this variable makes it buffer-local in the current buffer.

Variableimenu-syntax-alist
This variable is an alist of syntax table modifiers to use while processing imenu-
generic-expression, to override the syntax table of the current buffer. Each element
should have this form:

(characters . syntax-description)

The car, characters, can be either a character or a string. The element says to
give that character or characters the syntax specified by syntax-description, which
is passed to modify-syntax-entry (see Section 35.3 [Syntax Table Functions],
page 626).
This feature is typically used to give word syntax to characters which normally
have symbol syntax, and thus to simplify imenu-generic-expression and speed
up matching. For example, Fortran mode uses it this way:

(setq imenu-syntax-alist ’(("_$" . "w")))

The imenu-generic-expression patterns can then use ‘\\sw+’ instead of
‘\\(\\sw\\|\\s_\\)+’. Note that this technique may be inconvenient when the
mode needs to limit the initial character of a name to a smaller set of characters
than are allowed in the rest of a name.
Setting this variable makes it buffer-local in the current buffer.

Another way to customize Imenu for a major mode is to set the variables imenu-prev-
index-position-function and imenu-extract-index-name-function:

Variableimenu-prev-index-position-function
If this variable is non-nil, its value should be a function that finds the next “def-
inition” to put in the buffer index, scanning backward in the buffer from point. It

Chapter 23: Major and Minor Modes 377

should return nil if it doesn’t find another “definition” before point. Otherwise it
shuould leave point at the place it finds a “definition,” and return any non-nil value.

Setting this variable makes it buffer-local in the current buffer.

Variableimenu-extract-index-name-function
If this variable is non-nil, its value should be a function to return the name for a
definition, assuming point is in that definition as the imenu-prev-index-position-
function function would leave it.

Setting this variable makes it buffer-local in the current buffer.

The last way to customize Imenu for a major mode is to set the variable imenu-create-
index-function:

Variableimenu-create-index-function
This variable specifies the function to use for creating a buffer index. The function
should take no arguments, and return an index for the current buffer. It is called
within save-excursion, so where it leaves point makes no difference.

The default value is a function that uses imenu-generic-expression to produce the
index alist. If you specify a different function, then imenu-generic-expression is
not used.

Setting this variable makes it buffer-local in the current buffer.

Variableimenu-index-alist
This variable holds the index alist for the current buffer. Setting it makes it buffer-
local in the current buffer.

Simple elements in the alist look like (index-name . index-position). Selecting a
simple element has the effect of moving to position index-position in the buffer.

Special elements look like (index-name position function arguments...). Selecting
a special element performs

(funcall function index-name position arguments...)

A nested sub-alist element looks like (index-name sub-alist).

23.5 Font Lock Mode

Font Lock mode is a feature that automatically attaches face properties to certain parts
of the buffer based on their syntactic role. How it parses the buffer depends on the major
mode; most major modes define syntactic criteria for which faces to use in which contexts.
This section explains how to customize Font Lock for a particular major mode.

Font Lock mode finds text to highlight in two ways: through syntactic parsing based
on the syntax table, and through searching (usually for regular expressions). Syntactic
fontification happens first; it finds comments and string constants, and highlights them
using font-lock-comment-face and font-lock-string-face (see Section 23.5.5 [Faces
for Font Lock], page 381). Search-based fontification follows.

378 GNU Emacs Lisp Reference Manual

23.5.1 Font Lock Basics

There are several variables that control how Font Lock mode highlights text. But major
modes should not set any of these variables directly. Instead, they should set font-lock-
defaults as a buffer-local variable. The value assigned to this variable is used, if and when
Font Lock mode is enabled, to set all the other variables.

Variablefont-lock-defaults
This variable is set by major modes, as a buffer-local variable, to specify how to
fontify text in that mode. The value should look like this:

(keywords keywords-only case-fold
syntax-alist syntax-begin other-vars...)

The first element, keywords, indirectly specifies the value of font-lock-keywords. It
can be a symbol, a variable whose value is the list to use for font-lock-keywords. It
can also be a list of several such symbols, one for each possible level of fontification.
The first symbol specifies how to do level 1 fontification, the second symbol how to
do level 2, and so on.
The second element, keywords-only, specifies the value of the variable font-lock-
keywords-only. If this is non-nil, syntactic fontification (of strings and comments)
is not performed.
The third element, case-fold, specifies the value of font-lock-case-fold-search. If
it is non-nil, Font Lock mode ignores case when searching as directed by font-lock-
keywords.
If the fourth element, syntax-alist, is non-nil, it should be a list of cons cells of the
form (char-or-string . string). These are used to set up a syntax table for fontifi-
cation (see Section 35.3 [Syntax Table Functions], page 626). The resulting syntax
table is stored in font-lock-syntax-table.
The fifth element, syntax-begin, specifies the value of font-lock-beginning-of-
syntax-function (see below).
All the remaining elements (if any) are collectively called other-vars. Each of these el-
ements should have the form (variable . value)—which means, make variable buffer-
local and then set it to value. You can use these other-vars to set other variables that
affect fontification, aside from those you can control with the first five elements.

23.5.2 Search-based Fontification

The most important variable for customizing Font Lock mode is font-lock-keywords.
It specifies the search criteria for search-based fontification.

Variablefont-lock-keywords
This variable’s value is a list of the keywords to highlight. Be careful when composing
regular expressions for this list; a poorly written pattern can dramatically slow things
down!

Each element of font-lock-keywords specifies how to find certain cases of text, and how
to highlight those cases. Font Lock mode processes the elements of font-lock-keywords

Chapter 23: Major and Minor Modes 379

one by one, and for each element, it finds and handles all matches. Ordinarily, once part
of the text has been fontified already, this cannot be overridden by a subsequent match
in the same text; but you can specify different behavior using the override element of a
highlighter.

Each element of font-lock-keywords should have one of these forms:

regexp Highlight all matches for regexp using font-lock-keyword-face. For example,
;; Highlight discrete occurrences of ‘foo’
;; using font-lock-keyword-face.
"\\<foo\\>"

The function regexp-opt (see Section 34.2.1 [Syntax of Regexps], page 603) is
useful for calculating optimal regular expressions to match a number of different
keywords.

function Find text by calling function, and highlight the matches it finds using font-
lock-keyword-face.
When function is called, it receives one argument, the limit of the search. It
should return non-nil if it succeeds, and set the match data to describe the
match that was found.

(matcher . match)
In this kind of element, matcher is either a regular expression or a function,
as described above. The cdr, match, specifies which subexpression of matcher
should be highlighted (instead of the entire text that matcher matched).

;; Highlight the ‘bar’ in each occurrence of ‘fubar’,
;; using font-lock-keyword-face.
("fu\\(bar\\)" . 1)

If you use regexp-opt to produce the regular expression matcher, then you can
use regexp-opt-depth (see Section 34.2.1 [Syntax of Regexps], page 603) to
calculate the value for match.

(matcher . facename)
In this kind of element, facename is an expression whose value specifies the face
name to use for highlighting.

;; Highlight occurrences of ‘fubar’,
;; using the face which is the value of fubar-face.
("fubar" . fubar-face)

(matcher . highlighter)
In this kind of element, highlighter is a list which specifies how to highlight
matches found by matcher. It has the form

(subexp facename override laxmatch)

The car, subexp, is an integer specifying which subexpression of the match to
fontify (0 means the entire matching text). The second subelement, facename,
specifies the face, as described above.
The last two values in highlighter, override and laxmatch, are flags. If override
is t, this element can override existing fontification made by previous elements
of font-lock-keywords. If it is keep, then each character is fontified if it has

380 GNU Emacs Lisp Reference Manual

not been fontified already by some other element. If it is prepend, the face
facename is added to the beginning of the face property. If it is append, the
face facename is added to the end of the face property.

If laxmatch is non-nil, it means there should be no error if there is no subexpres-
sion numbered subexp in matcher. Obviously, fontification of the subexpression
numbered subexp will not occur. However, fontification of other subexpressions
(and other regexps) will continue. If laxmatch is nil, and the specified subex-
pression is missing, then an error is signalled which terminates search-based
fontification.

Here are some examples of elements of this kind, and what they do:
;; Highlight occurrences of either ‘foo’ or ‘bar’,
;; using foo-bar-face, even if they have already been highlighted.
;; foo-bar-face should be a variable whose value is a face.
("foo\\|bar" 0 foo-bar-face t)

;; Highlight the first subexpression within each occurrence
;; that the function fubar-match finds,
;; using the face which is the value of fubar-face.
(fubar-match 1 fubar-face)

(matcher highlighters...)
This sort of element specifies several highlighter lists for a single matcher. In
order for this to be useful, each highlighter should have a different value of
subexp; that is, each one should apply to a different subexpression of matcher.

(eval . form)
Here form is an expression to be evaluated the first time this value of font-
lock-keywords is used in a buffer. Its value should have one of the forms
described in this table.

Warning: Do not design an element of font-lock-keywords to match text which spans
lines; this does not work reliably. While font-lock-fontify-buffer handles multi-line
patterns correctly, updating when you edit the buffer does not, since it considers text one
line at a time.

23.5.3 Other Font Lock Variables

This section describes additional variables that a major mode can set by means of font-
lock-defaults.

Variablefont-lock-keywords-only
Non-nil means Font Lock should not fontify comments or strings syntactically; it
should only fontify based on font-lock-keywords.

Variablefont-lock-keywords-case-fold-search
Non-nil means that regular expression matching for the sake of font-lock-keywords
should be case-insensitive.

Chapter 23: Major and Minor Modes 381

Variablefont-lock-syntax-table
This variable specifies the syntax table to use for fontification of comments and strings.

Variablefont-lock-beginning-of-syntax-function
If this variable is non-nil, it should be a function to move point back to a position
that is syntactically at “top level” and outside of strings or comments. Font Lock
uses this when necessary to get the right results for syntactic fontification.
This function is called with no arguments. It should leave point at the beginning
of any enclosing syntactic block. Typical values are beginning-of-line (i.e., the
start of the line is known to be outside a syntactic block), or beginning-of-defun
for programming modes or backward-paragraph for textual modes (i.e., the mode-
dependent function is known to move outside a syntactic block).
If the value is nil, the beginning of the buffer is used as a position outside of a
syntactic block. This cannot be wrong, but it can be slow.

Variablefont-lock-mark-block-function
If this variable is non-nil, it should be a function that is called with no arguments,
to choose an enclosing range of text for refontification for the command M-g M-g

(font-lock-fontify-block).
The function should report its choice by placing the region around it. A good choice
is a range of text large enough to give proper results, but not too large so that
refontification becomes slow. Typical values are mark-defun for programming modes
or mark-paragraph for textual modes.

23.5.4 Levels of Font Lock

Many major modes offer three different levels of fontification. You can define multiple
levels by using a list of symbols for keywords in font-lock-defaults. Each symbol specifies
one level of fontification; it is up to the user to choose one of these levels. The chosen level’s
symbol value is used to initialize font-lock-keywords.

Here are the conventions for how to define the levels of fontification:
• Level 1: highlight function declarations, file directives (such as include or import di-

rectives), strings and comments. The idea is speed, so only the most important and
top-level components are fontified.

• Level 2: in addition to level 1, highlight all language keywords, including type names
that act like keywords, as well as named constant values. The idea is that all keywords
(either syntactic or semantic) should be fontified appropriately.

• Level 3: in addition to level 2, highlight the symbols being defined in function and
variable declarations, and all builtin function names, wherever they appear.

23.5.5 Faces for Font Lock

You can make Font Lock mode use any face, but several faces are defined specifically
for Font Lock mode. Each of these symbols is both a face name, and a variable whose
default value is the symbol itself. Thus, the default value of font-lock-comment-face
is font-lock-comment-face. This means you can write font-lock-comment-face in a
context such as font-lock-keywords where a face-name-valued expression is used.

382 GNU Emacs Lisp Reference Manual

font-lock-comment-face
Used (typically) for comments.

font-lock-string-face
Used (typically) for string constants.

font-lock-keyword-face
Used (typically) for keywords—names that have special syntactic significance,
like for and if in C.

font-lock-builtin-face
Used (typically) for built-in function names.

font-lock-function-name-face
Used (typically) for the name of a function being defined or declared, in a
function definition or declaration.

font-lock-variable-name-face
Used (typically) for the name of a variable being defined or declared, in a
variable definition or declaration.

font-lock-type-face
Used (typically) for names of user-defined data types, where they are defined
and where they are used.

font-lock-constant-face
Used (typically) for constant names.

font-lock-warning-face
Used (typically) for constructs that are peculiar, or that greatly change the
meaning of other text. For example, this is used for ‘;;;###autoload’ cookies
in Emacs Lisp, and for #error directives in C.

23.5.6 Syntactic Font Lock

Font Lock mode can be used to update syntax-table properties automatically. This is
useful in languages for which a single syntax table by itself is not sufficient.

Variablefont-lock-syntactic-keywords
This variable enables and controls syntactic Font Lock. Its value should be a list of
elements of this form:

(matcher subexp syntax override laxmatch)

The parts of this element have the same meanings as in the corresponding sort of
element of font-lock-keywords,

(matcher subexp facename override laxmatch)

However, instead of specifying the value facename to use for the face property, it
specifies the value syntax to use for the syntax-table property. Here, syntax can
be a variable whose value is a syntax table, a syntax entry of the form (syntax-code
. matching-char), or an expression whose value is one of those two types.

Chapter 23: Major and Minor Modes 383

23.6 Hooks

A hook is a variable where you can store a function or functions to be called on a partic-
ular occasion by an existing program. Emacs provides hooks for the sake of customization.
Most often, hooks are set up in the init file (see Section 40.1.2 [Init File], page 722), but
Lisp programs can set them also. See Appendix I [Standard Hooks], page 809, for a list of
standard hook variables.

Most of the hooks in Emacs are normal hooks. These variables contain lists of functions
to be called with no arguments. When the hook name ends in ‘-hook’, that tells you it is
normal. We try to make all hooks normal, as much as possible, so that you can use them
in a uniform way.

Every major mode function is supposed to run a normal hook called the mode hook as
the last step of initialization. This makes it easy for a user to customize the behavior of
the mode, by overriding the buffer-local variable assignments already made by the mode.
But hooks are used in other contexts too. For example, the hook suspend-hook runs just
before Emacs suspends itself (see Section 40.2.2 [Suspending Emacs], page 726).

The recommended way to add a hook function to a normal hook is by calling add-hook
(see below). The hook functions may be any of the valid kinds of functions that funcall
accepts (see Section 12.1 [What Is a Function], page 155). Most normal hook variables are
initially void; add-hook knows how to deal with this.

If the hook variable’s name does not end with ‘-hook’, that indicates it is probably an
abnormal hook. Then you should look at its documentation to see how to use the hook
properly.

If the variable’s name ends in ‘-functions’ or ‘-hooks’, then the value is a list of
functions, but it is abnormal in that either these functions are called with arguments or
their values are used in some way. You can use add-hook to add a function to the list, but
you must take care in writing the function. (A few of these variables are actually normal
hooks which were named before we established the convention of using ‘-hook’ for them.)

If the variable’s name ends in ‘-function’, then its value is just a single function, not a
list of functions.

Here’s an example that uses a mode hook to turn on Auto Fill mode when in Lisp
Interaction mode:

(add-hook ’lisp-interaction-mode-hook ’turn-on-auto-fill)

At the appropriate time, Emacs uses the run-hooks function to run particular hooks.
This function calls the hook functions that have been added with add-hook.

Functionrun-hooks &rest hookvars
This function takes one or more hook variable names as arguments, and runs each
hook in turn. Each argument should be a symbol that is a hook variable. These
arguments are processed in the order specified.
If a hook variable has a non-nil value, that value may be a function or a list of
functions. If the value is a function (either a lambda expression or a symbol with a
function definition), it is called. If it is a list, the elements are called, in order. The
hook functions are called with no arguments. Nowadays, storing a single function in
the hook variable is semi-obsolete; you should always use a list of functions.

384 GNU Emacs Lisp Reference Manual

For example, here’s how emacs-lisp-mode runs its mode hook:
(run-hooks ’emacs-lisp-mode-hook)

Functionrun-hook-with-args hook &rest args
This function is the way to run an abnormal hook which passes arguments to the hook
functions. It calls each of the hook functions, passing each of them the arguments
args.

Functionrun-hook-with-args-until-failure hook &rest args
This function is the way to run an abnormal hook which passes arguments to the
hook functions, and stops as soon as any hook function fails. It calls each of the hook
functions, passing each of them the arguments args, until some hook function returns
nil. Then it stops, and returns nil if some hook function returned nil. Otherwise
it returns a non-nil value.

Functionrun-hook-with-args-until-success hook &rest args
This function is the way to run an abnormal hook which passes arguments to the
hook functions, and stops as soon as any hook function succeeds. It calls each of the
hook functions, passing each of them the arguments args, until some hook function
returns non-nil. Then it stops, and returns whatever was returned by the last hook
function that was called.

Functionadd-hook hook function &optional append local
This function is the handy way to add function function to hook variable hook.
The argument function may be any valid Lisp function with the proper number of
arguments. For example,

(add-hook ’text-mode-hook ’my-text-hook-function)

adds my-text-hook-function to the hook called text-mode-hook.

You can use add-hook for abnormal hooks as well as for normal hooks.

It is best to design your hook functions so that the order in which they are executed
does not matter. Any dependence on the order is “asking for trouble.” However, the
order is predictable: normally, function goes at the front of the hook list, so it will be
executed first (barring another add-hook call). If the optional argument append is
non-nil, the new hook function goes at the end of the hook list and will be executed
last.

If local is non-nil, that says to make the new hook function buffer-local in the current
buffer and automatically calls make-local-hook to make the hook itself buffer-local.

Functionremove-hook hook function &optional local
This function removes function from the hook variable hook.

If local is non-nil, that says to remove function from the buffer-local hook list instead
of from the global hook list. If the hook variable itself is not buffer-local, then the
value of local makes no difference.

Chapter 23: Major and Minor Modes 385

Functionmake-local-hook hook
This function makes the hook variable hook buffer-local in the current buffer. When
a hook variable is buffer-local, it can have buffer-local and global hook functions, and
run-hooks runs all of them.
This function works by adding t as an element of the buffer-local value. That serves
as a flag to use the hook functions listed in the default value of the hook variable, as
well as those listed in the buffer-local value. Since run-hooks understands this flag,
make-local-hook works with all normal hooks. It works for only some non-normal
hooks—those whose callers have been updated to understand this meaning of t.
Do not use make-local-variable directly for hook variables; it is not sufficient.

386 GNU Emacs Lisp Reference Manual

Chapter 24: Documentation 387

24 Documentation

GNU Emacs Lisp has convenient on-line help facilities, most of which derive their in-
formation from the documentation strings associated with functions and variables. This
chapter describes how to write good documentation strings for your Lisp programs, as well
as how to write programs to access documentation.

Note that the documentation strings for Emacs are not the same thing as the Emacs
manual. Manuals have their own source files, written in the Texinfo language; documenta-
tion strings are specified in the definitions of the functions and variables they apply to. A
collection of documentation strings is not sufficient as a manual because a good manual is
not organized in that fashion; it is organized in terms of topics of discussion.

24.1 Documentation Basics

A documentation string is written using the Lisp syntax for strings, with double-quote
characters surrounding the text of the string. This is because it really is a Lisp string object.
The string serves as documentation when it is written in the proper place in the definition
of a function or variable. In a function definition, the documentation string follows the
argument list. In a variable definition, the documentation string follows the initial value of
the variable.

When you write a documentation string, make the first line a complete sentence (or two
complete sentences) since some commands, such as apropos, show only the first line of a
multi-line documentation string. Also, you should not indent the second line of a documen-
tation string, if it has one, because that looks odd when you use C-h f (describe-function)
or C-h v (describe-variable) to view the documentation string. See Section D.3 [Docu-
mentation Tips], page 770.

Documentation strings can contain several special substrings, which stand for key bind-
ings to be looked up in the current keymaps when the documentation is displayed. This
allows documentation strings to refer to the keys for related commands and be accurate
even when a user rearranges the key bindings. (See Section 24.2 [Accessing Documentation],
page 388.)

In Emacs Lisp, a documentation string is accessible through the function or variable
that it describes:

• The documentation for a function is stored in the function definition itself (see Sec-
tion 12.2 [Lambda Expressions], page 156). The function documentation knows how
to extract it.

• The documentation for a variable is stored in the variable’s property list under the
property name variable-documentation. The function documentation-property
knows how to retrieve it.

To save space, the documentation for preloaded functions and variables (including primi-
tive functions and autoloaded functions) is stored in the file ‘emacs/etc/DOC-version’—not
inside Emacs. The documentation strings for functions and variables loaded during the
Emacs session from byte-compiled files are stored in those files (see Section 16.3 [Docs and
Compilation], page 208).

388 GNU Emacs Lisp Reference Manual

The data structure inside Emacs has an integer offset into the file, or a list contain-
ing a file name and an integer, in place of the documentation string. The functions
documentation and documentation-property use that information to fetch the documen-
tation string from the appropriate file; this is transparent to the user.

For information on the uses of documentation strings, see section “Help” in The GNU
Emacs Manual.

The ‘emacs/lib-src’ directory contains two utilities that you can use to print
nice-looking hardcopy for the file ‘emacs/etc/DOC-version’. These are ‘sorted-doc’ and
‘digest-doc’.

24.2 Access to Documentation Strings

Functiondocumentation-property symbol property &optional verbatim
This function returns the documentation string that is recorded in symbol’s property
list under property property. It retrieves the text from a file if the value calls for that.
If the property value isn’t nil, isn’t a string, and doesn’t refer to text in a file, then
it is evaluated to obtain a string.

Finally, documentation-property passes the string through substitute-command-
keys to substitute actual key bindings, unless verbatim is non-nil.

(documentation-property ’command-line-processed
’variable-documentation)
⇒ "Non-nil once command line has been processed"

(symbol-plist ’command-line-processed)
⇒ (variable-documentation 188902)

Functiondocumentation function &optional verbatim
This function returns the documentation string of function.

If function is a symbol, this function first looks for the function-documentation
property of that symbol; if that has a non-nil value, the documentation comes from
that value (if the value is not a string, it is evaluated). If function is not a symbol,
or if it has no function-documentation property, then documentation extracts the
documentation string from the actual function definition, reading it from a file if
called for.

Finally, unless verbatim is non-nil, it calls substitute-command-keys so as to return
a value containing the actual (current) key bindings.

The function documentation signals a void-function error if function has no func-
tion definition. However, it is OK if the function definition has no documentation
string. In that case, documentation returns nil.

Here is an example of using the two functions, documentation and documentation-
property, to display the documentation strings for several symbols in a ‘*Help*’ buffer.

Chapter 24: Documentation 389

(defun describe-symbols (pattern)
"Describe the Emacs Lisp symbols matching PATTERN.

All symbols that have PATTERN in their name are described
in the ‘*Help*’ buffer."
(interactive "sDescribe symbols matching: ")
(let ((describe-func

(function
(lambda (s)
;; Print description of symbol.
(if (fboundp s) ; It is a function.

(princ
(format "%s\t%s\n%s\n\n" s
(if (commandp s)

(let ((keys (where-is-internal s)))
(if keys

(concat
"Keys: "
(mapconcat ’key-description

keys " "))
"Keys: none"))

"Function")
(or (documentation s)

"not documented"))))

(if (boundp s) ; It is a variable.
(princ
(format "%s\t%s\n%s\n\n" s
(if (user-variable-p s)

"Option " "Variable")
(or (documentation-property

s ’variable-documentation)
"not documented")))))))

sym-list)

;; Build a list of symbols that match pattern.
(mapatoms (function

(lambda (sym)
(if (string-match pattern (symbol-name sym))

(setq sym-list (cons sym sym-list))))))

;; Display the data.
(with-output-to-temp-buffer "*Help*"
(mapcar describe-func (sort sym-list ’string<))
(print-help-return-message))))

The describe-symbols function works like apropos, but provides more information.
(describe-symbols "goal")

---------- Buffer: *Help* ----------
goal-column Option
*Semipermanent goal column for vertical motion, as set by ...

390 GNU Emacs Lisp Reference Manual

set-goal-column Keys: C-x C-n
Set the current horizontal position as a goal for C-n and C-p.
Those commands will move to this position in the line moved to
rather than trying to keep the same horizontal position.
With a non-nil argument, clears out the goal column
so that C-n and C-p resume vertical motion.
The goal column is stored in the variable ‘goal-column’.

temporary-goal-column Variable
Current goal column for vertical motion.
It is the column where point was
at the start of current run of vertical motion commands.
When the ‘track-eol’ feature is doing its job, the value is 9999.
---------- Buffer: *Help* ----------

The asterisk ‘*’ as the first character of a variable’s doc string, as shown above for the
goal-column variable, means that it is a user option; see the description of defvar in
Section 11.5 [Defining Variables], page 137.

FunctionSnarf-documentation filename
This function is used only during Emacs initialization, just before the runnable Emacs
is dumped. It finds the file offsets of the documentation strings stored in the file
filename, and records them in the in-core function definitions and variable property
lists in place of the actual strings. See Section E.1 [Building Emacs], page 777.

Emacs reads the file filename from the ‘emacs/etc’ directory. When the
dumped Emacs is later executed, the same file will be looked for in the directory
doc-directory. Usually filename is "DOC-version".

Variabledoc-directory
This variable holds the name of the directory which should contain the file "DOC-
version" that contains documentation strings for built-in and preloaded functions
and variables.

In most cases, this is the same as data-directory. They may be different when you
run Emacs from the directory where you built it, without actually installing it. See
data-directory in Section 24.5 [Help Functions], page 393.

In older Emacs versions, exec-directory was used for this.

24.3 Substituting Key Bindings in Documentation

When documentation strings refer to key sequences, they should use the current, actual
key bindings. They can do so using certain special text sequences described below. Access-
ing documentation strings in the usual way substitutes current key binding information for
these special sequences. This works by calling substitute-command-keys. You can also
call that function yourself.

Here is a list of the special sequences and what they mean:

Chapter 24: Documentation 391

\[command]
stands for a key sequence that will invoke command, or ‘M-x command’ if com-
mand has no key bindings.

\{mapvar}
stands for a summary of the keymap which is the value of the variable mapvar.
The summary is made using describe-bindings.

\<mapvar>
stands for no text itself. It is used only for a side effect: it specifies map-
var’s value as the keymap for any following ‘\[command]’ sequences in this
documentation string.

\= quotes the following character and is discarded; thus, ‘\=\[’ puts ‘\[’ into the
output, and ‘\=\=’ puts ‘\=’ into the output.

Please note: Each ‘\’ must be doubled when written in a string in Emacs Lisp.

Functionsubstitute-command-keys string
This function scans string for the above special sequences and replaces them by what
they stand for, returning the result as a string. This permits display of documentation
that refers accurately to the user’s own customized key bindings.

Here are examples of the special sequences:
(substitute-command-keys

"To abort recursive edit, type: \\[abort-recursive-edit]")
⇒ "To abort recursive edit, type: C-]"

(substitute-command-keys
"The keys that are defined for the minibuffer here are:
\\{minibuffer-local-must-match-map}")

⇒ "The keys that are defined for the minibuffer here are:

? minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete
C-j minibuffer-complete-and-exit
RET minibuffer-complete-and-exit
C-g abort-recursive-edit
"

(substitute-command-keys
"To abort a recursive edit from the minibuffer, type\

\\<minibuffer-local-must-match-map>\\[abort-recursive-edit].")
⇒ "To abort a recursive edit from the minibuffer, type C-g."

24.4 Describing Characters for Help Messages

These functions convert events, key sequences, or characters to textual descriptions.
These descriptions are useful for including arbitrary text characters or key sequences in
messages, because they convert non-printing and whitespace characters to sequences of

392 GNU Emacs Lisp Reference Manual

printing characters. The description of a non-whitespace printing character is the character
itself.

Functionkey-description sequence
This function returns a string containing the Emacs standard notation for the input
events in sequence. The argument sequence may be a string, vector or list. See
Section 21.6 [Input Events], page 297, for more information about valid events. See
also the examples for single-key-description, below.

Functionsingle-key-description event &optional no-angles
This function returns a string describing event in the standard Emacs notation for
keyboard input. A normal printing character appears as itself, but a control character
turns into a string starting with ‘C-’, a meta character turns into a string starting
with ‘M-’, and space, tab, etc. appear as ‘SPC’, ‘TAB’, etc. A function key symbol
appears inside angle brackets ‘<...>’. An event that is a list appears as the name of
the symbol in the car of the list, inside angle brackets.
If the optional argument no-angles is non-nil, the angle brackets around function
keys and event symbols are omitted; this is for compatibility with old versions of
Emacs which didn’t use the brackets.

(single-key-description ?\C-x)
⇒ "C-x"

(key-description "\C-x \M-y \n \t \r \f123")
⇒ "C-x SPC M-y SPC C-j SPC TAB SPC RET SPC C-l 1 2 3"

(single-key-description ’delete)
⇒ "<delete>"

(single-key-description ’C-mouse-1)
⇒ "<C-mouse-1>"

(single-key-description ’C-mouse-1 t)
⇒ "C-mouse-1"

Functiontext-char-description character
This function returns a string describing character in the standard Emacs notation for
characters that appear in text—like single-key-description, except that control
characters are represented with a leading caret (which is how control characters in
Emacs buffers are usually displayed).

(text-char-description ?\C-c)
⇒ "^C"

(text-char-description ?\M-m)
⇒ "M-m"

(text-char-description ?\C-\M-m)
⇒ "M-^M"

Functionread-kbd-macro string
This function is used mainly for operating on keyboard macros, but it can also be
used as a rough inverse for key-description. You call it with a string containing
key descriptions, separated by spaces; it returns a string or vector containing the

Chapter 24: Documentation 393

corresponding events. (This may or may not be a single valid key sequence, depending
on what events you use; see Section 22.1 [Keymap Terminology], page 325.)

24.5 Help Functions

Emacs provides a variety of on-line help functions, all accessible to the user as subcom-
mands of the prefix C-h. For more information about them, see section “Help” in The GNU
Emacs Manual. Here we describe some program-level interfaces to the same information.

Commandapropos regexp &optional do-all
This function finds all symbols whose names contain a match for the regular ex-
pression regexp, and returns a list of them (see Section 34.2 [Regular Expressions],
page 602). It also displays the symbols in a buffer named ‘*Help*’, each with a
one-line description taken from the beginning of its documentation string.
If do-all is non-nil, then apropos also shows key bindings for the functions that are
found; it also shows all symbols, even those that are neither functions nor variables.
In the first of the following examples, apropos finds all the symbols with names
containing ‘exec’. (We don’t show here the output that results in the ‘*Help*’ buffer.)

(apropos "exec")
⇒ (Buffer-menu-execute command-execute exec-directory

exec-path execute-extended-command execute-kbd-macro
executing-kbd-macro executing-macro)

Variablehelp-map
The value of this variable is a local keymap for characters following the Help key, C-h.

Prefix Commandhelp-command
This symbol is not a function; its function definition cell holds the keymap known as
help-map. It is defined in ‘help.el’ as follows:

(define-key global-map "\C-h" ’help-command)
(fset ’help-command help-map)

Functionprint-help-return-message &optional function
This function builds a string that explains how to restore the previous state of the
windows after a help command. After building the message, it applies function to it
if function is non-nil. Otherwise it calls message to display it in the echo area.
This function expects to be called inside a with-output-to-temp-buffer special
form, and expects standard-output to have the value bound by that special form. For
an example of its use, see the long example in Section 24.2 [Accessing Documentation],
page 388.

Variablehelp-char
The value of this variable is the help character—the character that Emacs recognizes
as meaning Help. By default, its value is 8, which stands for C-h. When Emacs reads
this character, if help-form is a non-nil Lisp expression, it evaluates that expression,
and displays the result in a window if it is a string.

394 GNU Emacs Lisp Reference Manual

Usually the value of help-form is nil. Then the help character has no special meaning
at the level of command input, and it becomes part of a key sequence in the normal
way. The standard key binding of C-h is a prefix key for several general-purpose help
features.
The help character is special after prefix keys, too. If it has no binding as a subcom-
mand of the prefix key, it runs describe-prefix-bindings, which displays a list of
all the subcommands of the prefix key.

Variablehelp-event-list
The value of this variable is a list of event types that serve as alternative “help
characters.” These events are handled just like the event specified by help-char.

Variablehelp-form
If this variable is non-nil, its value is a form to evaluate whenever the character
help-char is read. If evaluating the form produces a string, that string is displayed.
A command that calls read-event or read-char probably should bind help-form
to a non-nil expression while it does input. (The time when you should not do this
is when C-h has some other meaning.) Evaluating this expression should result in a
string that explains what the input is for and how to enter it properly.
Entry to the minibuffer binds this variable to the value of minibuffer-help-form
(see Section 20.9 [Minibuffer Misc], page 284).

Variableprefix-help-command
This variable holds a function to print help for a prefix key. The function is called
when the user types a prefix key followed by the help character, and the help character
has no binding after that prefix. The variable’s default value is describe-prefix-
bindings.

Functiondescribe-prefix-bindings
This function calls describe-bindings to display a list of all the subcommands of
the prefix key of the most recent key sequence. The prefix described consists of all
but the last event of that key sequence. (The last event is, presumably, the help
character.)

The following two functions are meant for modes that want to provide help without
relinquishing control, such as the “electric” modes. Their names begin with ‘Helper’ to
distinguish them from the ordinary help functions.

CommandHelper-describe-bindings
This command pops up a window displaying a help buffer containing a listing of all
of the key bindings from both the local and global keymaps. It works by calling
describe-bindings.

CommandHelper-help
This command provides help for the current mode. It prompts the user in the mini-
buffer with the message ‘Help (Type ? for further options)’, and then provides

Chapter 24: Documentation 395

assistance in finding out what the key bindings are, and what the mode is intended
for. It returns nil.
This can be customized by changing the map Helper-help-map.

Variabledata-directory
This variable holds the name of the directory in which Emacs finds certain documen-
tation and text files that come with Emacs. In older Emacs versions, exec-directory
was used for this.

Macromake-help-screen fname help-line help-text help-map
This macro defines a help command named fname that acts like a prefix key that
shows a list of the subcommands it offers.
When invoked, fname displays help-text in a window, then reads and executes a key
sequence according to help-map. The string help-text should describe the bindings
available in help-map.
The command fname is defined to handle a few events itself, by scrolling the display
of help-text. When fname reads one of those special events, it does the scrolling and
then reads another event. When it reads an event that is not one of those few, and
which has a binding in help-map, it executes that key’s binding and then returns.
The argument help-line should be a single-line summary of the alternatives in help-
map. In the current version of Emacs, this argument is used only if you set the option
three-step-help to t.
This macro is used in the command help-for-help which is the binding of C-h C-h.

User Optionthree-step-help
If this variable is non-nil, commands defined with make-help-screen display their
help-line strings in the echo area at first, and display the longer help-text strings only
if the user types the help character again.

396 GNU Emacs Lisp Reference Manual

Chapter 25: Files 397

25 Files

In Emacs, you can find, create, view, save, and otherwise work with files and file direc-
tories. This chapter describes most of the file-related functions of Emacs Lisp, but a few
others are described in Chapter 27 [Buffers], page 439, and those related to backups and
auto-saving are described in Chapter 26 [Backups and Auto-Saving], page 429.

Many of the file functions take one or more arguments that are file names. A file name
is actually a string. Most of these functions expand file name arguments by calling expand-
file-name, so that ‘~’ is handled correctly, as are relative file names (including ‘../’).
These functions don’t recognize environment variable substitutions such as ‘$HOME’. See
Section 25.8.4 [File Name Expansion], page 417.

When file I/O functions signal Lisp errors, they usually use the condition file-error
(see Section 10.5.3.3 [Handling Errors], page 127). The error message is in most cases
obtained from the operating system, according to locale system-message-locale, and de-
coded using coding system locale-coding-system (see Section 33.12 [Locales], page 600).

25.1 Visiting Files

Visiting a file means reading a file into a buffer. Once this is done, we say that the buffer
is visiting that file, and call the file “the visited file” of the buffer.

A file and a buffer are two different things. A file is information recorded permanently
in the computer (unless you delete it). A buffer, on the other hand, is information inside
of Emacs that will vanish at the end of the editing session (or when you kill the buffer).
Usually, a buffer contains information that you have copied from a file; then we say the buffer
is visiting that file. The copy in the buffer is what you modify with editing commands. Such
changes to the buffer do not change the file; therefore, to make the changes permanent, you
must save the buffer, which means copying the altered buffer contents back into the file.

In spite of the distinction between files and buffers, people often refer to a file when
they mean a buffer and vice-versa. Indeed, we say, “I am editing a file,” rather than, “I am
editing a buffer that I will soon save as a file of the same name.” Humans do not usually
need to make the distinction explicit. When dealing with a computer program, however, it
is good to keep the distinction in mind.

25.1.1 Functions for Visiting Files

This section describes the functions normally used to visit files. For historical reasons,
these functions have names starting with ‘find-’ rather than ‘visit-’. See Section 27.4
[Buffer File Name], page 443, for functions and variables that access the visited file name
of a buffer or that find an existing buffer by its visited file name.

In a Lisp program, if you want to look at the contents of a file but not alter it, the
fastest way is to use insert-file-contents in a temporary buffer. Visiting the file is not
necessary and takes longer. See Section 25.3 [Reading from Files], page 403.

Commandfind-file filename &optional wildcards
This command selects a buffer visiting the file filename, using an existing buffer if
there is one, and otherwise creating a new buffer and reading the file into it. It also
returns that buffer.

398 GNU Emacs Lisp Reference Manual

The body of the find-file function is very simple and looks like this:
(switch-to-buffer (find-file-noselect filename))

(See switch-to-buffer in Section 28.7 [Displaying Buffers], page 461.)

If wildcards is non-nil, which is always true in an interactive call, then find-file
expands wildcard characters in filename and visits all the matching files.

When find-file is called interactively, it prompts for filename in the minibuffer.

Functionfind-file-noselect filename &optional nowarn rawfile wildcards
This function is the guts of all the file-visiting functions. It finds or creates a buffer
visiting the file filename, and returns it. It uses an existing buffer if there is one, and
otherwise creates a new buffer and reads the file into it. You may make the buffer
current or display it in a window if you wish, but this function does not do so.

If wildcards is non-nil, then find-file-noselect expands wildcard characters in
filename and visits all the matching files.

When find-file-noselect uses an existing buffer, it first verifies that the file has
not changed since it was last visited or saved in that buffer. If the file has changed,
then this function asks the user whether to reread the changed file. If the user says
‘yes’, any changes previously made in the buffer are lost.

This function displays warning or advisory messages in various peculiar cases, unless
the optional argument nowarn is non-nil. For example, if it needs to create a buffer,
and there is no file named filename, it displays the message ‘(New file)’ in the echo
area, and leaves the buffer empty.

The find-file-noselect function normally calls after-find-file after reading the
file (see Section 25.1.2 [Subroutines of Visiting], page 399). That function sets the
buffer major mode, parses local variables, warns the user if there exists an auto-save
file more recent than the file just visited, and finishes by running the functions in
find-file-hooks.

If the optional argument rawfile is non-nil, then after-find-file is not called,
and the find-file-not-found-hooks are not run in case of failure. What’s more, a
non-nil rawfile value suppresses coding system conversion (see Section 33.10 [Coding
Systems], page 590) and format conversion (see Section 25.12 [Format Conversion],
page 426).

The find-file-noselect function usually returns the buffer that is visiting the file
filename. But, if wildcards are actually used and expanded, it returns a list of buffers
that are visiting the various files.

(find-file-noselect "/etc/fstab")
⇒ #<buffer fstab>

Commandfind-file-other-window filename &optional wildcards
This command selects a buffer visiting the file filename, but does so in a window other
than the selected window. It may use another existing window or split a window; see
Section 28.7 [Displaying Buffers], page 461.

When this command is called interactively, it prompts for filename.

Chapter 25: Files 399

Commandfind-file-read-only filename &optional wildcards
This command selects a buffer visiting the file filename, like find-file, but it marks
the buffer as read-only. See Section 27.7 [Read Only Buffers], page 447, for related
functions and variables.
When this command is called interactively, it prompts for filename.

Commandview-file filename
This command visits filename using View mode, returning to the previous buffer when
you exit View mode. View mode is a minor mode that provides commands to skim
rapidly through the file, but does not let you modify the text. Entering View mode
runs the normal hook view-mode-hook. See Section 23.6 [Hooks], page 383.
When view-file is called interactively, it prompts for filename.

Variablefind-file-wildcards
If this variable is non-nil, then the various find-file commands check for wildcard
characters and visit all the files that match them. If this is nil, then wildcard
characters are not treated specially.

Variablefind-file-hooks
The value of this variable is a list of functions to be called after a file is visited. The
file’s local-variables specification (if any) will have been processed before the hooks
are run. The buffer visiting the file is current when the hook functions are run.
This variable works just like a normal hook, but we think that renaming it would not
be advisable. See Section 23.6 [Hooks], page 383.

Variablefind-file-not-found-hooks
The value of this variable is a list of functions to be called when find-file or find-
file-noselect is passed a nonexistent file name. find-file-noselect calls these
functions as soon as it detects a nonexistent file. It calls them in the order of the list,
until one of them returns non-nil. buffer-file-name is already set up.
This is not a normal hook because the values of the functions are used, and in many
cases only some of the functions are called.

25.1.2 Subroutines of Visiting

The find-file-noselect function uses two important subroutines which are sometimes
useful in user Lisp code: create-file-buffer and after-find-file. This section explains
how to use them.

Functioncreate-file-buffer filename
This function creates a suitably named buffer for visiting filename, and returns it. It
uses filename (sans directory) as the name if that name is free; otherwise, it appends
a string such as ‘<2>’ to get an unused name. See also Section 27.9 [Creating Buffers],
page 449.
Please note: create-file-buffer does not associate the new buffer with a file and
does not select the buffer. It also does not use the default major mode.

400 GNU Emacs Lisp Reference Manual

(create-file-buffer "foo")
⇒ #<buffer foo>

(create-file-buffer "foo")
⇒ #<buffer foo<2>>

(create-file-buffer "foo")
⇒ #<buffer foo<3>>

This function is used by find-file-noselect. It uses generate-new-buffer (see
Section 27.9 [Creating Buffers], page 449).

Functionafter-find-file &optional error warn noauto
after-find-file-from-revert-buffer nomodes

This function sets the buffer major mode, and parses local variables (see Section 23.1.3
[Auto Major Mode], page 361). It is called by find-file-noselect and by the default
revert function (see Section 26.3 [Reverting], page 437).
If reading the file got an error because the file does not exist, but its directory does
exist, the caller should pass a non-nil value for error. In that case, after-find-file
issues a warning: ‘(New file)’. For more serious errors, the caller should usually not
call after-find-file.
If warn is non-nil, then this function issues a warning if an auto-save file exists and
is more recent than the visited file.
If noauto is non-nil, that says not to enable or disable Auto-Save mode. The mode
remains enabled if it was enabled before.
If after-find-file-from-revert-buffer is non-nil, that means this call was from revert-
buffer. This has no direct effect, but some mode functions and hook functions check
the value of this variable.
If nomodes is non-nil, that means don’t alter the buffer’s major mode, don’t process
local variables specifications in the file, and don’t run find-file-hooks. This feature
is used by revert-buffer in some cases.
The last thing after-find-file does is call all the functions in the list find-file-
hooks.

25.2 Saving Buffers

When you edit a file in Emacs, you are actually working on a buffer that is visiting that
file—that is, the contents of the file are copied into the buffer and the copy is what you
edit. Changes to the buffer do not change the file until you save the buffer, which means
copying the contents of the buffer into the file.

Commandsave-buffer &optional backup-option
This function saves the contents of the current buffer in its visited file if the buffer
has been modified since it was last visited or saved. Otherwise it does nothing.
save-buffer is responsible for making backup files. Normally, backup-option is nil,
and save-buffer makes a backup file only if this is the first save since visiting the
file. Other values for backup-option request the making of backup files in other
circumstances:

Chapter 25: Files 401

• With an argument of 4 or 64, reflecting 1 or 3 C-u’s, the save-buffer function
marks this version of the file to be backed up when the buffer is next saved.

• With an argument of 16 or 64, reflecting 2 or 3 C-u’s, the save-buffer function
unconditionally backs up the previous version of the file before saving it.

Commandsave-some-buffers &optional save-silently-p pred
This command saves some modified file-visiting buffers. Normally it asks the user
about each buffer. But if save-silently-p is non-nil, it saves all the file-visiting buffers
without querying the user.
The optional pred argument controls which buffers to ask about. If it is nil, that
means to ask only about file-visiting buffers. If it is t, that means also offer to save
certain other non-file buffers—those that have a non-nil buffer-local value of buffer-
offer-save. (A user who says ‘yes’ to saving a non-file buffer is asked to specify
the file name to use.) The save-buffers-kill-emacs function passes the value t for
pred.
If pred is neither t nor nil, then it should be a function of no arguments. It will
be called in each buffer to decide whether to offer to save that buffer. If it returns a
non-nil value in a certain buffer, that means do offer to save that buffer.

Commandwrite-file filename &optional confirm
This function writes the current buffer into file filename, makes the buffer visit that
file, and marks it not modified. Then it renames the buffer based on filename, ap-
pending a string like ‘<2>’ if necessary to make a unique buffer name. It does most
of this work by calling set-visited-file-name (see Section 27.4 [Buffer File Name],
page 443) and save-buffer.
If confirm is non-nil, that means to ask for confirmation before overwriting an existing
file.

Saving a buffer runs several hooks. It also performs format conversion (see Section 25.12
[Format Conversion], page 426), and may save text properties in “annotations” (see Sec-
tion 32.19.7 [Saving Properties], page 571).

Variablewrite-file-hooks
The value of this variable is a list of functions to be called before writing out a buffer
to its visited file. If one of them returns non-nil, the file is considered already written
and the rest of the functions are not called, nor is the usual code for writing the file
executed.
If a function in write-file-hooks returns non-nil, it is responsible for making a
backup file (if that is appropriate). To do so, execute the following code:

(or buffer-backed-up (backup-buffer))

You might wish to save the file modes value returned by backup-buffer and use that
to set the mode bits of the file that you write. This is what save-buffer normally
does.
The hook functions in write-file-hooks are also responsible for encoding the data
(if desired): they must choose a suitable coding system (see Section 33.10.3 [Lisp

402 GNU Emacs Lisp Reference Manual

and Coding Systems], page 592), perform the encoding (see Section 33.10.7 [Explicit
Encoding], page 596), and set last-coding-system-used to the coding system that
was used (see Section 33.10.2 [Encoding and I/O], page 591).
Do not make this variable buffer-local. To set up buffer-specific hook functions, use
write-contents-hooks instead.
Even though this is not a normal hook, you can use add-hook and remove-hook to
manipulate the list. See Section 23.6 [Hooks], page 383.

Variablelocal-write-file-hooks
This works just like write-file-hooks, but it is intended to be made buffer-local in
particular buffers, and used for hooks that pertain to the file name or the way the
buffer contents were obtained.
The variable is marked as a permanent local, so that changing the major mode does
not alter a buffer-local value. This is convenient for packages that read “file” contents
in special ways, and set up hooks to save the data in a corresponding way.

Variablewrite-contents-hooks
This works just like write-file-hooks, but it is intended for hooks that pertain
to the contents of the file, as opposed to hooks that pertain to where the file came
from. Such hooks are usually set up by major modes, as buffer-local bindings for this
variable.
This variable automatically becomes buffer-local whenever it is set; switching to a
new major mode always resets this variable. When you use add-hooks to add an
element to this hook, you should not specify a non-nil local argument, since this
variable is used only buffer-locally.

Variableafter-save-hook
This normal hook runs after a buffer has been saved in its visited file. One use of this
hook is in Fast Lock mode; it uses this hook to save the highlighting information in
a cache file.

Variablefile-precious-flag
If this variable is non-nil, then save-buffer protects against I/O errors while saving
by writing the new file to a temporary name instead of the name it is supposed to
have, and then renaming it to the intended name after it is clear there are no errors.
This procedure prevents problems such as a lack of disk space from resulting in an
invalid file.
As a side effect, backups are necessarily made by copying. See Section 26.1.2 [Rename
or Copy], page 430. Yet, at the same time, saving a precious file always breaks all
hard links between the file you save and other file names.
Some modes give this variable a non-nil buffer-local value in particular buffers.

User Optionrequire-final-newline
This variable determines whether files may be written out that do not end with a
newline. If the value of the variable is t, then save-buffer silently adds a newline at

Chapter 25: Files 403

the end of the file whenever the buffer being saved does not already end in one. If the
value of the variable is non-nil, but not t, then save-buffer asks the user whether
to add a newline each time the case arises.
If the value of the variable is nil, then save-buffer doesn’t add newlines at all. nil
is the default value, but a few major modes set it to t in particular buffers.

See also the function set-visited-file-name (see Section 27.4 [Buffer File Name],
page 443).

25.3 Reading from Files

You can copy a file from the disk and insert it into a buffer using the insert-file-
contents function. Don’t use the user-level command insert-file in a Lisp program, as
that sets the mark.

Functioninsert-file-contents filename &optional visit beg end replace
This function inserts the contents of file filename into the current buffer after point.
It returns a list of the absolute file name and the length of the data inserted. An
error is signaled if filename is not the name of a file that can be read.
The function insert-file-contents checks the file contents against the defined file
formats, and converts the file contents if appropriate. See Section 25.12 [Format
Conversion], page 426. It also calls the functions in the list after-insert-file-
functions; see Section 32.19.7 [Saving Properties], page 571. Normally, one of the
functions in the after-insert-file-functions list determines the coding system
(see Section 33.10 [Coding Systems], page 590) used for decoding the file’s contents.
If visit is non-nil, this function additionally marks the buffer as unmodified and sets
up various fields in the buffer so that it is visiting the file filename: these include
the buffer’s visited file name and its last save file modtime. This feature is used by
find-file-noselect and you probably should not use it yourself.
If beg and end are non-nil, they should be integers specifying the portion of the file
to insert. In this case, visit must be nil. For example,

(insert-file-contents filename nil 0 500)

inserts the first 500 characters of a file.
If the argument replace is non-nil, it means to replace the contents of the buffer
(actually, just the accessible portion) with the contents of the file. This is better
than simply deleting the buffer contents and inserting the whole file, because (1) it
preserves some marker positions and (2) it puts less data in the undo list.
It is possible to read a special file (such as a FIFO or an I/O device) with insert-
file-contents, as long as replace and visit are nil.

Functioninsert-file-contents-literally filename &optional visit beg end replace
This function works like insert-file-contents except that it does not do format
decoding (see Section 25.12 [Format Conversion], page 426), does not do character
code conversion (see Section 33.10 [Coding Systems], page 590), does not run find-
file-hooks, does not perform automatic uncompression, and so on.

404 GNU Emacs Lisp Reference Manual

If you want to pass a file name to another process so that another program can read the
file, use the function file-local-copy; see Section 25.11 [Magic File Names], page 424.

25.4 Writing to Files

You can write the contents of a buffer, or part of a buffer, directly to a file on disk using
the append-to-file and write-region functions. Don’t use these functions to write to
files that are being visited; that could cause confusion in the mechanisms for visiting.

Commandappend-to-file start end filename
This function appends the contents of the region delimited by start and end in the
current buffer to the end of file filename. If that file does not exist, it is created. This
function returns nil.
An error is signaled if filename specifies a nonwritable file, or a nonexistent file in a
directory where files cannot be created.

Commandwrite-region start end filename &optional append visit lockname
mustbenew

This function writes the region delimited by start and end in the current buffer into
the file specified by filename.
If start is a string, then write-region writes or appends that string, rather than text
from the buffer. end is ignored in this case.
If append is non-nil, then the specified text is appended to the existing file contents
(if any). Starting in Emacs 21, if append is an integer, then write-region seeks to
that byte offset from the start of the file and writes the data from there.
If mustbenew is non-nil, then write-region asks for confirmation if filename names
an existing file. Starting in Emacs 21, if mustbenew is the symbol excl, then write-
region does not ask for confirmation, but instead it signals an error file-already-
exists if the file already exists.
The test for an existing file, when mustbenew is excl, uses a special system feature.
At least for files on a local disk, there is no chance that some other program could
create a file of the same name before Emacs does, without Emacs’s noticing.
If visit is t, then Emacs establishes an association between the buffer and the file:
the buffer is then visiting that file. It also sets the last file modification time for the
current buffer to filename’s modtime, and marks the buffer as not modified. This
feature is used by save-buffer, but you probably should not use it yourself.
If visit is a string, it specifies the file name to visit. This way, you can write the data
to one file (filename) while recording the buffer as visiting another file (visit). The
argument visit is used in the echo area message and also for file locking; visit is stored
in buffer-file-name. This feature is used to implement file-precious-flag; don’t
use it yourself unless you really know what you’re doing.
The optional argument lockname, if non-nil, specifies the file name to use for purposes
of locking and unlocking, overriding filename and visit for that purpose.
The function write-region converts the data which it writes to the appropriate file
formats specified by buffer-file-format. See Section 25.12 [Format Conversion],

Chapter 25: Files 405

page 426. It also calls the functions in the list write-region-annotate-functions;
see Section 32.19.7 [Saving Properties], page 571.
Normally, write-region displays the message ‘Wrote filename’ in the echo area. If
visit is neither t nor nil nor a string, then this message is inhibited. This feature is
useful for programs that use files for internal purposes, files that the user does not
need to know about.

Macrowith-temp-file file body...
The with-temp-file macro evaluates the body forms with a temporary buffer as
the current buffer; then, at the end, it writes the buffer contents into file file. It kills
the temporary buffer when finished, restoring the buffer that was current before the
with-temp-file form. Then it returns the value of the last form in body.
The current buffer is restored even in case of an abnormal exit via throw or error (see
Section 10.5 [Nonlocal Exits], page 123).
See also with-temp-buffer in Section 27.2 [Current Buffer], page 439.

25.5 File Locks

When two users edit the same file at the same time, they are likely to interfere with each
other. Emacs tries to prevent this situation from arising by recording a file lock when a file
is being modified. Emacs can then detect the first attempt to modify a buffer visiting a file
that is locked by another Emacs job, and ask the user what to do. The file lock is really
a file, a symbolic link with a special name, stored in the same directory as the file you are
editing.

When you access files using NFS, there may be a small probability that you and another
user will both lock the same file “simultaneously”. If this happens, it is possible for the two
users to make changes simultaneously, but Emacs will still warn the user who saves second.
Also, the detection of modification of a buffer visiting a file changed on disk catches some
cases of simultaneous editing; see Section 27.6 [Modification Time], page 445.

Functionfile-locked-p filename
This function returns nil if the file filename is not locked. It returns t if it is locked
by this Emacs process, and it returns the name of the user who has locked it if it is
locked by some other job.

(file-locked-p "foo")
⇒ nil

Functionlock-buffer &optional filename
This function locks the file filename, if the current buffer is modified. The argument
filename defaults to the current buffer’s visited file. Nothing is done if the current
buffer is not visiting a file, or is not modified.

Functionunlock-buffer
This function unlocks the file being visited in the current buffer, if the buffer is
modified. If the buffer is not modified, then the file should not be locked, so this
function does nothing. It also does nothing if the current buffer is not visiting a file.

406 GNU Emacs Lisp Reference Manual

File locking is not supported on some systems. On systems that do not support it, the
functions lock-buffer, unlock-buffer and file-locked-p do nothing and return nil.

Functionask-user-about-lock file other-user
This function is called when the user tries to modify file, but it is locked by another
user named other-user. The default definition of this function asks the user to say
what to do. The value this function returns determines what Emacs does next:
• A value of t says to grab the lock on the file. Then this user may edit the file

and other-user loses the lock.
• A value of nil says to ignore the lock and let this user edit the file anyway.
• This function may instead signal a file-locked error, in which case the change

that the user was about to make does not take place.
The error message for this error looks like this:

error File is locked: file other-user

where file is the name of the file and other-user is the name of the user who
has locked the file.

If you wish, you can replace the ask-user-about-lock function with your own ver-
sion that makes the decision in another way. The code for its usual definition is in
‘userlock.el’.

25.6 Information about Files

The functions described in this section all operate on strings that designate file names.
All the functions have names that begin with the word ‘file’. These functions all return
information about actual files or directories, so their arguments must all exist as actual files
or directories unless otherwise noted.

25.6.1 Testing Accessibility

These functions test for permission to access a file in specific ways.

Functionfile-exists-p filename
This function returns t if a file named filename appears to exist. This does not mean
you can necessarily read the file, only that you can find out its attributes. (On Unix
and GNU/Linux, this is true if the file exists and you have execute permission on the
containing directories, regardless of the protection of the file itself.)
If the file does not exist, or if fascist access control policies prevent you from finding
the attributes of the file, this function returns nil.

Functionfile-readable-p filename
This function returns t if a file named filename exists and you can read it. It returns
nil otherwise.

(file-readable-p "files.texi")
⇒ t

Chapter 25: Files 407

(file-exists-p "/usr/spool/mqueue")
⇒ t

(file-readable-p "/usr/spool/mqueue")
⇒ nil

Functionfile-executable-p filename
This function returns t if a file named filename exists and you can execute it. It
returns nil otherwise. On Unix and GNU/Linux, if the file is a directory, execute
permission means you can check the existence and attributes of files inside the direc-
tory, and open those files if their modes permit.

Functionfile-writable-p filename
This function returns t if the file filename can be written or created by you, and nil
otherwise. A file is writable if the file exists and you can write it. It is creatable
if it does not exist, but the specified directory does exist and you can write in that
directory.
In the third example below, ‘foo’ is not writable because the parent directory does
not exist, even though the user could create such a directory.

(file-writable-p "~/foo")
⇒ t

(file-writable-p "/foo")
⇒ nil

(file-writable-p "~/no-such-dir/foo")
⇒ nil

Functionfile-accessible-directory-p dirname
This function returns t if you have permission to open existing files in the directory
whose name as a file is dirname; otherwise (or if there is no such directory), it returns
nil. The value of dirname may be either a directory name or the file name of a file
which is a directory.
Example: after the following,

(file-accessible-directory-p "/foo")
⇒ nil

we can deduce that any attempt to read a file in ‘/foo/’ will give an error.

Functionaccess-file filename string
This function opens file filename for reading, then closes it and returns nil. However,
if the open fails, it signals an error using string as the error message text.

Functionfile-ownership-preserved-p filename
This function returns t if deleting the file filename and then creating it anew would
keep the file’s owner unchanged.

Functionfile-newer-than-file-p filename1 filename2
This function returns t if the file filename1 is newer than file filename2. If filename1
does not exist, it returns nil. If filename2 does not exist, it returns t.

408 GNU Emacs Lisp Reference Manual

In the following example, assume that the file ‘aug-19’ was written on the 19th,
‘aug-20’ was written on the 20th, and the file ‘no-file’ doesn’t exist at all.

(file-newer-than-file-p "aug-19" "aug-20")
⇒ nil

(file-newer-than-file-p "aug-20" "aug-19")
⇒ t

(file-newer-than-file-p "aug-19" "no-file")
⇒ t

(file-newer-than-file-p "no-file" "aug-19")
⇒ nil

You can use file-attributes to get a file’s last modification time as a list of two
numbers. See Section 25.6.4 [File Attributes], page 409.

25.6.2 Distinguishing Kinds of Files

This section describes how to distinguish various kinds of files, such as directories, sym-
bolic links, and ordinary files.

Functionfile-symlink-p filename
If the file filename is a symbolic link, the file-symlink-p function returns the file
name to which it is linked. This may be the name of a text file, a directory, or even
another symbolic link, or it may be a nonexistent file name.

If the file filename is not a symbolic link (or there is no such file), file-symlink-p
returns nil.

(file-symlink-p "foo")
⇒ nil

(file-symlink-p "sym-link")
⇒ "foo"

(file-symlink-p "sym-link2")
⇒ "sym-link"

(file-symlink-p "/bin")
⇒ "/pub/bin"

Functionfile-directory-p filename
This function returns t if filename is the name of an existing directory, nil otherwise.

(file-directory-p "~rms")
⇒ t

(file-directory-p "~rms/lewis/files.texi")
⇒ nil

(file-directory-p "~rms/lewis/no-such-file")
⇒ nil

(file-directory-p "$HOME")
⇒ nil

(file-directory-p
(substitute-in-file-name "$HOME"))

⇒ t

Chapter 25: Files 409

Functionfile-regular-p filename
This function returns t if the file filename exists and is a regular file (not a directory,
named pipe, terminal, or other I/O device).

25.6.3 Truenames

The truename of a file is the name that you get by following symbolic links at all levels
until none remain, then simplifying away ‘.’ and ‘..’ appearing as name components. This
results in a sort of canonical name for the file. A file does not always have a unique truename;
the number of distinct truenames a file has is equal to the number of hard links to the file.
However, truenames are useful because they eliminate symbolic links as a cause of name
variation.

Functionfile-truename filename
The function file-truename returns the truename of the file filename. The argument
must be an absolute file name.

Functionfile-chase-links filename
This function follows symbolic links, starting with filename, until it finds a file name
which is not the name of a symbolic link. Then it returns that file name.

To illustrate the difference between file-chase-links and file-truename, suppose
that ‘/usr/foo’ is a symbolic link to the directory ‘/home/foo’, and ‘/home/foo/hello’ is
an ordinary file (or at least, not a symbolic link) or nonexistent. Then we would have:

(file-chase-links "/usr/foo/hello")
;; This does not follow the links in the parent directories.
⇒ "/usr/foo/hello"

(file-truename "/usr/foo/hello")
;; Assuming that ‘/home’ is not a symbolic link.
⇒ "/home/foo/hello"

See Section 27.4 [Buffer File Name], page 443, for related information.

25.6.4 Other Information about Files

This section describes the functions for getting detailed information about a file, other
than its contents. This information includes the mode bits that control access permission,
the owner and group numbers, the number of names, the inode number, the size, and the
times of access and modification.

Functionfile-modes filename
This function returns the mode bits of filename, as an integer. The mode bits are also
called the file permissions, and they specify access control in the usual Unix fashion. If
the low-order bit is 1, then the file is executable by all users, if the second-lowest-order
bit is 1, then the file is writable by all users, etc.
The highest value returnable is 4095 (7777 octal), meaning that everyone has read,
write, and execute permission, that the suid bit is set for both others and group, and
that the sticky bit is set.

410 GNU Emacs Lisp Reference Manual

(file-modes "~/junk/diffs")
⇒ 492 ; Decimal integer.

(format "%o" 492)
⇒ "754" ; Convert to octal.

(set-file-modes "~/junk/diffs" 438)
⇒ nil

(format "%o" 438)
⇒ "666" ; Convert to octal.

% ls -l diffs
-rw-rw-rw- 1 lewis 0 3063 Oct 30 16:00 diffs

Functionfile-nlinks filename
This functions returns the number of names (i.e., hard links) that file filename has. If
the file does not exist, then this function returns nil. Note that symbolic links have
no effect on this function, because they are not considered to be names of the files
they link to.

% ls -l foo*
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo1

(file-nlinks "foo")
⇒ 2

(file-nlinks "doesnt-exist")
⇒ nil

Functionfile-attributes filename
This function returns a list of attributes of file filename. If the specified file cannot
be opened, it returns nil.

The elements of the list, in order, are:

0. t for a directory, a string for a symbolic link (the name linked to), or nil for a
text file.

1. The number of names the file has. Alternate names, also known as hard links, can
be created by using the add-name-to-file function (see Section 25.7 [Changing
Files], page 412).

2. The file’s uid.
3. The file’s gid.
4. The time of last access, as a list of two integers. The first integer has the high-

order 16 bits of time, the second has the low 16 bits. (This is similar to the value
of current-time; see Section 40.5 [Time of Day], page 732.)

5. The time of last modification as a list of two integers (as above).
6. The time of last status change as a list of two integers (as above).
7. The size of the file in bytes. If the size is too large to fit in a Lisp integer, this is

a floating point number.
8. The file’s modes, as a string of ten letters or dashes, as in ‘ls -l’.

Chapter 25: Files 411

9. t if the file’s gid would change if file were deleted and recreated; nil otherwise.

10. The file’s inode number. If possible, this is an integer. If the inode number is
too large to be represented as an integer in Emacs Lisp, then the value has the
form (high . low), where low holds the low 16 bits.

11. The file system number of the file system that the file is in. Depending on the
magnitude of the value, this can be either an integer or a cons cell, in the same
manner as the inode number. This element and the file’s inode number together
give enough information to distinguish any two files on the system—no two files
can have the same values for both of these numbers.

For example, here are the file attributes for ‘files.texi’:

(file-attributes "files.texi")
⇒ (nil 1 2235 75

(8489 20284)
(8489 20284)
(8489 20285)
14906 "-rw-rw-rw-"
nil 129500 -32252)

and here is how the result is interpreted:

nil is neither a directory nor a symbolic link.

1 has only one name (the name ‘files.texi’ in the current default direc-
tory).

2235 is owned by the user with uid 2235.

75 is in the group with gid 75.

(8489 20284)
was last accessed on Aug 19 00:09.

(8489 20284)
was last modified on Aug 19 00:09.

(8489 20285)
last had its inode changed on Aug 19 00:09.

14906 is 14906 bytes long. (It may not contain 14906 characters, though, if
some of the bytes belong to multibyte sequences.)

"-rw-rw-rw-"
has a mode of read and write access for the owner, group, and world.

nil would retain the same gid if it were recreated.

129500 has an inode number of 129500.

-32252 is on file system number -32252.

412 GNU Emacs Lisp Reference Manual

25.7 Changing File Names and Attributes

The functions in this section rename, copy, delete, link, and set the modes of files.
In the functions that have an argument newname, if a file by the name of newname

already exists, the actions taken depend on the value of the argument ok-if-already-exists:
• Signal a file-already-exists error if ok-if-already-exists is nil.
• Request confirmation if ok-if-already-exists is a number.
• Replace the old file without confirmation if ok-if-already-exists is any other value.

Functionadd-name-to-file oldname newname &optional ok-if-already-exists
This function gives the file named oldname the additional name newname. This
means that newname becomes a new “hard link” to oldname.
In the first part of the following example, we list two files, ‘foo’ and ‘foo3’.

% ls -li fo*
81908 -rw-rw-rw- 1 rms 29 Aug 18 20:32 foo
84302 -rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Now we create a hard link, by calling add-name-to-file, then list the files again.
This shows two names for one file, ‘foo’ and ‘foo2’.

(add-name-to-file "foo" "foo2")
⇒ nil

% ls -li fo*
81908 -rw-rw-rw- 2 rms 29 Aug 18 20:32 foo
81908 -rw-rw-rw- 2 rms 29 Aug 18 20:32 foo2
84302 -rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Finally, we evaluate the following:
(add-name-to-file "foo" "foo3" t)

and list the files again. Now there are three names for one file: ‘foo’, ‘foo2’, and
‘foo3’. The old contents of ‘foo3’ are lost.

(add-name-to-file "foo1" "foo3")
⇒ nil

% ls -li fo*
81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo
81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo2
81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo3

This function is meaningless on operating systems where multiple names for one file
are not allowed. Some systems implement multiple names by copying the file instead.
See also file-nlinks in Section 25.6.4 [File Attributes], page 409.

Commandrename-file filename newname &optional ok-if-already-exists
This command renames the file filename as newname.
If filename has additional names aside from filename, it continues to have those names.
In fact, adding the name newname with add-name-to-file and then deleting file-
name has the same effect as renaming, aside from momentary intermediate states.
In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.

Chapter 25: Files 413

Commandcopy-file oldname newname &optional ok-if-exists time
This command copies the file oldname to newname. An error is signaled if oldname
does not exist.
If time is non-nil, then this function gives the new file the same last-modified time
that the old one has. (This works on only some operating systems.) If setting the
time gets an error, copy-file signals a file-date-error error.
In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.

Commanddelete-file filename
This command deletes the file filename, like the shell command ‘rm filename’. If the
file has multiple names, it continues to exist under the other names.
A suitable kind of file-error error is signaled if the file does not exist, or is not
deletable. (On Unix and GNU/Linux, a file is deletable if its directory is writable.)
See also delete-directory in Section 25.10 [Create/Delete Dirs], page 423.

Commandmake-symbolic-link filename newname &optional ok-if-exists
This command makes a symbolic link to filename, named newname. This is like the
shell command ‘ln -s filename newname’.
In an interactive call, this function prompts for filename and newname in the mini-
buffer; also, it requests confirmation if newname already exists.
This function is not available on systems that don’t support symbolic links.

Functiondefine-logical-name varname string
This function defines the logical name name to have the value string. It is available
only on VMS.

Functionset-file-modes filename mode
This function sets mode bits of filename to mode (which must be an integer). Only
the low 12 bits of mode are used.

Functionset-default-file-modes mode
This function sets the default file protection for new files created by Emacs and
its subprocesses. Every file created with Emacs initially has this protection, or a
subset of it (write-region will not give a file execute permission even if the default
file protection allows execute permission). On Unix and GNU/Linux, the default
protection is the bitwise complement of the “umask” value.
The argument mode must be an integer. On most systems, only the low 9 bits of
mode are meaningful. You can use the Lisp construct for octal character codes to
enter mode; for example,

(set-default-file-modes ?\644)

Saving a modified version of an existing file does not count as creating the file; it
preserves the existing file’s mode, whatever that is. So the default file protection has
no effect.

414 GNU Emacs Lisp Reference Manual

Functiondefault-file-modes
This function returns the current default protection value.

On MS-DOS, there is no such thing as an “executable” file mode bit. So Emacs considers
a file executable if its name ends in one of the standard executable extensions, such as ‘.com’,
‘.bat’, ‘.exe’, and some others. Files that begin with the Unix-standard ‘#!’ signature,
such as shell and Perl scripts, are also considered as executable files. This is reflected in the
values returned by file-modes and file-attributes. Directories are also reported with
executable bit set, for compatibility with Unix.

25.8 File Names

Files are generally referred to by their names, in Emacs as elsewhere. File names in
Emacs are represented as strings. The functions that operate on a file all expect a file name
argument.

In addition to operating on files themselves, Emacs Lisp programs often need to operate
on file names; i.e., to take them apart and to use part of a name to construct related file
names. This section describes how to manipulate file names.

The functions in this section do not actually access files, so they can operate on file
names that do not refer to an existing file or directory.

On MS-DOS and MS-Windows, these functions (like the function that actually operate
on files) accept MS-DOS or MS-Windows file-name syntax, where backslashes separate the
components, as well as Unix syntax; but they always return Unix syntax. On VMS, these
functions (and the ones that operate on files) understand both VMS file-name syntax and
Unix syntax. This enables Lisp programs to specify file names in Unix syntax and work
properly on all systems without change.

25.8.1 File Name Components

The operating system groups files into directories. To specify a file, you must specify
the directory and the file’s name within that directory. Therefore, Emacs considers a file
name as having two main parts: the directory name part, and the nondirectory part (or
file name within the directory). Either part may be empty. Concatenating these two parts
reproduces the original file name.

On most systems, the directory part is everything up to and including the last slash
(backslash is also allowed in input on MS-DOS or MS-Windows); the nondirectory part is
the rest. The rules in VMS syntax are complicated.

For some purposes, the nondirectory part is further subdivided into the name proper
and the version number. On most systems, only backup files have version numbers in their
names. On VMS, every file has a version number, but most of the time the file name
actually used in Emacs omits the version number, so that version numbers in Emacs are
found mostly in directory lists.

Functionfile-name-directory filename
This function returns the directory part of filename (or nil if filename does not
include a directory part). On most systems, the function returns a string ending in

Chapter 25: Files 415

a slash. On VMS, it returns a string ending in one of the three characters ‘:’, ‘]’, or
‘>’.

(file-name-directory "lewis/foo") ; Unix example
⇒ "lewis/"

(file-name-directory "foo") ; Unix example
⇒ nil

(file-name-directory "[X]FOO.TMP") ; VMS example
⇒ "[X]"

Functionfile-name-nondirectory filename
This function returns the nondirectory part of filename.

(file-name-nondirectory "lewis/foo")
⇒ "foo"

(file-name-nondirectory "foo")
⇒ "foo"

;; The following example is accurate only on VMS.
(file-name-nondirectory "[X]FOO.TMP")

⇒ "FOO.TMP"

Functionfile-name-sans-versions filename &optional keep-backup-version
This function returns filename with any file version numbers, backup version numbers,
or trailing tildes discarded.
If keep-backup-version is non-nil, then true file version numbers understood as such
by the file system are discarded from the return value, but backup version numbers
are kept.

(file-name-sans-versions "~rms/foo.~1~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo")
⇒ "~rms/foo"

;; The following example applies to VMS only.
(file-name-sans-versions "foo;23")

⇒ "foo"

Functionfile-name-sans-extension filename
This function returns filename minus its “extension,” if any. The extension, in a
file name, is the part that starts with the last ‘.’ in the last name component. For
example,

(file-name-sans-extension "foo.lose.c")
⇒ "foo.lose"

(file-name-sans-extension "big.hack/foo")
⇒ "big.hack/foo"

Functionfile-name-extension filename &optional period
This function returns filename’s final “extension,” if any, after applying file-name-
sans-versions to remove any version/backup part. If period is non-nil, then the

416 GNU Emacs Lisp Reference Manual

returned value includes the period that delimits the extension, and if filename has no
extension, the value is "".

25.8.2 Directory Names

A directory name is the name of a directory. A directory is a kind of file, and it has a
file name, which is related to the directory name but not identical to it. (This is not quite
the same as the usual Unix terminology.) These two different names for the same entity are
related by a syntactic transformation. On most systems, this is simple: a directory name
ends in a slash (or backslash), whereas the directory’s name as a file lacks that slash. On
VMS, the relationship is more complicated.

The difference between a directory name and its name as a file is subtle but crucial.
When an Emacs variable or function argument is described as being a directory name, a
file name of a directory is not acceptable.

The following two functions convert between directory names and file names. They do
nothing special with environment variable substitutions such as ‘$HOME’, and the constructs
‘~’, and ‘..’.

Functionfile-name-as-directory filename
This function returns a string representing filename in a form that the operating sys-
tem will interpret as the name of a directory. On most systems, this means appending
a slash to the string (if it does not already end in one). On VMS, the function converts
a string of the form ‘[X]Y.DIR.1’ to the form ‘[X.Y]’.

(file-name-as-directory "~rms/lewis")
⇒ "~rms/lewis/"

Functiondirectory-file-name dirname
This function returns a string representing dirname in a form that the operating
system will interpret as the name of a file. On most systems, this means removing
the final slash (or backslash) from the string. On VMS, the function converts a string
of the form ‘[X.Y]’ to ‘[X]Y.DIR.1’.

(directory-file-name "~lewis/")
⇒ "~lewis"

Directory name abbreviations are useful for directories that are normally accessed
through symbolic links. Sometimes the users recognize primarily the link’s name as “the
name” of the directory, and find it annoying to see the directory’s “real” name. If you
define the link name as an abbreviation for the “real” name, Emacs shows users the
abbreviation instead.

Variabledirectory-abbrev-alist
The variable directory-abbrev-alist contains an alist of abbreviations to use for
file directories. Each element has the form (from . to), and says to replace from
with to when it appears in a directory name. The from string is actually a regular
expression; it should always start with ‘^’. The function abbreviate-file-name
performs these substitutions.

Chapter 25: Files 417

You can set this variable in ‘site-init.el’ to describe the abbreviations appropriate
for your site.

Here’s an example, from a system on which file system ‘/home/fsf’ and so on are
normally accessed through symbolic links named ‘/fsf’ and so on.

(("^/home/fsf" . "/fsf")
("^/home/gp" . "/gp")
("^/home/gd" . "/gd"))

To convert a directory name to its abbreviation, use this function:

Functionabbreviate-file-name dirname
This function applies abbreviations from directory-abbrev-alist to its argument,
and substitutes ‘~’ for the user’s home directory.

25.8.3 Absolute and Relative File Names

All the directories in the file system form a tree starting at the root directory. A file name
can specify all the directory names starting from the root of the tree; then it is called an
absolute file name. Or it can specify the position of the file in the tree relative to a default
directory; then it is called a relative file name. On Unix and GNU/Linux, an absolute
file name starts with a slash or a tilde (‘~’), and a relative one does not. On MS-DOS
and MS-Windows, an absolute file name starts with a slash or a backslash, or with a drive
specification ‘x:/’, where x is the drive letter. The rules on VMS are complicated.

Functionfile-name-absolute-p filename
This function returns t if file filename is an absolute file name, nil otherwise. On
VMS, this function understands both Unix syntax and VMS syntax.

(file-name-absolute-p "~rms/foo")
⇒ t

(file-name-absolute-p "rms/foo")
⇒ nil

(file-name-absolute-p "/user/rms/foo")
⇒ t

25.8.4 Functions that Expand Filenames

Expansion of a file name means converting a relative file name to an absolute one. Since
this is done relative to a default directory, you must specify the default directory name as
well as the file name to be expanded. Expansion also simplifies file names by eliminating
redundancies such as ‘./’ and ‘name/../’.

Functionexpand-file-name filename &optional directory
This function converts filename to an absolute file name. If directory is supplied, it
is the default directory to start with if filename is relative. (The value of directory
should itself be an absolute directory name; it may start with ‘~’.) Otherwise, the
current buffer’s value of default-directory is used. For example:

418 GNU Emacs Lisp Reference Manual

(expand-file-name "foo")
⇒ "/xcssun/users/rms/lewis/foo"

(expand-file-name "../foo")
⇒ "/xcssun/users/rms/foo"

(expand-file-name "foo" "/usr/spool/")
⇒ "/usr/spool/foo"

(expand-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/lewis/$HOME/foo"

Filenames containing ‘.’ or ‘..’ are simplified to their canonical form:
(expand-file-name "bar/../foo")

⇒ "/xcssun/users/rms/lewis/foo"

Note that expand-file-name does not expand environment variables; only
substitute-in-file-name does that.

Functionfile-relative-name filename &optional directory
This function does the inverse of expansion—it tries to return a relative name that is
equivalent to filename when interpreted relative to directory. If directory is omitted
or nil, it defaults to the current buffer’s default directory.
On some operating systems, an absolute file name begins with a device name. On
such systems, filename has no relative equivalent based on directory if they start with
two different device names. In this case, file-relative-name returns filename in
absolute form.

(file-relative-name "/foo/bar" "/foo/")
⇒ "bar"

(file-relative-name "/foo/bar" "/hack/")
⇒ "../foo/bar"

Variabledefault-directory
The value of this buffer-local variable is the default directory for the current buffer.
It should be an absolute directory name; it may start with ‘~’. This variable is
buffer-local in every buffer.
expand-file-name uses the default directory when its second argument is nil.
Aside from VMS, the value is always a string ending with a slash.

default-directory
⇒ "/user/lewis/manual/"

Functionsubstitute-in-file-name filename
This function replaces environment variables references in filename with the envi-
ronment variable values. Following standard Unix shell syntax, ‘$’ is the prefix to
substitute an environment variable value.
The environment variable name is the series of alphanumeric characters (including
underscores) that follow the ‘$’. If the character following the ‘$’ is a ‘{’, then the
variable name is everything up to the matching ‘}’.
Here we assume that the environment variable HOME, which holds the user’s home
directory name, has value ‘/xcssun/users/rms’.

Chapter 25: Files 419

(substitute-in-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/foo"

After substitution, if a ‘~’ or a ‘/’ appears following a ‘/’, everything before the
following ‘/’ is discarded:

(substitute-in-file-name "bar/~/foo")
⇒ "~/foo"

(substitute-in-file-name "/usr/local/$HOME/foo")
⇒ "/xcssun/users/rms/foo"
;; ‘/usr/local/’ has been discarded.

On VMS, ‘$’ substitution is not done, so this function does nothing on VMS except
discard superfluous initial components as shown above.

25.8.5 Generating Unique File Names

Some programs need to write temporary files. Here is the usual way to construct a name
for such a file, starting in Emacs 21:

(make-temp-file name-of-application)

The job of make-temp-file is to prevent two different users or two different jobs from
trying to use the exact same file name.

Functionmake-temp-file prefix &optional dir-flag
This function creates a temporary file and returns its name. The name starts with
prefix; it also contains a number that is different in each Emacs job. If prefix is a
relative file name, it is expanded against temporary-file-directory.

(make-temp-file "foo")
⇒ "/tmp/foo232J6v"

When make-temp-file returns, the file has been created and is empty. At that point,
you should write the intended contents into the file.
If dir-flag is non-nil, make-temp-file creates an empty directory instead of an empty
file.
To prevent conflicts among different libraries running in the same Emacs, each Lisp
program that uses make-temp-file should have its own prefix. The number added
to the end of prefix distinguishes between the same application running in different
Emacs jobs. Additional added characters permit a large number of distinct names
even in one Emacs job.

The default directory for temporary files is controlled by the variable temporary-file-
directory. This variable gives the user a uniform way to specify the directory for all
temporary files. Some programs use small-temporary-file-directory instead, if that is
non-nil. To use it, you should expand the prefix against the proper directory before calling
make-temp-file.

In older Emacs versions where make-temp-file does not exist, you should use make-
temp-name instead:

(make-temp-name
(expand-file-name name-of-application

temporary-file-directory))

420 GNU Emacs Lisp Reference Manual

Functionmake-temp-name string
This function generates a string that can be used as a unique file name. The name
starts with string, and contains a number that is different in each Emacs job. It is
like make-temp-file except that it just constructs a name, and does not create a file.
On MS-DOS, the string prefix can be truncated to fit into the 8+3 file-name limits.

Variabletemporary-file-directory
This variable specifies the directory name for creating temporary files. Its value should
be a directory name (see Section 25.8.2 [Directory Names], page 416), but it is good
for Lisp programs to cope if the value is a directory’s file name instead. Using the
value as the second argument to expand-file-name is a good way to achieve that.
The default value is determined in a reasonable way for your operating system; it
is based on the TMPDIR, TMP and TEMP environment variables, with a fall-back to a
system-dependent name if none of these variables is defined.
Even if you do not use make-temp-name to choose the temporary file’s name, you
should still use this variable to decide which directory to put the file in. However, if
you expect the file to be small, you should use small-temporary-file-directory
first if that is non-nil.

Variablesmall-temporary-file-directory
This variable (new in Emacs 21) specifies the directory name for creating certain
temporary files, which are likely to be small.
If you want to write a temporary file which is likely to be small, you should compute
the directory like this:

(make-temp-file
(expand-file-name prefix

(or small-temporary-file-directory
temporary-file-directory)))

25.8.6 File Name Completion

This section describes low-level subroutines for completing a file name. For other com-
pletion functions, see Section 20.5 [Completion], page 271.

Functionfile-name-all-completions partial-filename directory
This function returns a list of all possible completions for a file whose name starts
with partial-filename in directory directory. The order of the completions is the order
of the files in the directory, which is unpredictable and conveys no useful information.
The argument partial-filename must be a file name containing no directory part and
no slash (or backslash on some systems). The current buffer’s default directory is
prepended to directory, if directory is not absolute.
In the following example, suppose that ‘~rms/lewis’ is the current default directory,
and has five files whose names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’,
and ‘file.c.~2~’.

Chapter 25: Files 421

(file-name-all-completions "f" "")
⇒ ("foo" "file~" "file.c.~2~"

"file.c.~1~" "file.c")

(file-name-all-completions "fo" "")
⇒ ("foo")

Functionfile-name-completion filename directory
This function completes the file name filename in directory directory. It returns the
longest prefix common to all file names in directory directory that start with filename.
If only one match exists and filename matches it exactly, the function returns t. The
function returns nil if directory directory contains no name starting with filename.
In the following example, suppose that the current default directory has five files whose
names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’, and ‘file.c.~2~’.

(file-name-completion "fi" "")
⇒ "file"

(file-name-completion "file.c.~1" "")
⇒ "file.c.~1~"

(file-name-completion "file.c.~1~" "")
⇒ t

(file-name-completion "file.c.~3" "")
⇒ nil

User Optioncompletion-ignored-extensions
file-name-completion usually ignores file names that end in any string in this list.
It does not ignore them when all the possible completions end in one of these suffixes
or when a buffer showing all possible completions is displayed.
A typical value might look like this:

completion-ignored-extensions
⇒ (".o" ".elc" "~" ".dvi")

25.8.7 Standard File Names

Most of the file names used in Lisp programs are entered by the user. But occasionally a
Lisp program needs to specify a standard file name for a particular use—typically, to hold
customization information about each user. For example, abbrev definitions are stored (by
default) in the file ‘~/.abbrev_defs’; the completion package stores completions in the file
‘~/.completions’. These are two of the many standard file names used by parts of Emacs
for certain purposes.

Various operating systems have their own conventions for valid file names and for which
file names to use for user profile data. A Lisp program which reads a file using a standard
file name ought to use, on each type of system, a file name suitable for that system. The
function convert-standard-filename makes this easy to do.

Functionconvert-standard-filename filename
This function alters the file name filename to fit the conventions of the operating
system in use, and returns the result as a new string.

422 GNU Emacs Lisp Reference Manual

The recommended way to specify a standard file name in a Lisp program is to choose
a name which fits the conventions of GNU and Unix systems, usually with a nondirectory
part that starts with a period, and pass it to convert-standard-filename instead of using
it directly. Here is an example from the completion package:

(defvar save-completions-file-name
(convert-standard-filename "~/.completions")

"*The file name to save completions to.")

On GNU and Unix systems, and on some other systems as well, convert-standard-
filename returns its argument unchanged. On some other systems, it alters the name to
fit the system’s conventions.

For example, on MS-DOS the alterations made by this function include converting a
leading ‘.’ to ‘_’, converting a ‘_’ in the middle of the name to ‘.’ if there is no other ‘.’,
inserting a ‘.’ after eight characters if there is none, and truncating to three characters after
the ‘.’. (It makes other changes as well.) Thus, ‘.abbrev_defs’ becomes ‘_abbrev.def’,
and ‘.completions’ becomes ‘_complet.ion’.

25.9 Contents of Directories

A directory is a kind of file that contains other files entered under various names. Di-
rectories are a feature of the file system.

Emacs can list the names of the files in a directory as a Lisp list, or display the names in
a buffer using the ls shell command. In the latter case, it can optionally display information
about each file, depending on the options passed to the ls command.

Functiondirectory-files directory &optional full-name match-regexp nosort
This function returns a list of the names of the files in the directory directory. By
default, the list is in alphabetical order.

If full-name is non-nil, the function returns the files’ absolute file names. Otherwise,
it returns the names relative to the specified directory.

If match-regexp is non-nil, this function returns only those file names that contain
a match for that regular expression—the other file names are excluded from the list.

If nosort is non-nil, directory-files does not sort the list, so you get the file names
in no particular order. Use this if you want the utmost possible speed and don’t care
what order the files are processed in. If the order of processing is visible to the user,
then the user will probably be happier if you do sort the names.

(directory-files "~lewis")
⇒ ("#foo#" "#foo.el#" "." ".."

"dired-mods.el" "files.texi"
"files.texi.~1~")

An error is signaled if directory is not the name of a directory that can be read.

Functionfile-name-all-versions file dirname
This function returns a list of all versions of the file named file in directory dirname.

Chapter 25: Files 423

Functionfile-expand-wildcards pattern &optional full
This function expands the wildcard pattern pattern, returning a list of file names that
match it.

If pattern is written as an absolute file name, the values are absolute also.

If pattern is written as a relative file name, it is interpreted relative to the current
default directory. The file names returned are normally also relative to the current
default directory. However, if full is non-nil, they are absolute.

Functioninsert-directory file switches &optional wildcard full-directory-p
This function inserts (in the current buffer) a directory listing for directory file, for-
matted with ls according to switches. It leaves point after the inserted text.

The argument file may be either a directory name or a file specification including
wildcard characters. If wildcard is non-nil, that means treat file as a file specification
with wildcards.

If full-directory-p is non-nil, that means the directory listing is expected to show the
full contents of a directory. You should specify t when file is a directory and switches
do not contain ‘-d’. (The ‘-d’ option to ls says to describe a directory itself as a file,
rather than showing its contents.)

On most systems, this function works by running a directory listing program whose
name is in the variable insert-directory-program. If wildcard is non-nil, it also
runs the shell specified by shell-file-name, to expand the wildcards.

MS-DOS and MS-Windows systems usually lack the standard Unix program ls, so
this function emulates the standard Unix program ls with Lisp code.

Variableinsert-directory-program
This variable’s value is the program to run to generate a directory listing for the
function insert-directory. It is ignored on systems which generate the listing with
Lisp code.

25.10 Creating and Deleting Directories

Most Emacs Lisp file-manipulation functions get errors when used on files that are
directories. For example, you cannot delete a directory with delete-file. These special
functions exist to create and delete directories.

Functionmake-directory dirname &optional parents
This function creates a directory named dirname. If parents is non-nil, that means
to create the parent directories first, if they don’t already exist.

Functiondelete-directory dirname
This function deletes the directory named dirname. The function delete-file does
not work for files that are directories; you must use delete-directory for them. If
the directory contains any files, delete-directory signals an error.

424 GNU Emacs Lisp Reference Manual

25.11 Making Certain File Names “Magic”

You can implement special handling for certain file names. This is called making those
names magic. The principal use for this feature is in implementing remote file names (see
section “Remote Files” in The GNU Emacs Manual).

To define a kind of magic file name, you must supply a regular expression to define the
class of names (all those that match the regular expression), plus a handler that implements
all the primitive Emacs file operations for file names that do match.

The variable file-name-handler-alist holds a list of handlers, together with regular
expressions that determine when to apply each handler. Each element has this form:

(regexp . handler)

All the Emacs primitives for file access and file name transformation check the given file
name against file-name-handler-alist. If the file name matches regexp, the primitives
handle that file by calling handler.

The first argument given to handler is the name of the primitive; the remaining argu-
ments are the arguments that were passed to that primitive. (The first of these arguments
is most often the file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:
(funcall handler ’file-exists-p filename)

When a function takes two or more arguments that must be file names, it checks each
of those names for a handler. For example, if you do this:

(expand-file-name filename dirname)

then it checks for a handler for filename and then for a handler for dirname. In either case,
the handler is called like this:

(funcall handler ’expand-file-name filename dirname)

The handler then needs to figure out whether to handle filename or dirname.
Here are the operations that a magic file name handler gets to handle:

add-name-to-file, copy-file, delete-directory,
delete-file,
diff-latest-backup-file,
directory-file-name,
directory-files,
dired-call-process,
dired-compress-file, dired-uncache,
expand-file-name,
file-accessible-directory-p,
file-attributes,
file-directory-p,
file-executable-p, file-exists-p,
file-local-copy,
file-modes, file-name-all-completions,
file-name-as-directory,
file-name-completion,

Chapter 25: Files 425

file-name-directory,
file-name-nondirectory,
file-name-sans-versions, file-newer-than-file-p,
file-ownership-preserved-p,
file-readable-p, file-regular-p, file-symlink-p,
file-truename, file-writable-p,
find-backup-file-name,
get-file-buffer,
insert-directory,
insert-file-contents,
load, make-directory,
make-symbolic-link, rename-file, set-file-modes,
set-visited-file-modtime, shell-command,
unhandled-file-name-directory,
vc-registered,
verify-visited-file-modtime,
write-region.

Handlers for insert-file-contents typically need to clear the buffer’s modified flag,
with (set-buffer-modified-p nil), if the visit argument is non-nil. This also has the
effect of unlocking the buffer if it is locked.

The handler function must handle all of the above operations, and possibly others to be
added in the future. It need not implement all these operations itself—when it has nothing
special to do for a certain operation, it can reinvoke the primitive, to handle the operation
“in the usual way”. It should always reinvoke the primitive for an operation it does not
recognize. Here’s one way to do this:

(defun my-file-handler (operation &rest args)
;; First check for the specific operations
;; that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)

((eq operation ’write-region) ...)
...
;; Handle any operation we don’t know about.
(t (let ((inhibit-file-name-handlers

(cons ’my-file-handler
(and (eq inhibit-file-name-operation operation)

inhibit-file-name-handlers)))
(inhibit-file-name-operation operation))

(apply operation args)))))

When a handler function decides to call the ordinary Emacs primitive for the operation
at hand, it needs to prevent the primitive from calling the same handler once again, thus
leading to an infinite recursion. The example above shows how to do this, with the vari-
ables inhibit-file-name-handlers and inhibit-file-name-operation. Be careful to
use them exactly as shown above; the details are crucial for proper behavior in the case of
multiple handlers, and for operations that have two file names that may each have handlers.

Variableinhibit-file-name-handlers
This variable holds a list of handlers whose use is presently inhibited for a certain
operation.

426 GNU Emacs Lisp Reference Manual

Variableinhibit-file-name-operation
The operation for which certain handlers are presently inhibited.

Functionfind-file-name-handler file operation
This function returns the handler function for file name file, or nil if there is none.
The argument operation should be the operation to be performed on the file—the
value you will pass to the handler as its first argument when you call it. The operation
is needed for comparison with inhibit-file-name-operation.

Functionfile-local-copy filename
This function copies file filename to an ordinary non-magic file, if it isn’t one already.
If filename specifies a magic file name, which programs outside Emacs cannot directly
read or write, this copies the contents to an ordinary file and returns that file’s name.
If filename is an ordinary file name, not magic, then this function does nothing and
returns nil.

Functionunhandled-file-name-directory filename
This function returns the name of a directory that is not magic. It uses the directory
part of filename if that is not magic. For a magic file name, it invokes the file name
handler, which therefore decides what value to return.
This is useful for running a subprocess; every subprocess must have a non-magic
directory to serve as its current directory, and this function is a good way to come up
with one.

25.12 File Format Conversion

The variable format-alist defines a list of file formats, which describe textual repre-
sentations used in files for the data (text, text-properties, and possibly other information)
in an Emacs buffer. Emacs performs format conversion if appropriate when reading and
writing files.

Variableformat-alist
This list contains one format definition for each defined file format.

Each format definition is a list of this form:
(name doc-string regexp from-fn to-fn modify mode-fn)

Here is what the elements in a format definition mean:

name The name of this format.

doc-string A documentation string for the format.

regexp A regular expression which is used to recognize files represented in this format.

from-fn A shell command or function to decode data in this format (to convert file data
into the usual Emacs data representation).
A shell command is represented as a string; Emacs runs the command as a filter
to perform the conversion.

Chapter 25: Files 427

If from-fn is a function, it is called with two arguments, begin and end, which
specify the part of the buffer it should convert. It should convert the text by
editing it in place. Since this can change the length of the text, from-fn should
return the modified end position.
One responsibility of from-fn is to make sure that the beginning of the file no
longer matches regexp. Otherwise it is likely to get called again.

to-fn A shell command or function to encode data in this format—that is, to convert
the usual Emacs data representation into this format.
If to-fn is a string, it is a shell command; Emacs runs the command as a filter
to perform the conversion.
If to-fn is a function, it is called with two arguments, begin and end, which
specify the part of the buffer it should convert. There are two ways it can do
the conversion:
• By editing the buffer in place. In this case, to-fn should return the end-

position of the range of text, as modified.
• By returning a list of annotations. This is a list of elements of the form

(position . string), where position is an integer specifying the relative po-
sition in the text to be written, and string is the annotation to add there.
The list must be sorted in order of position when to-fn returns it.
When write-region actually writes the text from the buffer to the file,
it intermixes the specified annotations at the corresponding positions. All
this takes place without modifying the buffer.

modify A flag, t if the encoding function modifies the buffer, and nil if it works by
returning a list of annotations.

mode-fn A minor-mode function to call after visiting a file converted from this format.
The function is called with one argument, the integer 1; that tells a minor-mode
function to enable the mode.

The function insert-file-contents automatically recognizes file formats when it reads
the specified file. It checks the text of the beginning of the file against the regular expressions
of the format definitions, and if it finds a match, it calls the decoding function for that
format. Then it checks all the known formats over again. It keeps checking them until none
of them is applicable.

Visiting a file, with find-file-noselect or the commands that use it, performs conver-
sion likewise (because it calls insert-file-contents); it also calls the mode function for
each format that it decodes. It stores a list of the format names in the buffer-local variable
buffer-file-format.

Variablebuffer-file-format
This variable states the format of the visited file. More precisely, this is a list of the
file format names that were decoded in the course of visiting the current buffer’s file.
It is always buffer-local in all buffers.

When write-region writes data into a file, it first calls the encoding functions for the
formats listed in buffer-file-format, in the order of appearance in the list.

428 GNU Emacs Lisp Reference Manual

Commandformat-write-file file format
This command writes the current buffer contents into the file file in format format,
and makes that format the default for future saves of the buffer. The argument format
is a list of format names.

Commandformat-find-file file format
This command finds the file file, converting it according to format format. It also
makes format the default if the buffer is saved later.
The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Commandformat-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format.
If beg and end are non-nil, they specify which part of the file to read, as in insert-
file-contents (see Section 25.3 [Reading from Files], page 403).
The return value is like what insert-file-contents returns: a list of the absolute
file name and the length of the data inserted (after conversion).
The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just 〈RET〉 for format specifies nil.

Variableauto-save-file-format
This variable specifies the format to use for auto-saving. Its value is a list of format
names, just like the value of buffer-file-format; however, it is used instead of
buffer-file-format for writing auto-save files. This variable is always buffer-local
in all buffers.

Chapter 26: Backups and Auto-Saving 429

26 Backups and Auto-Saving

Backup files and auto-save files are two methods by which Emacs tries to protect the
user from the consequences of crashes or of the user’s own errors. Auto-saving preserves
the text from earlier in the current editing session; backup files preserve file contents prior
to the current session.

26.1 Backup Files

A backup file is a copy of the old contents of a file you are editing. Emacs makes a
backup file the first time you save a buffer into its visited file. Normally, this means that
the backup file contains the contents of the file as it was before the current editing session.
The contents of the backup file normally remain unchanged once it exists.

Backups are usually made by renaming the visited file to a new name. Optionally, you
can specify that backup files should be made by copying the visited file. This choice makes
a difference for files with multiple names; it also can affect whether the edited file remains
owned by the original owner or becomes owned by the user editing it.

By default, Emacs makes a single backup file for each file edited. You can alternatively
request numbered backups; then each new backup file gets a new name. You can delete
old numbered backups when you don’t want them any more, or Emacs can delete them
automatically.

26.1.1 Making Backup Files

Functionbackup-buffer
This function makes a backup of the file visited by the current buffer, if appropriate.
It is called by save-buffer before saving the buffer the first time.

Variablebuffer-backed-up
This buffer-local variable indicates whether this buffer’s file has been backed up on
account of this buffer. If it is non-nil, then the backup file has been written. Oth-
erwise, the file should be backed up when it is next saved (if backups are enabled).
This is a permanent local; kill-all-local-variables does not alter it.

User Optionmake-backup-files
This variable determines whether or not to make backup files. If it is non-nil, then
Emacs creates a backup of each file when it is saved for the first time—provided that
backup-inhibited is nil (see below).
The following example shows how to change the make-backup-files variable only
in the Rmail buffers and not elsewhere. Setting it nil stops Emacs from making
backups of these files, which may save disk space. (You would put this code in your
init file.)

(add-hook ’rmail-mode-hook
(function (lambda ()

(make-local-variable
’make-backup-files)

(setq make-backup-files nil))))

430 GNU Emacs Lisp Reference Manual

Variablebackup-enable-predicate
This variable’s value is a function to be called on certain occasions to decide whether
a file should have backup files. The function receives one argument, a file name to
consider. If the function returns nil, backups are disabled for that file. Otherwise,
the other variables in this section say whether and how to make backups.

The default value is normal-backup-enable-predicate, which checks for files in
temporary-file-directory and small-temporary-file-directory.

Variablebackup-inhibited
If this variable is non-nil, backups are inhibited. It records the result of testing
backup-enable-predicate on the visited file name. It can also coherently be used
by other mechanisms that inhibit backups based on which file is visited. For example,
VC sets this variable non-nil to prevent making backups for files managed with a
version control system.

This is a permanent local, so that changing the major mode does not lose its value.
Major modes should not set this variable—they should set make-backup-files in-
stead.

Variablebackup-directory-alist
This variable’s value is an alist of filename patterns and backup directory names.
Each element looks like

(regexp . directory)

Backups of files with names matching regexp will be made in directory. directory
may be relative or absolute. If it is absolute, so that all matching files are backed up
into the same directory, the file names in this directory will be the full name of the
file backed up with all directory separators changed to ‘!’ to prevent clashes. This
will not work correctly if your filesystem truncates the resulting name.

For the common case of all backups going into one directory, the alist should contain
a single element pairing ‘"."’ with the appropriate directory name.

If this variable is nil, or it fails to match a filename, the backup is made in the
original file’s directory.

On MS-DOS filesystems without long names this variable is always ignored.

Variablemake-backup-file-name-function
This variable’s value is a function to use for making backups instead of the default
make-backup-file-name. A value of nil gives the default make-backup-file-name
behaviour.

This could be buffer-local to do something special for specific files. If you define it,
you may need to change backup-file-name-p and file-name-sans-versions too.

26.1.2 Backup by Renaming or by Copying?

There are two ways that Emacs can make a backup file:

Chapter 26: Backups and Auto-Saving 431

• Emacs can rename the original file so that it becomes a backup file, and then write the
buffer being saved into a new file. After this procedure, any other names (i.e., hard
links) of the original file now refer to the backup file. The new file is owned by the user
doing the editing, and its group is the default for new files written by the user in that
directory.

• Emacs can copy the original file into a backup file, and then overwrite the original
file with new contents. After this procedure, any other names (i.e., hard links) of the
original file continue to refer to the current (updated) version of the file. The file’s
owner and group will be unchanged.

The first method, renaming, is the default.
The variable backup-by-copying, if non-nil, says to use the second method, which is

to copy the original file and overwrite it with the new buffer contents. The variable file-
precious-flag, if non-nil, also has this effect (as a sideline of its main significance). See
Section 25.2 [Saving Buffers], page 400.

Variablebackup-by-copying
If this variable is non-nil, Emacs always makes backup files by copying.

The following two variables, when non-nil, cause the second method to be used in
certain special cases. They have no effect on the treatment of files that don’t fall into the
special cases.

Variablebackup-by-copying-when-linked
If this variable is non-nil, Emacs makes backups by copying for files with multiple
names (hard links).
This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

Variablebackup-by-copying-when-mismatch
If this variable is non-nil, Emacs makes backups by copying in cases where renaming
would change either the owner or the group of the file.
The value has no effect when renaming would not alter the owner or group of the file;
that is, for files which are owned by the user and whose group matches the default
for a new file created there by the user.
This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

Variablebackup-by-copying-when-privileged-mismatch
This variable, if non-nil, specifies the same behavior as backup-by-copying-when-
mismatch, but only for certain user-id values: namely, those less than or equal to a
certain number. You set this variable to that number.
Thus, if you set backup-by-copying-when-privileged-mismatch to 0, backup by
copying is done for the superuser only, when necessary to prevent a change in the
owner of the file.
The default is 200.

432 GNU Emacs Lisp Reference Manual

26.1.3 Making and Deleting Numbered Backup Files

If a file’s name is ‘foo’, the names of its numbered backup versions are ‘foo.~v~’, for
various integers v, like this: ‘foo.~1~’, ‘foo.~2~’, ‘foo.~3~’, . . . , ‘foo.~259~’, and so on.

User Optionversion-control
This variable controls whether to make a single non-numbered backup file or multiple
numbered backups.

nil Make numbered backups if the visited file already has numbered backups;
otherwise, do not.

never Do not make numbered backups.

anything else
Make numbered backups.

The use of numbered backups ultimately leads to a large number of backup versions,
which must then be deleted. Emacs can do this automatically or it can ask the user whether
to delete them.

User Optionkept-new-versions
The value of this variable is the number of newest versions to keep when a new
numbered backup is made. The newly made backup is included in the count. The
default value is 2.

User Optionkept-old-versions
The value of this variable is the number of oldest versions to keep when a new num-
bered backup is made. The default value is 2.

If there are backups numbered 1, 2, 3, 5, and 7, and both of these variables have the
value 2, then the backups numbered 1 and 2 are kept as old versions and those numbered
5 and 7 are kept as new versions; backup version 3 is excess. The function find-backup-
file-name (see Section 26.1.4 [Backup Names], page 433) is responsible for determining
which backup versions to delete, but does not delete them itself.

User Optiondelete-old-versions
If this variable is t, then saving a file deletes excess backup versions silently. If it is
nil, that means to ask for confirmation before deleting excess backups. Otherwise,
they are not deleted at all.

User Optiondired-kept-versions
This variable specifies how many of the newest backup versions to keep in the Dired
command . (dired-clean-directory). That’s the same thing kept-new-versions
specifies when you make a new backup file. The default value is 2.

Chapter 26: Backups and Auto-Saving 433

26.1.4 Naming Backup Files

The functions in this section are documented mainly because you can customize the
naming conventions for backup files by redefining them. If you change one, you probably
need to change the rest.

Functionbackup-file-name-p filename
This function returns a non-nil value if filename is a possible name for a backup file.
A file with the name filename need not exist; the function just checks the name.

(backup-file-name-p "foo")
⇒ nil

(backup-file-name-p "foo~")
⇒ 3

The standard definition of this function is as follows:

(defun backup-file-name-p (file)
"Return non-nil if FILE is a backup file \

name (numeric or not)..."
(string-match "~\\’" file))

Thus, the function returns a non-nil value if the file name ends with a ‘~’. (We use a
backslash to split the documentation string’s first line into two lines in the text, but
produce just one line in the string itself.)

This simple expression is placed in a separate function to make it easy to redefine for
customization.

Functionmake-backup-file-name filename
This function returns a string that is the name to use for a non-numbered backup file
for file filename. On Unix, this is just filename with a tilde appended.

The standard definition of this function, on most operating systems, is as follows:

(defun make-backup-file-name (file)
"Create the non-numeric backup file name for FILE..."
(concat file "~"))

You can change the backup-file naming convention by redefining this function. The
following example redefines make-backup-file-name to prepend a ‘.’ in addition to
appending a tilde:

(defun make-backup-file-name (filename)
(expand-file-name
(concat "." (file-name-nondirectory filename) "~")
(file-name-directory filename)))

(make-backup-file-name "backups.texi")
⇒ ".backups.texi~"

Some parts of Emacs, including some Dired commands, assume that backup file names
end with ‘~’. If you do not follow that convention, it will not cause serious problems,
but these commands may give less-than-desirable results.

434 GNU Emacs Lisp Reference Manual

Functionfind-backup-file-name filename
This function computes the file name for a new backup file for filename. It may also
propose certain existing backup files for deletion. find-backup-file-name returns a
list whose car is the name for the new backup file and whose cdr is a list of backup
files whose deletion is proposed.
Two variables, kept-old-versions and kept-new-versions, determine which
backup versions should be kept. This function keeps those versions by excluding
them from the cdr of the value. See Section 26.1.3 [Numbered Backups], page 432.
In this example, the value says that ‘~rms/foo.~5~’ is the name to use for the new
backup file, and ‘~rms/foo.~3~’ is an “excess” version that the caller should consider
deleting now.

(find-backup-file-name "~rms/foo")
⇒ ("~rms/foo.~5~" "~rms/foo.~3~")

Functionfile-newest-backup filename
This function returns the name of the most recent backup file for filename, or nil if
that file has no backup files.
Some file comparison commands use this function so that they can automatically
compare a file with its most recent backup.

26.2 Auto-Saving

Emacs periodically saves all files that you are visiting; this is called auto-saving. Auto-
saving prevents you from losing more than a limited amount of work if the system crashes.
By default, auto-saves happen every 300 keystrokes, or after around 30 seconds of idle time.
See section “Auto-Saving: Protection Against Disasters” in The GNU Emacs Manual, for
information on auto-save for users. Here we describe the functions used to implement
auto-saving and the variables that control them.

Variablebuffer-auto-save-file-name
This buffer-local variable is the name of the file used for auto-saving the current
buffer. It is nil if the buffer should not be auto-saved.

buffer-auto-save-file-name
⇒ "/xcssun/users/rms/lewis/#backups.texi#"

Commandauto-save-mode arg
When used interactively without an argument, this command is a toggle switch: it
turns on auto-saving of the current buffer if it is off, and vice versa. With an argument
arg, the command turns auto-saving on if the value of arg is t, a nonempty list, or a
positive integer. Otherwise, it turns auto-saving off.

Functionauto-save-file-name-p filename
This function returns a non-nil value if filename is a string that could be the name
of an auto-save file. It assumes the usual naming convention for auto-save files: a
name that begins and ends with hash marks (‘#’) is a possible auto-save file name.
The argument filename should not contain a directory part.

Chapter 26: Backups and Auto-Saving 435

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#backups.texi#"

(auto-save-file-name-p "#backups.texi#")
⇒ 0

(auto-save-file-name-p "backups.texi")
⇒ nil

The standard definition of this function is as follows:
(defun auto-save-file-name-p (filename)
"Return non-nil if FILENAME can be yielded by..."
(string-match "^#.*#$" filename))

This function exists so that you can customize it if you wish to change the naming
convention for auto-save files. If you redefine it, be sure to redefine the function
make-auto-save-file-name correspondingly.

Functionmake-auto-save-file-name
This function returns the file name to use for auto-saving the current buffer. This
is just the file name with hash marks (‘#’) prepended and appended to it. This
function does not look at the variable auto-save-visited-file-name (described
below); callers of this function should check that variable first.

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#backups.texi#"

The standard definition of this function is as follows:
(defun make-auto-save-file-name ()
"Return file name to use for auto-saves \

of current buffer.."
(if buffer-file-name

(concat
(file-name-directory buffer-file-name)
"#"
(file-name-nondirectory buffer-file-name)
"#")

(expand-file-name
(concat "#%" (buffer-name) "#"))))

This exists as a separate function so that you can redefine it to customize the nam-
ing convention for auto-save files. Be sure to change auto-save-file-name-p in a
corresponding way.

Variableauto-save-visited-file-name
If this variable is non-nil, Emacs auto-saves buffers in the files they are visiting. That
is, the auto-save is done in the same file that you are editing. Normally, this variable
is nil, so auto-save files have distinct names that are created by make-auto-save-
file-name.
When you change the value of this variable, the new value does not take effect in
an existing buffer until the next time auto-save mode is reenabled in it. If auto-
save mode is already enabled, auto-saves continue to go in the same file name until
auto-save-mode is called again.

436 GNU Emacs Lisp Reference Manual

Functionrecent-auto-save-p
This function returns t if the current buffer has been auto-saved since the last time
it was read in or saved.

Functionset-buffer-auto-saved
This function marks the current buffer as auto-saved. The buffer will not be auto-
saved again until the buffer text is changed again. The function returns nil.

User Optionauto-save-interval
The value of this variable specifies how often to do auto-saving, in terms of number
of input events. Each time this many additional input events are read, Emacs does
auto-saving for all buffers in which that is enabled.

User Optionauto-save-timeout
The value of this variable is the number of seconds of idle time that should cause
auto-saving. Each time the user pauses for this long, Emacs does auto-saving for all
buffers in which that is enabled. (If the current buffer is large, the specified timeout
is multiplied by a factor that increases as the size increases; for a million-byte buffer,
the factor is almost 4.)
If the value is zero or nil, then auto-saving is not done as a result of idleness, only
after a certain number of input events as specified by auto-save-interval.

Variableauto-save-hook
This normal hook is run whenever an auto-save is about to happen.

User Optionauto-save-default
If this variable is non-nil, buffers that are visiting files have auto-saving enabled by
default. Otherwise, they do not.

Commanddo-auto-save &optional no-message current-only
This function auto-saves all buffers that need to be auto-saved. It saves all buffers for
which auto-saving is enabled and that have been changed since the previous auto-save.
Normally, if any buffers are auto-saved, a message that says ‘Auto-saving...’ is
displayed in the echo area while auto-saving is going on. However, if no-message is
non-nil, the message is inhibited.
If current-only is non-nil, only the current buffer is auto-saved.

Functiondelete-auto-save-file-if-necessary
This function deletes the current buffer’s auto-save file if delete-auto-save-files
is non-nil. It is called every time a buffer is saved.

Variabledelete-auto-save-files
This variable is used by the function delete-auto-save-file-if-necessary. If it
is non-nil, Emacs deletes auto-save files when a true save is done (in the visited file).
This saves disk space and unclutters your directory.

Chapter 26: Backups and Auto-Saving 437

Functionrename-auto-save-file
This function adjusts the current buffer’s auto-save file name if the visited file name
has changed. It also renames an existing auto-save file. If the visited file name has
not changed, this function does nothing.

Variablebuffer-saved-size
The value of this buffer-local variable is the length of the current buffer, when it was
last read in, saved, or auto-saved. This is used to detect a substantial decrease in
size, and turn off auto-saving in response.
If it is −1, that means auto-saving is temporarily shut off in this buffer due to a
substantial decrease in size. Explicitly saving the buffer stores a positive value in this
variable, thus reenabling auto-saving. Turning auto-save mode off or on also updates
this variable, so that the substantial decrease in size is forgotten.

Variableauto-save-list-file-name
This variable (if non-nil) specifies a file for recording the names of all the auto-save
files. Each time Emacs does auto-saving, it writes two lines into this file for each
buffer that has auto-saving enabled. The first line gives the name of the visited file
(it’s empty if the buffer has none), and the second gives the name of the auto-save
file.
When Emacs exits normally, it deletes this file; if Emacs crashes, you can look in the
file to find all the auto-save files that might contain work that was otherwise lost.
The recover-session command uses this file to find them.
The default name for this file specifies your home directory and starts with ‘.saves-’.
It also contains the Emacs process id and the host name.

Variableauto-save-list-file-prefix
After Emacs reads your init file, it initializes auto-save-list-file-name (if you
have not already set it non-nil) based on this prefix, adding the host name and
process ID. If you set this to nil in your init file, then Emacs does not initialize
auto-save-list-file-name.

26.3 Reverting

If you have made extensive changes to a file and then change your mind about them, you
can get rid of them by reading in the previous version of the file with the revert-buffer
command. See section “Reverting a Buffer” in The GNU Emacs Manual.

Commandrevert-buffer &optional ignore-auto noconfirm
This command replaces the buffer text with the text of the visited file on disk. This
action undoes all changes since the file was visited or saved.
By default, if the latest auto-save file is more recent than the visited file, and the
argument ignore-auto is nil, revert-buffer asks the user whether to use that auto-
save instead. When you invoke this command interactively, ignore-auto is t if there is
no numeric prefix argument; thus, the interactive default is not to check the auto-save
file.

438 GNU Emacs Lisp Reference Manual

Normally, revert-buffer asks for confirmation before it changes the buffer; but if
the argument noconfirm is non-nil, revert-buffer does not ask for confirmation.
Reverting tries to preserve marker positions in the buffer by using the replacement
feature of insert-file-contents. If the buffer contents and the file contents are
identical before the revert operation, reverting preserves all the markers. If they are
not identical, reverting does change the buffer; in that case, it preserves the markers
in the unchanged text (if any) at the beginning and end of the buffer. Preserving any
additional markers would be problematical.

You can customize how revert-buffer does its work by setting the variables described
in the rest of this section.

Variablerevert-without-query
This variable holds a list of files that should be reverted without query. The value
is a list of regular expressions. If the visited file name matches one of these regular
expressions, and the file has changed on disk but the buffer is not modified, then
revert-buffer reverts the file without asking the user for confirmation.

Some major modes customize revert-buffer by making buffer-local bindings for these
variables:

Variablerevert-buffer-function
The value of this variable is the function to use to revert this buffer. If non-nil, it
is called as a function with no arguments to do the work of reverting. If the value is
nil, reverting works the usual way.
Modes such as Dired mode, in which the text being edited does not consist of a
file’s contents but can be regenerated in some other fashion, can give this variable a
buffer-local value that is a function to regenerate the contents.

Variablerevert-buffer-insert-file-contents-function
The value of this variable, if non-nil, specifies the function to use to insert the
updated contents when reverting this buffer. The function receives two arguments:
first the file name to use; second, t if the user has asked to read the auto-save file.
The reason for a mode to set this variable instead of revert-buffer-function is
to avoid duplicating or replacing the rest of what revert-buffer does: asking for
confirmation, clearing the undo list, deciding the proper major mode, and running
the hooks listed below.

Variablebefore-revert-hook
This normal hook is run by revert-buffer before inserting the modified contents—
but only if revert-buffer-function is nil.

Variableafter-revert-hook
This normal hook is run by revert-buffer after inserting the modified contents—but
only if revert-buffer-function is nil.

Chapter 27: Buffers 439

27 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the
contents of files that are being visited; there may also be buffers that are not visiting files.
While several buffers may exist at one time, only one buffer is designated the current buffer
at any time. Most editing commands act on the contents of the current buffer. Each buffer,
including the current buffer, may or may not be displayed in any windows.

27.1 Buffer Basics

Buffers in Emacs editing are objects that have distinct names and hold text that can
be edited. Buffers appear to Lisp programs as a special data type. You can think of the
contents of a buffer as a string that you can extend; insertions and deletions may occur in
any part of the buffer. See Chapter 32 [Text], page 531.

A Lisp buffer object contains numerous pieces of information. Some of this information
is directly accessible to the programmer through variables, while other information is acces-
sible only through special-purpose functions. For example, the visited file name is directly
accessible through a variable, while the value of point is accessible only through a primitive
function.

Buffer-specific information that is directly accessible is stored in buffer-local variable
bindings, which are variable values that are effective only in a particular buffer. This feature
allows each buffer to override the values of certain variables. Most major modes override
variables such as fill-column or comment-column in this way. For more information
about buffer-local variables and functions related to them, see Section 11.10 [Buffer-Local
Variables], page 146.

For functions and variables related to visiting files in buffers, see Section 25.1 [Visiting
Files], page 397 and Section 25.2 [Saving Buffers], page 400. For functions and variables re-
lated to the display of buffers in windows, see Section 28.6 [Buffers and Windows], page 460.

Functionbufferp object
This function returns t if object is a buffer, nil otherwise.

27.2 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them
is designated as the current buffer. This is the buffer in which most editing takes place,
because most of the primitives for examining or changing text in a buffer operate implicitly
on the current buffer (see Chapter 32 [Text], page 531). Normally the buffer that is displayed
on the screen in the selected window is the current buffer, but this is not always so: a Lisp
program can temporarily designate any buffer as current in order to operate on its contents,
without changing what is displayed on the screen.

The way to designate a current buffer in a Lisp program is by calling set-buffer. The
specified buffer remains current until a new one is designated.

When an editing command returns to the editor command loop, the command loop
designates the buffer displayed in the selected window as current, to prevent confusion: the

440 GNU Emacs Lisp Reference Manual

buffer that the cursor is in when Emacs reads a command is the buffer that the command
will apply to. (See Chapter 21 [Command Loop], page 287.) Therefore, set-buffer is not
the way to switch visibly to a different buffer so that the user can edit it. For that, you
must use the functions described in Section 28.7 [Displaying Buffers], page 461.

Note: Lisp functions that change to a different current buffer should not depend on the
command loop to set it back afterwards. Editing commands written in Emacs Lisp can
be called from other programs as well as from the command loop; it is convenient for the
caller if the subroutine does not change which buffer is current (unless, of course, that is
the subroutine’s purpose). Therefore, you should normally use set-buffer within a save-
current-buffer or save-excursion (see Section 30.3 [Excursions], page 518) form that
will restore the current buffer when your function is done. Here is an example, the code for
the command append-to-buffer (with the documentation string abridged):

(defun append-to-buffer (buffer start end)
"Append to specified buffer the text of the region.

..."
(interactive "BAppend to buffer: \nr")
(let ((oldbuf (current-buffer)))
(save-current-buffer
(set-buffer (get-buffer-create buffer))
(insert-buffer-substring oldbuf start end))))

This function binds a local variable to record the current buffer, and then save-current-
buffer arranges to make it current again. Next, set-buffer makes the specified buffer
current. Finally, insert-buffer-substring copies the string from the original current
buffer to the specified (and now current) buffer.

If the buffer appended to happens to be displayed in some window, the next redisplay
will show how its text has changed. Otherwise, you will not see the change immediately on
the screen. The buffer becomes current temporarily during the execution of the command,
but this does not cause it to be displayed.

If you make local bindings (with let or function arguments) for a variable that may
also have buffer-local bindings, make sure that the same buffer is current at the beginning
and at the end of the local binding’s scope. Otherwise you might bind it in one buffer
and unbind it in another! There are two ways to do this. In simple cases, you may see
that nothing ever changes the current buffer within the scope of the binding. Otherwise,
use save-current-buffer or save-excursion to make sure that the buffer current at the
beginning is current again whenever the variable is unbound.

Do not rely on using set-buffer to change the current buffer back, because that won’t
do the job if a quit happens while the wrong buffer is current. Here is what not to do:

(let (buffer-read-only
(obuf (current-buffer)))

(set-buffer ...)
...
(set-buffer obuf))

Using save-current-buffer, as shown here, handles quitting, errors, and throw, as well
as ordinary evaluation.

Chapter 27: Buffers 441

(let (buffer-read-only)
(save-current-buffer
(set-buffer ...)
...))

Functioncurrent-buffer
This function returns the current buffer.

(current-buffer)
⇒ #<buffer buffers.texi>

Functionset-buffer buffer-or-name
This function makes buffer-or-name the current buffer. This does not display the
buffer in any window, so the user cannot necessarily see the buffer. But Lisp programs
will now operate on it.

This function returns the buffer identified by buffer-or-name. An error is signaled if
buffer-or-name does not identify an existing buffer.

Special Formsave-current-buffer body...
The save-current-buffer macro saves the identity of the current buffer, evaluates
the body forms, and finally restores that buffer as current. The return value is the
value of the last form in body. The current buffer is restored even in case of an
abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 123).

If the buffer that used to be current has been killed by the time of exit from save-
current-buffer, then it is not made current again, of course. Instead, whichever
buffer was current just before exit remains current.

Macrowith-current-buffer buffer body...
The with-current-buffer macro saves the identity of the current buffer, makes
buffer current, evaluates the body forms, and finally restores the buffer. The return
value is the value of the last form in body. The current buffer is restored even in case
of an abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 123).

Macrowith-temp-buffer body...
The with-temp-buffer macro evaluates the body forms with a temporary buffer as
the current buffer. It saves the identity of the current buffer, creates a temporary
buffer and makes it current, evaluates the body forms, and finally restores the previous
current buffer while killing the temporary buffer.

The return value is the value of the last form in body. You can return the contents
of the temporary buffer by using (buffer-string) as the last form.

The current buffer is restored even in case of an abnormal exit via throw or error (see
Section 10.5 [Nonlocal Exits], page 123).

See also with-temp-file in Section 25.4 [Writing to Files], page 404.

442 GNU Emacs Lisp Reference Manual

27.3 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work
on buffers accept either a buffer or a buffer name as an argument. Any argument called
buffer-or-name is of this sort, and an error is signaled if it is neither a string nor a buffer.
Any argument called buffer must be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names start-
ing with a space, so that the list-buffers and buffer-menu commands don’t mention
them. A name starting with space also initially disables recording undo information; see
Section 32.9 [Undo], page 544.

Functionbuffer-name &optional buffer
This function returns the name of buffer as a string. If buffer is not supplied, it
defaults to the current buffer.

If buffer-name returns nil, it means that buffer has been killed. See Section 27.10
[Killing Buffers], page 450.

(buffer-name)
⇒ "buffers.texi"

(setq foo (get-buffer "temp"))
⇒ #<buffer temp>

(kill-buffer foo)
⇒ nil

(buffer-name foo)
⇒ nil

foo
⇒ #<killed buffer>

Commandrename-buffer newname &optional unique
This function renames the current buffer to newname. An error is signaled if newname
is not a string, or if there is already a buffer with that name. The function returns
newname.

Ordinarily, rename-buffer signals an error if newname is already in use. However,
if unique is non-nil, it modifies newname to make a name that is not in use. Inter-
actively, you can make unique non-nil with a numeric prefix argument. (This is how
the command rename-uniquely is implemented.)

Functionget-buffer buffer-or-name
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a
string and there is no buffer with that name, the value is nil. If buffer-or-name is
a buffer, it is returned as given; that is not very useful, so the argument is usually a
name. For example:

(setq b (get-buffer "lewis"))
⇒ #<buffer lewis>

(get-buffer b)
⇒ #<buffer lewis>

Chapter 27: Buffers 443

(get-buffer "Frazzle-nots")
⇒ nil

See also the function get-buffer-create in Section 27.9 [Creating Buffers], page 449.

Functiongenerate-new-buffer-name starting-name &rest ignore
This function returns a name that would be unique for a new buffer—but does not
create the buffer. It starts with starting-name, and produces a name not currently in
use for any buffer by appending a number inside of ‘<...>’.
If the optional second argument ignore is non-nil, it should be a string; it makes a
difference if it is a name in the sequence of names to be tried. That name will be
considered acceptable, if it is tried, even if a buffer with that name exists. Thus, if
buffers named ‘foo’, ‘foo<2>’, ‘foo<3>’ and ‘foo<4>’ exist,

(generate-new-buffer-name "foo")
⇒ "foo<5>"

(generate-new-buffer-name "foo" "foo<3>")
⇒ "foo<3>"

(generate-new-buffer-name "foo" "foo<6>")
⇒ "foo<5>"

See the related function generate-new-buffer in Section 27.9 [Creating Buffers],
page 449.

27.4 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer
is not visiting a file, its buffer file name is nil. Most of the time, the buffer name is the
same as the nondirectory part of the buffer file name, but the buffer file name and the buffer
name are distinct and can be set independently. See Section 25.1 [Visiting Files], page 397.

Functionbuffer-file-name &optional buffer
This function returns the absolute file name of the file that buffer is visiting. If buffer
is not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it
defaults to the current buffer.

(buffer-file-name (other-buffer))
⇒ "/usr/user/lewis/manual/files.texi"

Variablebuffer-file-name
This buffer-local variable contains the name of the file being visited in the current
buffer, or nil if it is not visiting a file. It is a permanent local variable, unaffected
by kill-all-local-variables.

buffer-file-name
⇒ "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. Normally
it is better to use set-visited-file-name (see below); some of the things done there,
such as changing the buffer name, are not strictly necessary, but others are essential
to avoid confusing Emacs.

444 GNU Emacs Lisp Reference Manual

Variablebuffer-file-truename
This buffer-local variable holds the truename of the file visited in the current buffer,
or nil if no file is visited. It is a permanent local, unaffected by kill-all-local-
variables. See Section 25.6.3 [Truenames], page 409.

Variablebuffer-file-number
This buffer-local variable holds the file number and directory device number of the
file visited in the current buffer, or nil if no file or a nonexistent file is visited. It is
a permanent local, unaffected by kill-all-local-variables.

The value is normally a list of the form (filenum devnum). This pair of numbers
uniquely identifies the file among all files accessible on the system. See the function
file-attributes, in Section 25.6.4 [File Attributes], page 409, for more information
about them.

Functionget-file-buffer filename
This function returns the buffer visiting file filename. If there is no such buffer,
it returns nil. The argument filename, which must be a string, is expanded (see
Section 25.8.4 [File Name Expansion], page 417), then compared against the visited
file names of all live buffers.

(get-file-buffer "buffers.texi")
⇒ #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file
name. In such cases, this function returns the first such buffer in the buffer list.

Commandset-visited-file-name filename &optional no-query along-with-file
If filename is a non-empty string, this function changes the name of the file visited
in the current buffer to filename. (If the buffer had no visited file, this gives it one.)
The next time the buffer is saved it will go in the newly-specified file. This command
marks the buffer as modified, since it does not (as far as Emacs knows) match the
contents of filename, even if it matched the former visited file.

If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file.

Normally, this function asks the user for confirmation if the specified file already
exists. If no-query is non-nil, that prevents asking this question.

If along-with-file is non-nil, that means to assume that the former visited file has
been renamed to filename.

When the function set-visited-file-name is called interactively, it prompts for
filename in the minibuffer.

Variablelist-buffers-directory
This buffer-local variable specifies a string to display in a buffer listing where the
visited file name would go, for buffers that don’t have a visited file name. Dired
buffers use this variable.

Chapter 27: Buffers 445

27.5 Buffer Modification

Emacs keeps a flag called the modified flag for each buffer, to record whether you have
changed the text of the buffer. This flag is set to t whenever you alter the contents of the
buffer, and cleared to nil when you save it. Thus, the flag shows whether there are unsaved
changes. The flag value is normally shown in the mode line (see Section 23.3.2 [Mode Line
Variables], page 371), and controls saving (see Section 25.2 [Saving Buffers], page 400) and
auto-saving (see Section 26.2 [Auto-Saving], page 434).

Some Lisp programs set the flag explicitly. For example, the function set-visited-
file-name sets the flag to t, because the text does not match the newly-visited file, even
if it is unchanged from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 32 [Text],
page 531.

Functionbuffer-modified-p &optional buffer
This function returns t if the buffer buffer has been modified since it was last read
in from a file or saved, or nil otherwise. If buffer is not supplied, the current buffer
is tested.

Functionset-buffer-modified-p flag
This function marks the current buffer as modified if flag is non-nil, or as unmodified
if the flag is nil.
Another effect of calling this function is to cause unconditional redisplay of the mode
line for the current buffer. In fact, the function force-mode-line-update works by
doing this:

(set-buffer-modified-p (buffer-modified-p))

Commandnot-modified
This command marks the current buffer as unmodified, and not needing to be saved.
With prefix arg, it marks the buffer as modified, so that it will be saved at the next
suitable occasion.
Don’t use this function in programs, since it prints a message in the echo area; use
set-buffer-modified-p (above) instead.

Functionbuffer-modified-tick &optional buffer
This function returns buffer’s modification-count. This is a counter that increments
every time the buffer is modified. If buffer is nil (or omitted), the current buffer is
used.

27.6 Comparison of Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself
is changed on disk. At this point, saving the buffer would overwrite the changes in the file.
Occasionally this may be what you want, but usually it would lose valuable information.
Emacs therefore checks the file’s modification time using the functions described below
before saving the file.

446 GNU Emacs Lisp Reference Manual

Functionverify-visited-file-modtime buffer
This function compares what buffer has recorded for the modification time of its
visited file against the actual modification time of the file as recorded by the operating
system. The two should be the same unless some other process has written the file
since Emacs visited or saved it.

The function returns t if the last actual modification time and Emacs’s recorded
modification time are the same, nil otherwise.

Functionclear-visited-file-modtime
This function clears out the record of the last modification time of the file being
visited by the current buffer. As a result, the next attempt to save this buffer will
not complain of a discrepancy in file modification times.

This function is called in set-visited-file-name and other exceptional places where
the usual test to avoid overwriting a changed file should not be done.

Functionvisited-file-modtime
This function returns the buffer’s recorded last file modification time, as a list of the
form (high . low). (This is the same format that file-attributes uses to return
time values; see Section 25.6.4 [File Attributes], page 409.)

Functionset-visited-file-modtime &optional time
This function updates the buffer’s record of the last modification time of the visited
file, to the value specified by time if time is not nil, and otherwise to the last
modification time of the visited file.

If time is not nil, it should have the form (high . low) or (high low), in either case
containing two integers, each of which holds 16 bits of the time.

This function is useful if the buffer was not read from the file normally, or if the file
itself has been changed for some known benign reason.

Functionask-user-about-supersession-threat filename
This function is used to ask a user how to proceed after an attempt to modify an
obsolete buffer visiting file filename. An obsolete buffer is an unmodified buffer for
which the associated file on disk is newer than the last save-time of the buffer. This
means some other program has probably altered the file.

Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (filename), in which case the proposed buffer modification is not allowed.

This function is called automatically by Emacs on the proper occasions. It exists so
you can customize Emacs by redefining it. See the file ‘userlock.el’ for the standard
definition.

See also the file locking mechanism in Section 25.5 [File Locks], page 405.

Chapter 27: Buffers 447

27.7 Read-Only Buffers

If a buffer is read-only, then you cannot change its contents, although you may change
your view of the contents by scrolling and narrowing.

Read-only buffers are used in two kinds of situations:
• A buffer visiting a write-protected file is normally read-only.

Here, the purpose is to inform the user that editing the buffer with the aim of saving it
in the file may be futile or undesirable. The user who wants to change the buffer text
despite this can do so after clearing the read-only flag with C-x C-q.

• Modes such as Dired and Rmail make buffers read-only when altering the contents with
the usual editing commands would probably be a mistake.
The special commands of these modes bind buffer-read-only to nil (with let) or
bind inhibit-read-only to t around the places where they themselves change the
text.

Variablebuffer-read-only
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-
only if this variable is non-nil.

Variableinhibit-read-only
If this variable is non-nil, then read-only buffers and read-only characters may be
modified. Read-only characters in a buffer are those that have non-nil read-only
properties (either text properties or overlay properties). See Section 32.19.4 [Special
Properties], page 567, for more information about text properties. See Section 38.9
[Overlays], page 671, for more information about overlays and their properties.
If inhibit-read-only is t, all read-only character properties have no effect. If
inhibit-read-only is a list, then read-only character properties have no effect if
they are members of the list (comparison is done with eq).

Commandtoggle-read-only
This command changes whether the current buffer is read-only. It is intended for
interactive use; do not use it in programs. At any given point in a program, you
should know whether you want the read-only flag on or off; so you can set buffer-
read-only explicitly to the proper value, t or nil.

Functionbarf-if-buffer-read-only
This function signals a buffer-read-only error if the current buffer is read-only.
See Section 21.3 [Interactive Call], page 292, for another way to signal an error if the
current buffer is read-only.

27.8 The Buffer List

The buffer list is a list of all live buffers. Creating a buffer adds it to this list, and killing
a buffer excises it. The order of the buffers in the list is based primarily on how recently
each buffer has been displayed in the selected window. Buffers move to the front of the

448 GNU Emacs Lisp Reference Manual

list when they are selected and to the end when they are buried (see bury-buffer, below).
Several functions, notably other-buffer, use this ordering. A buffer list displayed for the
user also follows this order.

In addition to the fundamental Emacs buffer list, each frame has its own version of the
buffer list, in which the buffers that have been selected in that frame come first, starting
with the buffers most recently selected in that frame. (This order is recorded in frame’s
buffer-list frame parameter; see Section 29.3.3 [Window Frame Parameters], page 486.)
The buffers that were never selected in frame come afterward, ordered according to the
fundamental Emacs buffer list.

Functionbuffer-list &optional frame
This function returns the buffer list, including all buffers, even those whose names
begin with a space. The elements are actual buffers, not their names.

If frame is a frame, this returns frame’s buffer list. If frame is nil, the fundamental
Emacs buffer list is used: all the buffers appear in order of most recent selection,
regardless of which frames they were selected in.

(buffer-list)
⇒ (#<buffer buffers.texi>

#<buffer *Minibuf-1*> #<buffer buffer.c>
#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer
;; begins with a space!
(mapcar (function buffer-name) (buffer-list))

⇒ ("buffers.texi" " *Minibuf-1*"
"buffer.c" "*Help*" "TAGS")

The list that buffer-list returns is constructed specifically by buffer-list; it is not
an internal Emacs data structure, and modifying it has no effect on the order of buffers. If
you want to change the order of buffers in the frame-independent buffer list, here is an easy
way:

(defun reorder-buffer-list (new-list)
(while new-list
(bury-buffer (car new-list))
(setq new-list (cdr new-list))))

With this method, you can specify any order for the list, but there is no danger of losing
a buffer or adding something that is not a valid live buffer.

To change the order or value of a frame’s buffer list, set the frame’s buffer-list
frame parameter with modify-frame-parameters (see Section 29.3.1 [Parameter Access],
page 485).

Functionother-buffer &optional buffer visible-ok frame
This function returns the first buffer in the buffer list other than buffer. Usually
this is the buffer selected most recently (in frame frame or else the currently selected
frame, see Section 29.9 [Input Focus], page 495), aside from buffer. Buffers whose
names start with a space are not considered at all.

Chapter 27: Buffers 449

If buffer is not supplied (or if it is not a buffer), then other-buffer returns the first
buffer in the selected frame’s buffer list that is not now visible in any window in a
visible frame.

If frame has a non-nil buffer-predicate parameter, then other-buffer uses that
predicate to decide which buffers to consider. It calls the predicate once for each
buffer, and if the value is nil, that buffer is ignored. See Section 29.3.3 [Window
Frame Parameters], page 486.

If visible-ok is nil, other-buffer avoids returning a buffer visible in any window on
any visible frame, except as a last resort. If visible-ok is non-nil, then it does not
matter whether a buffer is displayed somewhere or not.

If no suitable buffer exists, the buffer ‘*scratch*’ is returned (and created, if neces-
sary).

Commandbury-buffer &optional buffer-or-name
This function puts buffer-or-name at the end of the buffer list, without changing the
order of any of the other buffers on the list. This buffer therefore becomes the least
desirable candidate for other-buffer to return.

bury-buffer operates on each frame’s buffer-list parameter as well as the frame-
independent Emacs buffer list; therefore, the buffer that you bury will come last in
the value of (buffer-list frame) and in the value of (buffer-list nil).

If buffer-or-name is nil or omitted, this means to bury the current buffer. In addition,
if the buffer is displayed in the selected window, this switches to some other buffer
(obtained using other-buffer) in the selected window. But if the buffer is displayed
in some other window, it remains displayed there.

To replace a buffer in all the windows that display it, use replace-buffer-in-
windows. See Section 28.6 [Buffers and Windows], page 460.

27.9 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create cre-
ates a buffer if it finds no existing buffer with the specified name; generate-new-buffer
always creates a new buffer and gives it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see
Section 38.8 [Temporary Displays], page 669) and create-file-buffer (see Section 25.1
[Visiting Files], page 397). Starting a subprocess can also create a buffer (see Chapter 37
[Processes], page 641).

Functionget-buffer-create name
This function returns a buffer named name. It returns an existing buffer with that
name, if one exists; otherwise, it creates a new buffer. The buffer does not become
the current buffer—this function does not change which buffer is current.

An error is signaled if name is not a string.
(get-buffer-create "foo")

⇒ #<buffer foo>

450 GNU Emacs Lisp Reference Manual

The major mode for the new buffer is set to Fundamental mode. The variable
default-major-mode is handled at a higher level. See Section 23.1.3 [Auto Major
Mode], page 361.

Functiongenerate-new-buffer name
This function returns a newly created, empty buffer, but does not make it current. If
there is no buffer named name, then that is the name of the new buffer. If that name
is in use, this function adds suffixes of the form ‘<n>’ to name, where n is an integer.
It tries successive integers starting with 2 until it finds an available name.
An error is signaled if name is not a string.

(generate-new-buffer "bar")
⇒ #<buffer bar>

(generate-new-buffer "bar")
⇒ #<buffer bar<2>>

(generate-new-buffer "bar")
⇒ #<buffer bar<3>>

The major mode for the new buffer is set to Fundamental mode. The variable
default-major-mode is handled at a higher level. See Section 23.1.3 [Auto Major
Mode], page 361.
See the related function generate-new-buffer-name in Section 27.3 [Buffer Names],
page 442.

27.10 Killing Buffers

Killing a buffer makes its name unknown to Emacs and makes its text space available
for other use.

The buffer object for the buffer that has been killed remains in existence as long as
anything refers to it, but it is specially marked so that you cannot make it current or
display it. Killed buffers retain their identity, however; if you kill two distinct buffers, they
remain distinct according to eq although both are dead.

If you kill a buffer that is current or displayed in a window, Emacs automatically selects
or displays some other buffer instead. This means that killing a buffer can in general change
the current buffer. Therefore, when you kill a buffer, you should also take the precautions
associated with changing the current buffer (unless you happen to know that the buffer
being killed isn’t current). See Section 27.2 [Current Buffer], page 439.

If you kill a buffer that is the base buffer of one or more indirect buffers, the indirect
buffers are automatically killed as well.

The buffer-name of a killed buffer is nil. You can use this feature to test whether a
buffer has been killed:

(defun buffer-killed-p (buffer)
"Return t if BUFFER is killed."
(not (buffer-name buffer)))

Commandkill-buffer buffer-or-name
This function kills the buffer buffer-or-name, freeing all its memory for other uses or
to be returned to the operating system. It returns nil.

Chapter 27: Buffers 451

Any processes that have this buffer as the process-buffer are sent the SIGHUP signal,
which normally causes them to terminate. (The basic meaning of SIGHUP is that a
dialup line has been disconnected.) See Section 37.5 [Deleting Processes], page 647.
If the buffer is visiting a file and contains unsaved changes, kill-buffer asks the
user to confirm before the buffer is killed. It does this even if not called interactively.
To prevent the request for confirmation, clear the modified flag before calling kill-
buffer. See Section 27.5 [Buffer Modification], page 445.
Killing a buffer that is already dead has no effect.

(kill-buffer "foo.unchanged")
⇒ nil

(kill-buffer "foo.changed")

---------- Buffer: Minibuffer ----------
Buffer foo.changed modified; kill anyway? (yes or no) yes
---------- Buffer: Minibuffer ----------

⇒ nil

Variablekill-buffer-query-functions
After confirming unsaved changes, kill-buffer calls the functions in the list kill-
buffer-query-functions, in order of appearance, with no arguments. The buffer
being killed is the current buffer when they are called. The idea of this feature is that
these functions will ask for confirmation from the user. If any of them returns nil,
kill-buffer spares the buffer’s life.

Variablekill-buffer-hook
This is a normal hook run by kill-buffer after asking all the questions it is going
to ask, just before actually killing the buffer. The buffer to be killed is current when
the hook functions run. See Section 23.6 [Hooks], page 383.

Variablebuffer-offer-save
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers to offer to save that buffer, just as they offer to save file-visiting
buffers. The variable buffer-offer-save automatically becomes buffer-local when
set for any reason. See Section 11.10 [Buffer-Local Variables], page 146.

27.11 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer
of the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link among
files. The base buffer may not itself be an indirect buffer.

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. This includes the text
properties as well as the characters themselves.

In all other respects, the indirect buffer and its base buffer are completely separate.
They have different names, different values of point, different narrowing, different markers

452 GNU Emacs Lisp Reference Manual

and overlays (though inserting or deleting text in either buffer relocates the markers and
overlays for both), different major modes, and different buffer-local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the
indirect buffer, that actually saves the base buffer.

Killing an indirect buffer has no effect on its base buffer. Killing the base buffer effectively
kills the indirect buffer in that it cannot ever again be the current buffer.

Commandmake-indirect-buffer base-buffer name
This creates an indirect buffer named name whose base buffer is base-buffer. The
argument base-buffer may be a buffer or a string.
If base-buffer is an indirect buffer, its base buffer is used as the base for the new
buffer.

Functionbuffer-base-buffer buffer
This function returns the base buffer of buffer. If buffer is not indirect, the value is
nil. Otherwise, the value is another buffer, which is never an indirect buffer.

27.12 The Buffer Gap

Emacs buffers are implemented using an invisible gap to make insertion and deletion
faster. Insertion works by filling in part of the gap, and deletion adds to the gap. Of course,
this means that the gap must first be moved to the locus of the insertion or deletion. Emacs
moves the gap only when you try to insert or delete. This is why your first editing command
in one part of a large buffer, after previously editing in another far-away part, sometimes
involves a noticeable delay.

This mechanism works invisibly, and Lisp code should never be affected by the gap’s
current location, but these functions are available for getting information about the gap
status.

Functiongap-position
This function returns the current gap position in the current buffer.

Functiongap-size
This function returns the current gap size of the current buffer.

Chapter 28: Windows 453

28 Windows

This chapter describes most of the functions and variables related to Emacs windows.
See Chapter 38 [Display], page 661, for information on how text is displayed in windows.

28.1 Basic Concepts of Emacs Windows

A window in Emacs is the physical area of the screen in which a buffer is displayed. The
term is also used to refer to a Lisp object that represents that screen area in Emacs Lisp.
It should be clear from the context which is meant.

Emacs groups windows into frames. A frame represents an area of screen available for
Emacs to use. Each frame always contains at least one window, but you can subdivide it
vertically or horizontally into multiple nonoverlapping Emacs windows.

In each frame, at any time, one and only one window is designated as selected within the
frame. The frame’s cursor appears in that window. At any time, one frame is the selected
frame; and the window selected within that frame is the selected window. The selected
window’s buffer is usually the current buffer (except when set-buffer has been used). See
Section 27.2 [Current Buffer], page 439.

For practical purposes, a window exists only while it is displayed in a frame. Once
removed from the frame, the window is effectively deleted and should not be used, even
though there may still be references to it from other Lisp objects. Restoring a saved window
configuration is the only way for a window no longer on the screen to come back to life.
(See Section 28.3 [Deleting Windows], page 456.)

Each window has the following attributes:
• containing frame
• window height
• window width
• window edges with respect to the screen or frame
• the buffer it displays
• position within the buffer at the upper left of the window
• amount of horizontal scrolling, in columns
• point
• the mark
• how recently the window was selected

Users create multiple windows so they can look at several buffers at once. Lisp libraries
use multiple windows for a variety of reasons, but most often to display related information.
In Rmail, for example, you can move through a summary buffer in one window while the
other window shows messages one at a time as they are reached.

The meaning of “window” in Emacs is similar to what it means in the context of general-
purpose window systems such as X, but not identical. The X Window System places X
windows on the screen; Emacs uses one or more X windows as frames, and subdivides them
into Emacs windows. When you use Emacs on a character-only terminal, Emacs treats the
whole terminal screen as one frame.

454 GNU Emacs Lisp Reference Manual

Most window systems support arbitrarily located overlapping windows. In contrast,
Emacs windows are tiled; they never overlap, and together they fill the whole screen or
frame. Because of the way in which Emacs creates new windows and resizes them, not all
conceivable tilings of windows on an Emacs frame are actually possible. See Section 28.2
[Splitting Windows], page 454, and Section 28.14 [Size of Window], page 474.

See Chapter 38 [Display], page 661, for information on how the contents of the window’s
buffer are displayed in the window.

Functionwindowp object
This function returns t if object is a window.

28.2 Splitting Windows

The functions described here are the primitives used to split a window into two windows.
Two higher level functions sometimes split a window, but not always: pop-to-buffer and
display-buffer (see Section 28.7 [Displaying Buffers], page 461).

The functions described here do not accept a buffer as an argument. The two “halves”
of the split window initially display the same buffer previously visible in the window that
was split.

Commandsplit-window &optional window size horizontal
This function splits window into two windows. The original window window remains
the selected window, but occupies only part of its former screen area. The rest is
occupied by a newly created window which is returned as the value of this function.
If horizontal is non-nil, then window splits into two side by side windows. The
original window window keeps the leftmost size columns, and gives the rest of the
columns to the new window. Otherwise, it splits into windows one above the other,
and window keeps the upper size lines and gives the rest of the lines to the new
window. The original window is therefore the left-hand or upper of the two, and the
new window is the right-hand or lower.
If window is omitted or nil, then the selected window is split. If size is omitted
or nil, then window is divided evenly into two parts. (If there is an odd line, it
is allocated to the new window.) When split-window is called interactively, all its
arguments are nil.
The following example starts with one window on a screen that is 50 lines high by 80
columns wide; then the window is split.

(setq w (selected-window))
⇒ #<window 8 on windows.texi>

(window-edges) ; Edges in order:
⇒ (0 0 80 50) ; left–top–right–bottom

;; Returns window created
(setq w2 (split-window w 15))

⇒ #<window 28 on windows.texi>
(window-edges w2)

⇒ (0 15 80 50) ; Bottom window;
; top is line 15

Chapter 28: Windows 455

(window-edges w)
⇒ (0 0 80 15) ; Top window

The screen looks like this:

| | line 0
| w |
|__________|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Next, the top window is split horizontally:
(setq w3 (split-window w 35 t))

⇒ #<window 32 on windows.texi>
(window-edges w3)

⇒ (35 0 80 15) ; Left edge at column 35
(window-edges w)

⇒ (0 0 35 15) ; Right edge at column 35
(window-edges w2)

⇒ (0 15 80 50) ; Bottom window unchanged

Now, the screen looks like this:
column 35

| | | line 0
| w | w3 |
|___|______|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Normally, Emacs indicates the border between two side-by-side windows with a scroll
bar (see Section 29.3.3 [Window Frame Parameters], page 486) or ‘|’ characters. The
display table can specify alternative border characters; see Section 38.17 [Display
Tables], page 704.

Commandsplit-window-vertically &optional size
This function splits the selected window into two windows, one above the other,
leaving the upper of the two windows selected, with size lines. (If size is negative,
then the lower of the two windows gets − size lines and the upper window gets the
rest, but the upper window is still the one selected.)

Commandsplit-window-horizontally &optional size
This function splits the selected window into two windows side-by-side, leaving the
selected window with size columns.

456 GNU Emacs Lisp Reference Manual

This function is basically an interface to split-window. You could define a simplified
version of the function like this:

(defun split-window-horizontally (&optional arg)
"Split selected window into two windows, side by side..."
(interactive "P")
(let ((size (and arg (prefix-numeric-value arg))))
(and size (< size 0)

(setq size (+ (window-width) size)))
(split-window nil size t)))

Functionone-window-p &optional no-mini all-frames
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuf-
fer window is included, if active, in the total number of windows, which is compared
against one.
The argument all-frames specifies which frames to consider. Here are the possible
values and their meanings:

nil Count the windows in the selected frame, plus the minibuffer used by
that frame even if it lies in some other frame.

t Count all windows in all existing frames.

visible Count all windows in all visible frames.

0 Count all windows in all visible or iconified frames.

anything else
Count precisely the windows in the selected frame, and no others.

28.3 Deleting Windows

A window remains visible on its frame unless you delete it by calling certain functions
that delete windows. A deleted window cannot appear on the screen, but continues to exist
as a Lisp object until there are no references to it. There is no way to cancel the deletion
of a window aside from restoring a saved window configuration (see Section 28.17 [Window
Configurations], page 479). Restoring a window configuration also deletes any windows that
aren’t part of that configuration.

When you delete a window, the space it took up is given to one adjacent sibling.

Functionwindow-live-p window
This function returns nil if window is deleted, and t otherwise.
Warning: Erroneous information or fatal errors may result from using a deleted win-
dow as if it were live.

Commanddelete-window &optional window
This function removes window from display, and returns nil. If window is omitted,
then the selected window is deleted. An error is signaled if there is only one window
when delete-window is called.

Chapter 28: Windows 457

Commanddelete-other-windows &optional window
This function makes window the only window on its frame, by deleting the other
windows in that frame. If window is omitted or nil, then the selected window is
used by default.

The return value is nil.

Commanddelete-windows-on buffer &optional frame
This function deletes all windows showing buffer. If there are no windows showing
buffer, it does nothing.

delete-windows-on operates frame by frame. If a frame has several windows showing
different buffers, then those showing buffer are removed, and the others expand to
fill the space. If all windows in some frame are showing buffer (including the case
where there is only one window), then the frame reverts to having a single window
showing another buffer chosen with other-buffer. See Section 27.8 [The Buffer List],
page 447.

The argument frame controls which frames to operate on. This function does not use
it in quite the same way as the other functions which scan all windows; specifically,
the values t and nil have the opposite of their meanings in other functions. Here are
the full details:

• If it is nil, operate on all frames.
• If it is t, operate on the selected frame.
• If it is visible, operate on all visible frames.
• If it is 0, operate on all visible or iconified frames.
• If it is a frame, operate on that frame.

This function always returns nil.

28.4 Selecting Windows

When a window is selected, the buffer in the window becomes the current buffer, and
the cursor will appear in it.

Functionselected-window
This function returns the selected window. This is the window in which the cursor
appears and to which many commands apply.

Functionselect-window window
This function makes window the selected window. The cursor then appears in window
(on redisplay). The buffer being displayed in window is immediately designated the
current buffer.

The return value is window.
(setq w (next-window))
(select-window w)

⇒ #<window 65 on windows.texi>

458 GNU Emacs Lisp Reference Manual

Macrosave-selected-window forms. . .
This macro records the selected window, executes forms in sequence, then restores
the earlier selected window, unless it is no longer alive.
This macro does not save or restore anything about the sizes, arrangement or contents
of windows; therefore, if the forms change them, the change persists.
Each frame, at any time, has a window selected within the frame. This macro saves
only the selected window; it does not save anything about other frames. If the forms
select some other frame and alter the window selected within it, the change persists.

The following functions choose one of the windows on the screen, offering various criteria
for the choice.

Functionget-lru-window &optional frame
This function returns the window least recently “used” (that is, selected). The se-
lected window is always the most recently used window.
The selected window can be the least recently used window if it is the only window.
A newly created window becomes the least recently used window until it is selected.
A minibuffer window is never a candidate.
The argument frame controls which windows are considered.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

Functionget-largest-window &optional frame
This function returns the window with the largest area (height times width). If there
are no side-by-side windows, then this is the window with the most lines. A minibuffer
window is never a candidate.
If there are two windows of the same size, then the function returns the window that
is first in the cyclic ordering of windows (see following section), starting from the
selected window.
The argument frame controls which set of windows to consider. See get-lru-window,
above.

Functionget-window-with-predicate predicate &optional minibuf all-frames
default

This function returns a window satisfying predicate. It cycles through all visible
windows using walk-windows (see Section 28.5 [Cyclic Window Ordering], page 459),
calling predicate on each one one of them with that window as its argument. The
function returns the first window for which predicate returns a non-nil value; if that
never happens, it returns default.
The optional arguments minibuf and all-frames specify the set of windows to include
in the scan. See the description of next-window in Section 28.5 [Cyclic Window
Ordering], page 459, for details.

Chapter 28: Windows 459

28.5 Cyclic Ordering of Windows

When you use the command C-x o (other-window) to select the next window, it moves
through all the windows on the screen in a specific cyclic order. For any given configuration
of windows, this order never varies. It is called the cyclic ordering of windows.

This ordering generally goes from top to bottom, and from left to right. But it may go
down first or go right first, depending on the order in which the windows were split.

If the first split was vertical (into windows one above each other), and then the sub-
windows were split horizontally, then the ordering is left to right in the top of the frame,
and then left to right in the next lower part of the frame, and so on. If the first split was
horizontal, the ordering is top to bottom in the left part, and so on. In general, within each
set of siblings at any level in the window tree, the order is left to right, or top to bottom.

Functionnext-window &optional window minibuf all-frames
This function returns the window following window in the cyclic ordering of windows.
This is the window that C-x o would select if typed when window is selected. If
window is the only window visible, then this function returns window. If omitted,
window defaults to the selected window.
The value of the argument minibuf determines whether the minibuffer is included in
the window order. Normally, when minibuf is nil, the minibuffer is included if it is
currently active; this is the behavior of C-x o. (The minibuffer window is active while
the minibuffer is in use. See Chapter 20 [Minibuffers], page 265.)
If minibuf is t, then the cyclic ordering includes the minibuffer window even if it is
not active.
If minibuf is neither t nor nil, then the minibuffer window is not included even if it
is active.
The argument all-frames specifies which frames to consider. Here are the possible
values and their meanings:

nil Consider all the windows in window ’s frame, plus the minibuffer used by
that frame even if it lies in some other frame.

t Consider all windows in all existing frames.

visible Consider all windows in all visible frames. (To get useful results, you
must ensure window is in a visible frame.)

0 Consider all windows in all visible or iconified frames.

anything else
Consider precisely the windows in window ’s frame, and no others.

This example assumes there are two windows, both displaying the buffer
‘windows.texi’:

(selected-window)
⇒ #<window 56 on windows.texi>

(next-window (selected-window))
⇒ #<window 52 on windows.texi>

(next-window (next-window (selected-window)))
⇒ #<window 56 on windows.texi>

460 GNU Emacs Lisp Reference Manual

Functionprevious-window &optional window minibuf all-frames
This function returns the window preceding window in the cyclic ordering of windows.
The other arguments specify which windows to include in the cycle, as in next-
window.

Commandother-window count &optional all-frames
This function selects the countth following window in the cyclic order. If count is
negative, then it moves back −count windows in the cycle, rather than forward. It
returns nil.

The argument all-frames has the same meaning as in next-window, but the minibuf
argument of next-window is always effectively nil.

In an interactive call, count is the numeric prefix argument.

Functionwalk-windows proc &optional minibuf all-frames
This function cycles through all windows, calling proc once for each window with the
window as its sole argument.

The optional arguments minibuf and all-frames specify the set of windows to include
in the scan. See next-window, above, for details.

Functionwindow-list &optional frame minibuf window
This function returns a list of the windows on frame, starting with window. If frame
is nil or omitted, the selected frame is used instead; if window is nil or omitted, the
selected window is used instead.

The value of minibuf determines if the minibuffer window will be included in the
result list. If minibuf is t, the minibuffer window will be included, even if it isn’t
active. If minibuf is nil or omitted, the minibuffer window will only be included in
the list if it is active. If minibuf is neither nil nor t, the minibuffer window is not
included, whether or not it is active.

28.6 Buffers and Windows

This section describes low-level functions to examine windows or to display buffers in
windows in a precisely controlled fashion. See the following section for related functions
that find a window to use and specify a buffer for it. The functions described there are
easier to use than these, but they employ heuristics in choosing or creating a window; use
these functions when you need complete control.

Functionset-window-buffer window buffer-or-name
This function makes window display buffer-or-name as its contents. It returns nil.
This is the fundamental primitive for changing which buffer is displayed in a window,
and all ways of doing that call this function.

(set-window-buffer (selected-window) "foo")
⇒ nil

Chapter 28: Windows 461

Functionwindow-buffer &optional window
This function returns the buffer that window is displaying. If window is omitted, this
function returns the buffer for the selected window.

(window-buffer)
⇒ #<buffer windows.texi>

Functionget-buffer-window buffer-or-name &optional all-frames
This function returns a window currently displaying buffer-or-name, or nil if there
is none. If there are several such windows, then the function returns the first one in
the cyclic ordering of windows, starting from the selected window. See Section 28.5
[Cyclic Window Ordering], page 459.
The argument all-frames controls which windows to consider.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

Functionget-buffer-window-list buffer-or-name &optional minibuf all-frames
This function returns a list of all the windows currently displaying buffer-or-name.
The two optional arguments work like the optional arguments of next-window (see
Section 28.5 [Cyclic Window Ordering], page 459); they are not like the single optional
argument of get-buffer-window. Perhaps we should change get-buffer-window in
the future to make it compatible with the other functions.
The argument all-frames controls which windows to consider.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

Variablebuffer-display-time
This variable records the time at which a buffer was last made visible in a window.
It is always local in each buffer; each time set-window-buffer is called, it sets this
variable to (current-time) in the specified buffer (see Section 40.5 [Time of Day],
page 732). When a buffer is first created, buffer-display-time starts out with the
value nil.

28.7 Displaying Buffers in Windows

In this section we describe convenient functions that choose a window automatically and
use it to display a specified buffer. These functions can also split an existing window in
certain circumstances. We also describe variables that parameterize the heuristics used for

462 GNU Emacs Lisp Reference Manual

choosing a window. See the preceding section for low-level functions that give you more
precise control. All of these functions work by calling set-window-buffer.

Do not use the functions in this section in order to make a buffer current so that a Lisp
program can access or modify it; they are too drastic for that purpose, since they change
the display of buffers in windows, which would be gratuitous and surprise the user. Instead,
use set-buffer and save-current-buffer (see Section 27.2 [Current Buffer], page 439),
which designate buffers as current for programmed access without affecting the display of
buffers in windows.

Commandswitch-to-buffer buffer-or-name &optional norecord
This function makes buffer-or-name the current buffer, and also displays the buffer
in the selected window. This means that a human can see the buffer and subsequent
keyboard commands will apply to it. Contrast this with set-buffer, which makes
buffer-or-name the current buffer but does not display it in the selected window. See
Section 27.2 [Current Buffer], page 439.

If buffer-or-name does not identify an existing buffer, then a new buffer by that
name is created. The major mode for the new buffer is set according to the variable
default-major-mode. See Section 23.1.3 [Auto Major Mode], page 361.

Normally the specified buffer is put at the front of the buffer list (both the selected
frame’s buffer list and the frame-independent buffer list). This affects the operation
of other-buffer. However, if norecord is non-nil, this is not done. See Section 27.8
[The Buffer List], page 447.

The switch-to-buffer function is often used interactively, as the binding of C-x b.
It is also used frequently in programs. It always returns nil.

Commandswitch-to-buffer-other-window buffer-or-name &optional norecord
This function makes buffer-or-name the current buffer and displays it in a window
not currently selected. It then selects that window. The handling of the buffer is the
same as in switch-to-buffer.

The currently selected window is absolutely never used to do the job. If it is the only
window, then it is split to make a distinct window for this purpose. If the selected
window is already displaying the buffer, then it continues to do so, but another window
is nonetheless found to display it in as well.

This function updates the buffer list just like switch-to-buffer unless norecord is
non-nil.

Functionpop-to-buffer buffer-or-name &optional other-window norecord
This function makes buffer-or-name the current buffer and switches to it in some
window, preferably not the window previously selected. The “popped-to” window
becomes the selected window within its frame.

If the variable pop-up-frames is non-nil, pop-to-buffer looks for a window in any
visible frame already displaying the buffer; if there is one, it returns that window and
makes it be selected within its frame. If there is none, it creates a new frame and
displays the buffer in it.

Chapter 28: Windows 463

If pop-up-frames is nil, then pop-to-buffer operates entirely within the selected
frame. (If the selected frame has just a minibuffer, pop-to-buffer operates within
the most recently selected frame that was not just a minibuffer.)
If the variable pop-up-windows is non-nil, windows may be split to create a new
window that is different from the original window. For details, see Section 28.8
[Choosing Window], page 463.
If other-window is non-nil, pop-to-buffer finds or creates another window even if
buffer-or-name is already visible in the selected window. Thus buffer-or-name could
end up displayed in two windows. On the other hand, if buffer-or-name is already
displayed in the selected window and other-window is nil, then the selected window
is considered sufficient display for buffer-or-name, so that nothing needs to be done.
All the variables that affect display-buffer affect pop-to-buffer as well. See
Section 28.8 [Choosing Window], page 463.
If buffer-or-name is a string that does not name an existing buffer, a buffer by that
name is created. The major mode for the new buffer is set according to the variable
default-major-mode. See Section 23.1.3 [Auto Major Mode], page 361.
This function updates the buffer list just like switch-to-buffer unless norecord is
non-nil.

Commandreplace-buffer-in-windows buffer
This function replaces buffer with some other buffer in all windows displaying it.
The other buffer used is chosen with other-buffer. In the usual applications of this
function, you don’t care which other buffer is used; you just want to make sure that
buffer is no longer displayed.
This function returns nil.

28.8 Choosing a Window for Display

This section describes the basic facility that chooses a window to display a buffer in—
display-buffer. All the higher-level functions and commands use this subroutine. Here
we describe how to use display-buffer and how to customize it.

Commanddisplay-buffer buffer-or-name &optional not-this-window frame
This command makes buffer-or-name appear in some window, like pop-to-buffer,
but it does not select that window and does not make the buffer current. The identity
of the selected window is unaltered by this function.
If not-this-window is non-nil, it means to display the specified buffer in a window
other than the selected one, even if it is already on display in the selected window.
This can cause the buffer to appear in two windows at once. Otherwise, if buffer-or-
name is already being displayed in any window, that is good enough, so this function
does nothing.
display-buffer returns the window chosen to display buffer-or-name.
If the argument frame is non-nil, it specifies which frames to check when deciding
whether the buffer is already displayed. If the buffer is already displayed in some

464 GNU Emacs Lisp Reference Manual

window on one of these frames, display-buffer simply returns that window. Here
are the possible values of frame:

• If it is nil, consider windows on the selected frame.

• If it is t, consider windows on all frames.

• If it is visible, consider windows on all visible frames.

• If it is 0, consider windows on all visible or iconified frames.

• If it is a frame, consider windows on that frame.

Precisely how display-buffer finds or creates a window depends on the variables
described below.

User Optiondisplay-buffer-reuse-frames
If this variable is non-nil, display-buffer searches existing frames for a window
displaying the buffer. If the buffer is already displayed in a window in some frame,
display-buffer makes the frame visible and raises it, to use that window. If the
buffer is not already displayed, or if display-buffer-reuse-frames is nil, display-
buffer’s behavior is determined by other variables, described below.

User Optionpop-up-windows
This variable controls whether display-buffer makes new windows. If it is non-nil
and there is only one window, then that window is split. If it is nil, then display-
buffer does not split the single window, but uses it whole.

User Optionsplit-height-threshold
This variable determines when display-buffer may split a window, if there are
multiple windows. display-buffer always splits the largest window if it has at least
this many lines. If the largest window is not this tall, it is split only if it is the sole
window and pop-up-windows is non-nil.

User Optioneven-window-heights
This variable determines if display-buffer should even out window heights if the
buffer gets displayed in an existing window, above or beneath another existing win-
dow. If even-window-heights is t, the default, window heights will be evened out.
If even-window-heights is nil, the orginal window heights will be left alone.

User Optionpop-up-frames
This variable controls whether display-buffer makes new frames. If it is non-nil,
display-buffer looks for an existing window already displaying the desired buffer,
on any visible frame. If it finds one, it returns that window. Otherwise it makes
a new frame. The variables pop-up-windows and split-height-threshold do not
matter if pop-up-frames is non-nil.

If pop-up-frames is nil, then display-buffer either splits a window or reuses one.

See Chapter 29 [Frames], page 483, for more information.

Chapter 28: Windows 465

Variablepop-up-frame-function
This variable specifies how to make a new frame if pop-up-frames is non-nil.
Its value should be a function of no arguments. When display-buffer makes a
new frame, it does so by calling that function, which should return a frame. The
default value of the variable is a function that creates a frame using parameters from
pop-up-frame-alist.

User Optionpop-up-frame-alist
This variable holds an alist specifying frame parameters used when display-buffer
makes a new frame. See Section 29.3 [Frame Parameters], page 485, for more infor-
mation about frame parameters.

User Optionspecial-display-buffer-names
A list of buffer names for buffers that should be displayed specially. If the buffer’s
name is in this list, display-buffer handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the buffer name,
and the rest of the list says how to create the frame. There are two possibilities for
the rest of the list. It can be an alist, specifying frame parameters, or it can contain
a function and arguments to give to it. (The function’s first argument is always the
buffer to be displayed; the arguments from the list come after that.)

User Optionspecial-display-regexps
A list of regular expressions that specify buffers that should be displayed specially. If
the buffer’s name matches any of the regular expressions in this list, display-buffer
handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the regular
expression, and the rest of the list says how to create the frame. See above, under
special-display-buffer-names.

Variablespecial-display-function
This variable holds the function to call to display a buffer specially. It receives the
buffer as an argument, and should return the window in which it is displayed.
The default value of this variable is special-display-popup-frame.

Functionspecial-display-popup-frame buffer &rest args
This function makes buffer visible in a frame of its own. If buffer is already displayed
in a window in some frame, it makes the frame visible and raises it, to use that
window. Otherwise, it creates a frame that will be dedicated to buffer.
If args is an alist, it specifies frame parameters for the new frame.
If args is a list whose car is a symbol, then (car args) is called as a function to
actually create and set up the frame; it is called with buffer as first argument, and
(cdr args) as additional arguments.

466 GNU Emacs Lisp Reference Manual

This function always uses an existing window displaying buffer, whether or not it is in
a frame of its own; but if you set up the above variables in your init file, before buffer
was created, then presumably the window was previously made by this function.

User Optionspecial-display-frame-alist
This variable holds frame parameters for special-display-popup-frame to use when
it creates a frame.

User Optionsame-window-buffer-names
A list of buffer names for buffers that should be displayed in the selected window. If
the buffer’s name is in this list, display-buffer handles the buffer by switching to
it in the selected window.

User Optionsame-window-regexps
A list of regular expressions that specify buffers that should be displayed in the
selected window. If the buffer’s name matches any of the regular expressions in this
list, display-buffer handles the buffer by switching to it in the selected window.

Variabledisplay-buffer-function
This variable is the most flexible way to customize the behavior of display-buffer.
If it is non-nil, it should be a function that display-buffer calls to do the work.
The function should accept two arguments, the same two arguments that display-
buffer received. It should choose or create a window, display the specified buffer,
and then return the window.

This hook takes precedence over all the other options and hooks described above.

A window can be marked as “dedicated” to its buffer. Then display-buffer will not
try to use that window to display any other buffer.

Functionwindow-dedicated-p window
This function returns t if window is marked as dedicated; otherwise nil.

Functionset-window-dedicated-p window flag
This function marks window as dedicated if flag is non-nil, and nondedicated oth-
erwise.

28.9 Windows and Point

Each window has its own value of point, independent of the value of point in other
windows displaying the same buffer. This makes it useful to have multiple windows showing
one buffer.

• The window point is established when a window is first created; it is initialized from
the buffer’s point, or from the window point of another window opened on the buffer
if such a window exists.

Chapter 28: Windows 467

• Selecting a window sets the value of point in its buffer from the window’s value of
point. Conversely, deselecting a window sets the window’s value of point from that of
the buffer. Thus, when you switch between windows that display a given buffer, the
point value for the selected window is in effect in the buffer, while the point values for
the other windows are stored in those windows.

• As long as the selected window displays the current buffer, the window’s point and the
buffer’s point always move together; they remain equal.

• See Chapter 30 [Positions], page 509, for more details on buffer positions.

As far as the user is concerned, point is where the cursor is, and when the user switches
to another buffer, the cursor jumps to the position of point in that buffer.

Functionwindow-point &optional window
This function returns the current position of point in window. For a nonselected
window, this is the value point would have (in that window’s buffer) if that window
were selected. If window is nil, the selected window is used.
When window is the selected window and its buffer is also the current buffer, the
value returned is the same as point in that buffer.
Strictly speaking, it would be more correct to return the “top-level” value of point,
outside of any save-excursion forms. But that value is hard to find.

Functionset-window-point window position
This function positions point in window at position position in window ’s buffer.

28.10 The Window Start Position

Each window contains a marker used to keep track of a buffer position that specifies
where in the buffer display should start. This position is called the display-start position
of the window (or just the start). The character after this position is the one that appears
at the upper left corner of the window. It is usually, but not inevitably, at the beginning of
a text line.

Functionwindow-start &optional window
This function returns the display-start position of window window. If window is nil,
the selected window is used. For example,

(window-start)
⇒ 7058

When you create a window, or display a different buffer in it, the display-start position
is set to a display-start position recently used for the same buffer, or 1 if the buffer
doesn’t have any.
Redisplay updates the window-start position (if you have not specified it explicitly
since the previous redisplay)—for example, to make sure point appears on the screen.
Nothing except redisplay automatically changes the window-start position; if you
move point, do not expect the window-start position to change in response until after
the next redisplay.
For a realistic example of using window-start, see the description of count-lines
in Section 30.2.4 [Text Lines], page 512.

468 GNU Emacs Lisp Reference Manual

Functionwindow-end &optional window update
This function returns the position of the end of the display in window window. If
window is nil, the selected window is used.
Simply changing the buffer text or moving point does not update the value that
window-end returns. The value is updated only when Emacs redisplays and redisplay
completes without being preempted.
If the last redisplay of window was preempted, and did not finish, Emacs does not
know the position of the end of display in that window. In that case, this function
returns nil.
If update is non-nil, window-end always returns an up-to-date value for where the
window ends, based on the current window-start value. If the saved value is valid,
window-end returns that; otherwise it computes the correct value by scanning the
buffer text.
Even if update is non-nil, window-end does not attempt to scroll the display if point
has moved off the screen, the way real redisplay would do. It does not alter the
window-start value. In effect, it reports where the displayed text will end if scrolling
is not required.

Functionset-window-start window position &optional noforce
This function sets the display-start position of window to position in window ’s buffer.
It returns position.
The display routines insist that the position of point be visible when a buffer is dis-
played. Normally, they change the display-start position (that is, scroll the window)
whenever necessary to make point visible. However, if you specify the start position
with this function using nil for noforce, it means you want display to start at position
even if that would put the location of point off the screen. If this does place point off
screen, the display routines move point to the left margin on the middle line in the
window.
For example, if point is 1 and you set the start of the window to 2, then point would
be “above” the top of the window. The display routines will automatically move
point if it is still 1 when redisplay occurs. Here is an example:

;; Here is what ‘foo’ looks like before executing
;; the set-window-start expression.

---------- Buffer: foo ----------
?This is the contents of buffer foo.
2
3
4
5
6
---------- Buffer: foo ----------

(set-window-start
(selected-window)
(1+ (window-start)))
⇒ 2

Chapter 28: Windows 469

;; Here is what ‘foo’ looks like after executing
;; the set-window-start expression.
---------- Buffer: foo ----------
his is the contents of buffer foo.
2
3
?4
5
6
---------- Buffer: foo ----------

If noforce is non-nil, and position would place point off screen at the next redisplay,
then redisplay computes a new window-start position that works well with point, and
thus position is not used.

Functionpos-visible-in-window-p &optional position window partially
This function returns t if position is within the range of text currently visible on
the screen in window. It returns nil if position is scrolled vertically or horizontally
out of view. Locations that are partially obscured are not considered visible unless
partially is non-nil. The argument position defaults to the current position of point
in window ; window, to the selected window.
Here is an example:

(or (pos-visible-in-window-p
(point) (selected-window))

(recenter 0))

28.11 Textual Scrolling

Textual scrolling means moving the text up or down though a window. It works by
changing the value of the window’s display-start location. It may also change the value of
window-point to keep point on the screen.

Textual scrolling was formerly called “vertical scrolling,” but we changed its name to
distinguish it from the new vertical fractional scrolling feature (see Section 28.12 [Vertical
Scrolling], page 472).

In the commands scroll-up and scroll-down, the directions “up” and “down” refer to
the motion of the text in the buffer at which you are looking through the window. Imagine
that the text is written on a long roll of paper and that the scrolling commands move the
paper up and down. Thus, if you are looking at text in the middle of a buffer and repeatedly
call scroll-down, you will eventually see the beginning of the buffer.

Some people have urged that the opposite convention be used: they imagine that the
window moves over text that remains in place. Then “down” commands would take you
to the end of the buffer. This view is more consistent with the actual relationship between
windows and the text in the buffer, but it is less like what the user sees. The position of
a window on the terminal does not move, and short scrolling commands clearly move the
text up or down on the screen. We have chosen names that fit the user’s point of view.

The textual scrolling functions (aside from scroll-other-window) have unpredictable
results if the current buffer is different from the buffer that is displayed in the selected
window. See Section 27.2 [Current Buffer], page 439.

470 GNU Emacs Lisp Reference Manual

Commandscroll-up &optional count
This function scrolls the text in the selected window upward count lines. If count is
negative, scrolling is actually downward.
If count is nil (or omitted), then the length of scroll is next-screen-context-lines
lines less than the usable height of the window (not counting its mode line).
scroll-up returns nil.

Commandscroll-down &optional count
This function scrolls the text in the selected window downward count lines. If count
is negative, scrolling is actually upward.
If count is omitted or nil, then the length of the scroll is next-screen-context-
lines lines less than the usable height of the window (not counting its mode line).
scroll-down returns nil.

Commandscroll-other-window &optional count
This function scrolls the text in another window upward count lines. Negative values
of count, or nil, are handled as in scroll-up.
You can specify which buffer to scroll by setting the variable other-window-scroll-
buffer to a buffer. If that buffer isn’t already displayed, scroll-other-window
displays it in some window.
When the selected window is the minibuffer, the next window is normally the one at
the top left corner. You can specify a different window to scroll, when the minibuffer
is selected, by setting the variable minibuffer-scroll-window. This variable has
no effect when any other window is selected. See Section 20.9 [Minibuffer Misc],
page 284.
When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll
the minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to, so
the line reappears after the echo area momentarily displays the message “Beginning
of buffer”.

Variableother-window-scroll-buffer
If this variable is non-nil, it tells scroll-other-window which buffer to scroll.

User Optionscroll-margin
This option specifies the size of the scroll margin—a minimum number of lines between
point and the top or bottom of a window. Whenever point gets within this many lines
of the top or bottom of the window, the window scrolls automatically (if possible) to
move point out of the margin, closer to the center of the window.

User Optionscroll-conservatively
This variable controls how scrolling is done automatically when point moves off the
screen (or into the scroll margin). If the value is zero, then redisplay scrolls the text
to center point vertically in the window. If the value is a positive integer n, then
redisplay scrolls the window up to n lines in either direction, if that will bring point
back into view. Otherwise, it centers point. The default value is zero.

Chapter 28: Windows 471

User Optionscroll-down-aggressively
The value of this variable should be either nil or a fraction f between 0 and 1. If
it is a fraction, that specifies where on the screen to put point when scrolling down.
More precisely, when a window scrolls down because point is above the window start,
the new start position is chosen to put point f part of the window height from the
top. The larger f, the more aggressive the scrolling.
A value of nil is equivalent to .5, since its effect is to center point. This variable
automatically becomes buffer-local when set in any fashion.

User Optionscroll-up-aggressively
Likewise, for scrolling up. The value, f, specifies how far point should be placed from
the bottom of the window; thus, as with scroll-up-aggressively, a larger value
scrolls more aggressively.

User Optionscroll-step
This variable is an older variant of scroll-conservatively. The difference is that it
if its value is n, that permits scrolling only by precisely n lines, not a smaller number.
This feature does not work with scroll-margin. The default value is zero.

User Optionscroll-preserve-screen-position
If this option is non-nil, the scroll functions move point so that the vertical position
of the cursor is unchanged, when that is possible.

User Optionnext-screen-context-lines
The value of this variable is the number of lines of continuity to retain when scrolling
by full screens. For example, scroll-up with an argument of nil scrolls so that this
many lines at the bottom of the window appear instead at the top. The default value
is 2.

Commandrecenter &optional count
This function scrolls the selected window to put the text where point is located at a
specified vertical position within the window.
If count is a nonnegative number, it puts the line containing point count lines down
from the top of the window. If count is a negative number, then it counts upward
from the bottom of the window, so that −1 stands for the last usable line in the
window. If count is a non-nil list, then it stands for the line in the middle of the
window.
If count is nil, recenter puts the line containing point in the middle of the window,
then clears and redisplays the entire selected frame.
When recenter is called interactively, count is the raw prefix argument. Thus, typing
C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets count to 4,
which positions the current line four lines from the top.
With an argument of zero, recenter positions the current line at the top of the
window. This action is so handy that some people make a separate key binding to do
this. For example,

472 GNU Emacs Lisp Reference Manual

(defun line-to-top-of-window ()
"Scroll current line to top of window.

Replaces three keystroke sequence C-u 0 C-l."
(interactive)
(recenter 0))

(global-set-key [kp-multiply] ’line-to-top-of-window)

28.12 Vertical Fractional Scrolling

Vertical fractional scrolling means shifting the image in the window up or down by a
specified multiple or fraction of a line. Starting in Emacs 21, each window has a vertical
scroll position, which is a number, never less than zero. It specifies how far to raise the
contents of the window. Raising the window contents generally makes all or part of some
lines disappear off the top, and all or part of some other lines appear at the bottom. The
usual value is zero.

The vertical scroll position is measured in units of the normal line height, which is the
height of the default font. Thus, if the value is .5, that means the window contents are
scrolled up half the normal line height. If it is 3.3, that means the window contents are
scrolled up somewhat over three times the normal line height.

What fraction of a line the vertical scrolling covers, or how many lines, depends on what
the lines contain. A value of .5 could scroll a line whose height is very short off the screen,
while a value of 3.3 could scroll just part of the way through a tall line or an image.

Functionwindow-vscroll &optional window
This function returns the current vertical scroll position of window, If window is nil,
the selected window is used.

(window-vscroll)
⇒ 0

Functionset-window-vscroll window lines
This function sets window ’s vertical scroll position to lines. The argument lines should
be zero or positive; if not, it is taken as zero.
The actual vertical scroll position must always correspond to an integral number of
pixels, so the value you specify is rounded accordingly.
The return value is the result of this rounding.

(set-window-vscroll (selected-window) 1.2)
⇒ 1.13

28.13 Horizontal Scrolling

Horizontal scrolling means shifting the image in the window left or right by a specified
multiple of the normal character width. Each window has a vertical scroll position, which
is a number, never less than zero. It specifies how far to shift the contents left. Shifting the
window contents left generally makes all or part of some characters disappear off the left,
and all or part of some other characters appear at the right. The usual value is zero.

Chapter 28: Windows 473

The horizontal scroll position is measured in units of the normal character width, which
is the width of space in the default font. Thus, if the value is 5, that means the window
contents are scrolled left by 5 times the normal character width. How many characters
actually disappear off to the left depends on their width, and could vary from line to line.

Because we read from side to side in the “inner loop”, and from top to bottom in the
“outer loop”, the effect of horizontal scrolling is not like that of textual or vertical scrolling.
Textual scrolling involves selection of a portion of text to display, and vertical scrolling
moves the window contents contiguously; but horizontal scrolling causes part of each line
to go off screen.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge of
the window. In this state, scrolling to the right is meaningless, since there is no data to the
left of the edge to be revealed by it; so this is not allowed. Scrolling to the left is allowed; it
scrolls the first columns of text off the edge of the window and can reveal additional columns
on the right that were truncated before. Once a window has a nonzero amount of leftward
horizontal scrolling, you can scroll it back to the right, but only so far as to reduce the net
horizontal scroll to zero. There is no limit to how far left you can scroll, but eventually all
the text will disappear off the left edge.

In Emacs 21, redisplay automatically alters the horizontal scrolling of a window as
necessary to ensure that point is always visible, if automatic-hscrolling is set. However,
you can still set the horizontal scrolling value explicitly. The value you specify serves as a
lower bound for automatic scrolling, i.e. automatic scrolling will not scroll a window to a
column less than the specified one.

Commandscroll-left &optional count
This function scrolls the selected window count columns to the left (or to the right if
count is negative). The default for count is the window width, minus 2.

The return value is the total amount of leftward horizontal scrolling in effect after the
change—just like the value returned by window-hscroll (below).

Commandscroll-right &optional count
This function scrolls the selected window count columns to the right (or to the left if
count is negative). The default for count is the window width, minus 2.

The return value is the total amount of leftward horizontal scrolling in effect after the
change—just like the value returned by window-hscroll (below).

Once you scroll a window as far right as it can go, back to its normal position where
the total leftward scrolling is zero, attempts to scroll any farther right have no effect.

Functionwindow-hscroll &optional window
This function returns the total leftward horizontal scrolling of window—the number
of columns by which the text in window is scrolled left past the left margin.

The value is never negative. It is zero when no horizontal scrolling has been done in
window (which is usually the case).

If window is nil, the selected window is used.

474 GNU Emacs Lisp Reference Manual

(window-hscroll)
⇒ 0

(scroll-left 5)
⇒ 5

(window-hscroll)
⇒ 5

Functionset-window-hscroll window columns
This function sets the number of columns from the left margin that window is scrolled
from the value of columns. The argument columns should be zero or positive; if not,
it is taken as zero. Fractional values of columns are not supported at present.

The value returned is columns.

(set-window-hscroll (selected-window) 10)
⇒ 10

Here is how you can determine whether a given position position is off the screen due to
horizontal scrolling:

(defun hscroll-on-screen (window position)
(save-excursion
(goto-char position)
(and
(>= (- (current-column) (window-hscroll window)) 0)
(< (- (current-column) (window-hscroll window))

(window-width window)))))

28.14 The Size of a Window

An Emacs window is rectangular, and its size information consists of the height (the
number of lines) and the width (the number of character positions in each line). The mode
line is included in the height. But the width does not count the scroll bar or the column of
‘|’ characters that separates side-by-side windows.

The following three functions return size information about a window:

Functionwindow-height &optional window
This function returns the number of lines in window, including its mode line. If
window fills its entire frame, this is typically one less than the value of frame-height
on that frame (since the last line is always reserved for the minibuffer).

If window is nil, the function uses the selected window.

(window-height)
⇒ 23

(split-window-vertically)
⇒ #<window 4 on windows.texi>

(window-height)
⇒ 11

Chapter 28: Windows 475

Functionwindow-width &optional window
This function returns the number of columns in window. If window fills its entire
frame, this is the same as the value of frame-width on that frame. The width does
not include the window’s scroll bar or the column of ‘|’ characters that separates
side-by-side windows.

If window is nil, the function uses the selected window.

(window-width)
⇒ 80

Functionwindow-edges &optional window
This function returns a list of the edge coordinates of window. If window is nil, the
selected window is used.

The order of the list is (left top right bottom), all elements relative to 0, 0 at the
top left corner of the frame. The element right of the value is one more than the
rightmost column used by window, and bottom is one more than the bottommost
row used by window and its mode-line.

If a window has a scroll bar, the right edge value includes the width of the scroll bar.
Otherwise, if the window has a neighbor on the right, its right edge value includes the
width of the separator line between the window and that neighbor. Since the width
of the window does not include this separator, the width does not usually equal the
difference between the right and left edges.

Here is the result obtained on a typical 24-line terminal with just one window:

(window-edges (selected-window))
⇒ (0 0 80 23)

The bottom edge is at line 23 because the last line is the echo area.

If window is at the upper left corner of its frame, then bottom is the same as the value
of (window-height), right is almost the same as the value of (window-width), and
top and left are zero. For example, the edges of the following window are ‘0 0 8 5’.
Assuming that the frame has more than 8 columns, the last column of the window
(column 7) holds a border rather than text. The last row (row 4) holds the mode
line, shown here with ‘xxxxxxxxx’.

0

0 | |
| |
| |
| |
xxxxxxxxx 4

7

In the following example, let’s suppose that the frame is 7 columns wide. Then the
edges of the left window are ‘0 0 4 3’ and the edges of the right window are ‘4 0 8 3’.

476 GNU Emacs Lisp Reference Manual

___ ___
| | |
| | |
xxxxxxxxx

0 34 7

28.15 Changing the Size of a Window

The window size functions fall into two classes: high-level commands that change the
size of windows and low-level functions that access window size. Emacs does not permit
overlapping windows or gaps between windows, so resizing one window affects other win-
dows.

Commandenlarge-window size &optional horizontal
This function makes the selected window size lines taller, stealing lines from neigh-
boring windows. It takes the lines from one window at a time until that window is
used up, then takes from another. If a window from which lines are stolen shrinks
below window-min-height lines, that window disappears.

If horizontal is non-nil, this function makes window wider by size columns, stealing
columns instead of lines. If a window from which columns are stolen shrinks below
window-min-width columns, that window disappears.

If the requested size would exceed that of the window’s frame, then the function
makes the window occupy the entire height (or width) of the frame.

If there are various other windows from which lines or columns can be stolen, and
some of them specify fixed size (using window-size-fixed, see below), they are left
untouched while other windows are “robbed.” If it would be necessary to alter the
size of a fixed-size window, enlarge-window gets an error instead.

If size is negative, this function shrinks the window by −size lines or columns. If
that makes the window smaller than the minimum size (window-min-height and
window-min-width), enlarge-window deletes the window.

enlarge-window returns nil.

Commandenlarge-window-horizontally columns
This function makes the selected window columns wider. It could be defined as
follows:

(defun enlarge-window-horizontally (columns)
(enlarge-window columns t))

Commandshrink-window size &optional horizontal
This function is like enlarge-window but negates the argument size, making the
selected window smaller by giving lines (or columns) to the other windows. If the
window shrinks below window-min-height or window-min-width, then it disappears.

If size is negative, the window is enlarged by −size lines or columns.

Chapter 28: Windows 477

Commandshrink-window-horizontally columns
This function makes the selected window columns narrower. It could be defined as
follows:

(defun shrink-window-horizontally (columns)
(shrink-window columns t))

Commandshrink-window-if-larger-than-buffer &optional window
This command shrinks window to be as small as possible while still showing the full
contents of its buffer—but not less than window-min-height lines. If window is not
given, it defaults to the selected window.

However, the command does nothing if the window is already too small to display the
whole text of the buffer, or if part of the contents are currently scrolled off screen, or
if the window is not the full width of its frame, or if the window is the only window
in its frame.

Variablewindow-size-fixed
If this variable is non-nil, in any given buffer, then the size of any window displaying
the buffer remains fixed unless you explicitly change it or Emacs has no other choice.
(This feature is new in Emacs 21.)

If the value is height, then only the window’s height is fixed; if the value is width,
then only the window’s width is fixed. Any other non-nil value fixes both the width
and the height.

The usual way to use this variable is to give it a buffer-local value in a particular
buffer. That way, the windows (but usually there is only one) displaying that buffer
have fixed size.

Explicit size-change functions such as enlarge-window get an error if they would
have to change a window size which is fixed. Therefore, when you want to change the
size of such a window, you should bind window-size-fixed to nil, like this:

(let ((window-size-fixed nil))
(enlarge-window 10))

Note that changing the frame size will change the size of a fixed-size window, if there
is no other alternative.

The following two variables constrain the window-size-changing functions to a minimum
height and width.

User Optionwindow-min-height
The value of this variable determines how short a window may become before it is
automatically deleted. Making a window smaller than window-min-height auto-
matically deletes it, and no window may be created shorter than this. The absolute
minimum height is two (allowing one line for the mode line, and one line for the buffer
display). Actions that change window sizes reset this variable to two if it is less than
two. The default value is 4.

478 GNU Emacs Lisp Reference Manual

User Optionwindow-min-width
The value of this variable determines how narrow a window may become before it is
automatically deleted. Making a window smaller than window-min-width automat-
ically deletes it, and no window may be created narrower than this. The absolute
minimum width is one; any value below that is ignored. The default value is 10.

28.16 Coordinates and Windows

This section describes how to relate screen coordinates to windows.

Functionwindow-at x y &optional frame
This function returns the window containing the specified cursor position in the frame
frame. The coordinates x and y are measured in characters and count from the top
left corner of the frame. If they are out of range, window-at returns nil.

If you omit frame, the selected frame is used.

Functioncoordinates-in-window-p coordinates window
This function checks whether a particular frame position falls within the window
window.

The argument coordinates is a cons cell of the form (x . y). The coordinates x and y
are measured in characters, and count from the top left corner of the screen or frame.

The value returned by coordinates-in-window-p is non-nil if the coordinates are
inside window. The value also indicates what part of the window the position is in,
as follows:

(relx . rely)
The coordinates are inside window. The numbers relx and rely are the
equivalent window-relative coordinates for the specified position, counting
from 0 at the top left corner of the window.

mode-line
The coordinates are in the mode line of window.

header-line
The coordinates are in the header line of window.

vertical-line
The coordinates are in the vertical line between window and its neighbor
to the right. This value occurs only if the window doesn’t have a scroll
bar; positions in a scroll bar are considered outside the window for these
purposes.

nil The coordinates are not in any part of window.

The function coordinates-in-window-p does not require a frame as argument be-
cause it always uses the frame that window is on.

Chapter 28: Windows 479

28.17 Window Configurations

A window configuration records the entire layout of one frame—all windows, their sizes,
which buffers they contain, what part of each buffer is displayed, and the values of point and
the mark. You can bring back an entire previous layout by restoring a window configuration
previously saved.

If you want to record all frames instead of just one, use a frame configuration instead of
a window configuration. See Section 29.12 [Frame Configurations], page 498.

Functioncurrent-window-configuration &optional frame
This function returns a new object representing frame’s current window configuration,
including the number of windows, their sizes and current buffers, which window is the
selected window, and for each window the displayed buffer, the display-start position,
and the positions of point and the mark. It also includes the values of window-min-
height, window-min-width and minibuffer-scroll-window. An exception is made
for point in the current buffer, whose value is not saved.
If frame is omitted, the selected frame is used.

Functionset-window-configuration configuration
This function restores the configuration of windows and buffers as specified by con-
figuration, for the frame that configuration was created for.
The argument configuration must be a value that was previously returned by
current-window-configuration. This configuration is restored in the frame
from which configuration was made, whether that frame is selected or not.
This always counts as a window size change and triggers execution of the
window-size-change-functions (see Section 28.18 [Window Hooks], page 480),
because set-window-configuration doesn’t know how to tell whether the new
configuration actually differs from the old one.
If the frame which configuration was saved from is dead, all this function does is
restore the three variables window-min-height, window-min-width and minibuffer-
scroll-window.
Here is a way of using this function to get the same effect as save-window-excursion:

(let ((config (current-window-configuration)))
(unwind-protect

(progn (split-window-vertically nil)
...)

(set-window-configuration config)))

Special Formsave-window-excursion forms. . .
This special form records the window configuration, executes forms in sequence, then
restores the earlier window configuration. The window configuration includes the
value of point and the portion of the buffer that is visible. It also includes the choice
of selected window. However, it does not include the value of point in the current
buffer; use save-excursion also, if you wish to preserve that.
Don’t use this construct when save-selected-window is all you need.

480 GNU Emacs Lisp Reference Manual

Exit from save-window-excursion always triggers execution of the window-size-
change-functions. (It doesn’t know how to tell whether the restored configuration
actually differs from the one in effect at the end of the forms.)

The return value is the value of the final form in forms. For example:
(split-window)

⇒ #<window 25 on control.texi>
(setq w (selected-window))

⇒ #<window 19 on control.texi>
(save-window-excursion
(delete-other-windows w)
(switch-to-buffer "foo")
’do-something)

⇒ do-something
;; The screen is now split again.

Functionwindow-configuration-p object
This function returns t if object is a window configuration.

Functioncompare-window-configurations config1 config2
This function compares two window configurations as regards the structure of win-
dows, but ignores the values of point and mark and the saved scrolling positions—it
can return t even if those aspects differ.

The function equal can also compare two window configurations; it regards configu-
rations as unequal if they differ in any respect, even a saved point or mark.

Primitives to look inside of window configurations would make sense, but none are
implemented. It is not clear they are useful enough to be worth implementing.

28.18 Hooks for Window Scrolling and Changes

This section describes how a Lisp program can take action whenever a window displays
a different part of its buffer or a different buffer. There are three actions that can change
this: scrolling the window, switching buffers in the window, and changing the size of the
window. The first two actions run window-scroll-functions; the last runs window-size-
change-functions. The paradigmatic use of these hooks is in the implementation of Lazy
Lock mode; see section “Font Lock Support Modes” in The GNU Emacs Manual.

Variablewindow-scroll-functions
This variable holds a list of functions that Emacs should call before redisplaying a
window with scrolling. It is not a normal hook, because each function is called with
two arguments: the window, and its new display-start position.

Displaying a different buffer in the window also runs these functions.

These functions must be careful in using window-end (see Section 28.10 [Window
Start], page 467); if you need an up-to-date value, you must use the update argument
to ensure you get it.

Chapter 28: Windows 481

Variablewindow-size-change-functions
This variable holds a list of functions to be called if the size of any window changes
for any reason. The functions are called just once per redisplay, and just once for
each frame on which size changes have occurred.
Each function receives the frame as its sole argument. There is no direct way to find
out which windows on that frame have changed size, or precisely how. However, if a
size-change function records, at each call, the existing windows and their sizes, it can
also compare the present sizes and the previous sizes.
Creating or deleting windows counts as a size change, and therefore causes these
functions to be called. Changing the frame size also counts, because it changes the
sizes of the existing windows.
It is not a good idea to use save-window-excursion (see Section 28.17 [Window
Configurations], page 479) in these functions, because that always counts as a size
change, and it would cause these functions to be called over and over. In most cases,
save-selected-window (see Section 28.4 [Selecting Windows], page 457) is what you
need here.

Variableredisplay-end-trigger-functions
This abnormal hook is run whenever redisplay in a window uses text that extends past
a specified end trigger position. You set the end trigger position with the function
set-window-redisplay-end-trigger. The functions are called with two arguments:
the window, and the end trigger position. Storing nil for the end trigger position
turns off the feature, and the trigger value is automatically reset to nil just after the
hook is run.

Functionset-window-redisplay-end-trigger window position
This function sets window ’s end trigger position at position.

Functionwindow-redisplay-end-trigger &optional window
This function returns window ’s current end trigger position.

Variablewindow-configuration-change-hook
A normal hook that is run every time you change the window configuration of an
existing frame. This includes splitting or deleting windows, changing the sizes of
windows, or displaying a different buffer in a window. The frame whose window
configuration has changed is the selected frame when this hook runs.

482 GNU Emacs Lisp Reference Manual

Chapter 29: Frames 483

29 Frames

A frame is a rectangle on the screen that contains one or more Emacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window), which you can
subdivide vertically or horizontally into smaller windows.

When Emacs runs on a text-only terminal, it starts with one terminal frame. If you
create additional ones, Emacs displays one and only one at any given time—on the terminal
screen, of course.

When Emacs communicates directly with a supported window system, such as X, it does
not have a terminal frame; instead, it starts with a single window frame, but you can create
more, and Emacs can display several such frames at once as is usual for window systems.

Functionframep object
This predicate returns a non-nil value if object is a frame, and nil otherwise. For a
frame, the value indicates which kind of display the frame uses:

x The frame is displayed in an X window.

t A terminal frame on a character display.

mac The frame is displayed on a Macintosh.

w32 The frame is displayed on MS-Windows 9X/NT.

pc The frame is displayed on an MS-DOS terminal.

See Chapter 38 [Display], page 661, for information about the related topic of controlling
Emacs redisplay.

29.1 Creating Frames

To create a new frame, call the function make-frame.

Functionmake-frame &optional alist
This function creates a new frame. If you are using a supported window system, it
makes a window frame; otherwise, it makes a terminal frame.
The argument is an alist specifying frame parameters. Any parameters not mentioned
in alist default according to the value of the variable default-frame-alist; param-
eters not specified even there default from the standard X resources or whatever is
used instead on your system.
The set of possible parameters depends in principle on what kind of window system
Emacs uses to display its frames. See Section 29.3.3 [Window Frame Parameters],
page 486, for documentation of individual parameters you can specify.

Variablebefore-make-frame-hook
A normal hook run by make-frame before it actually creates the frame.

Variableafter-make-frame-functions
An abnormal hook run by make-frame after it creates the frame. Each function in
after-make-frame-functions receives one argument, the frame just created.

484 GNU Emacs Lisp Reference Manual

29.2 Multiple Displays

A single Emacs can talk to more than one X display. Initially, Emacs uses just one
display—the one chosen with the DISPLAY environment variable or with the ‘--display’
option (see section “Initial Options” in The GNU Emacs Manual). To connect to another
display, use the command make-frame-on-display or specify the display frame parameter
when you create the frame.

Emacs treats each X server as a separate terminal, giving each one its own selected frame
and its own minibuffer windows. However, only one of those frames is “the selected frame”
at any given moment, see Section 29.9 [Input Focus], page 495.

A few Lisp variables are terminal-local; that is, they have a separate binding for each
terminal. The binding in effect at any time is the one for the terminal that the currently
selected frame belongs to. These variables include default-minibuffer-frame, defining-
kbd-macro, last-kbd-macro, and system-key-alist. They are always terminal-local, and
can never be buffer-local (see Section 11.10 [Buffer-Local Variables], page 146) or frame-
local.

A single X server can handle more than one screen. A display name ‘host:server.screen’
has three parts; the last part specifies the screen number for a given server. When you use
two screens belonging to one server, Emacs knows by the similarity in their names that they
share a single keyboard, and it treats them as a single terminal.

Commandmake-frame-on-display display &optional parameters
This creates a new frame on display display, taking the other frame parameters from
parameters. Aside from the display argument, it is like make-frame (see Section 29.1
[Creating Frames], page 483).

Functionx-display-list
This returns a list that indicates which X displays Emacs has a connection to. The
elements of the list are strings, and each one is a display name.

Functionx-open-connection display &optional xrm-string must-succeed
This function opens a connection to the X display display. It does not create a frame
on that display, but it permits you to check that communication can be established
with that display.
The optional argument xrm-string, if not nil, is a string of resource names and values,
in the same format used in the ‘.Xresources’ file. The values you specify override
the resource values recorded in the X server itself; they apply to all Emacs frames
created on this display. Here’s an example of what this string might look like:

"*BorderWidth: 3\n*InternalBorder: 2\n"

See Section 29.21 [Resources], page 505.
If must-succeed is non-nil, failure to open the connection terminates Emacs. Other-
wise, it is an ordinary Lisp error.

Functionx-close-connection display
This function closes the connection to display display. Before you can do this, you
must first delete all the frames that were open on that display (see Section 29.5
[Deleting Frames], page 493).

Chapter 29: Frames 485

29.3 Frame Parameters

A frame has many parameters that control its appearance and behavior. Just what
parameters a frame has depends on what display mechanism it uses.

Frame parameters exist mostly for the sake of window systems. A terminal frame has
a few parameters, mostly for compatibility’s sake; only the height, width, name, title,
menu-bar-lines, buffer-list and buffer-predicate parameters do something special.
If the terminal supports colors, the parameters foreground-color, background-color,
background-mode and display-type are also meaningful.

29.3.1 Access to Frame Parameters

These functions let you read and change the parameter values of a frame.

Functionframe-parameter frame parameter
This function returns the value of the parameter named parameter of frame. If frame
is nil, it returns the selected frame’s parameter.

Functionframe-parameters frame
The function frame-parameters returns an alist listing all the parameters of frame
and their values.

Functionmodify-frame-parameters frame alist
This function alters the parameters of frame frame based on the elements of alist.
Each element of alist has the form (parm . value), where parm is a symbol naming
a parameter. If you don’t mention a parameter in alist, its value doesn’t change.

29.3.2 Initial Frame Parameters

You can specify the parameters for the initial startup frame by setting initial-frame-
alist in your init file (see Section 40.1.2 [Init File], page 722).

Variableinitial-frame-alist
This variable’s value is an alist of parameter values used when creating the initial
window frame. You can set this variable to specify the appearance of the initial
frame without altering subsequent frames. Each element has the form:

(parameter . value)

Emacs creates the initial frame before it reads your init file. After reading that
file, Emacs checks initial-frame-alist, and applies the parameter settings in the
altered value to the already created initial frame.
If these settings affect the frame geometry and appearance, you’ll see the frame appear
with the wrong ones and then change to the specified ones. If that bothers you, you
can specify the same geometry and appearance with X resources; those do take effect
before the frame is created. See section “X Resources” in The GNU Emacs Manual.
X resource settings typically apply to all frames. If you want to specify some X
resources solely for the sake of the initial frame, and you don’t want them to apply to

486 GNU Emacs Lisp Reference Manual

subsequent frames, here’s how to achieve this. Specify parameters in default-frame-
alist to override the X resources for subsequent frames; then, to prevent these from
affecting the initial frame, specify the same parameters in initial-frame-alist with
values that match the X resources.

If these parameters specify a separate minibuffer-only frame with (minibuffer . nil),
and you have not created one, Emacs creates one for you.

Variableminibuffer-frame-alist
This variable’s value is an alist of parameter values used when creating an initial
minibuffer-only frame—if such a frame is needed, according to the parameters for the
main initial frame.

Variabledefault-frame-alist
This is an alist specifying default values of frame parameters for all Emacs frames—
the first frame, and subsequent frames. When using the X Window System, you can
get the same results by means of X resources in many cases.

See also special-display-frame-alist, in Section 28.8 [Choosing Window], page 463.
If you use options that specify window appearance when you invoke Emacs, they take

effect by adding elements to default-frame-alist. One exception is ‘-geometry’, which
adds the specified position to initial-frame-alist instead. See section “Command Ar-
guments” in The GNU Emacs Manual.

29.3.3 Window Frame Parameters

Just what parameters a frame has depends on what display mechanism it uses. Here is a
table of the parameters that have special meanings in a window frame; of these, name, title,
height, width, buffer-list and buffer-predicate provide meaningful information in
terminal frames.

display The display on which to open this frame. It should be a string of the form
"host:dpy.screen", just like the DISPLAY environment variable.

title If a frame has a non-nil title, it appears in the window system’s border for the
frame, and also in the mode line of windows in that frame if mode-line-frame-
identification uses ‘%F’ (see Section 23.3.3 [%-Constructs], page 373). This
is normally the case when Emacs is not using a window system, and can only
display one frame at a time. See Section 29.4 [Frame Titles], page 492.

name The name of the frame. The frame name serves as a default for the frame title, if
the title parameter is unspecified or nil. If you don’t specify a name, Emacs
sets the frame name automatically (see Section 29.4 [Frame Titles], page 492).
If you specify the frame name explicitly when you create the frame, the name
is also used (instead of the name of the Emacs executable) when looking up X
resources for the frame.

left The screen position of the left edge, in pixels, with respect to the left edge of
the screen. The value may be a positive number pos, or a list of the form (+
pos) which permits specifying a negative pos value.

Chapter 29: Frames 487

A negative number −pos, or a list of the form (- pos), actually specifies the
position of the right edge of the window with respect to the right edge of
the screen. A positive value of pos counts toward the left. Reminder: if the
parameter is a negative integer −pos, then pos is positive.
Some window managers ignore program-specified positions. If you want to be
sure the position you specify is not ignored, specify a non-nil value for the
user-position parameter as well.

top The screen position of the top edge, in pixels, with respect to the top edge of
the screen. The value may be a positive number pos, or a list of the form (+
pos) which permits specifying a negative pos value.
A negative number −pos, or a list of the form (- pos), actually specifies the
position of the bottom edge of the window with respect to the bottom edge of
the screen. A positive value of pos counts toward the top. Reminder: if the
parameter is a negative integer −pos, then pos is positive.
Some window managers ignore program-specified positions. If you want to be
sure the position you specify is not ignored, specify a non-nil value for the
user-position parameter as well.

icon-left
The screen position of the left edge of the frame’s icon, in pixels, counting from
the left edge of the screen. This takes effect if and when the frame is iconified.

icon-top The screen position of the top edge of the frame’s icon, in pixels, counting from
the top edge of the screen. This takes effect if and when the frame is iconified.

user-position
When you create a frame and specify its screen position with the left and
top parameters, use this parameter to say whether the specified position was
user-specified (explicitly requested in some way by a human user) or merely
program-specified (chosen by a program). A non-nil value says the position
was user-specified.
Window managers generally heed user-specified positions, and some heed
program-specified positions too. But many ignore program-specified positions,
placing the window in a default fashion or letting the user place it with the
mouse. Some window managers, including twm, let the user specify whether to
obey program-specified positions or ignore them.
When you call make-frame, you should specify a non-nil value for this param-
eter if the values of the left and top parameters represent the user’s stated
preference; otherwise, use nil.

height The height of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-height; see Section 29.3.4 [Size and Position], page 490.)

width The width of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-width; see Section 29.3.4 [Size and Position], page 490.)

window-id
The number of the window-system window used by the frame to contain the
actual Emacs windows.

488 GNU Emacs Lisp Reference Manual

outer-window-id
The number of the outermost window-system window used for the whole frame.

minibuffer
Whether this frame has its own minibuffer. The value t means yes, nil means
no, only means this frame is just a minibuffer. If the value is a minibuffer
window (in some other frame), the new frame uses that minibuffer.

buffer-predicate
The buffer-predicate function for this frame. The function other-buffer uses
this predicate (from the selected frame) to decide which buffers it should con-
sider, if the predicate is not nil. It calls the predicate with one argument, a
buffer, once for each buffer; if the predicate returns a non-nil value, it considers
that buffer.

buffer-list
A list of buffers that have been selected in this frame, ordered most-recently-
selected first.

font The name of the font for displaying text in the frame. This is a string, either
a valid font name for your system or the name of an Emacs fontset (see Sec-
tion 38.11.10 [Fontsets], page 690). Changing this frame parameter on a frame
also changes the font-related attributes of the default face on that frame.

auto-raise
Whether selecting the frame raises it (non-nil means yes).

auto-lower
Whether deselecting the frame lowers it (non-nil means yes).

vertical-scroll-bars
Whether the frame has scroll bars for vertical scrolling, and which side of the
frame they should be on. The possible values are left, right, and nil for no
scroll bars.

horizontal-scroll-bars
Whether the frame has scroll bars for horizontal scrolling (non-nil means yes).
(Horizontal scroll bars are not currently implemented.)

scroll-bar-width
The width of the vertical scroll bar, in pixels.

icon-type
The type of icon to use for this frame when it is iconified. If the value is a
string, that specifies a file containing a bitmap to use. Any other non-nil value
specifies the default bitmap icon (a picture of a gnu); nil specifies a text icon.

icon-name
The name to use in the icon for this frame, when and if the icon appears. If
this is nil, the frame’s title is used.

foreground-color
The color to use for the image of a character. This is a string; the window system
defines the meaningful color names. Changing this parameter is equivalent to
changing the foreground color of the face default on the frame in question.

Chapter 29: Frames 489

background-color
The color to use for the background of characters. Changing this parameter is
equivalent to changing the foreground color of the face default on the frame
in question.

background-mode
This parameter is either dark or light, according to whether the background
color is a light one or a dark one.

mouse-color
The color for the mouse pointer. Changing this parameter is equivalent to
changing the background color of face mouse.

cursor-color
The color for the cursor that shows point. Changing this parameter is equivalent
to changing the background color of face cursor.

border-color
The color for the border of the frame. Changing this parameter is equivalent
to changing the background color of face border.

scroll-bar-foreground
If non-nil, the color for the foreground of scroll bars. Changing this parameter
is equivalent to setting the foreground color of face scroll-bar.

scroll-bar-background
If non-nil, the color for the background of scroll bars. Changing this parameter
is equivalent to setting the foreground color of face scroll-bar.

display-type
This parameter describes the range of possible colors that can be used in this
frame. Its value is color, grayscale or mono.

cursor-type
The way to display the cursor. The legitimate values are bar, box, and (bar .
width). The symbol box specifies an ordinary black box overlaying the character
after point; that is the default. The symbol bar specifies a vertical bar between
characters as the cursor. (bar . width) specifies a bar width pixels wide.
The buffer-local variable cursor-type overrides the value of the cursor-type
frame parameter, and can in addition have values t (use the cursor specified
for the frame) and nil (don’t display a cursor).

border-width
The width in pixels of the window border.

internal-border-width
The distance in pixels between text and border.

unsplittable
If non-nil, this frame’s window is never split automatically.

visibility
The state of visibility of the frame. There are three possibilities: nil for invisi-
ble, t for visible, and icon for iconified. See Section 29.10 [Visibility of Frames],
page 497.

490 GNU Emacs Lisp Reference Manual

menu-bar-lines
The number of lines to allocate at the top of the frame for a menu bar. The
default is 1. See Section 22.12.5 [Menu Bar], page 350. (In Emacs versions that
use the X toolkit, there is only one menu bar line; all that matters about the
number you specify is whether it is greater than zero.)

screen-gamma
If this is a number, Emacs performs “gamma correction” on colors. The value
should be the screen gamma of your display, a floating point number. Usual PC
monitors have a screen gamma of 2.2, so the default is to display for that gamma
value. Specifying a smaller value results in darker colors, which is desirable for
a monitor that tends to display colors too light. A screen gamma value of 1.5
may give good results for LCD color displays.

tool-bar-lines
The number of lines to use for the toolbar. A value of nil means don’t display
a tool bar.

line-spacing
Additional space put below text lines in pixels (a positive integer).

29.3.4 Frame Size And Position

You can read or change the size and position of a frame using the frame parameters left,
top, height, and width. Whatever geometry parameters you don’t specify are chosen by
the window manager in its usual fashion.

Here are some special features for working with sizes and positions. (For the pre-
cise meaning of “selected frame” used by these functions, see Section 29.9 [Input Focus],
page 495.)

Functionset-frame-position frame left top
This function sets the position of the top left corner of frame to left and top. These
arguments are measured in pixels, and normally count from the top left corner of the
screen.
Negative parameter values position the bottom edge of the window up from the bot-
tom edge of the screen, or the right window edge to the left of the right edge of the
screen. It would probably be better if the values were always counted from the left
and top, so that negative arguments would position the frame partly off the top or
left edge of the screen, but it seems inadvisable to change that now.

Functionframe-height &optional frame
Functionframe-width &optional frame

These functions return the height and width of frame, measured in lines and columns.
If you don’t supply frame, they use the selected frame.

Functionscreen-height
Functionscreen-width

These functions are old aliases for frame-height and frame-width. When you are
using a non-window terminal, the size of the frame is normally the same as the size
of the terminal screen.

Chapter 29: Frames 491

Functionframe-pixel-height &optional frame
Functionframe-pixel-width &optional frame

These functions return the height and width of frame, measured in pixels. If you
don’t supply frame, they use the selected frame.

Functionframe-char-height &optional frame
Functionframe-char-width &optional frame

These functions return the height and width of a character in frame, measured in
pixels. The values depend on the choice of font. If you don’t supply frame, these
functions use the selected frame.

Functionset-frame-size frame cols rows
This function sets the size of frame, measured in characters; cols and rows specify
the new width and height.
To set the size based on values measured in pixels, use frame-char-height and
frame-char-width to convert them to units of characters.

Functionset-frame-height frame lines &optional pretend
This function resizes frame to a height of lines lines. The sizes of existing windows
in frame are altered proportionally to fit.
If pretend is non-nil, then Emacs displays lines lines of output in frame, but does not
change its value for the actual height of the frame. This is only useful for a terminal
frame. Using a smaller height than the terminal actually implements may be useful
to reproduce behavior observed on a smaller screen, or if the terminal malfunctions
when using its whole screen. Setting the frame height “for real” does not always
work, because knowing the correct actual size may be necessary for correct cursor
positioning on a terminal frame.

Functionset-frame-width frame width &optional pretend
This function sets the width of frame, measured in characters. The argument pretend
has the same meaning as in set-frame-height.

The older functions set-screen-height and set-screen-width were used to specify
the height and width of the screen, in Emacs versions that did not support multiple frames.
They are semi-obsolete, but still work; they apply to the selected frame.

Functionx-parse-geometry geom
The function x-parse-geometry converts a standard X window geometry string to
an alist that you can use as part of the argument to make-frame.
The alist describes which parameters were specified in geom, and gives the values
specified for them. Each element looks like (parameter . value). The possible pa-
rameter values are left, top, width, and height.
For the size parameters, the value must be an integer. The position parameter names
left and top are not totally accurate, because some values indicate the position of
the right or bottom edges instead. These are the value possibilities for the position
parameters:

492 GNU Emacs Lisp Reference Manual

an integer A positive integer relates the left edge or top edge of the window to the
left or top edge of the screen. A negative integer relates the right or
bottom edge of the window to the right or bottom edge of the screen.

(+ position)
This specifies the position of the left or top edge of the window relative
to the left or top edge of the screen. The integer position may be positive
or negative; a negative value specifies a position outside the screen.

(- position)
This specifies the position of the right or bottom edge of the window
relative to the right or bottom edge of the screen. The integer position
may be positive or negative; a negative value specifies a position outside
the screen.

Here is an example:

(x-parse-geometry "35x70+0-0")
⇒ ((height . 70) (width . 35)

(top - 0) (left . 0))

29.4 Frame Titles

Every frame has a name parameter; this serves as the default for the frame title which
window systems typically display at the top of the frame. You can specify a name explicitly
by setting the name frame property.

Normally you don’t specify the name explicitly, and Emacs computes the frame name
automatically based on a template stored in the variable frame-title-format. Emacs
recomputes the name each time the frame is redisplayed.

Variableframe-title-format
This variable specifies how to compute a name for a frame when you have not explicitly
specified one. The variable’s value is actually a mode line construct, just like mode-
line-format. See Section 23.3.1 [Mode Line Data], page 369.

Variableicon-title-format
This variable specifies how to compute the name for an iconified frame, when you
have not explicitly specified the frame title. This title appears in the icon itself.

Variablemultiple-frames
This variable is set automatically by Emacs. Its value is t when there are two or
more frames (not counting minibuffer-only frames or invisible frames). The default
value of frame-title-format uses multiple-frames so as to put the buffer name in
the frame title only when there is more than one frame.

Chapter 29: Frames 493

29.5 Deleting Frames

Frames remain potentially visible until you explicitly delete them. A deleted frame
cannot appear on the screen, but continues to exist as a Lisp object until there are no
references to it. There is no way to cancel the deletion of a frame aside from restoring
a saved frame configuration (see Section 29.12 [Frame Configurations], page 498); this is
similar to the way windows behave.

Commanddelete-frame &optional frame force
This function deletes the frame frame after running the hook delete-frame-hook.
By default, frame is the selected frame.
A frame cannot be deleted if its minibuffer is used by other frames. Normally, you
cannot delete a frame if all other frames are invisible, but if the force is non-nil, then
you are allowed to do so.

Functionframe-live-p frame
The function frame-live-p returns non-nil if the frame frame has not been deleted.

Some window managers provide a command to delete a window. These work by sending
a special message to the program that operates the window. When Emacs gets one of these
commands, it generates a delete-frame event, whose normal definition is a command that
calls the function delete-frame. See Section 21.6.10 [Misc Events], page 304.

29.6 Finding All Frames

Functionframe-list
The function frame-list returns a list of all the frames that have not been deleted.
It is analogous to buffer-list for buffers, and includes frames on all terminals. The
list that you get is newly created, so modifying the list doesn’t have any effect on the
internals of Emacs.

Functionvisible-frame-list
This function returns a list of just the currently visible frames. See Section 29.10
[Visibility of Frames], page 497. (Terminal frames always count as “visible”, even
though only the selected one is actually displayed.)

Functionnext-frame &optional frame minibuf
The function next-frame lets you cycle conveniently through all the frames on the
current display from an arbitrary starting point. It returns the “next” frame after
frame in the cycle. If frame is omitted or nil, it defaults to the selected frame (see
Section 29.9 [Input Focus], page 495).
The second argument, minibuf, says which frames to consider:

nil Exclude minibuffer-only frames.

visible Consider all visible frames.

494 GNU Emacs Lisp Reference Manual

0 Consider all visible or iconified frames.

a window Consider only the frames using that particular window as their minibuffer.

anything else
Consider all frames.

Functionprevious-frame &optional frame minibuf
Like next-frame, but cycles through all frames in the opposite direction.

See also next-window and previous-window, in Section 28.5 [Cyclic Window Ordering],
page 459.

29.7 Frames and Windows

Each window is part of one and only one frame; you can get the frame with window-
frame.

Functionwindow-frame window
This function returns the frame that window is on.

All the non-minibuffer windows in a frame are arranged in a cyclic order. The order runs
from the frame’s top window, which is at the upper left corner, down and to the right, until
it reaches the window at the lower right corner (always the minibuffer window, if the frame
has one), and then it moves back to the top. See Section 28.5 [Cyclic Window Ordering],
page 459.

Functionframe-first-window frame
This returns the topmost, leftmost window of frame frame.

At any time, exactly one window on any frame is selected within the frame. The signif-
icance of this designation is that selecting the frame also selects this window. You can get
the frame’s current selected window with frame-selected-window.

Functionframe-selected-window frame
This function returns the window on frame that is selected within frame.

Conversely, selecting a window for Emacs with select-window also makes that window
selected within its frame. See Section 28.4 [Selecting Windows], page 457.

Another function that (usually) returns one of the windows in a given frame is
minibuffer-window. See Section 20.9 [Minibuffer Misc], page 284.

Chapter 29: Frames 495

29.8 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used when-
ever that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-
window (see Section 20.9 [Minibuffer Misc], page 284).

However, you can also create a frame with no minibuffer. Such a frame must use the
minibuffer window of some other frame. When you create the frame, you can specify
explicitly the minibuffer window to use (in some other frame). If you don’t, then the
minibuffer is found in the frame which is the value of the variable default-minibuffer-
frame. Its value should be a frame that does have a minibuffer.

If you use a minibuffer-only frame, you might want that frame to raise when you enter
the minibuffer. If so, set the variable minibuffer-auto-raise to t. See Section 29.11
[Raising and Lowering], page 497.

Variabledefault-minibuffer-frame
This variable specifies the frame to use for the minibuffer window, by default. It
is always local to the current terminal and cannot be buffer-local. See Section 29.2
[Multiple Displays], page 484.

29.9 Input Focus

At any time, one frame in Emacs is the selected frame. The selected window always
resides on the selected frame.

When Emacs displays its frames on several terminals (see Section 29.2 [Multiple Dis-
plays], page 484), each terminal has its own selected frame. But only one of these is “the
selected frame”: it’s the frame that belongs to the terminal from which the most recent
input came. That is, when Emacs runs a command that came from a certain terminal, the
selected frame is the one of that terminal. Since Emacs runs only a single command at any
given time, it needs to consider only one selected frame at a time; this frame is what we
call the selected frame in this manual. The display on which the selected frame is displayed
is the selected frame’s display.

Functionselected-frame
This function returns the selected frame.

Some window systems and window managers direct keyboard input to the window object
that the mouse is in; others require explicit clicks or commands to shift the focus to various
window objects. Either way, Emacs automatically keeps track of which frame has the focus.

Lisp programs can also switch frames “temporarily” by calling the function select-
frame. This does not alter the window system’s concept of focus; rather, it escapes from
the window manager’s control until that control is somehow reasserted.

When using a text-only terminal, only the selected terminal frame is actually displayed
on the terminal. switch-frame is the only way to switch frames, and the change lasts
until overridden by a subsequent call to switch-frame. Each terminal screen except for
the initial one has a number, and the number of the selected frame appears in the mode
line before the buffer name (see Section 23.3.2 [Mode Line Variables], page 371).

496 GNU Emacs Lisp Reference Manual

Functionselect-frame frame
This function selects frame frame, temporarily disregarding the focus of the X server
if any. The selection of frame lasts until the next time the user does something to
select a different frame, or until the next time this function is called. The specified
frame becomes the selected frame, as explained above, and the terminal that frame
is on becomes the selected terminal.

In general, you should never use select-frame in a way that could switch to a
different terminal without switching back when you’re done.

Emacs cooperates with the window system by arranging to select frames as the server
and window manager request. It does so by generating a special kind of input event, called
a focus event, when appropriate. The command loop handles a focus event by calling
handle-switch-frame. See Section 21.6.9 [Focus Events], page 303.

Commandhandle-switch-frame frame
This function handles a focus event by selecting frame frame.

Focus events normally do their job by invoking this command. Don’t call it for any
other reason.

Functionredirect-frame-focus frame focus-frame
This function redirects focus from frame to focus-frame. This means that focus-
frame will receive subsequent keystrokes and events intended for frame. After such
an event, the value of last-event-frame will be focus-frame. Also, switch-frame
events specifying frame will instead select focus-frame.

If focus-frame is nil, that cancels any existing redirection for frame, which therefore
once again receives its own events.

One use of focus redirection is for frames that don’t have minibuffers. These frames
use minibuffers on other frames. Activating a minibuffer on another frame redirects
focus to that frame. This puts the focus on the minibuffer’s frame, where it belongs,
even though the mouse remains in the frame that activated the minibuffer.

Selecting a frame can also change focus redirections. Selecting frame bar, when foo
had been selected, changes any redirections pointing to foo so that they point to bar
instead. This allows focus redirection to work properly when the user switches from
one frame to another using select-window.

This means that a frame whose focus is redirected to itself is treated differently from
a frame whose focus is not redirected. select-frame affects the former but not the
latter.

The redirection lasts until redirect-frame-focus is called to change it.

User Optionfocus-follows-mouse
This option is how you inform Emacs whether the window manager transfers focus
when the user moves the mouse. Non-nil says that it does. When this is so, the com-
mand other-frame moves the mouse to a position consistent with the new selected
frame.

Chapter 29: Frames 497

29.10 Visibility of Frames

A window frame may be visible, invisible, or iconified. If it is visible, you can see its
contents. If it is iconified, the frame’s contents do not appear on the screen, but an icon
does. If the frame is invisible, it doesn’t show on the screen, not even as an icon.

Visibility is meaningless for terminal frames, since only the selected one is actually
displayed in any case.

Commandmake-frame-visible &optional frame
This function makes frame frame visible. If you omit frame, it makes the selected
frame visible.

Commandmake-frame-invisible &optional frame
This function makes frame frame invisible. If you omit frame, it makes the selected
frame invisible.

Commandiconify-frame &optional frame
This function iconifies frame frame. If you omit frame, it iconifies the selected frame.

Functionframe-visible-p frame
This returns the visibility status of frame frame. The value is t if frame is visible,
nil if it is invisible, and icon if it is iconified.

The visibility status of a frame is also available as a frame parameter. You can read or
change it as such. See Section 29.3.3 [Window Frame Parameters], page 486.

The user can iconify and deiconify frames with the window manager. This happens
below the level at which Emacs can exert any control, but Emacs does provide events that
you can use to keep track of such changes. See Section 21.6.10 [Misc Events], page 304.

29.11 Raising and Lowering Frames

Most window systems use a desktop metaphor. Part of this metaphor is the idea that
windows are stacked in a notional third dimension perpendicular to the screen surface, and
thus ordered from “highest” to “lowest”. Where two windows overlap, the one higher up
covers the one underneath. Even a window at the bottom of the stack can be seen if no
other window overlaps it.

A window’s place in this ordering is not fixed; in fact, users tend to change the order
frequently. Raising a window means moving it “up”, to the top of the stack. Lowering a
window means moving it to the bottom of the stack. This motion is in the notional third
dimension only, and does not change the position of the window on the screen.

You can raise and lower Emacs frame Windows with these functions:

Commandraise-frame &optional frame
This function raises frame frame (default, the selected frame).

Commandlower-frame &optional frame
This function lowers frame frame (default, the selected frame).

498 GNU Emacs Lisp Reference Manual

User Optionminibuffer-auto-raise
If this is non-nil, activation of the minibuffer raises the frame that the minibuffer
window is in.

You can also enable auto-raise (raising automatically when a frame is selected) or auto-
lower (lowering automatically when it is deselected) for any frame using frame parameters.
See Section 29.3.3 [Window Frame Parameters], page 486.

29.12 Frame Configurations

A frame configuration records the current arrangement of frames, all their properties,
and the window configuration of each one. (See Section 28.17 [Window Configurations],
page 479.)

Functioncurrent-frame-configuration
This function returns a frame configuration list that describes the current arrangement
of frames and their contents.

Functionset-frame-configuration configuration &optional nodelete
This function restores the state of frames described in configuration.
Ordinarily, this function deletes all existing frames not listed in configuration. But if
nodelete is non-nil, the unwanted frames are iconified instead.

29.13 Mouse Tracking

Sometimes it is useful to track the mouse, which means to display something to indicate
where the mouse is and move the indicator as the mouse moves. For efficient mouse tracking,
you need a way to wait until the mouse actually moves.

The convenient way to track the mouse is to ask for events to represent mouse motion.
Then you can wait for motion by waiting for an event. In addition, you can easily handle
any other sorts of events that may occur. That is useful, because normally you don’t want
to track the mouse forever—only until some other event, such as the release of a button.

Special Formtrack-mouse body. . .
This special form executes body, with generation of mouse motion events enabled.
Typically body would use read-event to read the motion events and modify the
display accordingly. See Section 21.6.8 [Motion Events], page 303, for the format of
mouse motion events.
The value of track-mouse is that of the last form in body. You should design body to
return when it sees the up-event that indicates the release of the button, or whatever
kind of event means it is time to stop tracking.

The usual purpose of tracking mouse motion is to indicate on the screen the consequences
of pushing or releasing a button at the current position.

In many cases, you can avoid the need to track the mouse by using the mouse-face text
property (see Section 32.19.4 [Special Properties], page 567). That works at a much lower
level and runs more smoothly than Lisp-level mouse tracking.

Chapter 29: Frames 499

29.14 Mouse Position

The functions mouse-position and set-mouse-position give access to the current
position of the mouse.

Functionmouse-position
This function returns a description of the position of the mouse. The value looks like
(frame x . y), where x and y are integers giving the position in characters relative
to the top left corner of the inside of frame.

Variablemouse-position-function
If non-nil, the value of this variable is a function for mouse-position to call. mouse-
position calls this function just before returning, with its normal return value as the
sole argument, and it returns whatever this function returns to it.

This abnormal hook exists for the benefit of packages like ‘xt-mouse.el’ that need
to do mouse handling at the Lisp level.

Functionset-mouse-position frame x y
This function warps the mouse to position x, y in frame frame. The arguments x and
y are integers, giving the position in characters relative to the top left corner of the
inside of frame. If frame is not visible, this function does nothing. The return value
is not significant.

Functionmouse-pixel-position
This function is like mouse-position except that it returns coordinates in units of
pixels rather than units of characters.

Functionset-mouse-pixel-position frame x y
This function warps the mouse like set-mouse-position except that x and y are in
units of pixels rather than units of characters. These coordinates are not required to
be within the frame.

If frame is not visible, this function does nothing. The return value is not significant.

500 GNU Emacs Lisp Reference Manual

29.15 Pop-Up Menus

When using a window system, a Lisp program can pop up a menu so that the user can
choose an alternative with the mouse.

Functionx-popup-menu position menu
This function displays a pop-up menu and returns an indication of what selection the
user makes.

The argument position specifies where on the screen to put the menu. It can be
either a mouse button event (which says to put the menu where the user actuated
the button) or a list of this form:

((xoffset yoffset) window)

where xoffset and yoffset are coordinates, measured in pixels, counting from the top
left corner of window’s frame.

If position is t, it means to use the current mouse position. If position is nil, it
means to precompute the key binding equivalents for the keymaps specified in menu,
without actually displaying or popping up the menu.

The argument menu says what to display in the menu. It can be a keymap or a list
of keymaps (see Section 22.12 [Menu Keymaps], page 343). Alternatively, it can have
the following form:

(title pane1 pane2...)

where each pane is a list of form

(title (line . item)...)

Each line should be a string, and each item should be the value to return if that line
is chosen.

Usage note: Don’t use x-popup-menu to display a menu if you could do the job with a
prefix key defined with a menu keymap. If you use a menu keymap to implement a menu,
C-h c and C-h a can see the individual items in that menu and provide help for them. If
instead you implement the menu by defining a command that calls x-popup-menu, the help
facilities cannot know what happens inside that command, so they cannot give any help for
the menu’s items.

The menu bar mechanism, which lets you switch between submenus by moving the
mouse, cannot look within the definition of a command to see that it calls x-popup-menu.
Therefore, if you try to implement a submenu using x-popup-menu, it cannot work with the
menu bar in an integrated fashion. This is why all menu bar submenus are implemented with
menu keymaps within the parent menu, and never with x-popup-menu. See Section 22.12.5
[Menu Bar], page 350,

If you want a menu bar submenu to have contents that vary, you should still use a menu
keymap to implement it. To make the contents vary, add a hook function to menu-bar-
update-hook to update the contents of the menu keymap as necessary.

Chapter 29: Frames 501

29.16 Dialog Boxes

A dialog box is a variant of a pop-up menu—it looks a little different, it always appears
in the center of a frame, and it has just one level and one pane. The main use of dialog
boxes is for asking questions that the user can answer with “yes”, “no”, and a few other
alternatives. The functions y-or-n-p and yes-or-no-p use dialog boxes instead of the
keyboard, when called from commands invoked by mouse clicks.

Functionx-popup-dialog position contents
This function displays a pop-up dialog box and returns an indication of what selection
the user makes. The argument contents specifies the alternatives to offer; it has this
format:

(title (string . value)...)

which looks like the list that specifies a single pane for x-popup-menu.

The return value is value from the chosen alternative.

An element of the list may be just a string instead of a cons cell (string . value).
That makes a box that cannot be selected.

If nil appears in the list, it separates the left-hand items from the right-hand items;
items that precede the nil appear on the left, and items that follow the nil appear
on the right. If you don’t include a nil in the list, then approximately half the items
appear on each side.

Dialog boxes always appear in the center of a frame; the argument position specifies
which frame. The possible values are as in x-popup-menu, but the precise coordinates
don’t matter; only the frame matters.

In some configurations, Emacs cannot display a real dialog box; so instead it displays
the same items in a pop-up menu in the center of the frame.

29.17 Pointer Shapes

These variables specify which shape to use for the mouse pointer in various situations,
when using the X Window System:

x-pointer-shape
This variable specifies the pointer shape to use ordinarily in the Emacs frame.

x-sensitive-text-pointer-shape
This variable specifies the pointer shape to use when the mouse is over mouse-
sensitive text.

These variables affect newly created frames. They do not normally affect existing frames;
however, if you set the mouse color of a frame, that also updates its pointer shapes based
on the current values of these variables. See Section 29.3.3 [Window Frame Parameters],
page 486.

The values you can use, to specify either of these pointer shapes, are defined in the file
‘lisp/term/x-win.el’. Use M-x apropos 〈RET〉 x-pointer 〈RET〉 to see a list of them.

502 GNU Emacs Lisp Reference Manual

29.18 Window System Selections

The X server records a set of selections which permit transfer of data between application
programs. The various selections are distinguished by selection types, represented in Emacs
by symbols. X clients including Emacs can read or set the selection for any given type.

Functionx-set-selection type data
This function sets a “selection” in the X server. It takes two arguments: a selection
type type, and the value to assign to it, data. If data is nil, it means to clear out
the selection. Otherwise, data may be a string, a symbol, an integer (or a cons of two
integers or list of two integers), an overlay, or a cons of two markers pointing to the
same buffer. An overlay or a pair of markers stands for text in the overlay or between
the markers.

The argument data may also be a vector of valid non-vector selection values.

Each possible type has its own selection value, which changes independently. The
usual values of type are PRIMARY and SECONDARY; these are symbols with upper-case
names, in accord with X Window System conventions. The default is PRIMARY.

Functionx-get-selection &optional type data-type
This function accesses selections set up by Emacs or by other X clients. It takes two
optional arguments, type and data-type. The default for type, the selection type, is
PRIMARY.

The data-type argument specifies the form of data conversion to use, to convert
the raw data obtained from another X client into Lisp data. Meaningful values in-
clude TEXT, STRING, TARGETS, LENGTH, DELETE, FILE_NAME, CHARACTER_POSITION,
LINE_NUMBER, COLUMN_NUMBER, OWNER_OS, HOST_NAME, USER, CLASS, NAME, ATOM, and
INTEGER. (These are symbols with upper-case names in accord with X conventions.)
The default for data-type is STRING.

The X server also has a set of numbered cut buffers which can store text or other data
being moved between applications. Cut buffers are considered obsolete, but Emacs supports
them for the sake of X clients that still use them.

Functionx-get-cut-buffer n
This function returns the contents of cut buffer number n.

Functionx-set-cut-buffer string &optional push
This function stores string into the first cut buffer (cut buffer 0). If push is nil, only
the first cut buffer is changed. If push is non-nil, that says to move the values down
through the series of cut buffers, much like the way successive kills in Emacs move
down the kill ring. In other words, the previous value of the first cut buffer moves
into the second cut buffer, and the second to the third, and so on through all eight
cut buffers.

Chapter 29: Frames 503

Variableselection-coding-system
This variable specifies the coding system to use when reading and writing selections,
the clipboard, or a cut buffer. See Section 33.10 [Coding Systems], page 590. The de-
fault is compound-text, which converts to the text representation that X11 normally
uses.

When Emacs runs on MS-Windows, it does not implement X selections in general, but
it does support the clipboard. x-get-selection and x-set-selection on MS-Windows
support the text data type only; if the clipboard holds other types of data, Emacs treats
the clipboard as empty.

User Optionx-select-enable-clipboard
If this is non-nil, the Emacs yank functions consult the clipboard before the primary
selection, and the kill functions store in the clipboard as well as the primary selection.
Otherwise they do not access the clipboard at all. The default is nil on most systems,
but t on MS-Windows.

29.19 Color Names

These functions provide a way to determine which color names are valid, and what they
look like. In some cases, the value depends on the selected frame, as described below; see
Section 29.9 [Input Focus], page 495, for the meaning of the term “selected frame”.

Functioncolor-defined-p color &optional frame
This function reports whether a color name is meaningful. It returns t if so; otherwise,
nil. The argument frame says which frame’s display to ask about; if frame is omitted
or nil, the selected frame is used.
Note that this does not tell you whether the display you are using really supports
that color. When using X, you can ask for any defined color on any kind of display,
and you will get some result—typically, the closest it can do. To determine whether
a frame can really display a certain color, use color-supported-p (see below).
This function used to be called x-color-defined-p, and that name is still supported
as an alias.

Functiondefined-colors &optional frame
This function returns a list of the color names that are defined and supported on
frame frame (default, the selected frame).
This function used to be called x-defined-colors, and that name is still supported
as an alias.

Functioncolor-supported-p color &optional frame background-p
This returns t if frame can really display the color color (or at least something close
to it). If frame is omitted or nil, the question applies to the selected frame.
Some terminals support a different set of colors for foreground and background. If
background-p is non-nil, that means you are asking whether color can be used as a
background; otherwise you are asking whether it can be used as a foreground.
The argument color must be a valid color name.

504 GNU Emacs Lisp Reference Manual

Functioncolor-gray-p color &optional frame
This returns t if color is a shade of gray, as defined on frame’s display. If frame is
omitted or nil, the question applies to the selected frame. The argument color must
be a valid color name.

Functioncolor-values color &optional frame
This function returns a value that describes what color should ideally look like. If
color is defined, the value is a list of three integers, which give the amount of red, the
amount of green, and the amount of blue. Each integer ranges in principle from 0 to
65535, but in practice no value seems to be above 65280. This kind of three-element
list is called an rgb value.
If color is not defined, the value is nil.

(color-values "black")
⇒ (0 0 0)

(color-values "white")
⇒ (65280 65280 65280)

(color-values "red")
⇒ (65280 0 0)

(color-values "pink")
⇒ (65280 49152 51968)

(color-values "hungry")
⇒ nil

The color values are returned for frame’s display. If frame is omitted or nil, the
information is returned for the selected frame’s display.
This function used to be called x-color-values, and that name is still supported as
an alias.

29.20 Text Terminal Colors

Emacs can display color on text-only terminals, starting with version 21. These terminals
support only a small number of colors, and the computer uses small integers to select colors
on the terminal. This means that the computer cannot reliably tell what the selected color
looks like; instead, you have to inform your application which small integers correspond to
which colors. However, Emacs does know the standard set of colors and will try to use them
automatically.

Several of these functions use or return rgb values. An rgb value is a list of three integers,
which give the amount of red, the amount of green, and the amount of blue. Each integer
ranges in principle from 0 to 65535, but in practice the largest value used is 65280.

These functions accept a display (either a frame or the name of a terminal) as an optional
argument. We hope in the future to make Emacs support more than one text-only terminal
at one time; then this argument will specify which terminal to operate on (the default being
the selected frame’s terminal; see Section 29.9 [Input Focus], page 495). At present, though,
the display argument has no effect.

Functiontty-color-define name number &optional rgb display
This function associates the color name name with color number number on the
terminal.

Chapter 29: Frames 505

The optional argument rgb, if specified, is an rgb value; it says what the color actually
looks like. If you do not specify rgb, then this color cannot be used by tty-color-
approximate to approximate other colors, because Emacs does not know what it
looks like.

Functiontty-color-clear &optional display
This function clears the table of defined colors for a text-only terminal.

Functiontty-color-alist &optional display
This function returns an alist recording the known colors supported by a text-only
terminal.
Each element has the form (name number . rgb) or (name number). Here, name is
the color name, number is the number used to specify it to the terminal. If present,
rgb is an rgb value that says what the color actually looks like.

Functiontty-color-approximate rgb &optional display
This function finds the closest color, among the known colors supported for display,
to that described by the rgb value rgb.

Functiontty-color-translate color &optional display
This function finds the closest color to color among the known colors supported for
display. If the name color is not defined, the value is nil.
color can be an X-style "#xxxyyyzzz" specification instead of an actual name. The
format "RGB:xx/yy/zz" is also supported.

29.21 X Resources

Functionx-get-resource attribute class &optional component subclass
The function x-get-resource retrieves a resource value from the X Windows defaults
database.
Resources are indexed by a combination of a key and a class. This function searches
using a key of the form ‘instance.attribute’ (where instance is the name under which
Emacs was invoked), and using ‘Emacs.class’ as the class.
The optional arguments component and subclass add to the key and the class, re-
spectively. You must specify both of them or neither. If you specify them, the key is
‘instance.component.attribute’, and the class is ‘Emacs.class.subclass’.

Variablex-resource-class
This variable specifies the application name that x-get-resource should look up.
The default value is "Emacs". You can examine X resources for application names
other than “Emacs” by binding this variable to some other string, around a call to
x-get-resource.

See section “X Resources” in The GNU Emacs Manual.

506 GNU Emacs Lisp Reference Manual

29.22 Display Feature Testing

The functions in this section describe the basic capabilities of a particular display. Lisp
programs can use them to adapt their behavior to what the display can do. For example,
a program that ordinarly uses a popup menu could use the minibuffer if popup menus are
not supported.

The optional argument display in these functions specifies which display to ask the
question about. It can be a display name, a frame (which designates the display that frame
is on), or nil (which refers to the selected frame’s display, see Section 29.9 [Input Focus],
page 495).

See Section 29.19 [Color Names], page 503, Section 29.20 [Text Terminal Colors],
page 504, for other functions to obtain information about displays.

Functiondisplay-popup-menus-p &optional display
This function returns t if popup menus are supported on display, nil if not. Support
for popup menus requires that the mouse be available, since the user cannot choose
menu items without a mouse.

Functiondisplay-graphic-p &optional display
This function returns t if display is a graphic display capable of displaying several
frames and several different fonts at once. This is true for displays that use a window
system such as X, and false for text-only terminals.

Functiondisplay-mouse-p &optional display
This function returns t if display has a mouse available, nil if not.

Functiondisplay-color-p &optional display
This function returns t if the screen is a color screen. It used to be called x-display-
color-p, and that name is still supported as an alias.

Functiondisplay-grayscale-p &optional display
This function returns t if the screen can display shades of gray. (All color displays
can do this.)

Functiondisplay-selections-p &optional display
This function returns t if display supports selections. Windowed displays normally
support selections, but they may also be supported in some other cases.

Functiondisplay-images-p &optional display
This function returns t if display can display images. Windowed displays ought in
principle to handle images, but some systems lack the support for that. On a display
that does not support images, Emacs cannot display a tool bar.

Functiondisplay-screens &optional display
This function returns the number of screens associated with the display.

Chapter 29: Frames 507

Functiondisplay-pixel-height &optional display
This function returns the height of the screen in pixels.

Functiondisplay-mm-height &optional display
This function returns the height of the screen in millimeters, or nil if Emacs cannot
get that information.

Functiondisplay-pixel-width &optional display
This function returns the width of the screen in pixels.

Functiondisplay-mm-width &optional display
This function returns the width of the screen in millimeters, or nil if Emacs cannot
get that information.

Functiondisplay-backing-store &optional display
This function returns the backing store capability of the display. Backing store means
recording the pixels of windows (and parts of windows) that are not exposed, so that
when exposed they can be displayed very quickly.
Values can be the symbols always, when-mapped, or not-useful. The function can
also return nil when the question is inapplicable to a certain kind of display.

Functiondisplay-save-under &optional display
This function returns non-nil if the display supports the SaveUnder feature. That
feature is used by pop-up windows to save the pixels they obscure, so that they can
pop down quickly.

Functiondisplay-planes &optional display
This function returns the number of planes the display supports. This is typically
the number of bits per pixel. For a tty display, it is log to base two of the number of
colours supported.

Functiondisplay-visual-class &optional display
This function returns the visual class for the screen. The value is one of the sym-
bols static-gray, gray-scale, static-color, pseudo-color, true-color, and
direct-color.

Functiondisplay-color-cells &optional display
This function returns the number of color cells the screen supports.

These functions obtain additional information specifically about X displays.

Functionx-server-version &optional display
This function returns the list of version numbers of the X server running the display.

Functionx-server-vendor &optional display
This function returns the vendor that provided the X server software.

508 GNU Emacs Lisp Reference Manual

Chapter 30: Positions 509

30 Positions

A position is the index of a character in the text of a buffer. More precisely, a position
identifies the place between two characters (or before the first character, or after the last
character), so we can speak of the character before or after a given position. However, we
often speak of the character “at” a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented
as markers—special objects that relocate automatically when text is inserted or deleted so
they stay with the surrounding characters. See Chapter 31 [Markers], page 523.

See also the “field” feature (see Section 32.19.10 [Fields], page 574), which provides
functions that are used by many cursur-motion commands.

30.1 Point

Point is a special buffer position used by many editing commands, including the self-
inserting typed characters and text insertion functions. Other commands move point
through the text to allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first
character, or after the last character), rather than a particular character. Usually terminals
display the cursor over the character that immediately follows point; point is actually before
the character on which the cursor sits.

The value of point is a number no less than 1, and no greater than the buffer size plus 1.
If narrowing is in effect (see Section 30.4 [Narrowing], page 519), then point is constrained
to fall within the accessible portion of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in
other buffers. Each window also has a value of point, which is independent of the value of
point in other windows on the same buffer. This is why point can have different values in
various windows that display the same buffer. When a buffer appears in only one window,
the buffer’s point and the window’s point normally have the same value, so the distinction
is rarely important. See Section 28.9 [Window Point], page 466, for more details.

Functionpoint
This function returns the value of point in the current buffer, as an integer.

(point)
⇒ 175

Functionpoint-min
This function returns the minimum accessible value of point in the current buffer.
This is normally 1, but if narrowing is in effect, it is the position of the start of the
region that you narrowed to. (See Section 30.4 [Narrowing], page 519.)

Functionpoint-max
This function returns the maximum accessible value of point in the current buffer.
This is (1+ (buffer-size)), unless narrowing is in effect, in which case it is the
position of the end of the region that you narrowed to. (See Section 30.4 [Narrowing],
page 519.)

510 GNU Emacs Lisp Reference Manual

Functionbuffer-end flag
This function returns (point-min) if flag is less than 1, (point-max) otherwise. The
argument flag must be a number.

Functionbuffer-size &optional buffer
This function returns the total number of characters in the current buffer. In the
absence of any narrowing (see Section 30.4 [Narrowing], page 519), point-max returns
a value one larger than this.

If you specify a buffer, buffer, then the value is the size of buffer.

(buffer-size)
⇒ 35

(point-max)
⇒ 36

30.2 Motion

Motion functions change the value of point, either relative to the current value of point,
relative to the beginning or end of the buffer, or relative to the edges of the selected window.
See Section 30.1 [Point], page 509.

30.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is the fundamen-
tal primitive; the other functions use that.

Commandgoto-char position
This function sets point in the current buffer to the value position. If position is less
than 1, it moves point to the beginning of the buffer. If position is greater than the
length of the buffer, it moves point to the end.

If narrowing is in effect, position still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. If position is out of range, goto-char
moves point to the beginning or the end of the accessible portion.

When this function is called interactively, position is the numeric prefix argument, if
provided; otherwise it is read from the minibuffer.

goto-char returns position.

Commandforward-char &optional count
This function moves point count characters forward, towards the end of the buffer (or
backward, towards the beginning of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code
beginning-of-buffer or end-of-buffer.

In an interactive call, count is the numeric prefix argument.

Chapter 30: Positions 511

Commandbackward-char &optional count
This function moves point count characters backward, towards the beginning of the
buffer (or forward, towards the end of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code
beginning-of-buffer or end-of-buffer.
In an interactive call, count is the numeric prefix argument.

30.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given char-
acter is part of a word. See Chapter 35 [Syntax Tables], page 621.

Commandforward-word count
This function moves point forward count words (or backward if count is negative).
“Moving one word” means moving until point crosses a word-constituent character
and then encounters a word-separator character. However, this function cannot move
point past the boundary of the accessible portion of the buffer, or across a field
boundary (see Section 32.19.10 [Fields], page 574). The most common case of a field
boundary is the end of the prompt in the minibuffer.
If it is possible to move count words, without being stopped prematurely by the buffer
boundary or a field boundary, the value is t. Otherwise, the return value is nil and
point stops at the buffer boundary or field boundary.
If inhibit-field-text-motion is non-nil, this function ignores field boundaries.
In an interactive call, count is specified by the numeric prefix argument.

Commandbackward-word count
This function is just like forward-word, except that it moves backward until encoun-
tering the front of a word, rather than forward.
In an interactive call, count is set to the numeric prefix argument.

Variablewords-include-escapes
This variable affects the behavior of forward-word and everything that uses it. If
it is non-nil, then characters in the “escape” and “character quote” syntax classes
count as part of words. Otherwise, they do not.

Variableinhibit-field-text-motion
If this variable is non-nil, certain motion functions including forward-word,
forward-sentence, and forward-paragraph ignore field boundaries.

30.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:
(goto-char (point-min))

Likewise, to move to the end of the buffer, use:

512 GNU Emacs Lisp Reference Manual

(goto-char (point-max))

Here are two commands that users use to do these things. They are documented here to
warn you not to use them in Lisp programs, because they set the mark and display messages
in the echo area.

Commandbeginning-of-buffer &optional n
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n
is non-nil, then it puts point n tenths of the way from the beginning of the accessible
portion of the buffer.
In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.
Warning: Don’t use this function in Lisp programs!

Commandend-of-buffer &optional n
This function moves point to the end of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If
n is non-nil, then it puts point n tenths of the way from the end of the accessible
portion of the buffer.
In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.
Warning: Don’t use this function in Lisp programs!

30.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded
as part of the previous line. The first text line begins at the beginning of the buffer, and
the last text line ends at the end of the buffer whether or not the last character is a newline.
The division of the buffer into text lines is not affected by the width of the window, by line
continuation in display, or by how tabs and control characters are displayed.

Commandgoto-line line
This function moves point to the front of the lineth line, counting from line 1 at
beginning of the buffer. If line is less than 1, it moves point to the beginning of the
buffer. If line is greater than the number of lines in the buffer, it moves point to the
end of the buffer—that is, the end of the last line of the buffer. This is the only case
in which goto-line does not necessarily move to the beginning of a line.
If narrowing is in effect, then line still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. So goto-line moves point to the
beginning or end of the accessible portion, if the line number specifies an inaccessible
position.
The return value of goto-line is the difference between line and the line number of
the line to which point actually was able to move (in the full buffer, before taking
account of narrowing). Thus, the value is positive if the scan encounters the real end
of the buffer before finding the specified line. The value is zero if scan encounters the
end of the accessible portion but not the real end of the buffer.

Chapter 30: Positions 513

In an interactive call, line is the numeric prefix argument if one has been provided.
Otherwise line is read in the minibuffer.

Commandbeginning-of-line &optional count
This function moves point to the beginning of the current line. With an argument
count not nil or 1, it moves forward count−1 lines and then to the beginning of the
line.

This function does not move point across a field boundary (see Section 32.19.10
[Fields], page 574) unless doing so would move beyond there to a different line; there-
fore, if count is nil or 1, and point starts at a field boundary, point does not move.
To ignore field boundaries, either bind inhibit-field-text-motion to t, or use the
forward-line function instead. For instance, (forward-line 0) does the same thing
as (beginning-of-line), except that it ignores field boundaries.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

Functionline-beginning-position &optional count
Return the position that (beginning-of-line count) would move to.

Commandend-of-line &optional count
This function moves point to the end of the current line. With an argument count
not nil or 1, it moves forward count−1 lines and then to the end of the line.

This function does not move point across a field boundary (see Section 32.19.10
[Fields], page 574) unless doing so would move beyond there to a different line; there-
fore, if count is nil or 1, and point starts at a field boundary, point does not move.
To ignore field boundaries, bind inhibit-field-text-motion to t.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

Functionline-end-position &optional count
Return the position that (end-of-line count) would move to.

Commandforward-line &optional count
This function moves point forward count lines, to the beginning of the line. If count
is negative, it moves point −count lines backward, to the beginning of a line. If count
is zero, it moves point to the beginning of the current line.

If forward-line encounters the beginning or end of the buffer (or of the accessible
portion) before finding that many lines, it sets point there. No error is signaled.

forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that
has only three lines, point stops at the end of the last line, and the value will be 2.

In an interactive call, count is the numeric prefix argument.

514 GNU Emacs Lisp Reference Manual

Functioncount-lines start end
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at
least 1, even if start and end are on the same line. This is because the text between
them, considered in isolation, must contain at least one line unless it is empty.

Here is an example of using count-lines:

(defun current-line ()
"Return the vertical position of point..."
(+ (count-lines (window-start) (point))

(if (= (current-column) 0) 1 0)
-1))

Also see the functions bolp and eolp in Section 32.1 [Near Point], page 531. These
functions do not move point, but test whether it is already at the beginning or end of a
line.

30.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline
characters. By contrast, these functions count screen lines, which are defined by the way
the text appears on the screen. A text line is a single screen line if it is short enough to fit
the width of the selected window, but otherwise it may occupy several screen lines.

In some cases, text lines are truncated on the screen rather than continued onto addi-
tional screen lines. In these cases, vertical-motion moves point much like forward-line.
See Section 38.3 [Truncation], page 662.

Because the width of a given string depends on the flags that control the appearance of
certain characters, vertical-motion behaves differently, for a given piece of text, depending
on the buffer it is in, and even on the selected window (because the width, the truncation
flag, and display table may vary between windows). See Section 38.16 [Usual Display],
page 702.

These functions scan text to determine where screen lines break, and thus take time
proportional to the distance scanned. If you intend to use them heavily, Emacs provides
caches which may improve the performance of your code. See Section 38.3 [Truncation],
page 662.

Functionvertical-motion count &optional window
This function moves point to the start of the screen line count screen lines down from
the screen line containing point. If count is negative, it moves up instead.

vertical-motion returns the number of screen lines over which it moved point. The
value may be less in absolute value than count if the beginning or end of the buffer
was reached.

The window window is used for obtaining parameters such as the width, the horizontal
scrolling, and the display table. But vertical-motion always operates on the current
buffer, even if window currently displays some other buffer.

Chapter 30: Positions 515

Functioncount-screen-lines &optional beg end count-final-newline window
This function returns the number of screen lines in the text from beg to end. The
number of screen lines may be different from the number of actual lines, due to line
continuation, the display table, etc. If beg and end are nil or omitted, they default
to the beginning and end of the accessible portion of the buffer.
If the region ends with a newline, that is ignored unless the optional third argument
count-final-newline is non-nil.
The optional fourth argument window specifies the window for obtaining parameters
such as width, horizontal scrolling, and so on. The default is to use the selected
window’s parameters.
Like vertical-motion, count-screen-lines always uses the current buffer, regard-
less of which buffer is displayed in window. This makes possible to use count-screen-
lines in any buffer, whether or not it is currently displayed in some window.

Commandmove-to-window-line count
This function moves point with respect to the text currently displayed in the selected
window. It moves point to the beginning of the screen line count screen lines from
the top of the window. If count is negative, that specifies a position −count lines
from the bottom (or the last line of the buffer, if the buffer ends above the specified
screen position).
If count is nil, then point moves to the beginning of the line in the middle of the
window. If the absolute value of count is greater than the size of the window, then
point moves to the place that would appear on that screen line if the window were tall
enough. This will probably cause the next redisplay to scroll to bring that location
onto the screen.
In an interactive call, count is the numeric prefix argument.
The value returned is the window line number point has moved to, with the top line
in the window numbered 0.

Functioncompute-motion from frompos to topos width offsets window
This function scans the current buffer, calculating screen positions. It scans the
buffer forward from position from, assuming that is at screen coordinates frompos, to
position to or coordinates topos, whichever comes first. It returns the ending buffer
position and screen coordinates.
The coordinate arguments frompos and topos are cons cells of the form (hpos .
vpos).
The argument width is the number of columns available to display text; this affects
handling of continuation lines. Use the value returned by window-width for the
window of your choice; normally, use (window-width window).
The argument offsets is either nil or a cons cell of the form (hscroll . tab-offset).
Here hscroll is the number of columns not being displayed at the left margin; most
callers get this by calling window-hscroll. Meanwhile, tab-offset is the offset between
column numbers on the screen and column numbers in the buffer. This can be nonzero
in a continuation line, when the previous screen lines’ widths do not add up to a
multiple of tab-width. It is always zero in a non-continuation line.

516 GNU Emacs Lisp Reference Manual

The window window serves only to specify which display table to use. compute-
motion always operates on the current buffer, regardless of what buffer is displayed
in window.
The return value is a list of five elements:

(pos vpos hpos prevhpos contin)

Here pos is the buffer position where the scan stopped, vpos is the vertical screen
position, and hpos is the horizontal screen position.
The result prevhpos is the horizontal position one character back from pos. The result
contin is t if the last line was continued after (or within) the previous character.
For example, to find the buffer position of column col of screen line line of a certain
window, pass the window’s display start location as from and the window’s upper-left
coordinates as frompos. Pass the buffer’s (point-max) as to, to limit the scan to the
end of the accessible portion of the buffer, and pass line and col as topos. Here’s a
function that does this:

(defun coordinates-of-position (col line)
(car (compute-motion (window-start)

’(0 . 0)
(point-max)
(cons col line)
(window-width)
(cons (window-hscroll) 0)
(selected-window))))

When you use compute-motion for the minibuffer, you need to use minibuffer-
prompt-width to get the horizontal position of the beginning of the first screen line.
See Section 20.9 [Minibuffer Misc], page 284.

30.2.6 Moving over Balanced Expressions

Here are several functions concerned with balanced-parenthesis expressions (also called
sexps in connection with moving across them in Emacs). The syntax table controls how
these functions interpret various characters; see Chapter 35 [Syntax Tables], page 621. See
Section 35.6 [Parsing Expressions], page 628, for lower-level primitives for scanning sexps
or parts of sexps. For user-level commands, see section “Lists Commands” in The GNU
Emacs Manual.

Commandforward-list &optional arg
This function moves forward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

Commandbackward-list &optional arg
This function moves backward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

Commandup-list &optional arg
This function moves forward out of arg (default 1) levels of parentheses. A negative
argument means move backward but still to a less deep spot.

Chapter 30: Positions 517

Commanddown-list &optional arg
This function moves forward into arg (default 1) levels of parentheses. A negative
argument means move backward but still go deeper in parentheses (−arg levels).

Commandforward-sexp &optional arg
This function moves forward across arg (default 1) balanced expressions. Balanced
expressions include both those delimited by parentheses and other kinds, such as
words and string constants. For example,

---------- Buffer: foo ----------
(concat? "foo " (car x) y z)
---------- Buffer: foo ----------

(forward-sexp 3)
⇒ nil

---------- Buffer: foo ----------
(concat "foo " (car x) y? z)
---------- Buffer: foo ----------

Commandbackward-sexp &optional arg
This function moves backward across arg (default 1) balanced expressions.

Commandbeginning-of-defun arg
This function moves back to the argth beginning of a defun. If arg is negative, this
actually moves forward, but it still moves to the beginning of a defun, not to the end
of one.

Commandend-of-defun arg
This function moves forward to the argth end of a defun. If arg is negative, this
actually moves backward, but it still moves to the end of a defun, not to the beginning
of one.

User Optiondefun-prompt-regexp
If non-nil, this variable holds a regular expression that specifies what text can appear
before the open-parenthesis that starts a defun. That is to say, a defun begins on a
line that starts with a match for this regular expression, followed by a character with
open-parenthesis syntax.

User Optionopen-paren-in-column-0-is-defun-start
If this variable’s value is non-nil, an open parenthesis in column 0 is considered to
be the start of a defun. If it is nil, an open parenthesis in column 0 has no special
meaning. The default is t.

Variablebeginning-of-defun-function
If non-nil, this variable holds a function for finding the beginning of a defun. The
function beginning-of-defun calls this function instead of using its normal method.

518 GNU Emacs Lisp Reference Manual

Variableend-of-defun-function
If non-nil, this variable holds a function for finding the end of a defun. The function
end-of-defun calls this function instead of using its normal method.

30.2.7 Skipping Characters

The following two functions move point over a specified set of characters. For example,
they are often used to skip whitespace. For related functions, see Section 35.5 [Motion and
Syntax], page 628.

Functionskip-chars-forward character-set &optional limit
This function moves point in the current buffer forward, skipping over a given set
of characters. It examines the character following point, then advances point if the
character matches character-set. This continues until it reaches a character that does
not match. The function returns the number of characters moved over.
The argument character-set is like the inside of a ‘[...]’ in a regular expression
except that ‘]’ is never special and ‘\’ quotes ‘^’, ‘-’ or ‘\’. Thus, "a-zA-Z" skips
over all letters, stopping before the first nonletter, and "^a-zA-Z" skips nonletters
stopping before the first letter. See Section 34.2 [Regular Expressions], page 602.
If limit is supplied (it must be a number or a marker), it specifies the maximum
position in the buffer that point can be skipped to. Point will stop at or before limit.
In the following example, point is initially located directly before the ‘T’. After the
form is evaluated, point is located at the end of that line (between the ‘t’ of ‘hat’
and the newline). The function skips all letters and spaces, but not newlines.

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(skip-chars-forward "a-zA-Z ")
⇒ nil

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Functionskip-chars-backward character-set &optional limit
This function moves point backward, skipping characters that match character-set,
until limit. It is just like skip-chars-forward except for the direction of motion.
The return value indicates the distance traveled. It is an integer that is zero or less.

30.3 Excursions

It is often useful to move point “temporarily” within a localized portion of the program,
or to switch buffers temporarily. This is called an excursion, and it is done with the save-
excursion special form. This construct initially remembers the identity of the current

Chapter 30: Positions 519

buffer, and its values of point and the mark, and restores them after the completion of the
excursion.

The forms for saving and restoring the configuration of windows are described elsewhere
(see Section 28.17 [Window Configurations], page 479, and see Section 29.12 [Frame Con-
figurations], page 498).

Special Formsave-excursion forms. . .
The save-excursion special form saves the identity of the current buffer and the
values of point and the mark in it, evaluates forms, and finally restores the buffer and
its saved values of point and the mark. All three saved values are restored even in case
of an abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 123).

The save-excursion special form is the standard way to switch buffers or move point
within one part of a program and avoid affecting the rest of the program. It is used
more than 4000 times in the Lisp sources of Emacs.

save-excursion does not save the values of point and the mark for other buffers, so
changes in other buffers remain in effect after save-excursion exits.

Likewise, save-excursion does not restore window-buffer correspondences altered
by functions such as switch-to-buffer. One way to restore these correspondences,
and the selected window, is to use save-window-excursion inside save-excursion
(see Section 28.17 [Window Configurations], page 479).

The value returned by save-excursion is the result of the last of forms, or nil if no
forms are given.

(save-excursion forms)
≡
(let ((old-buf (current-buffer))

(old-pnt (point-marker))
(old-mark (copy-marker (mark-marker))))

(unwind-protect
(progn forms)

(set-buffer old-buf)
(goto-char old-pnt)
(set-marker (mark-marker) old-mark)))

Warning: Ordinary insertion of text adjacent to the saved point value relocates the saved
value, just as it relocates all markers. Therefore, when the saved point value is restored, it
normally comes before the inserted text.

Although save-excursion saves the location of the mark, it does not prevent functions
which modify the buffer from setting deactivate-mark, and thus causing the deactivation
of the mark after the command finishes. See Section 31.7 [The Mark], page 527.

30.4 Narrowing

Narrowing means limiting the text addressable by Emacs editing commands to a limited
range of characters in a buffer. The text that remains addressable is called the accessible
portion of the buffer.

520 GNU Emacs Lisp Reference Manual

Narrowing is specified with two buffer positions which become the beginning and end
of the accessible portion. For most editing commands and most Emacs primitives, these
positions replace the values of the beginning and end of the buffer. While narrowing is in
effect, no text outside the accessible portion is displayed, and point cannot move outside
the accessible portion.

Values such as positions or line numbers, which usually count from the beginning of the
buffer, do so despite narrowing, but the functions which use them refuse to operate on text
that is inaccessible.

The commands for saving buffers are unaffected by narrowing; they save the entire buffer
regardless of any narrowing.

Commandnarrow-to-region start end
This function sets the accessible portion of the current buffer to start at start and
end at end. Both arguments should be character positions.
In an interactive call, start and end are set to the bounds of the current region (point
and the mark, with the smallest first).

Commandnarrow-to-page move-count
This function sets the accessible portion of the current buffer to include just the
current page. An optional first argument move-count non-nil means to move forward
or backward by move-count pages and then narrow to one page. The variable page-
delimiter specifies where pages start and end (see Section 34.8 [Standard Regexps],
page 620).
In an interactive call, move-count is set to the numeric prefix argument.

Commandwiden
This function cancels any narrowing in the current buffer, so that the entire contents
are accessible. This is called widening. It is equivalent to the following expression:

(narrow-to-region 1 (1+ (buffer-size)))

Special Formsave-restriction body. . .
This special form saves the current bounds of the accessible portion, evaluates the
body forms, and finally restores the saved bounds, thus restoring the same state of
narrowing (or absence thereof) formerly in effect. The state of narrowing is restored
even in the event of an abnormal exit via throw or error (see Section 10.5 [Nonlo-
cal Exits], page 123). Therefore, this construct is a clean way to narrow a buffer
temporarily.
The value returned by save-restriction is that returned by the last form in body,
or nil if no body forms were given.
Caution: it is easy to make a mistake when using the save-restriction construct.
Read the entire description here before you try it.
If body changes the current buffer, save-restriction still restores the restrictions
on the original buffer (the buffer whose restrictions it saved from), but it does not
restore the identity of the current buffer.

Chapter 30: Positions 521

save-restriction does not restore point and the mark; use save-excursion for
that. If you use both save-restriction and save-excursion together, save-
excursion should come first (on the outside). Otherwise, the old point value would
be restored with temporary narrowing still in effect. If the old point value were outside
the limits of the temporary narrowing, this would fail to restore it accurately.
Here is a simple example of correct use of save-restriction:

---------- Buffer: foo ----------
This is the contents of foo
This is the contents of foo
This is the contents of foo?
---------- Buffer: foo ----------

(save-excursion
(save-restriction
(goto-char 1)
(forward-line 2)
(narrow-to-region 1 (point))
(goto-char (point-min))
(replace-string "foo" "bar")))

---------- Buffer: foo ----------
This is the contents of bar
This is the contents of bar
This is the contents of foo?
---------- Buffer: foo ----------

522 GNU Emacs Lisp Reference Manual

Chapter 31: Markers 523

31 Markers

A marker is a Lisp object used to specify a position in a buffer relative to the surrounding
text. A marker changes its offset from the beginning of the buffer automatically whenever
text is inserted or deleted, so that it stays with the two characters on either side of it.

31.1 Overview of Markers

A marker specifies a buffer and a position in that buffer. The marker can be used to
represent a position in the functions that require one, just as an integer could be used. See
Chapter 30 [Positions], page 509, for a complete description of positions.

A marker has two attributes: the marker position, and the marker buffer. The marker
position is an integer that is equivalent (at a given time) to the marker as a position in
that buffer. But the marker’s position value can change often during the life of the marker.
Insertion and deletion of text in the buffer relocate the marker. The idea is that a marker
positioned between two characters remains between those two characters despite insertion
and deletion elsewhere in the buffer. Relocation changes the integer equivalent of the
marker.

Deleting text around a marker’s position leaves the marker between the characters imme-
diately before and after the deleted text. Inserting text at the position of a marker normally
leaves the marker either in front of or after the new text, depending on the marker’s in-
sertion type (see Section 31.5 [Marker Insertion Types], page 526)—unless the insertion is
done with insert-before-markers (see Section 32.4 [Insertion], page 534).

Insertion and deletion in a buffer must check all the markers and relocate them if neces-
sary. This slows processing in a buffer with a large number of markers. For this reason, it
is a good idea to make a marker point nowhere if you are sure you don’t need it any more.
Unreferenced markers are garbage collected eventually, but until then will continue to use
time if they do point somewhere.

Because it is common to perform arithmetic operations on a marker position, most of
the arithmetic operations (including + and -) accept markers as arguments. In such cases,
the marker stands for its current position.

Here are examples of creating markers, setting markers, and moving point to markers:
;; Make a new marker that initially does not point anywhere:
(setq m1 (make-marker))

⇒ #<marker in no buffer>

;; Set m1 to point between the 99th and 100th characters
;; in the current buffer:
(set-marker m1 100)

⇒ #<marker at 100 in markers.texi>

;; Now insert one character at the beginning of the buffer:
(goto-char (point-min))

⇒ 1
(insert "Q")

⇒ nil

524 GNU Emacs Lisp Reference Manual

;; m1 is updated appropriately.
m1

⇒ #<marker at 101 in markers.texi>

;; Two markers that point to the same position
;; are not eq, but they are equal.
(setq m2 (copy-marker m1))

⇒ #<marker at 101 in markers.texi>
(eq m1 m2)

⇒ nil
(equal m1 m2)

⇒ t

;; When you are finished using a marker, make it point nowhere.
(set-marker m1 nil)

⇒ #<marker in no buffer>

31.2 Predicates on Markers

You can test an object to see whether it is a marker, or whether it is either an integer
or a marker. The latter test is useful in connection with the arithmetic functions that work
with both markers and integers.

Functionmarkerp object
This function returns t if object is a marker, nil otherwise. Note that integers are
not markers, even though many functions will accept either a marker or an integer.

Functioninteger-or-marker-p object
This function returns t if object is an integer or a marker, nil otherwise.

Functionnumber-or-marker-p object
This function returns t if object is a number (either integer or floating point) or a
marker, nil otherwise.

31.3 Functions that Create Markers

When you create a new marker, you can make it point nowhere, or point to the present
position of point, or to the beginning or end of the accessible portion of the buffer, or to
the same place as another given marker.

Functionmake-marker
This function returns a newly created marker that does not point anywhere.

(make-marker)
⇒ #<marker in no buffer>

Functionpoint-marker
This function returns a new marker that points to the present position of point in the
current buffer. See Section 30.1 [Point], page 509. For an example, see copy-marker,
below.

Chapter 31: Markers 525

Functionpoint-min-marker
This function returns a new marker that points to the beginning of the accessible
portion of the buffer. This will be the beginning of the buffer unless narrowing is in
effect. See Section 30.4 [Narrowing], page 519.

Functionpoint-max-marker
This function returns a new marker that points to the end of the accessible portion
of the buffer. This will be the end of the buffer unless narrowing is in effect. See
Section 30.4 [Narrowing], page 519.
Here are examples of this function and point-min-marker, shown in a buffer con-
taining a version of the source file for the text of this chapter.

(point-min-marker)
⇒ #<marker at 1 in markers.texi>

(point-max-marker)
⇒ #<marker at 15573 in markers.texi>

(narrow-to-region 100 200)
⇒ nil

(point-min-marker)
⇒ #<marker at 100 in markers.texi>

(point-max-marker)
⇒ #<marker at 200 in markers.texi>

Functioncopy-marker marker-or-integer insertion-type
If passed a marker as its argument, copy-marker returns a new marker that points
to the same place and the same buffer as does marker-or-integer. If passed an integer
as its argument, copy-marker returns a new marker that points to position marker-
or-integer in the current buffer.
The new marker’s insertion type is specified by the argument insertion-type. See
Section 31.5 [Marker Insertion Types], page 526.
If passed an integer argument less than 1, copy-marker returns a new marker that
points to the beginning of the current buffer. If passed an integer argument greater
than the length of the buffer, copy-marker returns a new marker that points to the
end of the buffer.

(copy-marker 0)
⇒ #<marker at 1 in markers.texi>

(copy-marker 20000)
⇒ #<marker at 7572 in markers.texi>

An error is signaled if marker is neither a marker nor an integer.

Two distinct markers are considered equal (even though not eq) to each other if they
have the same position and buffer, or if they both point nowhere.

(setq p (point-marker))
⇒ #<marker at 2139 in markers.texi>

(setq q (copy-marker p))
⇒ #<marker at 2139 in markers.texi>

526 GNU Emacs Lisp Reference Manual

(eq p q)
⇒ nil

(equal p q)
⇒ t

31.4 Information from Markers

This section describes the functions for accessing the components of a marker object.

Functionmarker-position marker
This function returns the position that marker points to, or nil if it points nowhere.

Functionmarker-buffer marker
This function returns the buffer that marker points into, or nil if it points nowhere.

(setq m (make-marker))
⇒ #<marker in no buffer>

(marker-position m)
⇒ nil

(marker-buffer m)
⇒ nil

(set-marker m 3770 (current-buffer))
⇒ #<marker at 3770 in markers.texi>

(marker-buffer m)
⇒ #<buffer markers.texi>

(marker-position m)
⇒ 3770

Functionbuffer-has-markers-at position
This function returns t if one or more markers point at position position in the current
buffer.

31.5 Marker Insertion Types

When you insert text directly at the place where a marker points, there are two possible
ways to relocate that marker: it can point before the inserted text, or point after it. You
can specify which one a given marker should do by setting its insertion type. Note that use
of insert-before-markers ignores markers’ insertion types, always relocating a marker to
point after the inserted text.

Functionset-marker-insertion-type marker type
This function sets the insertion type of marker marker to type. If type is t, marker
will advance when text is inserted at its position. If type is nil, marker does not
advance when text is inserted there.

Functionmarker-insertion-type marker
This function reports the current insertion type of marker.

Chapter 31: Markers 527

31.6 Moving Marker Positions

This section describes how to change the position of an existing marker. When you do
this, be sure you know whether the marker is used outside of your program, and, if so, what
effects will result from moving it—otherwise, confusing things may happen in other parts
of Emacs.

Functionset-marker marker position &optional buffer
This function moves marker to position in buffer. If buffer is not provided, it defaults
to the current buffer.
If position is less than 1, set-marker moves marker to the beginning of the buffer. If
position is greater than the size of the buffer, set-marker moves marker to the end
of the buffer. If position is nil or a marker that points nowhere, then marker is set
to point nowhere.
The value returned is marker.

(setq m (point-marker))
⇒ #<marker at 4714 in markers.texi>

(set-marker m 55)
⇒ #<marker at 55 in markers.texi>

(setq b (get-buffer "foo"))
⇒ #<buffer foo>

(set-marker m 0 b)
⇒ #<marker at 1 in foo>

Functionmove-marker marker position &optional buffer
This is another name for set-marker.

31.7 The Mark

One special marker in each buffer is designated the mark. It records a position for the
user for the sake of commands such as kill-region and indent-rigidly. Lisp programs
should set the mark only to values that have a potential use to the user, and never for their
own internal purposes. For example, the replace-regexp command sets the mark to the
value of point before doing any replacements, because this enables the user to move back
there conveniently after the replace is finished.

Many commands are designed so that when called interactively they operate on the
text between point and the mark. If you are writing such a command, don’t examine the
mark directly; instead, use interactive with the ‘r’ specification. This provides the values
of point and the mark as arguments to the command in an interactive call, but permits
other Lisp programs to specify arguments explicitly. See Section 21.2.2 [Interactive Codes],
page 289.

Each buffer has its own value of the mark that is independent of the value of the mark
in other buffers. When a buffer is created, the mark exists but does not point anywhere.
We consider this state as “the absence of a mark in that buffer.”

Once the mark “exists” in a buffer, it normally never ceases to exist. However, it may
become inactive, if Transient Mark mode is enabled. The variable mark-active, which

528 GNU Emacs Lisp Reference Manual

is always buffer-local in all buffers, indicates whether the mark is active: non-nil means
yes. A command can request deactivation of the mark upon return to the editor command
loop by setting deactivate-mark to a non-nil value (but this causes deactivation only if
Transient Mark mode is enabled).

The main motivation for using Transient Mark mode is that this mode also enables
highlighting of the region when the mark is active. See Chapter 38 [Display], page 661.

In addition to the mark, each buffer has a mark ring which is a list of markers contain-
ing previous values of the mark. When editing commands change the mark, they should
normally save the old value of the mark on the mark ring. The variable mark-ring-max
specifies the maximum number of entries in the mark ring; once the list becomes this long,
adding a new element deletes the last element.

There is also a separate global mark ring, but that is used only in a few particular
user-level commands, and is not relevant to Lisp programming. So we do not describe it
here.

Functionmark &optional force
This function returns the current buffer’s mark position as an integer.
If the mark is inactive, mark normally signals an error. However, if force is non-nil,
then mark returns the mark position anyway—or nil, if the mark is not yet set for
this buffer.

Functionmark-marker
This function returns the current buffer’s mark. This is the very marker that records
the mark location inside Emacs, not a copy. Therefore, changing this marker’s position
will directly affect the position of the mark. Don’t do it unless that is the effect you
want.

(setq m (mark-marker))
⇒ #<marker at 3420 in markers.texi>

(set-marker m 100)
⇒ #<marker at 100 in markers.texi>

(mark-marker)
⇒ #<marker at 100 in markers.texi>

Like any marker, this marker can be set to point at any buffer you like. We don’t
recommend that you make it point at any buffer other than the one of which it is the
mark. If you do, it will yield perfectly consistent, but rather odd, results.

Functionset-mark position
This function sets the mark to position, and activates the mark. The old value of the
mark is not pushed onto the mark ring.
Please note: Use this function only if you want the user to see that the mark has
moved, and you want the previous mark position to be lost. Normally, when a new
mark is set, the old one should go on the mark-ring. For this reason, most applica-
tions should use push-mark and pop-mark, not set-mark.
Novice Emacs Lisp programmers often try to use the mark for the wrong purposes.
The mark saves a location for the user’s convenience. An editing command should

Chapter 31: Markers 529

not alter the mark unless altering the mark is part of the user-level functionality of
the command. (And, in that case, this effect should be documented.) To remember a
location for internal use in the Lisp program, store it in a Lisp variable. For example:

(let ((beg (point)))
(forward-line 1)
(delete-region beg (point))).

Functionpush-mark &optional position nomsg activate
This function sets the current buffer’s mark to position, and pushes a copy of the
previous mark onto mark-ring. If position is nil, then the value of point is used.
push-mark returns nil.
The function push-mark normally does not activate the mark. To do that, specify t
for the argument activate.
A ‘Mark set’ message is displayed unless nomsg is non-nil.

Functionpop-mark
This function pops off the top element of mark-ring and makes that mark become
the buffer’s actual mark. This does not move point in the buffer, and it does nothing
if mark-ring is empty. It deactivates the mark.
The return value is not meaningful.

User Optiontransient-mark-mode
This variable if non-nil enables Transient Mark mode, in which every buffer-
modifying primitive sets deactivate-mark. The consequence of this is that
commands that modify the buffer normally make the mark inactive.

User Optionmark-even-if-inactive
If this is non-nil, Lisp programs and the Emacs user can use the mark even when it is
inactive. This option affects the behavior of Transient Mark mode. When the option
is non-nil, deactivation of the mark turns off region highlighting, but commands that
use the mark behave as if the mark were still active.

Variabledeactivate-mark
If an editor command sets this variable non-nil, then the editor command loop
deactivates the mark after the command returns (if Transient Mark mode is enabled).
All the primitives that change the buffer set deactivate-mark, to deactivate the mark
when the command is finished.

Functiondeactivate-mark
This function deactivates the mark, if Transient Mark mode is enabled. Otherwise it
does nothing.

Variablemark-active
The mark is active when this variable is non-nil. This variable is always buffer-local
in each buffer.

530 GNU Emacs Lisp Reference Manual

Variableactivate-mark-hook
Variabledeactivate-mark-hook

These normal hooks are run, respectively, when the mark becomes active and when
it becomes inactive. The hook activate-mark-hook is also run at the end of a
command if the mark is active and it is possible that the region may have changed.

Variablemark-ring
The value of this buffer-local variable is the list of saved former marks of the current
buffer, most recent first.

mark-ring
⇒ (#<marker at 11050 in markers.texi>

#<marker at 10832 in markers.texi>
...)

User Optionmark-ring-max
The value of this variable is the maximum size of mark-ring. If more marks than
this are pushed onto the mark-ring, push-mark discards an old mark when it adds a
new one.

31.8 The Region

The text between point and the mark is known as the region. Various functions operate
on text delimited by point and the mark, but only those functions specifically related to
the region itself are described here.

Functionregion-beginning
This function returns the position of the beginning of the region (as an integer). This
is the position of either point or the mark, whichever is smaller.
If the mark does not point anywhere, an error is signaled.

Functionregion-end
This function returns the position of the end of the region (as an integer). This is the
position of either point or the mark, whichever is larger.
If the mark does not point anywhere, an error is signaled.

Few programs need to use the region-beginning and region-end functions. A com-
mand designed to operate on a region should normally use interactive with the ‘r’ spec-
ification to find the beginning and end of the region. This lets other Lisp programs specify
the bounds explicitly as arguments. (See Section 21.2.2 [Interactive Codes], page 289.)

Chapter 32: Text 531

32 Text

This chapter describes the functions that deal with the text in a buffer. Most examine,
insert, or delete text in the current buffer, often operating at point or on text adjacent to
point. Many are interactive. All the functions that change the text provide for undoing the
changes (see Section 32.9 [Undo], page 544).

Many text-related functions operate on a region of text defined by two buffer positions
passed in arguments named start and end. These arguments should be either markers (see
Chapter 31 [Markers], page 523) or numeric character positions (see Chapter 30 [Positions],
page 509). The order of these arguments does not matter; it is all right for start to be
the end of the region and end the beginning. For example, (delete-region 1 10) and
(delete-region 10 1) are equivalent. An args-out-of-range error is signaled if either
start or end is outside the accessible portion of the buffer. In an interactive call, point and
the mark are used for these arguments.

Throughout this chapter, “text” refers to the characters in the buffer, together with their
properties (when relevant). Keep in mind that point is always between two characters, and
the cursor appears on the character after point.

32.1 Examining Text Near Point

Many functions are provided to look at the characters around point. Several simple
functions are described here. See also looking-at in Section 34.3 [Regexp Search], page 611.

Functionchar-after &optional position
This function returns the character in the current buffer at (i.e., immediately after)
position position. If position is out of range for this purpose, either before the begin-
ning of the buffer, or at or beyond the end, then the value is nil. The default for
position is point.
In the following example, assume that the first character in the buffer is ‘@’:

(char-to-string (char-after 1))
⇒ "@"

Functionchar-before &optional position
This function returns the character in the current buffer immediately before position
position. If position is out of range for this purpose, either before the beginning of
the buffer, or at or beyond the end, then the value is nil. The default for position is
point.

Functionfollowing-char
This function returns the character following point in the current buffer. This is
similar to (char-after (point)). However, if point is at the end of the buffer, then
following-char returns 0.
Remember that point is always between characters, and the terminal cursor normally
appears over the character following point. Therefore, the character returned by
following-char is the character the cursor is over.
In this example, point is between the ‘a’ and the ‘c’.

532 GNU Emacs Lisp Reference Manual

---------- Buffer: foo ----------
Gentlemen may cry ‘‘Pea?ce! Peace!,’’
but there is no peace.
---------- Buffer: foo ----------

(char-to-string (preceding-char))
⇒ "a"

(char-to-string (following-char))
⇒ "c"

Functionpreceding-char
This function returns the character preceding point in the current buffer. See above,
under following-char, for an example. If point is at the beginning of the buffer,
preceding-char returns 0.

Functionbobp
This function returns t if point is at the beginning of the buffer. If narrowing is
in effect, this means the beginning of the accessible portion of the text. See also
point-min in Section 30.1 [Point], page 509.

Functioneobp
This function returns t if point is at the end of the buffer. If narrowing is in effect,
this means the end of accessible portion of the text. See also point-max in See
Section 30.1 [Point], page 509.

Functionbolp
This function returns t if point is at the beginning of a line. See Section 30.2.4 [Text
Lines], page 512. The beginning of the buffer (or of its accessible portion) always
counts as the beginning of a line.

Functioneolp
This function returns t if point is at the end of a line. The end of the buffer (or of
its accessible portion) is always considered the end of a line.

32.2 Examining Buffer Contents

This section describes two functions that allow a Lisp program to convert any portion
of the text in the buffer into a string.

Functionbuffer-substring start end
This function returns a string containing a copy of the text of the region defined by
positions start and end in the current buffer. If the arguments are not positions in the
accessible portion of the buffer, buffer-substring signals an args-out-of-range
error.

It is not necessary for start to be less than end; the arguments can be given in either
order. But most often the smaller argument is written first.

Chapter 32: Text 533

If the text being copied has any text properties, these are copied into the string along
with the characters they belong to. See Section 32.19 [Text Properties], page 562.
However, overlays (see Section 38.9 [Overlays], page 671) in the buffer and their
properties are ignored, not copied.

---------- Buffer: foo ----------
This is the contents of buffer foo

---------- Buffer: foo ----------

(buffer-substring 1 10)
⇒ "This is t"
(buffer-substring (point-max) 10)
⇒ "he contents of buffer foo
"

Functionbuffer-substring-no-properties start end
This is like buffer-substring, except that it does not copy text properties, just the
characters themselves. See Section 32.19 [Text Properties], page 562.

Functionbuffer-string
This function returns the contents of the entire accessible portion of the current buffer
as a string. It is equivalent to

(buffer-substring (point-min) (point-max))

---------- Buffer: foo ----------
This is the contents of buffer foo

---------- Buffer: foo ----------

(buffer-string)
⇒ "This is the contents of buffer foo

"

Functionthing-at-point thing
Return the thing around or next to point, as a string.
The argument thing is a symbol which specifies a kind of syntactic entity. Possibilities
include symbol, list, sexp, defun, filename, url, word, sentence, whitespace,
line, page, and others.

---------- Buffer: foo ----------
Gentlemen may cry ‘‘Pea?ce! Peace!,’’
but there is no peace.
---------- Buffer: foo ----------

(thing-at-point ’word)
⇒ "Peace"

(thing-at-point ’line)
⇒ "Gentlemen may cry ‘‘Peace! Peace!,’’\n"

(thing-at-point ’whitespace)
⇒ nil

534 GNU Emacs Lisp Reference Manual

32.3 Comparing Text

This function lets you compare portions of the text in a buffer, without copying them
into strings first.

Functioncompare-buffer-substrings buffer1 start1 end1 buffer2 start2 end2
This function lets you compare two substrings of the same buffer or two different
buffers. The first three arguments specify one substring, giving a buffer and two
positions within the buffer. The last three arguments specify the other substring in
the same way. You can use nil for buffer1, buffer2, or both to stand for the current
buffer.
The value is negative if the first substring is less, positive if the first is greater, and
zero if they are equal. The absolute value of the result is one plus the index of the
first differing characters within the substrings.
This function ignores case when comparing characters if case-fold-search is non-
nil. It always ignores text properties.
Suppose the current buffer contains the text ‘foobarbar haha!rara!’; then in this
example the two substrings are ‘rbar ’ and ‘rara!’. The value is 2 because the first
substring is greater at the second character.

(compare-buffer-substrings nil 6 11 nil 16 21)
⇒ 2

32.4 Inserting Text

Insertion means adding new text to a buffer. The inserted text goes at point—between
the character before point and the character after point. Some insertion functions leave
point before the inserted text, while other functions leave it after. We call the former
insertion after point and the latter insertion before point.

Insertion relocates markers that point at positions after the insertion point, so that they
stay with the surrounding text (see Chapter 31 [Markers], page 523). When a marker points
at the place of insertion, insertion may or may not relocate the marker, depending on the
marker’s insertion type (see Section 31.5 [Marker Insertion Types], page 526). Certain
special functions such as insert-before-markers relocate all such markers to point after
the inserted text, regardless of the markers’ insertion type.

Insertion functions signal an error if the current buffer is read-only or if they insert
within read-only text.

These functions copy text characters from strings and buffers along with their properties.
The inserted characters have exactly the same properties as the characters they were copied
from. By contrast, characters specified as separate arguments, not part of a string or buffer,
inherit their text properties from the neighboring text.

The insertion functions convert text from unibyte to multibyte in order to insert in a
multibyte buffer, and vice versa—if the text comes from a string or from a buffer. However,
they do not convert unibyte character codes 128 through 255 to multibyte characters, not
even if the current buffer is a multibyte buffer. See Section 33.2 [Converting Representa-
tions], page 584.

Chapter 32: Text 535

Functioninsert &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. In other words, it inserts the text before point. An
error is signaled unless all args are either strings or characters. The value is nil.

Functioninsert-before-markers &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. An error is signaled unless all args are either strings or
characters. The value is nil.

This function is unlike the other insertion functions in that it relocates markers ini-
tially pointing at the insertion point, to point after the inserted text. If an overlay
begins the insertion point, the inserted text falls outside the overlay; if a nonempty
overlay ends at the insertion point, the inserted text falls inside that overlay.

Functioninsert-char character &optional count inherit
This function inserts count instances of character into the current buffer before point.
The argument count should be a number (nil means 1), and character must be a
character. The value is nil.

This function does not convert unibyte character codes 128 through 255 to multibyte
characters, not even if the current buffer is a multibyte buffer. See Section 33.2
[Converting Representations], page 584.

If inherit is non-nil, then the inserted characters inherit sticky text properties from
the two characters before and after the insertion point. See Section 32.19.6 [Sticky
Properties], page 570.

Functioninsert-buffer-substring from-buffer-or-name &optional start end
This function inserts a portion of buffer from-buffer-or-name (which must already
exist) into the current buffer before point. The text inserted is the region from start
and end. (These arguments default to the beginning and end of the accessible portion
of that buffer.) This function returns nil.

In this example, the form is executed with buffer ‘bar’ as the current buffer. We
assume that buffer ‘bar’ is initially empty.

---------- Buffer: foo ----------
We hold these truths to be self-evident, that all
---------- Buffer: foo ----------

(insert-buffer-substring "foo" 1 20)
⇒ nil

---------- Buffer: bar ----------
We hold these truth?
---------- Buffer: bar ----------

See Section 32.19.6 [Sticky Properties], page 570, for other insertion functions that inherit
text properties from the nearby text in addition to inserting it. Whitespace inserted by
indentation functions also inherits text properties.

536 GNU Emacs Lisp Reference Manual

32.5 User-Level Insertion Commands

This section describes higher-level commands for inserting text, commands intended
primarily for the user but useful also in Lisp programs.

Commandinsert-buffer from-buffer-or-name
This command inserts the entire contents of from-buffer-or-name (which must exist)
into the current buffer after point. It leaves the mark after the inserted text. The
value is nil.

Commandself-insert-command count
This command inserts the last character typed; it does so count times, before point,
and returns nil. Most printing characters are bound to this command. In routine use,
self-insert-command is the most frequently called function in Emacs, but programs
rarely use it except to install it on a keymap.
In an interactive call, count is the numeric prefix argument.
This command calls auto-fill-function whenever that is non-nil and the character
inserted is in the table auto-fill-chars (see Section 32.14 [Auto Filling], page 551).
This command performs abbrev expansion if Abbrev mode is enabled and the in-
serted character does not have word-constituent syntax. (See Chapter 36 [Abbrevs],
page 635, and Section 35.2.1 [Syntax Class Table], page 622.)
This is also responsible for calling blink-paren-function when the inserted charac-
ter has close parenthesis syntax (see Section 38.14 [Blinking], page 701).
Do not try substituting your own definition of self-insert-command for the standard
one. The editor command loop handles this function specially.

Commandnewline &optional number-of-newlines
This command inserts newlines into the current buffer before point. If number-of-
newlines is supplied, that many newline characters are inserted.
This function calls auto-fill-function if the current column number is greater than
the value of fill-column and number-of-newlines is nil. Typically what auto-fill-
function does is insert a newline; thus, the overall result in this case is to insert two
newlines at different places: one at point, and another earlier in the line. newline
does not auto-fill if number-of-newlines is non-nil.
This command indents to the left margin if that is not zero. See Section 32.12
[Margins], page 549.
The value returned is nil. In an interactive call, count is the numeric prefix argument.

Commandsplit-line
This command splits the current line, moving the portion of the line after point down
vertically so that it is on the next line directly below where it was before. Whitespace
is inserted as needed at the beginning of the lower line, using the indent-to function.
split-line returns the position of point.
Programs hardly ever use this function.

Chapter 32: Text 537

Variableoverwrite-mode
This variable controls whether overwrite mode is in effect. The value should be
overwrite-mode-textual, overwrite-mode-binary, or nil. overwrite-mode-
textual specifies textual overwrite mode (treats newlines and tabs specially), and
overwrite-mode-binary specifies binary overwrite mode (treats newlines and tabs
like any other characters).

32.6 Deleting Text

Deletion means removing part of the text in a buffer, without saving it in the kill ring
(see Section 32.8 [The Kill Ring], page 540). Deleted text can’t be yanked, but can be
reinserted using the undo mechanism (see Section 32.9 [Undo], page 544). Some deletion
functions do save text in the kill ring in some special cases.

All of the deletion functions operate on the current buffer, and all return a value of nil.

Commanderase-buffer
This function deletes the entire text of the current buffer, leaving it empty. If the
buffer is read-only, it signals a buffer-read-only error; if some of the text in it is
read-only, it signals a text-read-only error. Otherwise, it deletes the text without
asking for any confirmation. It returns nil.

Normally, deleting a large amount of text from a buffer inhibits further auto-saving
of that buffer “because it has shrunk”. However, erase-buffer does not do this, the
idea being that the future text is not really related to the former text, and its size
should not be compared with that of the former text.

Commanddelete-region start end
This command deletes the text between positions start and end in the current buffer,
and returns nil. If point was inside the deleted region, its value afterward is start.
Otherwise, point relocates with the surrounding text, as markers do.

Functiondelete-and-extract-region start end
This function deletes the text between positions start and end in the current buffer,
and returns a string containing the text just deleted.

If point was inside the deleted region, its value afterward is start. Otherwise, point
relocates with the surrounding text, as markers do.

Commanddelete-char count &optional killp
This command deletes count characters directly after point, or before point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

538 GNU Emacs Lisp Reference Manual

Commanddelete-backward-char count &optional killp
This command deletes count characters directly before point, or after point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.
In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.
The value returned is always nil.

Commandbackward-delete-char-untabify count &optional killp
This command deletes count characters backward, changing tabs into spaces. When
the next character to be deleted is a tab, it is first replaced with the proper number
of spaces to preserve alignment and then one of those spaces is deleted instead of the
tab. If killp is non-nil, then the command saves the deleted characters in the kill
ring.
Conversion of tabs to spaces happens only if count is positive. If it is negative, exactly
−count characters after point are deleted.
In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.
The value returned is always nil.

User Optionbackward-delete-char-untabify-method
This option specifies how backward-delete-char-untabify should deal with white-
space. Possible values include untabify, the default, meaning convert a tab to many
spaces and delete one; hungry, meaning delete all the whitespace characters before
point with one command, and nil, meaning do nothing special for whitespace char-
acters.

32.7 User-Level Deletion Commands

This section describes higher-level commands for deleting text, commands intended pri-
marily for the user but useful also in Lisp programs.

Commanddelete-horizontal-space
This function deletes all spaces and tabs around point. It returns nil.
In the following examples, we call delete-horizontal-space four times, once on
each line, with point between the second and third characters on the line each time.

---------- Buffer: foo ----------
I ?thought
I ? thought
We? thought
Yo?u thought
---------- Buffer: foo ----------

Chapter 32: Text 539

(delete-horizontal-space) ; Four times.
⇒ nil

---------- Buffer: foo ----------
Ithought
Ithought
Wethought
You thought
---------- Buffer: foo ----------

Commanddelete-indentation &optional join-following-p
This function joins the line point is on to the previous line, deleting any whitespace
at the join and in some cases replacing it with one space. If join-following-p is non-
nil, delete-indentation joins this line to the following line instead. The function
returns nil.
If there is a fill prefix, and the second of the lines being joined starts with the pre-
fix, then delete-indentation deletes the fill prefix before joining the lines. See
Section 32.12 [Margins], page 549.
In the example below, point is located on the line starting ‘events’, and it makes no
difference if there are trailing spaces in the preceding line.

---------- Buffer: foo ----------
When in the course of human
? events, it becomes necessary
---------- Buffer: foo ----------

(delete-indentation)
⇒ nil

---------- Buffer: foo ----------
When in the course of human? events, it becomes necessary
---------- Buffer: foo ----------

After the lines are joined, the function fixup-whitespace is responsible for deciding
whether to leave a space at the junction.

Functionfixup-whitespace
This function replaces all the whitespace surrounding point with either one space or
no space, according to the context. It returns nil.
At the beginning or end of a line, the appropriate amount of space is none. Before
a character with close parenthesis syntax, or after a character with open parenthesis
or expression-prefix syntax, no space is also appropriate. Otherwise, one space is
appropriate. See Section 35.2.1 [Syntax Class Table], page 622.
In the example below, fixup-whitespace is called the first time with point before
the word ‘spaces’ in the first line. For the second invocation, point is directly after
the ‘(’.

---------- Buffer: foo ----------
This has too many ?spaces
This has too many spaces at the start of (? this list)
---------- Buffer: foo ----------

540 GNU Emacs Lisp Reference Manual

(fixup-whitespace)
⇒ nil

(fixup-whitespace)
⇒ nil

---------- Buffer: foo ----------
This has too many spaces
This has too many spaces at the start of (this list)
---------- Buffer: foo ----------

Commandjust-one-space
This command replaces any spaces and tabs around point with a single space. It
returns nil.

Commanddelete-blank-lines
This function deletes blank lines surrounding point. If point is on a blank line with
one or more blank lines before or after it, then all but one of them are deleted. If
point is on an isolated blank line, then it is deleted. If point is on a nonblank line,
the command deletes all blank lines following it.

A blank line is defined as a line containing only tabs and spaces.

delete-blank-lines returns nil.

32.8 The Kill Ring

Kill functions delete text like the deletion functions, but save it so that the user can
reinsert it by yanking. Most of these functions have ‘kill-’ in their name. By contrast, the
functions whose names start with ‘delete-’ normally do not save text for yanking (though
they can still be undone); these are “deletion” functions.

Most of the kill commands are primarily for interactive use, and are not described here.
What we do describe are the functions provided for use in writing such commands. You
can use these functions to write commands for killing text. When you need to delete text
for internal purposes within a Lisp function, you should normally use deletion functions, so
as not to disturb the kill ring contents. See Section 32.6 [Deletion], page 537.

Killed text is saved for later yanking in the kill ring. This is a list that holds a number
of recent kills, not just the last text kill. We call this a “ring” because yanking treats it as
having elements in a cyclic order. The list is kept in the variable kill-ring, and can be
operated on with the usual functions for lists; there are also specialized functions, described
in this section, that treat it as a ring.

Some people think this use of the word “kill” is unfortunate, since it refers to operations
that specifically do not destroy the entities “killed”. This is in sharp contrast to ordinary life,
in which death is permanent and “killed” entities do not come back to life. Therefore, other
metaphors have been proposed. For example, the term “cut ring” makes sense to people
who, in pre-computer days, used scissors and paste to cut up and rearrange manuscripts.
However, it would be difficult to change the terminology now.

Chapter 32: Text 541

32.8.1 Kill Ring Concepts

The kill ring records killed text as strings in a list, most recent first. A short kill ring,
for example, might look like this:

("some text" "a different piece of text" "even older text")

When the list reaches kill-ring-max entries in length, adding a new entry automatically
deletes the last entry.

When kill commands are interwoven with other commands, each kill command makes
a new entry in the kill ring. Multiple kill commands in succession build up a single kill-
ring entry, which would be yanked as a unit; the second and subsequent consecutive kill
commands add text to the entry made by the first one.

For yanking, one entry in the kill ring is designated the “front” of the ring. Some yank
commands “rotate” the ring by designating a different element as the “front.” But this
virtual rotation doesn’t change the list itself—the most recent entry always comes first in
the list.

32.8.2 Functions for Killing

kill-region is the usual subroutine for killing text. Any command that calls this
function is a “kill command” (and should probably have ‘kill’ in its name). kill-region
puts the newly killed text in a new element at the beginning of the kill ring or adds it to
the most recent element. It determines automatically (using last-command) whether the
previous command was a kill command, and if so appends the killed text to the most recent
entry.

Commandkill-region start end
This function kills the text in the region defined by start and end. The text is deleted
but saved in the kill ring, along with its text properties. The value is always nil.
In an interactive call, start and end are point and the mark.
If the buffer or text is read-only, kill-region modifies the kill ring just the same,
then signals an error without modifying the buffer. This is convenient because it lets
the user use a series of kill commands to copy text from a read-only buffer into the
kill ring.

User Optionkill-read-only-ok
If this option is non-nil, kill-region does not signal an error if the buffer or text
is read-only. Instead, it simply returns, updating the kill ring but not changing the
buffer.

Commandcopy-region-as-kill start end
This command saves the region defined by start and end on the kill ring (including
text properties), but does not delete the text from the buffer. It returns nil. It
also indicates the extent of the text copied by moving the cursor momentarily, or by
displaying a message in the echo area.
The command does not set this-command to kill-region, so a subsequent kill com-
mand does not append to the same kill ring entry.

542 GNU Emacs Lisp Reference Manual

Don’t call copy-region-as-kill in Lisp programs unless you aim to support Emacs
18. For newer Emacs versions, it is better to use kill-new or kill-append instead.
See Section 32.8.4 [Low-Level Kill Ring], page 542.

32.8.3 Functions for Yanking

Yanking means reinserting an entry of previously killed text from the kill ring. The text
properties are copied too.

Commandyank &optional arg
This command inserts before point the text in the first entry in the kill ring. It
positions the mark at the beginning of that text, and point at the end.
If arg is a list (which occurs interactively when the user types C-u with no digits),
then yank inserts the text as described above, but puts point before the yanked text
and puts the mark after it.
If arg is a number, then yank inserts the argth most recently killed text—the argth
element of the kill ring list.
yank does not alter the contents of the kill ring or rotate it. It returns nil.

Commandyank-pop arg
This command replaces the just-yanked entry from the kill ring with a different entry
from the kill ring.
This is allowed only immediately after a yank or another yank-pop. At such a time,
the region contains text that was just inserted by yanking. yank-pop deletes that
text and inserts in its place a different piece of killed text. It does not add the deleted
text to the kill ring, since it is already in the kill ring somewhere.
If arg is nil, then the replacement text is the previous element of the kill ring. If
arg is numeric, the replacement is the argth previous kill. If arg is negative, a more
recent kill is the replacement.
The sequence of kills in the kill ring wraps around, so that after the oldest one comes
the newest one, and before the newest one goes the oldest.
The return value is always nil.

32.8.4 Low-Level Kill Ring

These functions and variables provide access to the kill ring at a lower level, but still
convenient for use in Lisp programs, because they take care of interaction with window
system selections (see Section 29.18 [Window System Selections], page 502).

Functioncurrent-kill n &optional do-not-move
The function current-kill rotates the yanking pointer, which designates the “front”
of the kill ring, by n places (from newer kills to older ones), and returns the text at
that place in the ring.
If the optional second argument do-not-move is non-nil, then current-kill doesn’t
alter the yanking pointer; it just returns the nth kill, counting from the current
yanking pointer.

Chapter 32: Text 543

If n is zero, indicating a request for the latest kill, current-kill calls the value of
interprogram-paste-function (documented below) before consulting the kill ring.

Functionkill-new string
This function puts the text string into the kill ring as a new entry at the front of
the ring. It discards the oldest entry if appropriate. It also invokes the value of
interprogram-cut-function (see below).

Functionkill-append string before-p
This function appends the text string to the first entry in the kill ring. Normally string
goes at the end of the entry, but if before-p is non-nil, it goes at the beginning. This
function also invokes the value of interprogram-cut-function (see below).

Variableinterprogram-paste-function
This variable provides a way of transferring killed text from other programs, when
you are using a window system. Its value should be nil or a function of no arguments.
If the value is a function, current-kill calls it to get the “most recent kill”. If the
function returns a non-nil value, then that value is used as the “most recent kill”. If
it returns nil, then the first element of kill-ring is used.
The normal use of this hook is to get the window system’s primary selection as the
most recent kill, even if the selection belongs to another application. See Section 29.18
[Window System Selections], page 502.

Variableinterprogram-cut-function
This variable provides a way of communicating killed text to other programs, when
you are using a window system. Its value should be nil or a function of one argument.
If the value is a function, kill-new and kill-append call it with the new first element
of the kill ring as an argument.
The normal use of this hook is to set the window system’s primary selection from the
newly killed text. See Section 29.18 [Window System Selections], page 502.

32.8.5 Internals of the Kill Ring

The variable kill-ring holds the kill ring contents, in the form of a list of strings. The
most recent kill is always at the front of the list.

The kill-ring-yank-pointer variable points to a link in the kill ring list, whose car
is the text to yank next. We say it identifies the “front” of the ring. Moving kill-ring-
yank-pointer to a different link is called rotating the kill ring. We call the kill ring a
“ring” because the functions that move the yank pointer wrap around from the end of the
list to the beginning, or vice-versa. Rotation of the kill ring is virtual; it does not change
the value of kill-ring.

Both kill-ring and kill-ring-yank-pointer are Lisp variables whose values are nor-
mally lists. The word “pointer” in the name of the kill-ring-yank-pointer indicates
that the variable’s purpose is to identify one element of the list for use by the next yank
command.

544 GNU Emacs Lisp Reference Manual

The value of kill-ring-yank-pointer is always eq to one of the links in the kill ring
list. The element it identifies is the car of that link. Kill commands, which change the kill
ring, also set this variable to the value of kill-ring. The effect is to rotate the ring so
that the newly killed text is at the front.

Here is a diagram that shows the variable kill-ring-yank-pointer pointing to the sec-
ond entry in the kill ring ("some text" "a different piece of text" "yet older text").

kill-ring ---- kill-ring-yank-pointer
| |
| v
| --- --- --- --- --- ---
--> | | |------> | | |--> | | |--> nil

--- --- --- --- --- ---
| | |
| | |
| | -->"yet older text"
| |
| --> "a different piece of text"
|
--> "some text"

This state of affairs might occur after C-y (yank) immediately followed by M-y (yank-pop).

Variablekill-ring
This variable holds the list of killed text sequences, most recently killed first.

Variablekill-ring-yank-pointer
This variable’s value indicates which element of the kill ring is at the “front” of the
ring for yanking. More precisely, the value is a tail of the value of kill-ring, and its
car is the kill string that C-y should yank.

User Optionkill-ring-max
The value of this variable is the maximum length to which the kill ring can grow,
before elements are thrown away at the end. The default value for kill-ring-max is
30.

32.9 Undo

Most buffers have an undo list, which records all changes made to the buffer’s text so that
they can be undone. (The buffers that don’t have one are usually special-purpose buffers
for which Emacs assumes that undoing is not useful.) All the primitives that modify the
text in the buffer automatically add elements to the front of the undo list, which is in the
variable buffer-undo-list.

Variablebuffer-undo-list
This variable’s value is the undo list of the current buffer. A value of t disables the
recording of undo information.

Chapter 32: Text 545

Here are the kinds of elements an undo list can have:

position This kind of element records a previous value of point; undoing this element
moves point to position. Ordinary cursor motion does not make any sort of
undo record, but deletion operations use these entries to record where point
was before the command.

(beg . end)
This kind of element indicates how to delete text that was inserted. Upon
insertion, the text occupied the range beg–end in the buffer.

(text . position)
This kind of element indicates how to reinsert text that was deleted. The
deleted text itself is the string text. The place to reinsert it is (abs position).

(t high . low)
This kind of element indicates that an unmodified buffer became modified. The
elements high and low are two integers, each recording 16 bits of the visited file’s
modification time as of when it was previously visited or saved. primitive-
undo uses those values to determine whether to mark the buffer as unmodified
once again; it does so only if the file’s modification time matches those numbers.

(nil property value beg . end)
This kind of element records a change in a text property. Here’s how you might
undo the change:

(put-text-property beg end property value)

(marker . adjustment)
This kind of element records the fact that the marker marker was relocated
due to deletion of surrounding text, and that it moved adjustment character
positions. Undoing this element moves marker − adjustment characters.

nil This element is a boundary. The elements between two boundaries are called
a change group; normally, each change group corresponds to one keyboard
command, and undo commands normally undo an entire group as a unit.

Functionundo-boundary
This function places a boundary element in the undo list. The undo command stops
at such a boundary, and successive undo commands undo to earlier and earlier bound-
aries. This function returns nil.

The editor command loop automatically creates an undo boundary before each key
sequence is executed. Thus, each undo normally undoes the effects of one command.
Self-inserting input characters are an exception. The command loop makes a bound-
ary for the first such character; the next 19 consecutive self-inserting input characters
do not make boundaries, and then the 20th does, and so on as long as self-inserting
characters continue.

All buffer modifications add a boundary whenever the previous undoable change was
made in some other buffer. This is to ensure that each command makes a boundary
in each buffer where it makes changes.

546 GNU Emacs Lisp Reference Manual

Calling this function explicitly is useful for splitting the effects of a command into
more than one unit. For example, query-replace calls undo-boundary after each
replacement, so that the user can undo individual replacements one by one.

Functionprimitive-undo count list
This is the basic function for undoing elements of an undo list. It undoes the first
count elements of list, returning the rest of list. You could write this function in Lisp,
but it is convenient to have it in C.
primitive-undo adds elements to the buffer’s undo list when it changes the buffer.
Undo commands avoid confusion by saving the undo list value at the beginning of a
sequence of undo operations. Then the undo operations use and update the saved
value. The new elements added by undoing are not part of this saved value, so they
don’t interfere with continuing to undo.

32.10 Maintaining Undo Lists

This section describes how to enable and disable undo information for a given buffer. It
also explains how the undo list is truncated automatically so it doesn’t get too big.

Recording of undo information in a newly created buffer is normally enabled to start
with; but if the buffer name starts with a space, the undo recording is initially disabled.
You can explicitly enable or disable undo recording with the following two functions, or by
setting buffer-undo-list yourself.

Commandbuffer-enable-undo &optional buffer-or-name
This command enables recording undo information for buffer buffer-or-name, so that
subsequent changes can be undone. If no argument is supplied, then the current
buffer is used. This function does nothing if undo recording is already enabled in the
buffer. It returns nil.
In an interactive call, buffer-or-name is the current buffer. You cannot specify any
other buffer.

Commandbuffer-disable-undo &optional buffer
Commandbuffer-flush-undo &optional buffer

This function discards the undo list of buffer, and disables further recording of undo
information. As a result, it is no longer possible to undo either previous changes or
any subsequent changes. If the undo list of buffer is already disabled, this function
has no effect.
This function returns nil.
The name buffer-flush-undo is not considered obsolete, but the preferred name is
buffer-disable-undo.

As editing continues, undo lists get longer and longer. To prevent them from using
up all available memory space, garbage collection trims them back to size limits you can
set. (For this purpose, the “size” of an undo list measures the cons cells that make up the
list, plus the strings of deleted text.) Two variables control the range of acceptable sizes:
undo-limit and undo-strong-limit.

Chapter 32: Text 547

Variableundo-limit
This is the soft limit for the acceptable size of an undo list. The change group at
which this size is exceeded is the last one kept.

Variableundo-strong-limit
This is the upper limit for the acceptable size of an undo list. The change group at
which this size is exceeded is discarded itself (along with all older change groups).
There is one exception: the very latest change group is never discarded no matter
how big it is.

32.11 Filling

Filling means adjusting the lengths of lines (by moving the line breaks) so that they are
nearly (but no greater than) a specified maximum width. Additionally, lines can be justified,
which means inserting spaces to make the left and/or right margins line up precisely. The
width is controlled by the variable fill-column. For ease of reading, lines should be no
longer than 70 or so columns.

You can use Auto Fill mode (see Section 32.14 [Auto Filling], page 551) to fill text
automatically as you insert it, but changes to existing text may leave it improperly filled.
Then you must fill the text explicitly.

Most of the commands in this section return values that are not meaningful. All the
functions that do filling take note of the current left margin, current right margin, and
current justification style (see Section 32.12 [Margins], page 549). If the current justification
style is none, the filling functions don’t actually do anything.

Several of the filling functions have an argument justify. If it is non-nil, that requests
some kind of justification. It can be left, right, full, or center, to request a specific
style of justification. If it is t, that means to use the current justification style for this part
of the text (see current-justification, below). Any other value is treated as full.

When you call the filling functions interactively, using a prefix argument implies the
value full for justify.

Commandfill-paragraph justify
This command fills the paragraph at or after point. If justify is non-nil, each line is
justified as well. It uses the ordinary paragraph motion commands to find paragraph
boundaries. See section “Paragraphs” in The GNU Emacs Manual.

Commandfill-region start end &optional justify nosqueeze to-eop
This command fills each of the paragraphs in the region from start to end. It justifies
as well if justify is non-nil.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If to-eop is non-nil, that means to keep filling to the end of the paragraph—
or the next hard newline, if use-hard-newlines is enabled (see below).

The variable paragraph-separate controls how to distinguish paragraphs. See Sec-
tion 34.8 [Standard Regexps], page 620.

548 GNU Emacs Lisp Reference Manual

Commandfill-individual-paragraphs start end &optional justify
citation-regexp

This command fills each paragraph in the region according to its individual fill prefix.
Thus, if the lines of a paragraph were indented with spaces, the filled paragraph will
remain indented in the same fashion.

The first two arguments, start and end, are the beginning and end of the region to be
filled. The third and fourth arguments, justify and citation-regexp, are optional. If
justify is non-nil, the paragraphs are justified as well as filled. If citation-regexp is
non-nil, it means the function is operating on a mail message and therefore should
not fill the header lines. If citation-regexp is a string, it is used as a regular expression;
if it matches the beginning of a line, that line is treated as a citation marker.

Ordinarily, fill-individual-paragraphs regards each change in indentation as
starting a new paragraph. If fill-individual-varying-indent is non-nil, then
only separator lines separate paragraphs. That mode can handle indented paragraphs
with additional indentation on the first line.

User Optionfill-individual-varying-indent
This variable alters the action of fill-individual-paragraphs as described above.

Commandfill-region-as-paragraph start end &optional justify nosqueeze
squeeze-after

This command considers a region of text as a single paragraph and fills it. If the
region was made up of many paragraphs, the blank lines between paragraphs are
removed. This function justifies as well as filling when justify is non-nil.

In an interactive call, any prefix argument requests justification.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If squeeze-after is non-nil, it specifies a position in the region, and means
don’t canonicalize spaces before that position.

In Adaptive Fill mode, this command calls fill-context-prefix to choose a fill
prefix by default. See Section 32.13 [Adaptive Fill], page 551.

Commandjustify-current-line &optional how eop nosqueeze
This command inserts spaces between the words of the current line so that the line
ends exactly at fill-column. It returns nil.

The argument how, if non-nil specifies explicitly the style of justification. It can
be left, right, full, center, or none. If it is t, that means to do follow speci-
fied justification style (see current-justification, below). nil means to do full
justification.

If eop is non-nil, that means do left-justification if current-justification specifies
full justification. This is used for the last line of a paragraph; even if the paragraph
as a whole is fully justified, the last line should not be.

If nosqueeze is non-nil, that means do not change interior whitespace.

Chapter 32: Text 549

User Optiondefault-justification
This variable’s value specifies the style of justification to use for text that doesn’t
specify a style with a text property. The possible values are left, right, full,
center, or none. The default value is left.

Functioncurrent-justification
This function returns the proper justification style to use for filling the text around
point.

User Optionsentence-end-double-space
If this variable is non-nil, a period followed by just one space does not count as the
end of a sentence, and the filling functions avoid breaking the line at such a place.

Variablefill-paragraph-function
This variable provides a way for major modes to override the filling of paragraphs.
If the value is non-nil, fill-paragraph calls this function to do the work. If the
function returns a non-nil value, fill-paragraph assumes the job is done, and
immediately returns that value.
The usual use of this feature is to fill comments in programming language modes. If
the function needs to fill a paragraph in the usual way, it can do so as follows:

(let ((fill-paragraph-function nil))
(fill-paragraph arg))

Variableuse-hard-newlines
If this variable is non-nil, the filling functions do not delete newlines that have the
hard text property. These “hard newlines” act as paragraph separators.

32.12 Margins for Filling

User Optionfill-prefix
This buffer-local variable specifies a string of text that appears at the beginning of
normal text lines and should be disregarded when filling them. Any line that fails
to start with the fill prefix is considered the start of a paragraph; so is any line that
starts with the fill prefix followed by additional whitespace. Lines that start with
the fill prefix but no additional whitespace are ordinary text lines that can be filled
together. The resulting filled lines also start with the fill prefix.
The fill prefix follows the left margin whitespace, if any.

User Optionfill-column
This buffer-local variable specifies the maximum width of filled lines. Its value should
be an integer, which is a number of columns. All the filling, justification, and centering
commands are affected by this variable, including Auto Fill mode (see Section 32.14
[Auto Filling], page 551).
As a practical matter, if you are writing text for other people to read, you should set
fill-column to no more than 70. Otherwise the line will be too long for people to
read comfortably, and this can make the text seem clumsy.

550 GNU Emacs Lisp Reference Manual

Variabledefault-fill-column
The value of this variable is the default value for fill-column in buffers that do not
override it. This is the same as (default-value ’fill-column).
The default value for default-fill-column is 70.

Commandset-left-margin from to margin
This sets the left-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new
margin.

Commandset-right-margin from to margin
This sets the right-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new margin.

Functioncurrent-left-margin
This function returns the proper left margin value to use for filling the text around
point. The value is the sum of the left-margin property of the character at the start
of the current line (or zero if none), and the value of the variable left-margin.

Functioncurrent-fill-column
This function returns the proper fill column value to use for filling the text around
point. The value is the value of the fill-column variable, minus the value of the
right-margin property of the character after point.

Commandmove-to-left-margin &optional n force
This function moves point to the left margin of the current line. The column moved
to is determined by calling the function current-left-margin. If the argument n is
non-nil, move-to-left-margin moves forward n−1 lines first.
If force is non-nil, that says to fix the line’s indentation if that doesn’t match the
left margin value.

Functiondelete-to-left-margin &optional from to
This function removes left margin indentation from the text between from and to.
The amount of indentation to delete is determined by calling current-left-margin.
In no case does this function delete non-whitespace. If from and to are omitted, they
default to the whole buffer.

Functionindent-to-left-margin
This is the default indent-line-function, used in Fundamental mode, Text mode,
etc. Its effect is to adjust the indentation at the beginning of the current line to the
value specified by the variable left-margin. This may involve either inserting or
deleting whitespace.

Variableleft-margin
This variable specifies the base left margin column. In Fundamental mode, C-j in-
dents to this column. This variable automatically becomes buffer-local when set in
any fashion.

Chapter 32: Text 551

Variablefill-nobreak-predicate
This variable gives major modes a way to specify not to break a line at certain places.
Its value should be a function. This function is called during filling, with no arguments
and with point located at the place where a break is being considered. If the function
returns non-nil, then the line won’t be broken there.

32.13 Adaptive Fill Mode

Adaptive Fill mode chooses a fill prefix automatically from the text in each paragraph
being filled.

User Optionadaptive-fill-mode
Adaptive Fill mode is enabled when this variable is non-nil. It is t by default.

Functionfill-context-prefix from to
This function implements the heart of Adaptive Fill mode; it chooses a fill prefix
based on the text between from and to. It does this by looking at the first two lines
of the paragraph, based on the variables described below.

User Optionadaptive-fill-regexp
This variable holds a regular expression to control Adaptive Fill mode. Adaptive Fill
mode matches this regular expression against the text starting after the left margin
whitespace (if any) on a line; the characters it matches are that line’s candidate for
the fill prefix.

User Optionadaptive-fill-first-line-regexp
In a one-line paragraph, if the candidate fill prefix matches this regular expression,
or if it matches comment-start-skip, then it is used—otherwise, spaces amounting
to the same width are used instead.
However, the fill prefix is never taken from a one-line paragraph if it would act as a
paragraph starter on subsequent lines.

User Optionadaptive-fill-function
You can specify more complex ways of choosing a fill prefix automatically by setting
this variable to a function. The function is called when adaptive-fill-regexp
does not match, with point after the left margin of a line, and it should return the
appropriate fill prefix based on that line. If it returns nil, that means it sees no fill
prefix in that line.

32.14 Auto Filling

Auto Fill mode is a minor mode that fills lines automatically as text is inserted. This
section describes the hook used by Auto Fill mode. For a description of functions that you
can call explicitly to fill and justify existing text, see Section 32.11 [Filling], page 547.

Auto Fill mode also enables the functions that change the margins and justification style
to refill portions of the text. See Section 32.12 [Margins], page 549.

552 GNU Emacs Lisp Reference Manual

Variableauto-fill-function
The value of this variable should be a function (of no arguments) to be called after
self-inserting a character from the table auto-fill-chars. It may be nil, in which
case nothing special is done in that case.
The value of auto-fill-function is do-auto-fill when Auto-Fill mode is enabled.
That is a function whose sole purpose is to implement the usual strategy for breaking
a line.

In older Emacs versions, this variable was named auto-fill-hook, but
since it is not called with the standard convention for hooks, it was re-
named to auto-fill-function in version 19.

Variablenormal-auto-fill-function
This variable specifies the function to use for auto-fill-function, if and when Auto
Fill is turned on. Major modes can set buffer-local values for this variable to alter
how Auto Fill works.

Variableauto-fill-chars
A char table of characters which invoke auto-fill-function when self-inserted—
space and newline in most language environments. They have an entry t in the
table.

32.15 Sorting Text

The sorting functions described in this section all rearrange text in a buffer. This is
in contrast to the function sort, which rearranges the order of the elements of a list (see
Section 5.6.3 [Rearrangement], page 74). The values returned by these functions are not
meaningful.

Functionsort-subr reverse nextrecfun endrecfun &optional startkeyfun endkeyfun
This function is the general text-sorting routine that subdivides a buffer into records
and then sorts them. Most of the commands in this section use this function.
To understand how sort-subr works, consider the whole accessible portion of the
buffer as being divided into disjoint pieces called sort records. The records may or
may not be contiguous, but they must not overlap. A portion of each sort record
(perhaps all of it) is designated as the sort key. Sorting rearranges the records in
order by their sort keys.
Usually, the records are rearranged in order of ascending sort key. If the first argument
to the sort-subr function, reverse, is non-nil, the sort records are rearranged in order
of descending sort key.
The next four arguments to sort-subr are functions that are called to move point
across a sort record. They are called many times from within sort-subr.
1. nextrecfun is called with point at the end of a record. This function moves point

to the start of the next record. The first record is assumed to start at the position
of point when sort-subr is called. Therefore, you should usually move point to
the beginning of the buffer before calling sort-subr.

Chapter 32: Text 553

This function can indicate there are no more sort records by leaving point at the
end of the buffer.

2. endrecfun is called with point within a record. It moves point to the end of the
record.

3. startkeyfun is called to move point from the start of a record to the start of the
sort key. This argument is optional; if it is omitted, the whole record is the sort
key. If supplied, the function should either return a non-nil value to be used as
the sort key, or return nil to indicate that the sort key is in the buffer starting
at point. In the latter case, endkeyfun is called to find the end of the sort key.

4. endkeyfun is called to move point from the start of the sort key to the end of
the sort key. This argument is optional. If startkeyfun returns nil and this
argument is omitted (or nil), then the sort key extends to the end of the record.
There is no need for endkeyfun if startkeyfun returns a non-nil value.

As an example of sort-subr, here is the complete function definition for sort-lines:

;; Note that the first two lines of doc string
;; are effectively one line when viewed by a user.
(defun sort-lines (reverse beg end)
"Sort lines in region alphabetically;\

argument means descending order.
Called from a program, there are three arguments:
REVERSE (non-nil means reverse order),\
BEG and END (region to sort).
The variable ‘sort-fold-case’ determines\
whether alphabetic case affects
the sort order.
(interactive "P\nr")
(save-excursion
(save-restriction
(narrow-to-region beg end)
(goto-char (point-min))
(sort-subr reverse ’forward-line ’end-of-line))))

Here forward-line moves point to the start of the next record, and end-of-line
moves point to the end of record. We do not pass the arguments startkeyfun and
endkeyfun, because the entire record is used as the sort key.

The sort-paragraphs function is very much the same, except that its sort-subr
call looks like this:

(sort-subr reverse
(function
(lambda ()
(while (and (not (eobp))

(looking-at paragraph-separate))
(forward-line 1))))

’forward-paragraph)

Markers pointing into any sort records are left with no useful position after sort-subr
returns.

554 GNU Emacs Lisp Reference Manual

User Optionsort-fold-case
If this variable is non-nil, sort-subr and the other buffer sorting functions ignore
case when comparing strings.

Commandsort-regexp-fields reverse record-regexp key-regexp start end
This command sorts the region between start and end alphabetically as specified
by record-regexp and key-regexp. If reverse is a negative integer, then sorting is in
reverse order.

Alphabetical sorting means that two sort keys are compared by comparing the first
characters of each, the second characters of each, and so on. If a mismatch is found,
it means that the sort keys are unequal; the sort key whose character is less at the
point of first mismatch is the lesser sort key. The individual characters are compared
according to their numerical character codes in the Emacs character set.

The value of the record-regexp argument specifies how to divide the buffer into sort
records. At the end of each record, a search is done for this regular expression, and the
text that matches it is taken as the next record. For example, the regular expression
‘^.+$’, which matches lines with at least one character besides a newline, would make
each such line into a sort record. See Section 34.2 [Regular Expressions], page 602,
for a description of the syntax and meaning of regular expressions.

The value of the key-regexp argument specifies what part of each record is the sort
key. The key-regexp could match the whole record, or only a part. In the latter case,
the rest of the record has no effect on the sorted order of records, but it is carried
along when the record moves to its new position.

The key-regexp argument can refer to the text matched by a subexpression of record-
regexp, or it can be a regular expression on its own.

If key-regexp is:

‘\digit’ then the text matched by the digitth ‘\(...\)’ parenthesis grouping in
record-regexp is the sort key.

‘\&’ then the whole record is the sort key.

a regular expression
then sort-regexp-fields searches for a match for the regular expression
within the record. If such a match is found, it is the sort key. If there
is no match for key-regexp within a record then that record is ignored,
which means its position in the buffer is not changed. (The other records
may move around it.)

For example, if you plan to sort all the lines in the region by the first word on each line
starting with the letter ‘f’, you should set record-regexp to ‘^.*$’ and set key-regexp
to ‘\<f\w*\>’. The resulting expression looks like this:

(sort-regexp-fields nil "^.*$" "\\<f\\w*\\>"
(region-beginning)
(region-end))

If you call sort-regexp-fields interactively, it prompts for record-regexp and key-
regexp in the minibuffer.

Chapter 32: Text 555

Commandsort-lines reverse start end
This command alphabetically sorts lines in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

Commandsort-paragraphs reverse start end
This command alphabetically sorts paragraphs in the region between start and end.
If reverse is non-nil, the sort is in reverse order.

Commandsort-pages reverse start end
This command alphabetically sorts pages in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

Commandsort-fields field start end
This command sorts lines in the region between start and end, comparing them
alphabetically by the fieldth field of each line. Fields are separated by whitespace
and numbered starting from 1. If field is negative, sorting is by the −fieldth field
from the end of the line. This command is useful for sorting tables.

Commandsort-numeric-fields field start end
This command sorts lines in the region between start and end, comparing them
numerically by the fieldth field of each line. The specified field must contain a number
in each line of the region. Fields are separated by whitespace and numbered starting
from 1. If field is negative, sorting is by the −fieldth field from the end of the line.
This command is useful for sorting tables.

Commandsort-columns reverse &optional beg end
This command sorts the lines in the region between beg and end, comparing them
alphabetically by a certain range of columns. The column positions of beg and end
bound the range of columns to sort on.
If reverse is non-nil, the sort is in reverse order.
One unusual thing about this command is that the entire line containing position beg,
and the entire line containing position end, are included in the region sorted.
Note that sort-columns uses the sort utility program, and so cannot work properly
on text containing tab characters. Use M-x untabify to convert tabs to spaces before
sorting.

32.16 Counting Columns

The column functions convert between a character position (counting characters from
the beginning of the buffer) and a column position (counting screen characters from the
beginning of a line).

These functions count each character according to the number of columns it occupies on
the screen. This means control characters count as occupying 2 or 4 columns, depending
upon the value of ctl-arrow, and tabs count as occupying a number of columns that de-
pends on the value of tab-width and on the column where the tab begins. See Section 38.16
[Usual Display], page 702.

556 GNU Emacs Lisp Reference Manual

Column number computations ignore the width of the window and the amount of hor-
izontal scrolling. Consequently, a column value can be arbitrarily high. The first (or
leftmost) column is numbered 0.

Functioncurrent-column
This function returns the horizontal position of point, measured in columns, counting
from 0 at the left margin. The column position is the sum of the widths of all the
displayed representations of the characters between the start of the current line and
point.
For an example of using current-column, see the description of count-lines in
Section 30.2.4 [Text Lines], page 512.

Functionmove-to-column column &optional force
This function moves point to column in the current line. The calculation of col-
umn takes into account the widths of the displayed representations of the characters
between the start of the line and point.
If column column is beyond the end of the line, point moves to the end of the line. If
column is negative, point moves to the beginning of the line.
If it is impossible to move to column column because that is in the middle of a multi-
column character such as a tab, point moves to the end of that character. However, if
force is non-nil, and column is in the middle of a tab, then move-to-column converts
the tab into spaces so that it can move precisely to column column. Other multi-
column characters can cause anomalies despite force, since there is no way to split
them.
The argument force also has an effect if the line isn’t long enough to reach column
column; if it is t, that means to add whitespace at the end of the line to reach that
column.
If column is not an integer, an error is signaled.
The return value is the column number actually moved to.

32.17 Indentation

The indentation functions are used to examine, move to, and change whitespace that is
at the beginning of a line. Some of the functions can also change whitespace elsewhere on
a line. Columns and indentation count from zero at the left margin.

32.17.1 Indentation Primitives

This section describes the primitive functions used to count and insert indentation. The
functions in the following sections use these primitives. See Section 38.10 [Width], page 677,
for related functions.

Functioncurrent-indentation
This function returns the indentation of the current line, which is the horizontal
position of the first nonblank character. If the contents are entirely blank, then this
is the horizontal position of the end of the line.

Chapter 32: Text 557

Commandindent-to column &optional minimum
This function indents from point with tabs and spaces until column is reached. If
minimum is specified and non-nil, then at least that many spaces are inserted even
if this requires going beyond column. Otherwise the function does nothing if point is
already beyond column. The value is the column at which the inserted indentation
ends.

The inserted whitespace characters inherit text properties from the surrounding text
(usually, from the preceding text only). See Section 32.19.6 [Sticky Properties],
page 570.

User Optionindent-tabs-mode
If this variable is non-nil, indentation functions can insert tabs as well as spaces.
Otherwise, they insert only spaces. Setting this variable automatically makes it buffer-
local in the current buffer.

32.17.2 Indentation Controlled by Major Mode

An important function of each major mode is to customize the 〈TAB〉 key to indent
properly for the language being edited. This section describes the mechanism of the 〈TAB〉
key and how to control it. The functions in this section return unpredictable values.

Variableindent-line-function
This variable’s value is the function to be used by 〈TAB〉 (and various commands) to
indent the current line. The command indent-according-to-mode does no more
than call this function.

In Lisp mode, the value is the symbol lisp-indent-line; in C mode, c-indent-
line; in Fortran mode, fortran-indent-line. In Fundamental mode, Text mode,
and many other modes with no standard for indentation, the value is indent-to-
left-margin (which is the default value).

Commandindent-according-to-mode
This command calls the function in indent-line-function to indent the current
line in a way appropriate for the current major mode.

Commandindent-for-tab-command
This command calls the function in indent-line-function to indent the current line;
however, if that function is indent-to-left-margin, insert-tab is called instead.
(That is a trivial command that inserts a tab character.)

Commandnewline-and-indent
This function inserts a newline, then indents the new line (the one following the
newline just inserted) according to the major mode.

It does indentation by calling the current indent-line-function. In programming
language modes, this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉
inserts a tab, newline-and-indent indents to the column specified by left-margin.

558 GNU Emacs Lisp Reference Manual

Commandreindent-then-newline-and-indent
This command reindents the current line, inserts a newline at point, and then indents
the new line (the one following the newline just inserted).
This command does indentation on both lines according to the current major mode,
by calling the current value of indent-line-function. In programming language
modes, this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉 inserts a
tab, reindent-then-newline-and-indent indents to the column specified by left-
margin.

32.17.3 Indenting an Entire Region

This section describes commands that indent all the lines in the region. They return
unpredictable values.

Commandindent-region start end to-column
This command indents each nonblank line starting between start (inclusive) and end
(exclusive). If to-column is nil, indent-region indents each nonblank line by calling
the current mode’s indentation function, the value of indent-line-function.
If to-column is non-nil, it should be an integer specifying the number of columns
of indentation; then this function gives each line exactly that much indentation, by
either adding or deleting whitespace.
If there is a fill prefix, indent-region indents each line by making it start with the
fill prefix.

Variableindent-region-function
The value of this variable is a function that can be used by indent-region as a
short cut. It should take two arguments, the start and end of the region. You should
design the function so that it will produce the same results as indenting the lines of
the region one by one, but presumably faster.
If the value is nil, there is no short cut, and indent-region actually works line by
line.
A short-cut function is useful in modes such as C mode and Lisp mode, where the
indent-line-function must scan from the beginning of the function definition: ap-
plying it to each line would be quadratic in time. The short cut can update the scan
information as it moves through the lines indenting them; this takes linear time. In
a mode where indenting a line individually is fast, there is no need for a short cut.
indent-region with a non-nil argument to-column has a different meaning and does
not use this variable.

Commandindent-rigidly start end count
This command indents all lines starting between start (inclusive) and end (exclusive)
sideways by count columns. This “preserves the shape” of the affected region, moving
it as a rigid unit. Consequently, this command is useful not only for indenting regions
of unindented text, but also for indenting regions of formatted code.
For example, if count is 3, this command adds 3 columns of indentation to each of
the lines beginning in the region specified.

Chapter 32: Text 559

In Mail mode, C-c C-y (mail-yank-original) uses indent-rigidly to indent the
text copied from the message being replied to.

Functionindent-code-rigidly start end columns &optional nochange-regexp
This is like indent-rigidly, except that it doesn’t alter lines that start within strings
or comments.
In addition, it doesn’t alter a line if nochange-regexp matches at the beginning of the
line (if nochange-regexp is non-nil).

32.17.4 Indentation Relative to Previous Lines

This section describes two commands that indent the current line based on the contents
of previous lines.

Commandindent-relative &optional unindented-ok
This command inserts whitespace at point, extending to the same column as the
next indent point of the previous nonblank line. An indent point is a non-whitespace
character following whitespace. The next indent point is the first one at a column
greater than the current column of point. For example, if point is underneath and to
the left of the first non-blank character of a line of text, it moves to that column by
inserting whitespace.
If the previous nonblank line has no next indent point (i.e., none at a great enough
column position), indent-relative either does nothing (if unindented-ok is non-nil)
or calls tab-to-tab-stop. Thus, if point is underneath and to the right of the last
column of a short line of text, this command ordinarily moves point to the next tab
stop by inserting whitespace.
The return value of indent-relative is unpredictable.
In the following example, point is at the beginning of the second line:

This line is indented twelve spaces.
?The quick brown fox jumped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.
?The quick brown fox jumped.

In this next example, point is between the ‘m’ and ‘p’ of ‘jumped’:
This line is indented twelve spaces.

The quick brown fox jum?ped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.

The quick brown fox jum ?ped.

Commandindent-relative-maybe
This command indents the current line like the previous nonblank line, by calling
indent-relative with t as the unindented-ok argument. The return value is unpre-
dictable.
If the previous nonblank line has no indent points beyond the current column, this
command does nothing.

560 GNU Emacs Lisp Reference Manual

32.17.5 Adjustable “Tab Stops”

This section explains the mechanism for user-specified “tab stops” and the mechanisms
that use and set them. The name “tab stops” is used because the feature is similar to that
of the tab stops on a typewriter. The feature works by inserting an appropriate number of
spaces and tab characters to reach the next tab stop column; it does not affect the display
of tab characters in the buffer (see Section 38.16 [Usual Display], page 702). Note that the
〈TAB〉 character as input uses this tab stop feature only in a few major modes, such as Text
mode.

Commandtab-to-tab-stop
This command inserts spaces or tabs before point, up to the next tab stop column
defined by tab-stop-list. It searches the list for an element greater than the current
column number, and uses that element as the column to indent to. It does nothing if
no such element is found.

User Optiontab-stop-list
This variable is the list of tab stop columns used by tab-to-tab-stops. The elements
should be integers in increasing order. The tab stop columns need not be evenly
spaced.

Use M-x edit-tab-stops to edit the location of tab stops interactively.

32.17.6 Indentation-Based Motion Commands

These commands, primarily for interactive use, act based on the indentation in the text.

Commandback-to-indentation
This command moves point to the first non-whitespace character in the current line
(which is the line in which point is located). It returns nil.

Commandbackward-to-indentation arg
This command moves point backward arg lines and then to the first nonblank char-
acter on that line. It returns nil.

Commandforward-to-indentation arg
This command moves point forward arg lines and then to the first nonblank character
on that line. It returns nil.

32.18 Case Changes

The case change commands described here work on text in the current buffer. See
Section 4.8 [Case Conversion], page 59, for case conversion functions that work on strings and
characters. See Section 4.9 [Case Tables], page 60, for how to customize which characters
are upper or lower case and how to convert them.

Chapter 32: Text 561

Commandcapitalize-region start end
This function capitalizes all words in the region defined by start and end. To capitalize
means to convert each word’s first character to upper case and convert the rest of
each word to lower case. The function returns nil.
If one end of the region is in the middle of a word, the part of the word within the
region is treated as an entire word.
When capitalize-region is called interactively, start and end are point and the
mark, with the smallest first.

---------- Buffer: foo ----------
This is the contents of the 5th foo.
---------- Buffer: foo ----------

(capitalize-region 1 44)
⇒ nil

---------- Buffer: foo ----------
This Is The Contents Of The 5th Foo.
---------- Buffer: foo ----------

Commanddowncase-region start end
This function converts all of the letters in the region defined by start and end to lower
case. The function returns nil.
When downcase-region is called interactively, start and end are point and the mark,
with the smallest first.

Commandupcase-region start end
This function converts all of the letters in the region defined by start and end to
upper case. The function returns nil.
When upcase-region is called interactively, start and end are point and the mark,
with the smallest first.

Commandcapitalize-word count
This function capitalizes count words after point, moving point over as it does. To
capitalize means to convert each word’s first character to upper case and convert the
rest of each word to lower case. If count is negative, the function capitalizes the
−count previous words but does not move point. The value is nil.
If point is in the middle of a word, the part of the word before point is ignored when
moving forward. The rest is treated as an entire word.
When capitalize-word is called interactively, count is set to the numeric prefix
argument.

Commanddowncase-word count
This function converts the count words after point to all lower case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.
When downcase-word is called interactively, count is set to the numeric prefix argu-
ment.

562 GNU Emacs Lisp Reference Manual

Commandupcase-word count
This function converts the count words after point to all upper case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.
When upcase-word is called interactively, count is set to the numeric prefix argument.

32.19 Text Properties

Each character position in a buffer or a string can have a text property list, much like
the property list of a symbol (see Section 8.4 [Property Lists], page 104). The properties
belong to a particular character at a particular place, such as, the letter ‘T’ at the beginning
of this sentence or the first ‘o’ in ‘foo’—if the same character occurs in two different places,
the two occurrences generally have different properties.

Each property has a name and a value. Both of these can be any Lisp object, but the
name is normally a symbol. The usual way to access the property list is to specify a name
and ask what value corresponds to it.

If a character has a category property, we call it the category of the character. It
should be a symbol. The properties of the symbol serve as defaults for the properties of the
character.

Copying text between strings and buffers preserves the properties along with the char-
acters; this includes such diverse functions as substring, insert, and buffer-substring.

32.19.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular prop-
erty of a particular character. For that, use get-text-property. Use text-properties-at
to get the entire property list of a character. See Section 32.19.3 [Property Search], page 565,
for functions to examine the properties of a number of characters at once.

These functions handle both strings and buffers. Keep in mind that positions in a string
start from 0, whereas positions in a buffer start from 1.

Functionget-text-property pos prop &optional object
This function returns the value of the prop property of the character after position
pos in object (a buffer or string). The argument object is optional and defaults to
the current buffer.
If there is no prop property strictly speaking, but the character has a category that
is a symbol, then get-text-property returns the prop property of that symbol.

Functionget-char-property pos prop &optional object
This function is like get-text-property, except that it checks overlays first and then
text properties. See Section 38.9 [Overlays], page 671.
The argument object may be a string, a buffer, or a window. If it is a window, then
the buffer displayed in that window is used for text properties and overlays, but only
the overlays active for that window are considered. If object is a buffer, then all
overlays in that buffer are considered, as well as text properties. If object is a string,
only text properties are considered, since strings never have overlays.

Chapter 32: Text 563

Functiontext-properties-at position &optional object
This function returns the entire property list of the character at position in the string
or buffer object. If object is nil, it defaults to the current buffer.

Variabledefault-text-properties
This variable holds a property list giving default values for text properties. Whenever
a character does not specify a value for a property, neither directly nor through a
category symbol, the value stored in this list is used instead. Here is an example:

(setq default-text-properties ’(foo 69))
;; Make sure character 1 has no properties of its own.
(set-text-properties 1 2 nil)
;; What we get, when we ask, is the default value.
(get-text-property 1 ’foo)

⇒ 69

32.19.2 Changing Text Properties

The primitives for changing properties apply to a specified range of text in a buffer or
string. The function set-text-properties (see end of section) sets the entire property
list of the text in that range; more often, it is useful to add, change, or delete just certain
properties specified by name.

Since text properties are considered part of the contents of the buffer (or string), and
can affect how a buffer looks on the screen, any change in buffer text properties marks the
buffer as modified. Buffer text property changes are undoable also (see Section 32.9 [Undo],
page 544).

Functionput-text-property start end prop value &optional object
This function sets the prop property to value for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

Functionadd-text-properties start end props &optional object
This function adds or overrides text properties for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.
The argument props specifies which properties to add. It should have the form of
a property list (see Section 8.4 [Property Lists], page 104): a list whose elements
include the property names followed alternately by the corresponding values.
The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or its values agree with those in the text).
For example, here is how to set the comment and face properties of a range of text:

(add-text-properties start end
’(comment t face highlight))

Functionremove-text-properties start end props &optional object
This function deletes specified text properties from the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

564 GNU Emacs Lisp Reference Manual

The argument props specifies which properties to delete. It should have the form of
a property list (see Section 8.4 [Property Lists], page 104): a list whose elements are
property names alternating with corresponding values. But only the names matter—
the values that accompany them are ignored. For example, here’s how to remove the
face property.

(remove-text-properties start end ’(face nil))

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or if no character in the specified text had any of those
properties).
To remove all text properties from certain text, use set-text-properties and specify
nil for the new property list.

Functionset-text-properties start end props &optional object
This function completely replaces the text property list for the text between start and
end in the string or buffer object. If object is nil, it defaults to the current buffer.
The argument props is the new property list. It should be a list whose elements are
property names alternating with corresponding values.
After set-text-properties returns, all the characters in the specified range have
identical properties.
If props is nil, the effect is to get rid of all properties from the specified range of
text. Here’s an example:

(set-text-properties start end nil)

The easiest way to make a string with text properties is with propertize:

Functionpropertize string &rest properties
This function returns a copy of string which has the text properties properties. These
properties apply to all the characters in the string that is returned. Here is an example
that constructs a string with a face property and a mouse-face property:

(propertize "foo" ’face ’italic
’mouse-face ’bold-italic)

⇒ #("foo" 0 3 (mouse-face bold-italic face italic))

To put different properties on various parts of a string, you can construct each part
with propertize and then combine them with concat:

(concat
(propertize "foo" ’face ’italic

’mouse-face ’bold-italic)
" and "
(propertize "bar" ’face ’italic

’mouse-face ’bold-italic))
⇒ #("foo and bar"

0 3 (face italic mouse-face bold-italic)
3 8 nil
8 11 (face italic mouse-face bold-italic))

See also the function buffer-substring-no-properties (see Section 32.2 [Buffer Con-
tents], page 532) which copies text from the buffer but does not copy its properties.

Chapter 32: Text 565

32.19.3 Text Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine char-
acters one by one, it is much faster to process chunks of text that have the same property
value.

Here are functions you can use to do this. They use eq for comparing property values.
In all cases, object defaults to the current buffer.

For high performance, it’s very important to use the limit argument to these functions,
especially the ones that search for a single property—otherwise, they may spend a long time
scanning to the end of the buffer, if the property you are interested in does not change.

These functions do not move point; instead, they return a position (or nil). Remember
that a position is always between two characters; the position returned by these functions
is between two characters with different properties.

Functionnext-property-change pos &optional object limit
The function scans the text forward from position pos in the string or buffer object
till it finds a change in some text property, then returns the position of the change. In
other words, it returns the position of the first character beyond pos whose properties
are not identical to those of the character just after pos.
If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-property-change returns limit.
The value is nil if the properties remain unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos.
The value equals pos only when limit equals pos.
Here is an example of how to scan the buffer by chunks of text within which all
properties are constant:

(while (not (eobp))
(let ((plist (text-properties-at (point)))

(next-change
(or (next-property-change (point) (current-buffer))

(point-max))))
Process text from point to next-change . . .
(goto-char next-change)))

Functionnext-single-property-change pos prop &optional object limit
The function scans the text forward from position pos in the string or buffer object
till it finds a change in the prop property, then returns the position of the change.
In other words, it returns the position of the first character beyond pos whose prop
property differs from that of the character just after pos.
If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-single-property-change returns limit.
The value is nil if the property remains unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos;
it equals pos only if limit equals pos.

566 GNU Emacs Lisp Reference Manual

Functionprevious-property-change pos &optional object limit
This is like next-property-change, but scans back from pos instead of forward. If
the value is non-nil, it is a position less than or equal to pos; it equals pos only if
limit equals pos.

Functionprevious-single-property-change pos prop &optional object limit
This is like next-single-property-change, but scans back from pos instead of for-
ward. If the value is non-nil, it is a position less than or equal to pos; it equals pos
only if limit equals pos.

Functionnext-char-property-change pos &optional limit
This is like next-property-change except that it considers overlay properties as
well as text properties, and if no change is found before the end of the buffer, it
returns the maximum buffer position rather than nil (in this sense, it resembles the
corresponding overlay function next-overlay-change, rather than next-property-
change). There is no object operand because this function operates only on the
current buffer. It returns the next address at which either kind of property changes.

Functionprevious-char-property-change pos &optional limit
This is like next-char-property-change, but scans back from pos instead of forward,
and returns the minimum buffer position if no change is found.

Functionnext-single-char-property-change pos prop &optional object limit
This is like next-single-property-change except that it considers overlay proper-
ties as well as text properties, and if no change is found before the end of the object,
it returns the maximum valid position in object rather than nil. Unlike next-char-
property-change, this function does have an object operand; if object is not a buffer,
only text-properties are considered.

Functionprevious-single-char-property-change pos prop &optional object
limit

This is like next-single-char-property-change, but scans back from pos instead
of forward, and returns the minimum valid position in object if no change is found.

Functiontext-property-any start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value is value. More precisely, it returns the position of the first
such character. Otherwise, it returns nil.
The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

Functiontext-property-not-all start end prop value &optional object
This function returns non-nil if at least one character between start and end does
not have a property prop with value value. More precisely, it returns the position of
the first such character. Otherwise, it returns nil.
The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

Chapter 32: Text 567

32.19.4 Properties with Special Meanings

Here is a table of text property names that have special built-in meanings. The follow-
ing sections list a few additional special property names that control filling and property
inheritance. All other names have no standard meaning, and you can use them as you like.

category If a character has a category property, we call it the category of the character.
It should be a symbol. The properties of the symbol serve as defaults for the
properties of the character.

face You can use the property face to control the font and color of text. See
Section 38.11 [Faces], page 678, for more information.
In the simplest case, the value is a face name. It can also be a list; then each
element can be any of these possibilities;
• A face name (a symbol or string).
• Starting in Emacs 21, a property list of face attributes. This has the

form (keyword value . . .), where each keyword is a face attribute name
and value is a meaningful value for that attribute. With this feature, you
do not need to create a face each time you want to specify a particular
attribute for certain text. See Section 38.11.3 [Face Attributes], page 681.

• A cons cell of the form (foreground-color . color-name) or
(background-color . color-name). These elements specify just the
foreground color or just the background color.
(foreground-color . color-name) is equivalent to (:foreground color-
name), and likewise for the background.

See Section 23.5 [Font Lock Mode], page 377, for information on how to update
face properties automatically based on the contents of the text.

mouse-face
The property mouse-face is used instead of face when the mouse is on or
near the character. For this purpose, “near” means that all text between the
character and where the mouse is have the same mouse-face property value.

fontified
This property, if non-nil, says that text in the buffer has had faces assigned
automatically by a feature such as Font-Lock mode. See Section 38.11.8 [Auto
Faces], page 689.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrow, or replaced with an image. See Section 38.12 [Display Property],
page 691.

help-echo
If text has a string as its help-echo property, then when you move the mouse
onto that text, Emacs displays that string in the echo area, or in the tooltip
window.
If the value of the help-echo property is a function, that function is called with
three arguments, window, object and position and should return a help string

568 GNU Emacs Lisp Reference Manual

or nil for none. The first argument, window is the window in which the help
was found. The second, object, is the buffer, overlay or string which had the
help-echo property. The position argument is as follows:

• If object is a buffer, pos is the position in the buffer where the help-echo
text property was found.

• If object is an overlay, that overlay has a help-echo property, and pos is
the position in the overlay’s buffer under the mouse.

• If object is a string (an overlay string or a string displayed with the display
property), pos is the position in that string under the mouse.

If the value of the help-echo property is neither a function nor a string, it is
evaluated to obtain a help string.

You can alter the way help text is displayed by setting the variable show-help-
function (see [Help display], page 570).

This feature is used in the mode line and for other active text. It is available
starting in Emacs 21.

local-map
You can specify a different keymap for some of the text in a buffer by means of
the local-map property. The property’s value for the character after point, if
non-nil, is used for key lookup instead of the buffer’s local map. If the property
value is a symbol, the symbol’s function definition is used as the keymap. See
Section 22.6 [Active Keymaps], page 330.

keymap The keymap property is similar to local-map but overrides the buffer’s local
map (and the map specified by the local-map property) rather than replacing
it.

syntax-table
The syntax-table property overrides what the syntax table says about this
particular character. See Section 35.4 [Syntax Properties], page 627.

read-only
If a character has the property read-only, then modifying that character is
not allowed. Any command that would do so gets an error, text-read-only.

Insertion next to a read-only character is an error if inserting ordinary text
there would inherit the read-only property due to stickiness. Thus, you can
control permission to insert next to read-only text by controlling the stickiness.
See Section 32.19.6 [Sticky Properties], page 570.

Since changing properties counts as modifying the buffer, it is not possible to
remove a read-only property unless you know the special trick: bind inhibit-
read-only to a non-nil value and then remove the property. See Section 27.7
[Read Only Buffers], page 447.

invisible
A non-nil invisible property can make a character invisible on the screen.
See Section 38.5 [Invisible Text], page 665, for details.

Chapter 32: Text 569

intangible
If a group of consecutive characters have equal and non-nil intangible prop-
erties, then you cannot place point between them. If you try to move point
forward into the group, point actually moves to the end of the group. If you
try to move point backward into the group, point actually moves to the start
of the group.
When the variable inhibit-point-motion-hooks is non-nil, the intangible
property is ignored.

field Consecutive characters with the same field property constitute a field. Some
motion functions including forward-word and beginning-of-line stop mov-
ing at a field boundary. See Section 32.19.10 [Fields], page 574.

modification-hooks
If a character has the property modification-hooks, then its value should be
a list of functions; modifying that character calls all of those functions. Each
function receives two arguments: the beginning and end of the part of the buffer
being modified. Note that if a particular modification hook function appears on
several characters being modified by a single primitive, you can’t predict how
many times the function will be called.

insert-in-front-hooks
insert-behind-hooks

The operation of inserting text in a buffer also calls the functions listed in
the insert-in-front-hooks property of the following character and in the
insert-behind-hooks property of the preceding character. These functions
receive two arguments, the beginning and end of the inserted text. The func-
tions are called after the actual insertion takes place.
See also Section 32.25 [Change Hooks], page 580, for other hooks that are called
when you change text in a buffer.

point-entered
point-left

The special properties point-entered and point-left record hook functions
that report motion of point. Each time point moves, Emacs compares these
two property values:
• the point-left property of the character after the old location, and
• the point-entered property of the character after the new location.

If these two values differ, each of them is called (if not nil) with two arguments:
the old value of point, and the new one.
The same comparison is made for the characters before the old and new lo-
cations. The result may be to execute two point-left functions (which may
be the same function) and/or two point-entered functions (which may be
the same function). In any case, all the point-left functions are called first,
followed by all the point-entered functions.
It is possible using char-after to examine characters at various positions with-
out moving point to those positions. Only an actual change in the value of point
runs these hook functions.

570 GNU Emacs Lisp Reference Manual

Variableinhibit-point-motion-hooks
When this variable is non-nil, point-left and point-entered hooks are not run,
and the intangible property has no effect. Do not set this variable globally; bind it
with let.

Variableshow-help-function
If this variable is non-nil, it specifies a function called to display help strings. These
may be help-echo properties, menu help strings (see Section 22.12.1.1 [Simple Menu
Items], page 343, see Section 22.12.1.2 [Extended Menu Items], page 344), or tool bar
help strings (see Section 22.12.6 [Tool Bar], page 351). The specified function is called
with one argument, the help string to display. Tooltip mode (see section “Tooltips”
in The GNU Emacs Manual) provides an example.

32.19.5 Formatted Text Properties

These text properties affect the behavior of the fill commands. They are used for repre-
senting formatted text. See Section 32.11 [Filling], page 547, and Section 32.12 [Margins],
page 549.

hard If a newline character has this property, it is a “hard” newline. The fill com-
mands do not alter hard newlines and do not move words across them. However,
this property takes effect only if the variable use-hard-newlines is non-nil.

right-margin
This property specifies an extra right margin for filling this part of the text.

left-margin
This property specifies an extra left margin for filling this part of the text.

justification
This property specifies the style of justification for filling this part of the text.

32.19.6 Stickiness of Text Properties

Self-inserting characters normally take on the same properties as the preceding character.
This is called inheritance of properties.

In a Lisp program, you can do insertion with inheritance or without, depending on your
choice of insertion primitive. The ordinary text insertion functions such as insert do not
inherit any properties. They insert text with precisely the properties of the string being
inserted, and no others. This is correct for programs that copy text from one context to
another—for example, into or out of the kill ring. To insert with inheritance, use the special
primitives described in this section. Self-inserting characters inherit properties because they
work using these primitives.

When you do insertion with inheritance, which properties are inherited, and from where,
depends on which properties are sticky. Insertion after a character inherits those of its
properties that are rear-sticky. Insertion before a character inherits those of its properties
that are front-sticky. When both sides offer different sticky values for the same property,
the previous character’s value takes precedence.

Chapter 32: Text 571

By default, a text property is rear-sticky but not front-sticky; thus, the default is to
inherit all the properties of the preceding character, and nothing from the following char-
acter.

You can control the stickiness of various text properties with two specific text proper-
ties, front-sticky and rear-nonsticky, and with the variable text-property-default-
nonsticky. You can use the variable to specify a different default for a given property. You
can use those two text properties to make any specific properties sticky or nonsticky in any
particular part of the text.

If a character’s front-sticky property is t, then all its properties are front-sticky. If the
front-sticky property is a list, then the sticky properties of the character are those whose
names are in the list. For example, if a character has a front-sticky property whose value
is (face read-only), then insertion before the character can inherit its face property and
its read-only property, but no others.

The rear-nonsticky property works the opposite way. Most properties are rear-sticky
by default, so the rear-nonsticky property says which properties are not rear-sticky. If
a character’s rear-nonsticky property is t, then none of its properties are rear-sticky. If
the rear-nonsticky property is a list, properties are rear-sticky unless their names are in
the list.

Variabletext-property-default-nonsticky
This variable holds an alist which defines the default rear-stickiness of various text
properties. Each element has the form (property . nonstickiness), and it defines the
stickiness of a particular text property, property.
If nonstickiness is non-nil, this means that the property property is rear-nonsticky
by default. Since all properties are front-nonsticky by default, this makes property
nonsticky in both directions by default.
The text properties front-sticky and rear-nonsticky, when used, take precedence
over the default nonstickiness specifed in text-property-default-nonsticky.

Here are the functions that insert text with inheritance of properties:

Functioninsert-and-inherit &rest strings
Insert the strings strings, just like the function insert, but inherit any sticky prop-
erties from the adjoining text.

Functioninsert-before-markers-and-inherit &rest strings
Insert the strings strings, just like the function insert-before-markers, but inherit
any sticky properties from the adjoining text.

See Section 32.4 [Insertion], page 534, for the ordinary insertion functions which do not
inherit.

32.19.7 Saving Text Properties in Files

You can save text properties in files (along with the text itself), and restore the same
text properties when visiting or inserting the files, using these two hooks:

572 GNU Emacs Lisp Reference Manual

Variablewrite-region-annotate-functions
This variable’s value is a list of functions for write-region to run to encode text
properties in some fashion as annotations to the text being written in the file. See
Section 25.4 [Writing to Files], page 404.
Each function in the list is called with two arguments: the start and end of the region
to be written. These functions should not alter the contents of the buffer. Instead,
they should return lists indicating annotations to write in the file in addition to the
text in the buffer.
Each function should return a list of elements of the form (position . string), where
position is an integer specifying the relative position within the text to be written,
and string is the annotation to add there.
Each list returned by one of these functions must be already sorted in increasing
order by position. If there is more than one function, write-region merges the lists
destructively into one sorted list.
When write-region actually writes the text from the buffer to the file, it intermixes
the specified annotations at the corresponding positions. All this takes place without
modifying the buffer.

Variableafter-insert-file-functions
This variable holds a list of functions for insert-file-contents to call after inserting
a file’s contents. These functions should scan the inserted text for annotations, and
convert them to the text properties they stand for.
Each function receives one argument, the length of the inserted text; point indicates
the start of that text. The function should scan that text for annotations, delete
them, and create the text properties that the annotations specify. The function should
return the updated length of the inserted text, as it stands after those changes. The
value returned by one function becomes the argument to the next function.
These functions should always return with point at the beginning of the inserted text.
The intended use of after-insert-file-functions is for converting some sort of
textual annotations into actual text properties. But other uses may be possible.

We invite users to write Lisp programs to store and retrieve text properties in files,
using these hooks, and thus to experiment with various data formats and find good ones.
Eventually we hope users will produce good, general extensions we can install in Emacs.

We suggest not trying to handle arbitrary Lisp objects as text property names or values—
because a program that general is probably difficult to write, and slow. Instead, choose a
set of possible data types that are reasonably flexible, and not too hard to encode.

See Section 25.12 [Format Conversion], page 426, for a related feature.

32.19.8 Lazy Computation of Text Properties

Instead of computing text properties for all the text in the buffer, you can arrange to
compute the text properties for parts of the text when and if something depends on them.

The primitive that extracts text from the buffer along with its properties is buffer-
substring. Before examining the properties, this function runs the abnormal hook buffer-
access-fontify-functions.

Chapter 32: Text 573

Variablebuffer-access-fontify-functions
This variable holds a list of functions for computing text properties. Before buffer-
substring copies the text and text properties for a portion of the buffer, it calls all
the functions in this list. Each of the functions receives two arguments that specify
the range of the buffer being accessed. (The buffer itself is always the current buffer.)

The function buffer-substring-no-properties does not call these functions, since it
ignores text properties anyway.

In order to prevent the hook functions from being called more than once for the same
part of the buffer, you can use the variable buffer-access-fontified-property.

Variablebuffer-access-fontified-property
If this value’s variable is non-nil, it is a symbol which is used as a text property
name. A non-nil value for that text property means, “the other text properties for
this character have already been computed.”
If all the characters in the range specified for buffer-substring have a non-nil value
for this property, buffer-substring does not call the buffer-access-fontify-
functions functions. It assumes these characters already have the right text proper-
ties, and just copies the properties they already have.
The normal way to use this feature is that the buffer-access-fontify-functions
functions add this property, as well as others, to the characters they operate on. That
way, they avoid being called over and over for the same text.

32.19.9 Defining Clickable Text

There are two ways to set up clickable text in a buffer. There are typically two parts of
this: to make the text highlight when the mouse is over it, and to make a mouse button do
something when you click it on that part of the text.

Highlighting is done with the mouse-face text property. Here is an example of how
Dired does it:

(condition-case nil
(if (dired-move-to-filename)

(put-text-property (point)
(save-excursion
(dired-move-to-end-of-filename)
(point))

’mouse-face ’highlight))
(error nil))

The first two arguments to put-text-property specify the beginning and end of the text.
The usual way to make the mouse do something when you click it on this text is to

define mouse-2 in the major mode’s keymap. The job of checking whether the click was on
clickable text is done by the command definition. Here is how Dired does it:

(defun dired-mouse-find-file-other-window (event)
"In dired, visit the file or directory name you click on."
(interactive "e")
(let (file)

574 GNU Emacs Lisp Reference Manual

(save-excursion
(set-buffer (window-buffer (posn-window (event-end event))))
(save-excursion
(goto-char (posn-point (event-end event)))
(setq file (dired-get-filename))))

(select-window (posn-window (event-end event)))
(find-file-other-window (file-name-sans-versions file t))))

The reason for the outer save-excursion construct is to avoid changing the current buffer;
the reason for the inner one is to avoid permanently altering point in the buffer you click
on. In this case, Dired uses the function dired-get-filename to determine which file to
visit, based on the position found in the event.

Instead of defining a mouse command for the major mode, you can define a key binding
for the clickable text itself, using the keymap text property:

(let ((map (make-sparse-keymap)))
(define-key map [mouse-2] ’operate-this-button)
(put-text-property (point)

(save-excursion
(dired-move-to-end-of-filename)
(point))

’keymap map))

This method makes it possible to define different commands for various clickable pieces of
text. Also, the major mode definition (or the global definition) remains available for the
rest of the text in the buffer.

32.19.10 Defining and Using Fields

A field is a range of consecutive characters in the buffer that are identified by having
the same value (comparing with eq) of the field property (either a text-property or an
overlay property). This section describes special functions that are available for operating
on fields.

You specify a field with a buffer position, pos. We think of each field as containing a
range of buffer positions, so the position you specify stands for the field containing that
position.

When the characters before and after pos are part of the same field, there is no doubt
which field contains pos: the one those characters both belong to. When pos is at a bound-
ary between fields, which field it belongs to depends on the stickiness of the field properties
of the two surrounding characters (see Section 32.19.6 [Sticky Properties], page 570). The
field whose property would be inherited by text inserted at pos is the field that contains
pos.

There is an anomalous case where newly inserted text at pos would not inherit the field
property from either side. This happens if the previous character’s field property is not
rear-sticky, and the following character’s field property is not front-sticky. In this case,
pos belongs to neither the preceding field nor the following field; the field functions treat it
as belonging to an empty field whose beginning and end are both at pos.

In all of these functions, if pos is omitted or nil, the value of point is used by default.

Chapter 32: Text 575

Functionfield-beginning &optional pos escape-from-edge
This function returns the beginning of the field specified by pos.
If pos is at the beginning of its field, and escape-from-edge is non-nil, then the return
value is always the beginning of the preceding field that ends at pos, regardless of the
stickiness of the field properties around pos.

Functionfield-end &optional pos escape-from-edge
This function returns the end of the field specified by pos.
If pos is at the end of its field, and escape-from-edge is non-nil, then the return value
is always the end of the following field that begins at pos, regardless of the stickiness
of the field properties around pos.

Functionfield-string &optional pos
This function returns the contents of the field specified by pos, as a string.

Functionfield-string-no-properties &optional pos
This function returns the contents of the field specified by pos, as a string, discarding
text properties.

Functiondelete-field &optional pos
This function deletes the text of the field specified by pos.

Functionconstrain-to-field new-pos old-pos &optional escape-from-edge
only-in-line inhibit-capture-property

This function “constrains” new-pos to the field that old-pos belongs to—in other
words, it returns the position closest to new-pos that is in the same field as old-pos.
If new-pos is nil, then constrain-to-field uses the value of point instead, and
moves point to the resulting position.
If old-pos is at the boundary of two fields, then the acceptable positions for new-pos
depend on the value of the optional argument escape-from-edge. If escape-from-edge is
nil, then new-pos is constrained to the field that has the same field property (either
a text-property or an overlay property) that new characters inserted at old-pos would
get. (This depends on the stickiness of the field property for the characters before
and after old-pos.) If escape-from-edge is non-nil, new-pos is constrained to the
union of the two adjacent fields. Additionally, if two fields are separated by another
field with the special value boundary, then any point within this special field is also
considered to be “on the boundary.”
If the optional argument only-in-line is non-nil, and constraining new-pos in the
usual way would move it to a different line, new-pos is returned unconstrained. This
used in commands that move by line, such as next-line and beginning-of-line,
so that they respect field boundaries only in the case where they can still move to the
right line.
If the optional argument inhibit-capture-property is non-nil, and old-pos has a non-
nil property of that name, then any field boundaries are ignored.
You can cause constrain-to-field to ignore all field boundaries (and so never con-
strain anything) by binding the variable inhibit-field-text-motion to a non-nil
value.

576 GNU Emacs Lisp Reference Manual

32.19.11 Why Text Properties are not Intervals

Some editors that support adding attributes to text in the buffer do so by letting the
user specify “intervals” within the text, and adding the properties to the intervals. Those
editors permit the user or the programmer to determine where individual intervals start and
end. We deliberately provided a different sort of interface in Emacs Lisp to avoid certain
paradoxical behavior associated with text modification.

If the actual subdivision into intervals is meaningful, that means you can distinguish
between a buffer that is just one interval with a certain property, and a buffer containing
the same text subdivided into two intervals, both of which have that property.

Suppose you take the buffer with just one interval and kill part of the text. The text
remaining in the buffer is one interval, and the copy in the kill ring (and the undo list)
becomes a separate interval. Then if you yank back the killed text, you get two intervals
with the same properties. Thus, editing does not preserve the distinction between one
interval and two.

Suppose we “fix” this problem by coalescing the two intervals when the text is inserted.
That works fine if the buffer originally was a single interval. But suppose instead that we
have two adjacent intervals with the same properties, and we kill the text of one interval
and yank it back. The same interval-coalescence feature that rescues the other case causes
trouble in this one: after yanking, we have just one interval. One again, editing does not
preserve the distinction between one interval and two.

Insertion of text at the border between intervals also raises questions that have no
satisfactory answer.

However, it is easy to arrange for editing to behave consistently for questions of the
form, “What are the properties of this character?” So we have decided these are the only
questions that make sense; we have not implemented asking questions about where intervals
start or end.

In practice, you can usually use the text property search functions in place of explicit
interval boundaries. You can think of them as finding the boundaries of intervals, assuming
that intervals are always coalesced whenever possible. See Section 32.19.3 [Property Search],
page 565.

Emacs also provides explicit intervals as a presentation feature; see Section 38.9 [Over-
lays], page 671.

32.20 Substituting for a Character Code

The following functions replace characters within a specified region based on their char-
acter codes.

Functionsubst-char-in-region start end old-char new-char &optional noundo
This function replaces all occurrences of the character old-char with the character
new-char in the region of the current buffer defined by start and end.
If noundo is non-nil, then subst-char-in-region does not record the change for
undo and does not mark the buffer as modified. This was useful for controlling the
old selective display feature (see Section 38.6 [Selective Display], page 667).
subst-char-in-region does not move point and returns nil.

Chapter 32: Text 577

---------- Buffer: foo ----------
This is the contents of the buffer before.
---------- Buffer: foo ----------

(subst-char-in-region 1 20 ?i ?X)
⇒ nil

---------- Buffer: foo ----------
ThXs Xs the contents of the buffer before.
---------- Buffer: foo ----------

Functiontranslate-region start end table
This function applies a translation table to the characters in the buffer between po-
sitions start and end.

The translation table table is a string; (aref table ochar) gives the translated char-
acter corresponding to ochar. If the length of table is less than 256, any characters
with codes larger than the length of table are not altered by the translation.

The return value of translate-region is the number of characters that were actually
changed by the translation. This does not count characters that were mapped into
themselves in the translation table.

32.21 Registers

A register is a sort of variable used in Emacs editing that can hold a variety of different
kinds of values. Each register is named by a single character. All ascii characters and their
meta variants (but with the exception of C-g) can be used to name registers. Thus, there
are 255 possible registers. A register is designated in Emacs Lisp by the character that is
its name.

Variableregister-alist
This variable is an alist of elements of the form (name . contents). Normally, there
is one element for each Emacs register that has been used.

The object name is a character (an integer) identifying the register.

The contents of a register can have several possible types:

a number A number stands for itself. If insert-register finds a number in the register,
it converts the number to decimal.

a marker A marker represents a buffer position to jump to.

a string A string is text saved in the register.

a rectangle
A rectangle is represented by a list of strings.

(window-configuration position)
This represents a window configuration to restore in one frame, and a position
to jump to in the current buffer.

578 GNU Emacs Lisp Reference Manual

(frame-configuration position)
This represents a frame configuration to restore, and a position to jump to in
the current buffer.

(file filename)
This represents a file to visit; jumping to this value visits file filename.

(file-query filename position)
This represents a file to visit and a position in it; jumping to this value visits file
filename and goes to buffer position position. Restoring this type of position
asks the user for confirmation first.

The functions in this section return unpredictable values unless otherwise stated.

Functionget-register reg
This function returns the contents of the register reg, or nil if it has no contents.

Functionset-register reg value
This function sets the contents of register reg to value. A register can be set to any
value, but the other register functions expect only certain data types. The return
value is value.

Commandview-register reg
This command displays what is contained in register reg.

Commandinsert-register reg &optional beforep
This command inserts contents of register reg into the current buffer.
Normally, this command puts point before the inserted text, and the mark after it.
However, if the optional second argument beforep is non-nil, it puts the mark before
and point after. You can pass a non-nil second argument beforep to this function
interactively by supplying any prefix argument.
If the register contains a rectangle, then the rectangle is inserted with its upper left
corner at point. This means that text is inserted in the current line and underneath
it on successive lines.
If the register contains something other than saved text (a string) or a rectangle (a
list), currently useless things happen. This may be changed in the future.

32.22 Transposition of Text

This subroutine is used by the transposition commands.

Functiontranspose-regions start1 end1 start2 end2 &optional leave-markers
This function exchanges two nonoverlapping portions of the buffer. Arguments start1
and end1 specify the bounds of one portion and arguments start2 and end2 specify
the bounds of the other portion.
Normally, transpose-regions relocates markers with the transposed text; a marker
previously positioned within one of the two transposed portions moves along with

Chapter 32: Text 579

that portion, thus remaining between the same two characters in their new position.
However, if leave-markers is non-nil, transpose-regions does not do this—it leaves
all markers unrelocated.

32.23 Base 64 Encoding

Base 64 code is used in email to encode a sequence of 8-bit bytes as a longer sequence
of ascii graphic characters. It is defined in Internet RFC12045. This section describes the
functions for converting to and from this code.

Functionbase64-encode-region beg end &optional no-line-break
This function converts the region from beg to end into base 64 code. It returns
the length of the encoded text. An error is signaled if a character in the region is
multibyte, i.e. in a multibyte buffer the region must contain only characters from the
charsets ascii, eight-bit-control and eight-bit-graphic.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the output is just one long line.

Functionbase64-encode-string string &optional no-line-break
This function converts the string string into base 64 code. It returns a string con-
taining the encoded text. As for base64-encode-region, an error is signaled if a
character in the string is multibyte.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the result string is just one long line.

Functionbase64-decode-region beg end
This function converts the region from beg to end from base 64 code into the corre-
sponding decoded text. It returns the length of the decoded text.

The decoding functions ignore newline characters in the encoded text.

Functionbase64-decode-string string
This function converts the string string from base 64 code into the corresponding
decoded text. It returns a string containing the decoded text.

The decoding functions ignore newline characters in the encoded text.

1 An RFC, an acronym for Request for Comments, is a numbered Internet informational document
describing a standard. RFCs are usually written by technical experts acting on their own initiative, and
are traditionally written in a pragmatic, experience-driven manner.

580 GNU Emacs Lisp Reference Manual

32.24 MD5 Checksum

MD5 cryptographic checksums, or message digests, are 128-bit “fingerprints” of a docu-
ment or program. They are used to verify that you have an exact and unaltered copy of the
data. The algorithm to calculate the MD5 message digest is defined in Internet RFC21321.
This section describes the Emacs facilities for computing message digests.

Functionmd5 object &optional start end coding-system noerror
This function returns the MD5 message digest of object, which should be a buffer or
a string.
The two optional arguments start and end are character positions specifying the
portion of object to compute the message digest for. If they are nil or omitted, the
digest is computed for the whole of object.
The function md5 does not compute the message digest directly from the internal
Emacs representation of the text (see Section 33.1 [Text Representations], page 583).
Instead, it encodes the text using a coding system, and computes the message digest
from the encoded text. The optional fourth argument coding-system specifies which
coding system to use for encoding the text. It should be the same coding system
that you used to read the text, or that you used or will use when saving or sending
the text. See Section 33.10 [Coding Systems], page 590, for more information about
coding systems.
If coding-system is nil or omitted, the default depends on object. If object is a
buffer, the default for coding-system is whatever coding system would be chosen
by default for writing this text into a file. If object is a string, the user’s most
preferred coding system (see section “the description of prefer-coding-system” in
GNU Emacs Manual) is used.
Normally, md5 signals an error if the text can’t be encoded using the specified or
chosen coding system. However, if noerror is non-nil, it silently uses raw-text
coding instead.

32.25 Change Hooks

These hook variables let you arrange to take notice of all changes in all buffers (or
in a particular buffer, if you make them buffer-local). See also Section 32.19.4 [Special
Properties], page 567, for how to detect changes to specific parts of the text.

The functions you use in these hooks should save and restore the match data if they do
anything that uses regular expressions; otherwise, they will interfere in bizarre ways with
the editing operations that call them.

Variablebefore-change-functions
This variable holds a list of functions to call before any buffer modification. Each
function gets two arguments, the beginning and end of the region that is about to
change, represented as integers. The buffer that is about to change is always the
current buffer.

2 For an explanation of what is an RFC, see the footnote in Section 32.23 [Base 64], page 579.

Chapter 32: Text 581

Variableafter-change-functions
This variable holds a list of functions to call after any buffer modification. Each
function receives three arguments: the beginning and end of the region just changed,
and the length of the text that existed before the change. All three arguments are
integers. The buffer that’s about to change is always the current buffer.

The length of the old text is the difference between the buffer positions before and
after that text as it was before the change. As for the changed text, its length is
simply the difference between the first two arguments.

Macrocombine-after-change-calls body...
The macro executes body normally, but arranges to call the after-change functions
just once for a series of several changes—if that seems safe.

If a program makes several text changes in the same area of the buffer, using the
macro combine-after-change-calls around that part of the program can make it
run considerably faster when after-change hooks are in use. When the after-change
hooks are ultimately called, the arguments specify a portion of the buffer including
all of the changes made within the combine-after-change-calls body.

Warning: You must not alter the values of after-change-functions within the body
of a combine-after-change-calls form.

Note: If the changes you combine occur in widely scattered parts of the buffer, this
will still work, but it is not advisable, because it may lead to inefficient behavior for
some change hook functions.

The two variables above are temporarily bound to nil during the time that any of these
functions is running. This means that if one of these functions changes the buffer, that
change won’t run these functions. If you do want a hook function to make changes that run
these functions, make it bind these variables back to their usual values.

One inconvenient result of this protective feature is that you cannot have a function in
after-change-functions or before-change-functions which changes the value of that
variable. But that’s not a real limitation. If you want those functions to change the list of
functions to run, simply add one fixed function to the hook, and code that function to look
in another variable for other functions to call. Here is an example:

(setq my-own-after-change-functions nil)
(defun indirect-after-change-function (beg end len)
(let ((list my-own-after-change-functions))
(while list
(funcall (car list) beg end len)
(setq list (cdr list)))))

(add-hooks ’after-change-functions
’indirect-after-change-function)

Variablefirst-change-hook
This variable is a normal hook that is run whenever a buffer is changed that was
previously in the unmodified state.

582 GNU Emacs Lisp Reference Manual

Variableinhibit-modification-hooks
If this variable is non-nil, all of the change hooks are disabled; none of them run.
This affects all the hook variables described above in this section, as well as the hooks
attached to certain special text properties (see Section 32.19.4 [Special Properties],
page 567) and overlay properties (see Section 38.9.1 [Overlay Properties], page 671).
This variable is available starting in Emacs 21.

Chapter 33: Non-ascii Characters 583

33 Non-ascii Characters

This chapter covers the special issues relating to non-ascii characters and how they are
stored in strings and buffers.

33.1 Text Representations

Emacs has two text representations—two ways to represent text in a string or buffer.
These are called unibyte and multibyte. Each string, and each buffer, uses one of these two
representations. For most purposes, you can ignore the issue of representations, because
Emacs converts text between them as appropriate. Occasionally in Lisp programming you
will need to pay attention to the difference.

In unibyte representation, each character occupies one byte and therefore the possible
character codes range from 0 to 255. Codes 0 through 127 are ascii characters; the codes
from 128 through 255 are used for one non-ascii character set (you can choose which
character set by setting the variable nonascii-insert-offset).

In multibyte representation, a character may occupy more than one byte, and as a result,
the full range of Emacs character codes can be stored. The first byte of a multibyte character
is always in the range 128 through 159 (octal 0200 through 0237). These values are called
leading codes. The second and subsequent bytes of a multibyte character are always in the
range 160 through 255 (octal 0240 through 0377); these values are trailing codes.

Some sequences of bytes are not valid in multibyte text: for example, a single isolated
byte in the range 128 through 159 is not allowed. But character codes 128 through 159 can
appear in multibyte text, represented as two-byte sequences. All the character codes 128
through 255 are possible (though slightly abnormal) in multibyte text; they appear in multi-
byte buffers and strings when you do explicit encoding and decoding (see Section 33.10.7
[Explicit Encoding], page 596).

In a buffer, the buffer-local value of the variable enable-multibyte-characters speci-
fies the representation used. The representation for a string is determined and recorded in
the string when the string is constructed.

Variableenable-multibyte-characters
This variable specifies the current buffer’s text representation. If it is non-nil, the
buffer contains multibyte text; otherwise, it contains unibyte text.
You cannot set this variable directly; instead, use the function set-buffer-
multibyte to change a buffer’s representation.

Variabledefault-enable-multibyte-characters
This variable’s value is entirely equivalent to (default-value ’enable-multibyte-
characters), and setting this variable changes that default value. Setting the local
binding of enable-multibyte-characters in a specific buffer is not allowed, but
changing the default value is supported, and it is a reasonable thing to do, because
it has no effect on existing buffers.
The ‘--unibyte’ command line option does its job by setting the default value to nil
early in startup.

584 GNU Emacs Lisp Reference Manual

Functionposition-bytes position
Return the byte-position corresponding to buffer position position in the current
buffer.

Functionbyte-to-position byte-position
Return the buffer position corresponding to byte-position byte-position in the current
buffer.

Functionmultibyte-string-p string
Return t if string is a multibyte string.

33.2 Converting Text Representations

Emacs can convert unibyte text to multibyte; it can also convert multibyte text to
unibyte, though this conversion loses information. In general these conversions happen
when inserting text into a buffer, or when putting text from several strings together in one
string. You can also explicitly convert a string’s contents to either representation.

Emacs chooses the representation for a string based on the text that it is constructed
from. The general rule is to convert unibyte text to multibyte text when combining it with
other multibyte text, because the multibyte representation is more general and can hold
whatever characters the unibyte text has.

When inserting text into a buffer, Emacs converts the text to the buffer’s representation,
as specified by enable-multibyte-characters in that buffer. In particular, when you
insert multibyte text into a unibyte buffer, Emacs converts the text to unibyte, even though
this conversion cannot in general preserve all the characters that might be in the multibyte
text. The other natural alternative, to convert the buffer contents to multibyte, is not
acceptable because the buffer’s representation is a choice made by the user that cannot be
overridden automatically.

Converting unibyte text to multibyte text leaves ascii characters unchanged, and like-
wise character codes 128 through 159. It converts the non-ascii codes 160 through 255 by
adding the value nonascii-insert-offset to each character code. By setting this vari-
able, you specify which character set the unibyte characters correspond to (see Section 33.5
[Character Sets], page 586). For example, if nonascii-insert-offset is 2048, which is (-
(make-char ’latin-iso8859-1) 128), then the unibyte non-ascii characters correspond
to Latin 1. If it is 2688, which is (- (make-char ’greek-iso8859-7) 128), then they
correspond to Greek letters.

Converting multibyte text to unibyte is simpler: it discards all but the low 8 bits of
each character code. If nonascii-insert-offset has a reasonable value, corresponding to
the beginning of some character set, this conversion is the inverse of the other: converting
unibyte text to multibyte and back to unibyte reproduces the original unibyte text.

Variablenonascii-insert-offset
This variable specifies the amount to add to a non-ascii character when convert-
ing unibyte text to multibyte. It also applies when self-insert-command inserts a
character in the unibyte non-ascii range, 128 through 255. However, the functions
insert and insert-char do not perform this conversion.

Chapter 33: Non-ascii Characters 585

The right value to use to select character set cs is (- (make-char cs) 128). If the
value of nonascii-insert-offset is zero, then conversion actually uses the value for
the Latin 1 character set, rather than zero.

Variablenonascii-translation-table
This variable provides a more general alternative to nonascii-insert-offset. You
can use it to specify independently how to translate each code in the range of 128
through 255 into a multibyte character. The value should be a char-table, or nil. If
this is non-nil, it overrides nonascii-insert-offset.

Functionstring-make-unibyte string
This function converts the text of string to unibyte representation, if it isn’t already,
and returns the result. If string is a unibyte string, it is returned unchanged. Multi-
byte character codes are converted to unibyte by using just the low 8 bits.

Functionstring-make-multibyte string
This function converts the text of string to multibyte representation, if it isn’t already,
and returns the result. If string is a multibyte string, it is returned unchanged. The
function unibyte-char-to-multibyte is used to convert each unibyte character to
a multibyte character.

33.3 Selecting a Representation

Sometimes it is useful to examine an existing buffer or string as multibyte when it was
unibyte, or vice versa.

Functionset-buffer-multibyte multibyte
Set the representation type of the current buffer. If multibyte is non-nil, the buffer
becomes multibyte. If multibyte is nil, the buffer becomes unibyte.

This function leaves the buffer contents unchanged when viewed as a sequence of
bytes. As a consequence, it can change the contents viewed as characters; a sequence
of two bytes which is treated as one character in multibyte representation will count
as two characters in unibyte representation. Character codes 128 through 159 are an
exception. They are represented by one byte in a unibyte buffer, but when the buffer
is set to multibyte, they are converted to two-byte sequences, and vice versa.

This function sets enable-multibyte-characters to record which representation is
in use. It also adjusts various data in the buffer (including overlays, text properties
and markers) so that they cover the same text as they did before.

You cannot use set-buffer-multibyte on an indirect buffer, because indirect buffers
always inherit the representation of the base buffer.

Functionstring-as-unibyte string
This function returns a string with the same bytes as string but treating each byte
as a character. This means that the value may have more characters than string has.

586 GNU Emacs Lisp Reference Manual

If string is already a unibyte string, then the value is string itself. Otherwise it is
a newly created string, with no text properties. If string is multibyte, any charac-
ters it contains of charset eight-bit-control or eight-bit-graphic are converted to the
corresponding single byte.

Functionstring-as-multibyte string
This function returns a string with the same bytes as string but treating each multi-
byte sequence as one character. This means that the value may have fewer characters
than string has.
If string is already a multibyte string, then the value is string itself. Otherwise it is
a newly created string, with no text properties. If string is unibyte and contains any
individual 8-bit bytes (i.e. not part of a multibyte form), they are converted to the
corresponding multibyte character of charset eight-bit-control or eight-bit-graphic.

33.4 Character Codes

The unibyte and multibyte text representations use different character codes. The valid
character codes for unibyte representation range from 0 to 255—the values that can fit in
one byte. The valid character codes for multibyte representation range from 0 to 524287,
but not all values in that range are valid. The values 128 through 255 are not entirely
proper in multibyte text, but they can occur if you do explicit encoding and decoding (see
Section 33.10.7 [Explicit Encoding], page 596). Some other character codes cannot occur
at all in multibyte text. Only the ascii codes 0 through 127 are completely legitimate in
both representations.

Functionchar-valid-p charcode &optional genericp
This returns t if charcode is valid for either one of the two text representations.

(char-valid-p 65)
⇒ t

(char-valid-p 256)
⇒ nil

(char-valid-p 2248)
⇒ t

If the optional argument genericp is non-nil, this function returns t if charcode is a
generic character (see Section 33.7 [Splitting Characters], page 588).

33.5 Character Sets

Emacs classifies characters into various character sets, each of which has a name which
is a symbol. Each character belongs to one and only one character set.

In general, there is one character set for each distinct script. For example, latin-
iso8859-1 is one character set, greek-iso8859-7 is another, and ascii is another. An
Emacs character set can hold at most 9025 characters; therefore, in some cases, characters
that would logically be grouped together are split into several character sets. For example,
one set of Chinese characters, generally known as Big 5, is divided into two Emacs character
sets, chinese-big5-1 and chinese-big5-2.

Chapter 33: Non-ascii Characters 587

ascii characters are in character set ascii. The non-ascii characters 128 through 159
are in character set eight-bit-control, and codes 160 through 255 are in character set
eight-bit-graphic.

Functioncharsetp object
Returns t if object is a symbol that names a character set, nil otherwise.

Functioncharset-list
This function returns a list of all defined character set names.

Functionchar-charset character
This function returns the name of the character set that character belongs to.

Functioncharset-plist charset
This function returns the charset property list of the character set charset. Although
charset is a symbol, this is not the same as the property list of that symbol. Charset
properties are used for special purposes within Emacs; for example, preferred-
coding-system helps determine which coding system to use to encode characters
in a charset.

33.6 Characters and Bytes

In multibyte representation, each character occupies one or more bytes. Each character
set has an introduction sequence, which is normally one or two bytes long. (Exception:
the ascii character set and the eight-bit-graphic character set have a zero-length in-
troduction sequence.) The introduction sequence is the beginning of the byte sequence for
any character in the character set. The rest of the character’s bytes distinguish it from the
other characters in the same character set. Depending on the character set, there are either
one or two distinguishing bytes; the number of such bytes is called the dimension of the
character set.

Functioncharset-dimension charset
This function returns the dimension of charset; at present, the dimension is always 1
or 2.

Functioncharset-bytes charset
This function returns the number of bytes used to represent a character in character
set charset.

This is the simplest way to determine the byte length of a character set’s introduction
sequence:

(- (charset-bytes charset)
(charset-dimension charset))

588 GNU Emacs Lisp Reference Manual

33.7 Splitting Characters

The functions in this section convert between characters and the byte values used to
represent them. For most purposes, there is no need to be concerned with the sequence of
bytes used to represent a character, because Emacs translates automatically when necessary.

Functionsplit-char character
Return a list containing the name of the character set of character, followed by one
or two byte values (integers) which identify character within that character set. The
number of byte values is the character set’s dimension.

(split-char 2248)
⇒ (latin-iso8859-1 72)

(split-char 65)
⇒ (ascii 65)

(split-char 128)
⇒ (eight-bit-control 128)

Functionmake-char charset &optional code1 code2
This function returns the character in character set charset whose position codes are
code1 and code2. This is roughly the inverse of split-char. Normally, you should
specify either one or both of code1 and code2 according to the dimension of charset.
For example,

(make-char ’latin-iso8859-1 72)
⇒ 2248

If you call make-char with no byte-values, the result is a generic character which stands
for charset. A generic character is an integer, but it is not valid for insertion in the buffer
as a character. It can be used in char-table-range to refer to the whole character set (see
Section 6.6 [Char-Tables], page 89). char-valid-p returns nil for generic characters. For
example:

(make-char ’latin-iso8859-1)
⇒ 2176

(char-valid-p 2176)
⇒ nil

(char-valid-p 2176 t)
⇒ t

(split-char 2176)
⇒ (latin-iso8859-1 0)

The character sets ascii, eight-bit-control, and eight-bit-graphic don’t have cor-
responding generic characters. If charset is one of them and you don’t supply code1, make-
char returns the character code corresponding to the smallest code in charset.

33.8 Scanning for Character Sets

Sometimes it is useful to find out which character sets appear in a part of a buffer or a
string. One use for this is in determining which coding systems (see Section 33.10 [Coding
Systems], page 590) are capable of representing all of the text in question.

Chapter 33: Non-ascii Characters 589

Functionfind-charset-region beg end &optional translation
This function returns a list of the character sets that appear in the current buffer
between positions beg and end.
The optional argument translation specifies a translation table to be used in scanning
the text (see Section 33.9 [Translation of Characters], page 589). If it is non-nil, then
each character in the region is translated through this table, and the value returned
describes the translated characters instead of the characters actually in the buffer.

Functionfind-charset-string string &optional translation
This function returns a list of the character sets that appear in the string string. It
is just like find-charset-region, except that it applies to the contents of string
instead of part of the current buffer.

33.9 Translation of Characters

A translation table specifies a mapping of characters into characters. These tables are
used in encoding and decoding, and for other purposes. Some coding systems specify their
own particular translation tables; there are also default translation tables which apply to
all other coding systems.

Functionmake-translation-table &rest translations
This function returns a translation table based on the argument translations. Each
element of translations should be a list of elements of the form (from . to); this says
to translate the character from into to.
The arguments and the forms in each argument are processed in order, and if a
previous form already translates to to some other character, say to-alt, from is also
translated to to-alt.
You can also map one whole character set into another character set with the same
dimension. To do this, you specify a generic character (which designates a character
set) for from (see Section 33.7 [Splitting Characters], page 588). In this case, to
should also be a generic character, for another character set of the same dimension.
Then the translation table translates each character of from’s character set into the
corresponding character of to’s character set.

In decoding, the translation table’s translations are applied to the characters that re-
sult from ordinary decoding. If a coding system has property character-translation-
table-for-decode, that specifies the translation table to use. Otherwise, if standard-
translation-table-for-decode is non-nil, decoding uses that table.

In encoding, the translation table’s translations are applied to the characters in the
buffer, and the result of translation is actually encoded. If a coding system has property
character-translation-table-for-encode, that specifies the translation table to use.
Otherwise the variable standard-translation-table-for-encode specifies the transla-
tion table.

Variablestandard-translation-table-for-decode
This is the default translation table for decoding, for coding systems that don’t specify
any other translation table.

590 GNU Emacs Lisp Reference Manual

Variablestandard-translation-table-for-encode
This is the default translation table for encoding, for coding systems that don’t specify
any other translation table.

33.10 Coding Systems

When Emacs reads or writes a file, and when Emacs sends text to a subprocess or
receives text from a subprocess, it normally performs character code conversion and end-
of-line conversion as specified by a particular coding system.

How to define a coding system is an arcane matter, and is not documented here.

33.10.1 Basic Concepts of Coding Systems

Character code conversion involves conversion between the encoding used inside Emacs
and some other encoding. Emacs supports many different encodings, in that it can convert
to and from them. For example, it can convert text to or from encodings such as Latin 1,
Latin 2, Latin 3, Latin 4, Latin 5, and several variants of ISO 2022. In some cases, Emacs
supports several alternative encodings for the same characters; for example, there are three
coding systems for the Cyrillic (Russian) alphabet: ISO, Alternativnyj, and KOI8.

Most coding systems specify a particular character code for conversion, but some of them
leave the choice unspecified—to be chosen heuristically for each file, based on the data.

End of line conversion handles three different conventions used on various systems for
representing end of line in files. The Unix convention is to use the linefeed character (also
called newline). The DOS convention is to use a carriage-return and a linefeed at the end
of a line. The Mac convention is to use just carriage-return.

Base coding systems such as latin-1 leave the end-of-line conversion unspecified, to be
chosen based on the data. Variant coding systems such as latin-1-unix, latin-1-dos and
latin-1-mac specify the end-of-line conversion explicitly as well. Most base coding systems
have three corresponding variants whose names are formed by adding ‘-unix’, ‘-dos’ and
‘-mac’.

The coding system raw-text is special in that it prevents character code conversion, and
causes the buffer visited with that coding system to be a unibyte buffer. It does not specify
the end-of-line conversion, allowing that to be determined as usual by the data, and has the
usual three variants which specify the end-of-line conversion. no-conversion is equivalent
to raw-text-unix: it specifies no conversion of either character codes or end-of-line.

The coding system emacs-mule specifies that the data is represented in the internal
Emacs encoding. This is like raw-text in that no code conversion happens, but different
in that the result is multibyte data.

Functioncoding-system-get coding-system property
This function returns the specified property of the coding system coding-system.
Most coding system properties exist for internal purposes, but one that you might
find useful is mime-charset. That property’s value is the name used in MIME for
the character coding which this coding system can read and write. Examples:

Chapter 33: Non-ascii Characters 591

(coding-system-get ’iso-latin-1 ’mime-charset)
⇒ iso-8859-1

(coding-system-get ’iso-2022-cn ’mime-charset)
⇒ iso-2022-cn

(coding-system-get ’cyrillic-koi8 ’mime-charset)
⇒ koi8-r

The value of the mime-charset property is also defined as an alias for the coding
system.

33.10.2 Encoding and I/O

The principal purpose of coding systems is for use in reading and writing files. The func-
tion insert-file-contents uses a coding system for decoding the file data, and write-
region uses one to encode the buffer contents.

You can specify the coding system to use either explicitly (see Section 33.10.6 [Speci-
fying Coding Systems], page 596), or implicitly using the defaulting mechanism (see Sec-
tion 33.10.5 [Default Coding Systems], page 594). But these methods may not completely
specify what to do. For example, they may choose a coding system such as undefined
which leaves the character code conversion to be determined from the data. In these cases,
the I/O operation finishes the job of choosing a coding system. Very often you will want to
find out afterwards which coding system was chosen.

Variablebuffer-file-coding-system
This variable records the coding system that was used for visiting the current buffer.
It is used for saving the buffer, and for writing part of the buffer with write-region.
When those operations ask the user to specify a different coding system, buffer-
file-coding-system is updated to the coding system specified.
However, buffer-file-coding-system does not affect sending text to a subprocess.

Variablesave-buffer-coding-system
This variable specifies the coding system for saving the buffer (by overriding buffer-
file-coding-system). Note that it is not used for write-region.
When a command to save the buffer starts out to use buffer-file-coding-system
(or save-buffer-coding-system), and that coding system cannot handle the actual
text in the buffer, the command asks the user to choose another coding system. After
that happens, the command also updates buffer-file-coding-system to represent
the coding system that the user specified.

Variablelast-coding-system-used
I/O operations for files and subprocesses set this variable to the coding system name
that was used. The explicit encoding and decoding functions (see Section 33.10.7
[Explicit Encoding], page 596) set it too.
Warning: Since receiving subprocess output sets this variable, it can change whenever
Emacs waits; therefore, you should copy the value shortly after the function call that
stores the value you are interested in.

The variable selection-coding-system specifies how to encode selections for the win-
dow system. See Section 29.18 [Window System Selections], page 502.

592 GNU Emacs Lisp Reference Manual

33.10.3 Coding Systems in Lisp

Here are the Lisp facilities for working with coding systems:

Functioncoding-system-list &optional base-only
This function returns a list of all coding system names (symbols). If base-only is
non-nil, the value includes only the base coding systems. Otherwise, it includes alias
and variant coding systems as well.

Functioncoding-system-p object
This function returns t if object is a coding system name.

Functioncheck-coding-system coding-system
This function checks the validity of coding-system. If that is valid, it returns coding-
system. Otherwise it signals an error with condition coding-system-error.

Functioncoding-system-change-eol-conversion coding-system eol-type
This function returns a coding system which is like coding-system except for its eol
conversion, which is specified by eol-type. eol-type should be unix, dos, mac, or
nil. If it is nil, the returned coding system determines the end-of-line conversion
from the data.

Functioncoding-system-change-text-conversion eol-coding text-coding
This function returns a coding system which uses the end-of-line conversion of eol-
coding, and the text conversion of text-coding. If text-coding is nil, it returns
undecided, or one of its variants according to eol-coding.

Functionfind-coding-systems-region from to
This function returns a list of coding systems that could be used to encode a text
between from and to. All coding systems in the list can safely encode any multibyte
characters in that portion of the text.
If the text contains no multibyte characters, the function returns the list (undecided).

Functionfind-coding-systems-string string
This function returns a list of coding systems that could be used to encode the text
of string. All coding systems in the list can safely encode any multibyte characters in
string. If the text contains no multibyte characters, this returns the list (undecided).

Functionfind-coding-systems-for-charsets charsets
This function returns a list of coding systems that could be used to encode all the
character sets in the list charsets.

Functiondetect-coding-region start end &optional highest
This function chooses a plausible coding system for decoding the text from start to
end. This text should be a byte sequence (see Section 33.10.7 [Explicit Encoding],
page 596).

Chapter 33: Non-ascii Characters 593

Normally this function returns a list of coding systems that could handle decoding
the text that was scanned. They are listed in order of decreasing priority. But if
highest is non-nil, then the return value is just one coding system, the one that is
highest in priority.
If the region contains only ascii characters, the value is undecided or (undecided).

Functiondetect-coding-string string highest
This function is like detect-coding-region except that it operates on the contents
of string instead of bytes in the buffer.

See Section 37.6 [Process Information], page 648, for how to examine or set the coding
systems used for I/O to a subprocess.

33.10.4 User-Chosen Coding Systems

Functionselect-safe-coding-system from to &optional default-coding-system
accept-default-p

This function selects a coding system for encoding specified text, asking the user
to choose if necessary. Normally the specified text is the text in the current buffer
between from and to, defaulting to the whole buffer if they are nil. If from is a
string, the string is the specified text, and to is ignored.
If default-coding-system is non-nil, that is the first coding system to try; if that
can handle the text, select-safe-coding-system returns that coding system. It
can also be a list of coding systems; then the function tries each of them one by
one. After trying all of them, it next tries the user’s most preferred coding system
(see section “the description of prefer-coding-system” in GNU Emacs Manual),
and after that the current buffer’s value of buffer-file-coding-system (if it is not
undecided).
If one of those coding systems can safely encode all the specified text, select-safe-
coding-system chooses it and returns it. Otherwise, it asks the user to choose from
a list of coding systems which can encode all the text, and returns the user’s choice.
The optional argument accept-default-p, if non-nil, should be a function to determine
whether the coding system selected without user interaction is acceptable. If this
function returns nil, the silently selected coding system is rejected, and the user is
asked to select a coding system from a list of possible candidates.
If the variable select-safe-coding-system-accept-default-p is non-nil, its value
overrides the value of accept-default-p.

Here are two functions you can use to let the user specify a coding system, with com-
pletion. See Section 20.5 [Completion], page 271.

Functionread-coding-system prompt &optional default
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user enters null
input, default specifies which coding system to return. It should be a symbol or a
string.

594 GNU Emacs Lisp Reference Manual

Functionread-non-nil-coding-system prompt
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user tries to enter
null input, it asks the user to try again. See Section 33.10 [Coding Systems], page 590.

33.10.5 Default Coding Systems

This section describes variables that specify the default coding system for certain files
or when running certain subprograms, and the function that I/O operations use to access
them.

The idea of these variables is that you set them once and for all to the defaults you want,
and then do not change them again. To specify a particular coding system for a particular
operation in a Lisp program, don’t change these variables; instead, override them using
coding-system-for-read and coding-system-for-write (see Section 33.10.6 [Specifying
Coding Systems], page 596).

Variableauto-coding-regexp-alist
This variable is an alist of text patterns and corresponding coding systems. Each
element has the form (regexp . coding-system); a file whose first few kilobytes match
regexp is decoded with coding-system when its contents are read into a buffer. The
settings in this alist take priority over coding: tags in the files and the contents
of file-coding-system-alist (see below). The default value is set so that Emacs
automatically recognizes mail files in Babyl format and reads them with no code
conversions.

Variablefile-coding-system-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Each element has the form (pattern . coding), where pattern is a
regular expression that matches certain file names. The element applies to file names
that match pattern.

The cdr of the element, coding, should be either a coding system, a cons cell con-
taining two coding systems, or a function name (a symbol with a function definition).
If coding is a coding system, that coding system is used for both reading the file and
writing it. If coding is a cons cell containing two coding systems, its car specifies
the coding system for decoding, and its cdr specifies the coding system for encoding.

If coding is a function name, the function must return a coding system or a cons cell
containing two coding systems. This value is used as described above.

Variableprocess-coding-system-alist
This variable is an alist specifying which coding systems to use for a subprocess,
depending on which program is running in the subprocess. It works like file-coding-
system-alist, except that pattern is matched against the program name used to
start the subprocess. The coding system or systems specified in this alist are used
to initialize the coding systems used for I/O to the subprocess, but you can specify
other coding systems later using set-process-coding-system.

Chapter 33: Non-ascii Characters 595

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs handles asynchronous subprocess output in batches, as it arrives. If the coding
system leaves the character code conversion unspecified, or leaves the end-of-line conversion
unspecified, Emacs must try to detect the proper conversion from one batch at a time, and
this does not always work.

Therefore, with an asynchronous subprocess, if at all possible, use a coding system which
determines both the character code conversion and the end of line conversion—that is, one
like latin-1-unix, rather than undecided or latin-1.

Variablenetwork-coding-system-alist
This variable is an alist that specifies the coding system to use for network streams.
It works much like file-coding-system-alist, with the difference that the pattern
in an element may be either a port number or a regular expression. If it is a regular
expression, it is matched against the network service name used to open the network
stream.

Variabledefault-process-coding-system
This variable specifies the coding systems to use for subprocess (and network stream)
input and output, when nothing else specifies what to do.

The value should be a cons cell of the form (input-coding . output-coding). Here
input-coding applies to input from the subprocess, and output-coding applies to
output to it.

Functionfind-operation-coding-system operation &rest arguments
This function returns the coding system to use (by default) for performing operation
with arguments. The value has this form:

(decoding-system encoding-system)

The first element, decoding-system, is the coding system to use for decoding (in case
operation does decoding), and encoding-system is the coding system for encoding (in
case operation does encoding).

The argument operation should be a symbol, one of insert-file-contents, write-
region, call-process, call-process-region, start-process, or open-network-
stream. These are the names of the Emacs I/O primitives that can do coding system
conversion.

The remaining arguments should be the same arguments that might be given to that
I/O primitive. Depending on the primitive, one of those arguments is selected as the
target. For example, if operation does file I/O, whichever argument specifies the file
name is the target. For subprocess primitives, the process name is the target. For
open-network-stream, the target is the service name or port number.

This function looks up the target in file-coding-system-alist, process-coding-
system-alist, or network-coding-system-alist, depending on operation. See Sec-
tion 33.10.5 [Default Coding Systems], page 594.

596 GNU Emacs Lisp Reference Manual

33.10.6 Specifying a Coding System for One Operation

You can specify the coding system for a specific operation by binding the variables
coding-system-for-read and/or coding-system-for-write.

Variablecoding-system-for-read
If this variable is non-nil, it specifies the coding system to use for reading a file, or
for input from a synchronous subprocess.
It also applies to any asynchronous subprocess or network stream, but in a different
way: the value of coding-system-for-read when you start the subprocess or open
the network stream specifies the input decoding method for that subprocess or net-
work stream. It remains in use for that subprocess or network stream unless and until
overridden.
The right way to use this variable is to bind it with let for a specific I/O operation.
Its global value is normally nil, and you should not globally set it to any other value.
Here is an example of the right way to use the variable:

;; Read the file with no character code conversion.
;; Assume crlf represents end-of-line.
(let ((coding-system-for-write ’emacs-mule-dos))
(insert-file-contents filename))

When its value is non-nil, coding-system-for-read takes precedence
over all other methods of specifying a coding system to use for input,
including file-coding-system-alist, process-coding-system-alist and
network-coding-system-alist.

Variablecoding-system-for-write
This works much like coding-system-for-read, except that it applies to output
rather than input. It affects writing to files, as well as sending output to subprocesses
and net connections.
When a single operation does both input and output, as do call-process-region
and start-process, both coding-system-for-read and coding-system-for-
write affect it.

Variableinhibit-eol-conversion
When this variable is non-nil, no end-of-line conversion is done, no matter which cod-
ing system is specified. This applies to all the Emacs I/O and subprocess primitives,
and to the explicit encoding and decoding functions (see Section 33.10.7 [Explicit
Encoding], page 596).

33.10.7 Explicit Encoding and Decoding

All the operations that transfer text in and out of Emacs have the ability to use a coding
system to encode or decode the text. You can also explicitly encode and decode text using
the functions in this section.

The result of encoding, and the input to decoding, are not ordinary text. They logically
consist of a series of byte values; that is, a series of characters whose codes are in the

Chapter 33: Non-ascii Characters 597

range 0 through 255. In a multibyte buffer or string, character codes 128 through 159 are
represented by multibyte sequences, but this is invisible to Lisp programs.

The usual way to read a file into a buffer as a sequence of bytes, so you can decode the
contents explicitly, is with insert-file-contents-literally (see Section 25.3 [Reading
from Files], page 403); alternatively, specify a non-nil rawfile argument when visiting a file
with find-file-noselect. These methods result in a unibyte buffer.

The usual way to use the byte sequence that results from explicitly encoding text is to
copy it to a file or process—for example, to write it with write-region (see Section 25.4
[Writing to Files], page 404), and suppress encoding by binding coding-system-for-write
to no-conversion.

Here are the functions to perform explicit encoding or decoding. The decoding functions
produce sequences of bytes; the encoding functions are meant to operate on sequences of
bytes. All of these functions discard text properties.

Functionencode-coding-region start end coding-system
This function encodes the text from start to end according to coding system coding-
system. The encoded text replaces the original text in the buffer. The result of
encoding is logically a sequence of bytes, but the buffer remains multibyte if it was
multibyte before.

Functionencode-coding-string string coding-system
This function encodes the text in string according to coding system coding-system. It
returns a new string containing the encoded text. The result of encoding is a unibyte
string.

Functiondecode-coding-region start end coding-system
This function decodes the text from start to end according to coding system coding-
system. The decoded text replaces the original text in the buffer. To make explicit
decoding useful, the text before decoding ought to be a sequence of byte values, but
both multibyte and unibyte buffers are acceptable.

Functiondecode-coding-string string coding-system
This function decodes the text in string according to coding system coding-system. It
returns a new string containing the decoded text. To make explicit decoding useful,
the contents of string ought to be a sequence of byte values, but a multibyte string
is acceptable.

33.10.8 Terminal I/O Encoding

Emacs can decode keyboard input using a coding system, and encode terminal output.
This is useful for terminals that transmit or display text using a particular encoding such
as Latin-1. Emacs does not set last-coding-system-used for encoding or decoding for
the terminal.

Functionkeyboard-coding-system
This function returns the coding system that is in use for decoding keyboard input—or
nil if no coding system is to be used.

598 GNU Emacs Lisp Reference Manual

Functionset-keyboard-coding-system coding-system
This function specifies coding-system as the coding system to use for decoding key-
board input. If coding-system is nil, that means do not decode keyboard input.

Functionterminal-coding-system
This function returns the coding system that is in use for encoding terminal output—
or nil for no encoding.

Functionset-terminal-coding-system coding-system
This function specifies coding-system as the coding system to use for encoding termi-
nal output. If coding-system is nil, that means do not encode terminal output.

33.10.9 MS-DOS File Types

On MS-DOS and Microsoft Windows, Emacs guesses the appropriate end-of-line conver-
sion for a file by looking at the file’s name. This feature classifies files as text files and binary
files. By “binary file” we mean a file of literal byte values that are not necessarily meant to
be characters; Emacs does no end-of-line conversion and no character code conversion for
them. On the other hand, the bytes in a text file are intended to represent characters; when
you create a new file whose name implies that it is a text file, Emacs uses DOS end-of-line
conversion.

Variablebuffer-file-type
This variable, automatically buffer-local in each buffer, records the file type of the
buffer’s visited file. When a buffer does not specify a coding system with buffer-
file-coding-system, this variable is used to determine which coding system to use
when writing the contents of the buffer. It should be nil for text, t for binary. If it
is t, the coding system is no-conversion. Otherwise, undecided-dos is used.
Normally this variable is set by visiting a file; it is set to nil if the file was visited
without any actual conversion.

User Optionfile-name-buffer-file-type-alist
This variable holds an alist for recognizing text and binary files. Each element has
the form (regexp . type), where regexp is matched against the file name, and type
may be nil for text, t for binary, or a function to call to compute which. If it is a
function, then it is called with a single argument (the file name) and should return t
or nil.
When running on MS-DOS or MS-Windows, Emacs checks this alist to decide which
coding system to use when reading a file. For a text file, undecided-dos is used. For
a binary file, no-conversion is used.
If no element in this alist matches a given file name, then default-buffer-file-type
says how to treat the file.

User Optiondefault-buffer-file-type
This variable says how to handle files for which file-name-buffer-file-type-alist
says nothing about the type.

Chapter 33: Non-ascii Characters 599

If this variable is non-nil, then these files are treated as binary: the coding system
no-conversion is used. Otherwise, nothing special is done for them—the coding
system is deduced solely from the file contents, in the usual Emacs fashion.

33.11 Input Methods

Input methods provide convenient ways of entering non-ascii characters from the key-
board. Unlike coding systems, which translate non-ascii characters to and from encodings
meant to be read by programs, input methods provide human-friendly commands. (See
section “Input Methods” in The GNU Emacs Manual, for information on how users use
input methods to enter text.) How to define input methods is not yet documented in this
manual, but here we describe how to use them.

Each input method has a name, which is currently a string; in the future, symbols may
also be usable as input method names.

Variablecurrent-input-method
This variable holds the name of the input method now active in the current buffer.
(It automatically becomes local in each buffer when set in any fashion.) It is nil if
no input method is active in the buffer now.

Variabledefault-input-method
This variable holds the default input method for commands that choose an input
method. Unlike current-input-method, this variable is normally global.

Functionset-input-method input-method
This function activates input method input-method for the current buffer. It also
sets default-input-method to input-method. If input-method is nil, this function
deactivates any input method for the current buffer.

Functionread-input-method-name prompt &optional default inhibit-null
This function reads an input method name with the minibuffer, prompting with
prompt. If default is non-nil, that is returned by default, if the user enters empty
input. However, if inhibit-null is non-nil, empty input signals an error.
The returned value is a string.

Variableinput-method-alist
This variable defines all the supported input methods. Each element defines one input
method, and should have the form:

(input-method language-env activate-func
title description args...)

Here input-method is the input method name, a string; language-env is another string,
the name of the language environment this input method is recommended for. (That
serves only for documentation purposes.)
activate-func is a function to call to activate this method. The args, if any, are
passed as arguments to activate-func. All told, the arguments to activate-func are
input-method and the args.

600 GNU Emacs Lisp Reference Manual

title is a string to display in the mode line while this method is active. description is
a string describing this method and what it is good for.

The fundamental interface to input methods is through the variable input-method-
function. See Section 21.7.2 [Reading One Event], page 311.

33.12 Locales

POSIX defines a concept of “locales” which control which language to use in language-
related features. These Emacs variables control how Emacs interacts with these features.

Variablelocale-coding-system
This variable specifies the coding system to use for decoding system error messages,
for encoding the format argument to format-time-string, and for decoding the
return value of format-time-string.

Variablesystem-messages-locale
This variable specifies the locale to use for generating system error messages. Chang-
ing the locale can cause messages to come out in a different language or in a different
orthography. If the variable is nil, the locale is specified by environment variables in
the usual POSIX fashion.

Variablesystem-time-locale
This variable specifies the locale to use for formatting time values. Changing the locale
can cause messages to appear according to the conventions of a different language.
If the variable is nil, the locale is specified by environment variables in the usual
POSIX fashion.

Chapter 34: Searching and Matching 601

34 Searching and Matching

GNU Emacs provides two ways to search through a buffer for specified text: exact string
searches and regular expression searches. After a regular expression search, you can examine
the match data to determine which text matched the whole regular expression or various
portions of it.

The ‘skip-chars...’ functions also perform a kind of searching. See Section 30.2.7
[Skipping Characters], page 518.

34.1 Searching for Strings

These are the primitive functions for searching through the text in a buffer. They are
meant for use in programs, but you may call them interactively. If you do so, they prompt
for the search string; the arguments limit and noerror are nil, and repeat is 1.

These search functions convert the search string to multibyte if the buffer is multibyte;
they convert the search string to unibyte if the buffer is unibyte. See Section 33.1 [Text
Representations], page 583.

Commandsearch-forward string &optional limit noerror repeat
This function searches forward from point for an exact match for string. If successful,
it sets point to the end of the occurrence found, and returns the new value of point.
If no match is found, the value and side effects depend on noerror (see below).
In the following example, point is initially at the beginning of the line. Then (search-
forward "fox") moves point after the last letter of ‘fox’:

---------- Buffer: foo ----------
?The quick brown fox jumped over the lazy dog.
---------- Buffer: foo ----------

(search-forward "fox")
⇒ 20

---------- Buffer: foo ----------
The quick brown fox? jumped over the lazy dog.
---------- Buffer: foo ----------

The argument limit specifies the upper bound to the search. (It must be a position
in the current buffer.) No match extending after that position is accepted. If limit is
omitted or nil, it defaults to the end of the accessible portion of the buffer.
What happens when the search fails depends on the value of noerror. If noerror is
nil, a search-failed error is signaled. If noerror is t, search-forward returns nil
and does nothing. If noerror is neither nil nor t, then search-forward moves point
to the upper bound and returns nil. (It would be more consistent now to return
the new position of point in that case, but some existing programs may depend on a
value of nil.)
If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If these
successive searches succeed, the function succeeds, moving point and returning its
new value. Otherwise the search fails.

602 GNU Emacs Lisp Reference Manual

Commandsearch-backward string &optional limit noerror repeat
This function searches backward from point for string. It is just like search-forward
except that it searches backwards and leaves point at the beginning of the match.

Commandword-search-forward string &optional limit noerror repeat
This function searches forward from point for a “word” match for string. If it finds
a match, it sets point to the end of the match found, and returns the new value of
point.

Word matching regards string as a sequence of words, disregarding punctuation that
separates them. It searches the buffer for the same sequence of words. Each word
must be distinct in the buffer (searching for the word ‘ball’ does not match the word
‘balls’), but the details of punctuation and spacing are ignored (searching for ‘ball
boy’ does match ‘ball. Boy!’).

In this example, point is initially at the beginning of the buffer; the search leaves it
between the ‘y’ and the ‘!’.

---------- Buffer: foo ----------
?He said "Please! Find
the ball boy!"
---------- Buffer: foo ----------

(word-search-forward "Please find the ball, boy.")
⇒ 35

---------- Buffer: foo ----------
He said "Please! Find
the ball boy?!"
---------- Buffer: foo ----------

If limit is non-nil (it must be a position in the current buffer), then it is the upper
bound to the search. The match found must not extend after that position.

If noerror is nil, then word-search-forward signals an error if the search fails. If
noerror is t, then it returns nil instead of signaling an error. If noerror is neither
nil nor t, it moves point to limit (or the end of the buffer) and returns nil.

If repeat is non-nil, then the search is repeated that many times. Point is positioned
at the end of the last match.

Commandword-search-backward string &optional limit noerror repeat
This function searches backward from point for a word match to string. This function
is just like word-search-forward except that it searches backward and normally
leaves point at the beginning of the match.

34.2 Regular Expressions

A regular expression (regexp, for short) is a pattern that denotes a (possibly infinite)
set of strings. Searching for matches for a regexp is a very powerful operation. This section
explains how to write regexps; the following section says how to search for them.

Chapter 34: Searching and Matching 603

34.2.1 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character is a simple regular expression that matches
that character and nothing else. The special characters are ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’, ‘^’,
‘$’, and ‘\’; no new special characters will be defined in the future. Any other character
appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘fg’, but it does match a part of that string.) Likewise, ‘o’ is a regular expression that
matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression that matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
more powerful, you need to use one of the special regular expression constructs.

34.2.1.1 Special Characters in Regular Expressions

Here is a list of the characters that are special in a regular expression.

‘.’ (Period)
is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively as many times as possible. Thus, ‘o*’
matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in the hope that that will make it possible to match the rest of the
pattern. For example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’
first tries to match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is
only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’ to match
only two ‘a’s. With this choice, the rest of the regexp matches successfully.

Nested repetition operators can be extremely slow if they specify backtracking
loops. For example, it could take hours for the regular expression ‘\(x+y*\)*a’
to try to match the sequence ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz’, be-
fore it ultimately fails. The slowness is because Emacs must try each imaginable
way of grouping the 35 ‘x’s before concluding that none of them can work. To
make sure your regular expressions run fast, check nested repetitions carefully.

604 GNU Emacs Lisp Reference Manual

‘+’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’ and
‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

‘?’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

‘*?’, ‘+?’, ‘??’
These are “non-greedy” variants of the operators ‘*’, ‘+’ and ‘?’. Where those
operators match the largest possible substring (consistent with matching the en-
tire containing expression), the non-greedy variants match the smallest possible
substring (consistent with matching the entire containing expression).
For example, the regular expression ‘c[ad]*a’ when applied to the string
‘cdaaada’ matches the whole string; but the regular expression ‘c[ad]*?a’,
applied to that same string, matches just ‘cda’. (The smallest possible match
here for ‘[ad]*?’ that permits the whole expression to match is ‘d’.)

‘[...]’ is a character alternative, which begins with ‘[’ and is terminated by ‘]’. In the
simplest case, the characters between the two brackets are what this character
alternative can match.
Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.
You can also include character ranges in a character alternative, by writing the
starting and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches
any lower-case ascii letter. Ranges may be intermixed freely with individual
characters, as in ‘[a-z$%.]’, which matches any lower case ascii letter or ‘$’,
‘%’ or period.
Note that the usual regexp special characters are not special inside a character
alternative. A completely different set of characters is special inside character
alternatives: ‘]’, ‘-’ and ‘^’.
To include a ‘]’ in a character alternative, you must make it the first character.
For example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first or
last character of the character alternative, or put it after a range. Thus, ‘[]-]’
matches both ‘]’ and ‘-’.
To include ‘^’ in a character alternative, put it anywhere but at the beginning.
The beginning and end of a range of multibyte characters must be in the same
character set (see Section 33.5 [Character Sets], page 586). Thus, "[\x8e0-
\x97c]" is invalid because character 0x8e0 (‘a’ with grave accent) is in the
Emacs character set for Latin-1 but the character 0x97c (‘u’ with diaeresis) is
in the Emacs character set for Latin-2. (We use Lisp string syntax to write that
example, and a few others in the next few paragraphs, in order to include hex
escape sequences in them.)
If a range starts with a unibyte character c and ends with a multibyte character
c2, the range is divided into two parts: one is ‘c..?\377’, the other is ‘c1..c2’,
where c1 is the first character of the charset to which c2 belongs.

Chapter 34: Searching and Matching 605

You cannot always match all non-ascii characters with the regular expression
"[\200-\377]". This works when searching a unibyte buffer or string (see Sec-
tion 33.1 [Text Representations], page 583), but not in a multibyte buffer or
string, because many non-ascii characters have codes above octal 0377. How-
ever, the regular expression "[^\000-\177]" does match all non-ascii charac-
ters (see below regarding ‘^’), in both multibyte and unibyte representations,
because only the ascii characters are excluded.
Starting in Emacs 21, a character alternative can also specify named character
classes (see Section 34.2.1.2 [Char Classes], page 606). This is a POSIX feature
whose syntax is ‘[:class:]’. Using a character class is equivalent to mentioning
each of the characters in that class; but the latter is not feasible in practice,
since some classes include thousands of different characters.

‘[^ ...]’ ‘[^’ begins a complemented character alternative, which matches any character
except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except
letters and digits.
‘^’ is not special in a character alternative unless it is the first character. The
character following the ‘^’ is treated as if it were first (in other words, ‘-’ and
‘]’ are not special there).
A complemented character alternative can match a newline, unless newline is
mentioned as one of the characters not to match. This is in contrast to the
handling of regexps in programs such as grep.

‘^’ is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.
When matching a string instead of a buffer, ‘^’ matches at the beginning of the
string or after a newline character.
For historical compatibility reasons, ‘^’ can be used only at the beginning of
the regular expression, or after ‘\(’ or ‘\|’.

‘$’ is similar to ‘^’ but matches only at the end of a line. Thus, ‘x+$’ matches a
string of one ‘x’ or more at the end of a line.
When matching a string instead of a buffer, ‘$’ matches at the end of the string
or before a newline character.
For historical compatibility reasons, ‘$’ can be used only at the end of the
regular expression, or before ‘\)’ or ‘\|’.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.
Note that ‘\’ also has special meaning in the read syntax of Lisp strings (see
Section 2.3.8 [String Type], page 18), and must be quoted with ‘\’. For exam-
ple, the regular expression that matches the ‘\’ character is ‘\\’. To write a
Lisp string that contains the characters ‘\\’, Lisp syntax requires you to quote
each ‘\’ with another ‘\’. Therefore, the read syntax for a regular expression
matching ‘\’ is "\\\\".

606 GNU Emacs Lisp Reference Manual

Please note: For historical compatibility, special characters are treated as ordinary ones
if they are in contexts where their special meanings make no sense. For example, ‘*foo’
treats ‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is
poor practice to depend on this behavior; quote the special character anyway, regardless of
where it appears.

34.2.1.2 Character Classes

Here is a table of the classes you can use in a character alternative, in Emacs 21, and
what they mean:

‘[:ascii:]’
This matches any ascii (unibyte) character.

‘[:alnum:]’
This matches any letter or digit. (At present, for multibyte characters, it
matches anything that has word syntax.)

‘[:alpha:]’
This matches any letter. (At present, for multibyte characters, it matches
anything that has word syntax.)

‘[:blank:]’
This matches space and tab only.

‘[:cntrl:]’
This matches any ascii control character.

‘[:digit:]’
This matches ‘0’ through ‘9’. Thus, ‘[-+[:digit:]]’ matches any digit, as well
as ‘+’ and ‘-’.

‘[:graph:]’
This matches graphic characters—everything except ascii control characters,
space, and the delete character.

‘[:lower:]’
This matches any lower-case letter, as determined by the current case table (see
Section 4.9 [Case Tables], page 60).

‘[:nonascii:]’
This matches any non-ascii (multibyte) character.

‘[:print:]’
This matches printing characters—everything except ascii control characters
and the delete character.

‘[:punct:]’
This matches any punctuation character. (At present, for multibyte characters,
it matches anything that has non-word syntax.)

‘[:space:]’
This matches any character that has whitespace syntax (see Section 35.2.1
[Syntax Class Table], page 622).

Chapter 34: Searching and Matching 607

‘[:upper:]’
This matches any upper-case letter, as determined by the current case table
(see Section 4.9 [Case Tables], page 60).

‘[:word:]’
This matches any character that has word syntax (see Section 35.2.1 [Syntax
Class Table], page 622).

‘[:xdigit:]’
This matches the hexadecimal digits: ‘0’ through ‘9’, ‘a’ through ‘f’ and ‘A’
through ‘F’.

34.2.1.3 Backslash Constructs in Regular Expressions

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: certain two-character sequences starting with ‘\’ that have
special meanings. (The character after the ‘\’ in such a sequence is always ordinary when
used on its own.) Here is a table of the special ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches anything that either a or b matches.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.
Full backtracking capability exists to handle multiple uses of ‘\|’, if you use
the POSIX regular expression functions (see Section 34.4 [POSIX Regexps],
page 613).

‘\{m\}’ is a postfix operator that repeats the previous pattern exactly m times. Thus,
‘x\{5\}’ matches the string ‘xxxxx’ and nothing else. ‘c[ad]\{3\}r’ matches
string such as ‘caaar’, ‘cdddr’, ‘cadar’, and so on.

‘\{m,n\}’ is more general postfix operator that specifies repetition with a minimum of m
repeats and a maximum of n repeats. If m is omitted, the minimum is 0; if n
is omitted, there is no maximum.
For example, ‘c[ad]\{1,2\}r’ matches the strings ‘car’, ‘cdr’, ‘caar’, ‘cadr’,
‘cdar’, and ‘cddr’, and nothing else.
‘\{0,1\}’ or ‘\{,1\}’ is equivalent to ‘?’.
‘\{0,\}’ or ‘\{,\}’ is equivalent to ‘*’.
‘\{1,\}’ is equivalent to ‘+’.

‘\(... \)’
is a grouping construct that serves three purposes:
1. To enclose a set of ‘\|’ alternatives for other operations. Thus, the regular

expression ‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.
2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and

‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘ba’, ‘bana’, ‘banana’,
‘bananana’, etc., with any number (zero or more) of ‘na’ strings.

3. To record a matched substring for future reference with ‘\digit’ (see below).

608 GNU Emacs Lisp Reference Manual

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that was assigned as a second meaning to the same ‘\(
... \)’ construct because, in pratice, there was usually no conflict between
the two meanings. But occasionally there is a conflict, and that led to the
introduction of shy groups.

‘\(?: ... \)’
is the shy group construct. A shy group serves the first two purposes of an
ordinary group (controlling the nesting of other operators), but it does not get
a number, so you cannot refer back to its value with ‘\digit’.
Shy groups are particulary useful for mechanically-constructed regular expres-
sions because they can be added automatically without altering the numbering
of any ordinary, non-shy groups.

‘\digit’ matches the same text that matched the digitth occurrence of a grouping (‘\(
... \)’) construct.
In other words, after the end of a group, the matcher remembers the beginning
and end of the text matched by that group. Later on in the regular expression
you can use ‘\’ followed by digit to match that same text, whatever it may have
been.
The strings matching the first nine grouping constructs appearing in the entire
regular expression passed to a search or matching function are assigned num-
bers 1 through 9 in the order that the open parentheses appear in the regular
expression. So you can use ‘\1’ through ‘\9’ to refer to the text matched by
the corresponding grouping constructs.
For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.
If a particular grouping construct in the regular expression was never
matched—for instance, if it appears inside of an alternative that wasn’t used,
or inside of a repetition that repeated zero times—then the corresponding
‘\digit’ construct never matches anything. To use an artificial example,,
‘\(foo\(b*\)\|lose\)\2’ cannot match ‘lose’: the second alternative inside
the larger group matches it, but then ‘\2’ is undefined and can’t match
anything. But it can match ‘foobb’, because the first alternative matches
‘foob’ and ‘\2’ matches ‘b’.

‘\w’ matches any word-constituent character. The editor syntax table determines
which characters these are. See Chapter 35 [Syntax Tables], page 621.

‘\W’ matches any character that is not a word constituent.

‘\scode’ matches any character whose syntax is code. Here code is a character that
represents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’
for open parenthesis, etc. To represent whitespace syntax, use either ‘-’ or a
space character. See Section 35.2.1 [Syntax Class Table], page 622, for a list of
syntax codes and the characters that stand for them.

‘\Scode’ matches any character whose syntax is not code.

Chapter 34: Searching and Matching 609

‘\cc’ matches any character whose category is c. Here c is a character that represents
a category: thus, ‘c’ for Chinese characters or ‘g’ for Greek characters in the
standard category table.

‘\Cc’ matches any character whose category is not c.

The following regular expression constructs match the empty string—that is, they don’t
use up any characters—but whether they match depends on the context.

‘\‘’ matches the empty string, but only at the beginning of the buffer or string
being matched against.

‘\’’ matches the empty string, but only at the end of the buffer or string being
matched against.

‘\=’ matches the empty string, but only at point. (This construct is not defined
when matching against a string.)

‘\b’ matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.
‘\b’ matches at the beginning or end of the buffer regardless of what text
appears next to it.

‘\B’ matches the empty string, but not at the beginning or end of a word.

‘\<’ matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer only if a word-constituent character follows.

‘\>’ matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer only if the contents end with a word-constituent character.

Not every string is a valid regular expression. For example, a string with unbalanced
square brackets is invalid (with a few exceptions, such as ‘[]]’), and so is a string that ends
with a single ‘\’. If an invalid regular expression is passed to any of the search functions,
an invalid-regexp error is signaled.

34.2.2 Complex Regexp Example

Here is a complicated regexp, used by Emacs to recognize the end of a sentence together
with any whitespace that follows. It is the value of the variable sentence-end.

First, we show the regexp as a string in Lisp syntax to distinguish spaces from tab
characters. The string constant begins and ends with a double-quote. ‘\"’ stands for a
double-quote as part of the string, ‘\\’ for a backslash as part of the string, ‘\t’ for a tab
and ‘\n’ for a newline.

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

In contrast, if you evaluate the variable sentence-end, you will see the following:
sentence-end

⇒ "[.?!][]\"’)}]*\\($\\| $\\| \\| \\)[
]*"

In this output, tab and newline appear as themselves.
This regular expression contains four parts in succession and can be deciphered as follows:

610 GNU Emacs Lisp Reference Manual

[.?!] The first part of the pattern is a character alternative that matches any one
of three characters: period, question mark, and exclamation mark. The match
must begin with one of these three characters.

[]\"’)}]*
The second part of the pattern matches any closing braces and quotation marks,
zero or more of them, that may follow the period, question mark or exclamation
mark. The \" is Lisp syntax for a double-quote in a string. The ‘*’ at the
end indicates that the immediately preceding regular expression (a character
alternative, in this case) may be repeated zero or more times.

\\($\\| $\\|\t\\| \\)
The third part of the pattern matches the whitespace that follows the end of a
sentence: the end of a line (optionally with a space), or a tab, or two spaces.
The double backslashes mark the parentheses and vertical bars as regular ex-
pression syntax; the parentheses delimit a group and the vertical bars separate
alternatives. The dollar sign is used to match the end of a line.

[\t\n]* Finally, the last part of the pattern matches any additional whitespace beyond
the minimum needed to end a sentence.

34.2.3 Regular Expression Functions

These functions operate on regular expressions.

Functionregexp-quote string
This function returns a regular expression whose only exact match is string. Using
this regular expression in looking-at will succeed only if the next characters in the
buffer are string ; using it in a search function will succeed if the text being searched
contains string.
This allows you to request an exact string match or search when calling a function
that wants a regular expression.

(regexp-quote "^The cat$")
⇒ "\\^The cat\\$"

One use of regexp-quote is to combine an exact string match with context described
as a regular expression. For example, this searches for the string that is the value of
string, surrounded by whitespace:

(re-search-forward
(concat "\\s-" (regexp-quote string) "\\s-"))

Functionregexp-opt strings &optional paren
This function returns an efficient regular expression that will match any of the strings
strings. This is useful when you need to make matching or searching as fast as
possible—for example, for Font Lock mode.
If the optional argument paren is non-nil, then the returned regular expression is
always enclosed by at least one parentheses-grouping construct.
This simplified definition of regexp-opt produces a regular expression which is equiv-
alent to the actual value (but not as efficient):

Chapter 34: Searching and Matching 611

(defun regexp-opt (strings paren)
(let ((open-paren (if paren "\\(" ""))

(close-paren (if paren "\\)" "")))
(concat open-paren

(mapconcat ’regexp-quote strings "\\|")
close-paren)))

Functionregexp-opt-depth regexp
This function returns the total number of grouping constructs (parenthesized expres-
sions) in regexp.

34.3 Regular Expression Searching

In GNU Emacs, you can search for the next match for a regular expression either in-
crementally or not. For incremental search commands, see section “Regular Expression
Search” in The GNU Emacs Manual. Here we describe only the search functions useful in
programs. The principal one is re-search-forward.

These search functions convert the regular expression to multibyte if the buffer is multi-
byte; they convert the regular expression to unibyte if the buffer is unibyte. See Section 33.1
[Text Representations], page 583.

Commandre-search-forward regexp &optional limit noerror repeat
This function searches forward in the current buffer for a string of text that is matched
by the regular expression regexp. The function skips over any amount of text that
is not matched by regexp, and leaves point at the end of the first match found. It
returns the new value of point.

If limit is non-nil (it must be a position in the current buffer), then it is the upper
bound to the search. No match extending after that position is accepted.

If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If all these
successive searches succeed, the function succeeds, moving point and returning its
new value. Otherwise the function fails.

What happens when the function fails depends on the value of noerror. If noerror
is nil, a search-failed error is signaled. If noerror is t, re-search-forward does
nothing and returns nil. If noerror is neither nil nor t, then re-search-forward
moves point to limit (or the end of the buffer) and returns nil.

In the following example, point is initially before the ‘T’. Evaluating the search call
moves point to the end of that line (between the ‘t’ of ‘hat’ and the newline).

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

612 GNU Emacs Lisp Reference Manual

(re-search-forward "[a-z]+" nil t 5)
⇒ 27

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Commandre-search-backward regexp &optional limit noerror repeat
This function searches backward in the current buffer for a string of text that is
matched by the regular expression regexp, leaving point at the beginning of the first
text found.

This function is analogous to re-search-forward, but they are not simple mirror
images. re-search-forward finds the match whose beginning is as close as possible
to the starting point. If re-search-backward were a perfect mirror image, it would
find the match whose end is as close as possible. However, in fact it finds the match
whose beginning is as close as possible. The reason for this is that matching a regular
expression at a given spot always works from beginning to end, and starts at a specified
beginning position.

A true mirror-image of re-search-forward would require a special feature for match-
ing regular expressions from end to beginning. It’s not worth the trouble of imple-
menting that.

Functionstring-match regexp string &optional start
This function returns the index of the start of the first match for the regular expression
regexp in string, or nil if there is no match. If start is non-nil, the search starts at
that index in string.

For example,

(string-match
"quick" "The quick brown fox jumped quickly.")

⇒ 4
(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

The index of the first character of the string is 0, the index of the second character is
1, and so on.

After this function returns, the index of the first character beyond the match is
available as (match-end 0). See Section 34.6 [Match Data], page 615.

(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

(match-end 0)
⇒ 32

Chapter 34: Searching and Matching 613

Functionlooking-at regexp
This function determines whether the text in the current buffer directly following point
matches the regular expression regexp. “Directly following” means precisely that: the
search is “anchored” and it can succeed only starting with the first character following
point. The result is t if so, nil otherwise.

This function does not move point, but it updates the match data, which you can
access using match-beginning and match-end. See Section 34.6 [Match Data],
page 615.

In this example, point is located directly before the ‘T’. If it were anywhere else, the
result would be nil.

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(looking-at "The cat in the hat$")
⇒ t

34.4 POSIX Regular Expression Searching

The usual regular expression functions do backtracking when necessary to handle the
‘\|’ and repetition constructs, but they continue this only until they find some match. Then
they succeed and report the first match found.

This section describes alternative search functions which perform the full backtracking
specified by the POSIX standard for regular expression matching. They continue back-
tracking until they have tried all possibilities and found all matches, so they can report
the longest match, as required by POSIX. This is much slower, so use these functions only
when you really need the longest match.

Functionposix-search-forward regexp &optional limit noerror repeat
This is like re-search-forward except that it performs the full backtracking specified
by the POSIX standard for regular expression matching.

Functionposix-search-backward regexp &optional limit noerror repeat
This is like re-search-backward except that it performs the full backtracking spec-
ified by the POSIX standard for regular expression matching.

Functionposix-looking-at regexp
This is like looking-at except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

Functionposix-string-match regexp string &optional start
This is like string-match except that it performs the full backtracking specified by
the POSIX standard for regular expression matching.

614 GNU Emacs Lisp Reference Manual

34.5 Search and Replace

Functionperform-replace from-string replacements start end query-flag
regexp-flag delimited-flag &optional repeat-count map

This function is the guts of query-replace and related commands. It searches for
occurrences of from-string in the text between positions start and end and replaces
some or all of them. If start is nil, point is used instead, and the buffer’s end is used
for end.
If query-flag is nil, it replaces all occurrences; otherwise, it asks the user what to do
about each one.
If regexp-flag is non-nil, then from-string is considered a regular expression; oth-
erwise, it must match literally. If delimited-flag is non-nil, then only replacements
surrounded by word boundaries are considered.
The argument replacements specifies what to replace occurrences with. If it is a
string, that string is used. It can also be a list of strings, to be used in cyclic order.
If replacements is a cons cell, (function . data), this means to call function after each
match to get the replacement text. This function is called with two arguments: data,
and the number of replacements already made.
If repeat-count is non-nil, it should be an integer. Then it specifies how many times
to use each of the strings in the replacements list before advancing cyclicly to the
next one.
If from-string contains upper-case letters, then perform-replace binds case-fold-
search to nil, and it uses the replacements without altering the case of them.
Normally, the keymap query-replace-map defines the possible user responses for
queries. The argument map, if non-nil, is a keymap to use instead of query-replace-
map.

Variablequery-replace-map
This variable holds a special keymap that defines the valid user responses for query-
replace and related functions, as well as y-or-n-p and map-y-or-n-p. It is unusual
in two ways:
• The “key bindings” are not commands, just symbols that are meaningful to the

functions that use this map.
• Prefix keys are not supported; each key binding must be for a single-event key

sequence. This is because the functions don’t use read-key-sequence to get the
input; instead, they read a single event and look it up “by hand.”

Here are the meaningful “bindings” for query-replace-map. Several of them are mean-
ingful only for query-replace and friends.

act Do take the action being considered—in other words, “yes.”

skip Do not take action for this question—in other words, “no.”

exit Answer this question “no,” and give up on the entire series of questions, assum-
ing that the answers will be “no.”

Chapter 34: Searching and Matching 615

act-and-exit
Answer this question “yes,” and give up on the entire series of questions, as-
suming that subsequent answers will be “no.”

act-and-show
Answer this question “yes,” but show the results—don’t advance yet to the
next question.

automatic
Answer this question and all subsequent questions in the series with “yes,”
without further user interaction.

backup Move back to the previous place that a question was asked about.

edit Enter a recursive edit to deal with this question—instead of any other action
that would normally be taken.

delete-and-edit
Delete the text being considered, then enter a recursive edit to replace it.

recenter Redisplay and center the window, then ask the same question again.

quit Perform a quit right away. Only y-or-n-p and related functions use this answer.

help Display some help, then ask again.

34.6 The Match Data

Emacs keeps track of the start and end positions of the segments of text found during
a regular expression search. This means, for example, that you can search for a complex
pattern, such as a date in an Rmail message, and then extract parts of the match under
control of the pattern.

Because the match data normally describe the most recent search only, you must be
careful not to do another search inadvertently between the search you wish to refer back
to and the use of the match data. If you can’t avoid another intervening search, you must
save and restore the match data around it, to prevent it from being overwritten.

34.6.1 Replacing the Text that Matched

This function replaces the text matched by the last search with replacement.

Functionreplace-match replacement &optional fixedcase literal string subexp
This function replaces the text in the buffer (or in string) that was matched by the
last search. It replaces that text with replacement.
If you did the last search in a buffer, you should specify nil for string. Then replace-
match does the replacement by editing the buffer; it leaves point at the end of the
replacement text, and returns t.
If you did the search in a string, pass the same string as string. Then replace-match
does the replacement by constructing and returning a new string.
If fixedcase is non-nil, then the case of the replacement text is not changed; otherwise,
the replacement text is converted to a different case depending upon the capitalization

616 GNU Emacs Lisp Reference Manual

of the text to be replaced. If the original text is all upper case, the replacement text
is converted to upper case. If the first word of the original text is capitalized, then the
first word of the replacement text is capitalized. If the original text contains just one
word, and that word is a capital letter, replace-match considers this a capitalized
first word rather than all upper case.
If literal is non-nil, then replacement is inserted exactly as it is, the only alterations
being case changes as needed. If it is nil (the default), then the character ‘\’ is
treated specially. If a ‘\’ appears in replacement, then it must be part of one of the
following sequences:

‘\&’ ‘\&’ stands for the entire text being replaced.

‘\n’ ‘\n’, where n is a digit, stands for the text that matched the nth subex-
pression in the original regexp. Subexpressions are those expressions
grouped inside ‘\(...\)’.

‘\\’ ‘\\’ stands for a single ‘\’ in the replacement text.

If subexp is non-nil, that says to replace just subexpression number subexp of the
regexp that was matched, not the entire match. For example, after matching ‘foo
\(ba*r\)’, calling replace-match with 1 as subexp means to replace just the text
that matched ‘\(ba*r\)’.

34.6.2 Simple Match Data Access

This section explains how to use the match data to find out what was matched by the
last search or match operation.

You can ask about the entire matching text, or about a particular parenthetical subex-
pression of a regular expression. The count argument in the functions below specifies which.
If count is zero, you are asking about the entire match. If count is positive, it specifies which
subexpression you want.

Recall that the subexpressions of a regular expression are those expressions grouped
with escaped parentheses, ‘\(...\)’. The countth subexpression is found by counting oc-
currences of ‘\(’ from the beginning of the whole regular expression. The first subexpression
is numbered 1, the second 2, and so on. Only regular expressions can have subexpressions—
after a simple string search, the only information available is about the entire match.

A search which fails may or may not alter the match data. In the past, a failing search
did not do this, but we may change it in the future.

Functionmatch-string count &optional in-string
This function returns, as a string, the text matched in the last search or match
operation. It returns the entire text if count is zero, or just the portion corresponding
to the countth parenthetical subexpression, if count is positive.
If the last such operation was done against a string with string-match, then you
should pass the same string as the argument in-string. After a buffer search or
match, you should omit in-string or pass nil for it; but you should make sure that the
current buffer when you call match-string is the one in which you did the searching
or matching.

Chapter 34: Searching and Matching 617

The value is nil if count is out of range, or for a subexpression inside a ‘\|’ alternative
that wasn’t used or a repetition that repeated zero times.

Functionmatch-string-no-properties count &optional in-string
This function is like match-string except that the result has no text properties.

Functionmatch-beginning count
This function returns the position of the start of text matched by the last regular
expression searched for, or a subexpression of it.

If count is zero, then the value is the position of the start of the entire match. Oth-
erwise, count specifies a subexpression in the regular expression, and the value of the
function is the starting position of the match for that subexpression.

The value is nil for a subexpression inside a ‘\|’ alternative that wasn’t used or a
repetition that repeated zero times.

Functionmatch-end count
This function is like match-beginning except that it returns the position of the end
of the match, rather than the position of the beginning.

Here is an example of using the match data, with a comment showing the positions
within the text:

(string-match "\\(qu\\)\\(ick\\)"
"The quick fox jumped quickly.")
;0123456789

⇒ 4

(match-string 0 "The quick fox jumped quickly.")
⇒ "quick"

(match-string 1 "The quick fox jumped quickly.")
⇒ "qu"

(match-string 2 "The quick fox jumped quickly.")
⇒ "ick"

(match-beginning 1) ; The beginning of the match
⇒ 4 ; with ‘qu’ is at index 4.

(match-beginning 2) ; The beginning of the match
⇒ 6 ; with ‘ick’ is at index 6.

(match-end 1) ; The end of the match
⇒ 6 ; with ‘qu’ is at index 6.

(match-end 2) ; The end of the match
⇒ 9 ; with ‘ick’ is at index 9.

Here is another example. Point is initially located at the beginning of the line. Searching
moves point to between the space and the word ‘in’. The beginning of the entire match
is at the 9th character of the buffer (‘T’), and the beginning of the match for the first
subexpression is at the 13th character (‘c’).

618 GNU Emacs Lisp Reference Manual

(list
(re-search-forward "The \\(cat \\)")
(match-beginning 0)
(match-beginning 1))
⇒ (9 9 13)

---------- Buffer: foo ----------
I read "The cat ?in the hat comes back" twice.

^ ^
9 13

---------- Buffer: foo ----------

(In this case, the index returned is a buffer position; the first character of the buffer counts
as 1.)

34.6.3 Accessing the Entire Match Data

The functions match-data and set-match-data read or write the entire match data, all
at once.

Functionmatch-data
This function returns a newly constructed list containing all the information on what
text the last search matched. Element zero is the position of the beginning of the
match for the whole expression; element one is the position of the end of the match
for the expression. The next two elements are the positions of the beginning and end
of the match for the first subexpression, and so on. In general, element number 2n
corresponds to (match-beginning n); and element number 2n + 1 corresponds to
(match-end n).

All the elements are markers or nil if matching was done on a buffer, and all are
integers or nil if matching was done on a string with string-match.

As always, there must be no possibility of intervening searches between the call to a
search function and the call to match-data that is intended to access the match data
for that search.

(match-data)
⇒ (#<marker at 9 in foo>

#<marker at 17 in foo>
#<marker at 13 in foo>
#<marker at 17 in foo>)

Functionset-match-data match-list
This function sets the match data from the elements of match-list, which should be
a list that was the value of a previous call to match-data.

If match-list refers to a buffer that doesn’t exist, you don’t get an error; that sets the
match data in a meaningless but harmless way.

store-match-data is a semi-obsolete alias for set-match-data.

Chapter 34: Searching and Matching 619

34.6.4 Saving and Restoring the Match Data

When you call a function that may do a search, you may need to save and restore the
match data around that call, if you want to preserve the match data from an earlier search
for later use. Here is an example that shows the problem that arises if you fail to save the
match data:

(re-search-forward "The \\(cat \\)")
⇒ 48

(foo) ; Perhaps foo does
; more searching.

(match-end 0)
⇒ 61 ; Unexpected result—not 48!

You can save and restore the match data with save-match-data:

Macrosave-match-data body. . .
This macro executes body, saving and restoring the match data around it.

You could use set-match-data together with match-data to imitate the effect of the
special form save-match-data. Here is how:

(let ((data (match-data)))
(unwind-protect

... ; Ok to change the original match data.
(set-match-data data)))

Emacs automatically saves and restores the match data when it runs process filter func-
tions (see Section 37.9.2 [Filter Functions], page 654) and process sentinels (see Section 37.10
[Sentinels], page 656).

34.7 Searching and Case

By default, searches in Emacs ignore the case of the text they are searching through; if
you specify searching for ‘FOO’, then ‘Foo’ or ‘foo’ is also considered a match. This applies
to regular expressions, too; thus, ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all let-
ters must match exactly, including case. This is a buffer-local variable; altering the variable
affects only the current buffer. (See Section 11.10.1 [Intro to Buffer-Local], page 146.) Al-
ternatively, you may change the value of default-case-fold-search, which is the default
value of case-fold-search for buffers that do not override it.

Note that the user-level incremental search feature handles case distinctions differently.
When given a lower case letter, it looks for a match of either case, but when given an upper
case letter, it looks for an upper case letter only. But this has nothing to do with the
searching functions used in Lisp code.

User Optioncase-replace
This variable determines whether the replacement functions should preserve case. If
the variable is nil, that means to use the replacement text verbatim. A non-nil
value means to convert the case of the replacement text according to the text being
replaced.

620 GNU Emacs Lisp Reference Manual

This variable is used by passing it as an argument to the function replace-match.
See Section 34.6.1 [Replacing Match], page 615.

User Optioncase-fold-search
This buffer-local variable determines whether searches should ignore case. If the
variable is nil they do not ignore case; otherwise they do ignore case.

Variabledefault-case-fold-search
The value of this variable is the default value for case-fold-search in buffers that
do not override it. This is the same as (default-value ’case-fold-search).

34.8 Standard Regular Expressions Used in Editing

This section describes some variables that hold regular expressions used for certain pur-
poses in editing:

Variablepage-delimiter
This is the regular expression describing line-beginnings that separate pages. The
default value is "^\014" (i.e., "^^L" or "^\C-l"); this matches a line that starts with
a formfeed character.

The following two regular expressions should not assume the match always starts at the
beginning of a line; they should not use ‘^’ to anchor the match. Most often, the paragraph
commands do check for a match only at the beginning of a line, which means that ‘^’ would
be superfluous. When there is a nonzero left margin, they accept matches that start after
the left margin. In that case, a ‘^’ would be incorrect. However, a ‘^’ is harmless in modes
where a left margin is never used.

Variableparagraph-separate
This is the regular expression for recognizing the beginning of a line that separates
paragraphs. (If you change this, you may have to change paragraph-start also.) The
default value is "[\t\f]*$", which matches a line that consists entirely of spaces,
tabs, and form feeds (after its left margin).

Variableparagraph-start
This is the regular expression for recognizing the beginning of a line that starts or sep-
arates paragraphs. The default value is "[\t\n\f]", which matches a line starting
with a space, tab, newline, or form feed (after its left margin).

Variablesentence-end
This is the regular expression describing the end of a sentence. (All paragraph bound-
aries also end sentences, regardless.) The default value is:

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

This means a period, question mark or exclamation mark, followed optionally by a
closing parenthetical character, followed by tabs, spaces or new lines.
For a detailed explanation of this regular expression, see Section 34.2.2 [Regexp Ex-
ample], page 609.

Chapter 35: Syntax Tables 621

35 Syntax Tables

A syntax table specifies the syntactic textual function of each character. This infor-
mation is used by the parsing functions, the complex movement commands, and others
to determine where words, symbols, and other syntactic constructs begin and end. The
current syntax table controls the meaning of the word motion functions (see Section 30.2.2
[Word Motion], page 511) and the list motion functions (see Section 30.2.6 [List Motion],
page 516), as well as the functions in this chapter.

35.1 Syntax Table Concepts

A syntax table is a char-table (see Section 6.6 [Char-Tables], page 89). The element
at index c describes the character with code c. The element’s value should be a list that
encodes the syntax of the character in question.

Syntax tables are used only for moving across text, not for the Emacs Lisp reader. Emacs
Lisp uses built-in syntactic rules when reading Lisp expressions, and these rules cannot be
changed. (Some Lisp systems provide ways to redefine the read syntax, but we decided to
leave this feature out of Emacs Lisp for simplicity.)

Each buffer has its own major mode, and each major mode has its own idea of the
syntactic class of various characters. For example, in Lisp mode, the character ‘;’ begins a
comment, but in C mode, it terminates a statement. To support these variations, Emacs
makes the choice of syntax table local to each buffer. Typically, each major mode has its
own syntax table and installs that table in each buffer that uses that mode. Changing this
table alters the syntax in all those buffers as well as in any buffers subsequently put in
that mode. Occasionally several similar modes share one syntax table. See Section 23.1.2
[Example Major Modes], page 358, for an example of how to set up a syntax table.

A syntax table can inherit the data for some characters from the standard syntax table,
while specifying other characters itself. The “inherit” syntax class means “inherit this
character’s syntax from the standard syntax table.” Just changing the standard syntax for
a character affects all syntax tables that inherit from it.

Functionsyntax-table-p object
This function returns t if object is a syntax table.

35.2 Syntax Descriptors

This section describes the syntax classes and flags that denote the syntax of a character,
and how they are represented as a syntax descriptor, which is a Lisp string that you pass
to modify-syntax-entry to specify the syntax you want.

The syntax table specifies a syntax class for each character. There is no necessary
relationship between the class of a character in one syntax table and its class in any other
table.

Each class is designated by a mnemonic character, which serves as the name of the class
when you need to specify a class. Usually the designator character is one that is often
assigned that class; however, its meaning as a designator is unvarying and independent of

622 GNU Emacs Lisp Reference Manual

what syntax that character currently has. Thus, ‘\’ as a designator character always gives
“escape character” syntax, regardless of what syntax ‘\’ currently has.

A syntax descriptor is a Lisp string that specifies a syntax class, a matching character
(used only for the parenthesis classes) and flags. The first character is the designator for a
syntax class. The second character is the character to match; if it is unused, put a space
there. Then come the characters for any desired flags. If no matching character or flags are
needed, one character is sufficient.

For example, the syntax descriptor for the character ‘*’ in C mode is ‘. 23’ (i.e., punctua-
tion, matching character slot unused, second character of a comment-starter, first character
of a comment-ender), and the entry for ‘/’ is ‘. 14’ (i.e., punctuation, matching character
slot unused, first character of a comment-starter, second character of a comment-ender).

35.2.1 Table of Syntax Classes

Here is a table of syntax classes, the characters that stand for them, their meanings, and
examples of their use.

Syntax classwhitespace character
Whitespace characters (designated by ‘ ’ or ‘-’) separate symbols and words from
each other. Typically, whitespace characters have no other syntactic significance, and
multiple whitespace characters are syntactically equivalent to a single one. Space,
tab, newline and formfeed are classified as whitespace in almost all major modes.

Syntax classword constituent
Word constituents (designated by ‘w’) are parts of normal English words and are
typically used in variable and command names in programs. All upper- and lower-
case letters, and the digits, are typically word constituents.

Syntax classsymbol constituent
Symbol constituents (designated by ‘_’) are the extra characters that are used in
variable and command names along with word constituents. For example, the symbol
constituents class is used in Lisp mode to indicate that certain characters may be part
of symbol names even though they are not part of English words. These characters
are ‘$&*+-_<>’. In standard C, the only non-word-constituent character that is valid
in symbols is underscore (‘_’).

Syntax classpunctuation character
Punctuation characters (designated by ‘.’) are those characters that are used as punc-
tuation in English, or are used in some way in a programming language to separate
symbols from one another. Most programming language modes, including Emacs Lisp
mode, have no characters in this class since the few characters that are not symbol
or word constituents all have other uses.

Syntax classopen parenthesis character
Syntax classclose parenthesis character

Open and close parenthesis characters are characters used in dissimilar pairs to sur-
round sentences or expressions. Such a grouping is begun with an open parenthesis

Chapter 35: Syntax Tables 623

character and terminated with a close. Each open parenthesis character matches a
particular close parenthesis character, and vice versa. Normally, Emacs indicates mo-
mentarily the matching open parenthesis when you insert a close parenthesis. See
Section 38.14 [Blinking], page 701.
The class of open parentheses is designated by ‘(’, and that of close parentheses by
‘)’.
In English text, and in C code, the parenthesis pairs are ‘()’, ‘[]’, and ‘{}’. In Emacs
Lisp, the delimiters for lists and vectors (‘()’ and ‘[]’) are classified as parenthesis
characters.

Syntax classstring quote
String quote characters (designated by ‘"’) are used in many languages, including
Lisp and C, to delimit string constants. The same string quote character appears at
the beginning and the end of a string. Such quoted strings do not nest.
The parsing facilities of Emacs consider a string as a single token. The usual syntactic
meanings of the characters in the string are suppressed.
The Lisp modes have two string quote characters: double-quote (‘"’) and vertical bar
(‘|’). ‘|’ is not used in Emacs Lisp, but it is used in Common Lisp. C also has two
string quote characters: double-quote for strings, and single-quote (‘’’) for character
constants.
English text has no string quote characters because English is not a programming
language. Although quotation marks are used in English, we do not want them to
turn off the usual syntactic properties of other characters in the quotation.

Syntax classescape
An escape character (designated by ‘\’) starts an escape sequence such as is used in C
string and character constants. The character ‘\’ belongs to this class in both C and
Lisp. (In C, it is used thus only inside strings, but it turns out to cause no trouble to
treat it this way throughout C code.)
Characters in this class count as part of words if words-include-escapes is non-nil.
See Section 30.2.2 [Word Motion], page 511.

Syntax classcharacter quote
A character quote character (designated by ‘/’) quotes the following character so that
it loses its normal syntactic meaning. This differs from an escape character in that
only the character immediately following is ever affected.
Characters in this class count as part of words if words-include-escapes is non-nil.
See Section 30.2.2 [Word Motion], page 511.
This class is used for backslash in TEX mode.

Syntax classpaired delimiter
Paired delimiter characters (designated by ‘$’) are like string quote characters except
that the syntactic properties of the characters between the delimiters are not sup-
pressed. Only TEX mode uses a paired delimiter presently—the ‘$’ that both enters
and leaves math mode.

624 GNU Emacs Lisp Reference Manual

Syntax classexpression prefix
An expression prefix operator (designated by ‘’’) is used for syntactic operators that
are considered as part of an expression if they appear next to one. In Lisp modes,
these characters include the apostrophe, ‘’’ (used for quoting), the comma, ‘,’ (used
in macros), and ‘#’ (used in the read syntax for certain data types).

Syntax classcomment starter
Syntax classcomment ender

The comment starter and comment ender characters are used in various languages to
delimit comments. These classes are designated by ‘<’ and ‘>’, respectively.

English text has no comment characters. In Lisp, the semicolon (‘;’) starts a comment
and a newline or formfeed ends one.

Syntax classinherit
This syntax class does not specify a particular syntax. It says to look in the standard
syntax table to find the syntax of this character. The designator for this syntax code
is ‘@’.

Syntax classgeneric comment delimiter
A generic comment delimiter (designated by ‘!’) starts or ends a special kind of com-
ment. Any generic comment delimiter matches any generic comment delimiter, but
they cannot match a comment starter or comment ender; generic comment delimiters
can only match each other.

This syntax class is primarily meant for use with the syntax-table text property (see
Section 35.4 [Syntax Properties], page 627). You can mark any range of characters as
forming a comment, by giving the first and last characters of the range syntax-table
properties identifying them as generic comment delimiters.

Syntax classgeneric string delimiter
A generic string delimiter (designated by ‘|’) starts or ends a string. This class differs
from the string quote class in that any generic string delimiter can match any other
generic string delimiter; but they do not match ordinary string quote characters.

This syntax class is primarily meant for use with the syntax-table text property (see
Section 35.4 [Syntax Properties], page 627). You can mark any range of characters
as forming a string constant, by giving the first and last characters of the range
syntax-table properties identifying them as generic string delimiters.

35.2.2 Syntax Flags

In addition to the classes, entries for characters in a syntax table can specify flags. There
are seven possible flags, represented by the characters ‘1’, ‘2’, ‘3’, ‘4’, ‘b’, ‘n’, and ‘p’.

All the flags except ‘n’ and ‘p’ are used to describe multi-character comment delimiters.
The digit flags indicate that a character can also be part of a comment sequence, in addition
to the syntactic properties associated with its character class. The flags are independent
of the class and each other for the sake of characters such as ‘*’ in C mode, which is a

Chapter 35: Syntax Tables 625

punctuation character, and the second character of a start-of-comment sequence (‘/*’), and
the first character of an end-of-comment sequence (‘*/’).

Here is a table of the possible flags for a character c, and what they mean:

• ‘1’ means c is the start of a two-character comment-start sequence.

• ‘2’ means c is the second character of such a sequence.

• ‘3’ means c is the start of a two-character comment-end sequence.

• ‘4’ means c is the second character of such a sequence.

• ‘b’ means that c as a comment delimiter belongs to the alternative “b” comment style.

Emacs supports two comment styles simultaneously in any one syntax table. This is
for the sake of C++. Each style of comment syntax has its own comment-start sequence
and its own comment-end sequence. Each comment must stick to one style or the other;
thus, if it starts with the comment-start sequence of style “b”, it must also end with
the comment-end sequence of style “b”.

The two comment-start sequences must begin with the same character; only the sec-
ond character may differ. Mark the second character of the “b”-style comment-start
sequence with the ‘b’ flag.

A comment-end sequence (one or two characters) applies to the “b” style if its first
character has the ‘b’ flag set; otherwise, it applies to the “a” style.

The appropriate comment syntax settings for C++ are as follows:

‘/’ ‘124b’

‘*’ ‘23’

newline ‘>b’

This defines four comment-delimiting sequences:

‘/*’ This is a comment-start sequence for “a” style because the second charac-
ter, ‘*’, does not have the ‘b’ flag.

‘//’ This is a comment-start sequence for “b” style because the second charac-
ter, ‘/’, does have the ‘b’ flag.

‘*/’ This is a comment-end sequence for “a” style because the first character,
‘*’, does not have the ‘b’ flag.

newline This is a comment-end sequence for “b” style, because the newline charac-
ter has the ‘b’ flag.

• ‘n’ on a comment delimiter character specifies that this kind of comment can be nested.
For a two-character comment delimiter, ‘n’ on either character makes it nestable.

• ‘p’ identifies an additional “prefix character” for Lisp syntax. These characters are
treated as whitespace when they appear between expressions. When they appear within
an expression, they are handled according to their usual syntax codes.

The function backward-prefix-chars moves back over these characters, as well as
over characters whose primary syntax class is prefix (‘’’). See Section 35.5 [Motion
and Syntax], page 628.

626 GNU Emacs Lisp Reference Manual

35.3 Syntax Table Functions

In this section we describe functions for creating, accessing and altering syntax tables.

Functionmake-syntax-table
This function creates a new syntax table. It inherits the syntax for letters and control
characters from the standard syntax table. For other characters, the syntax is copied
from the standard syntax table.
Most major mode syntax tables are created in this way.

Functioncopy-syntax-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the current syntax table. Otherwise, an error is signaled if
table is not a syntax table.

Commandmodify-syntax-entry char syntax-descriptor &optional table
This function sets the syntax entry for char according to syntax-descriptor. The syn-
tax is changed only for table, which defaults to the current buffer’s syntax table, and
not in any other syntax table. The argument syntax-descriptor specifies the desired
syntax; this is a string beginning with a class designator character, and optionally con-
taining a matching character and flags as well. See Section 35.2 [Syntax Descriptors],
page 621.
This function always returns nil. The old syntax information in the table for this
character is discarded.
An error is signaled if the first character of the syntax descriptor is not one of the
twelve syntax class designator characters. An error is also signaled if char is not a
character.
Examples:

;; Put the space character in class whitespace.
(modify-syntax-entry ?\ " ")

⇒ nil

;; Make ‘$’ an open parenthesis character,
;; with ‘^’ as its matching close.
(modify-syntax-entry ?$ "(^")

⇒ nil

;; Make ‘^’ a close parenthesis character,
;; with ‘$’ as its matching open.
(modify-syntax-entry ?^ ")$")

⇒ nil

;; Make ‘/’ a punctuation character,
;; the first character of a start-comment sequence,
;; and the second character of an end-comment sequence.
;; This is used in C mode.
(modify-syntax-entry ?/ ". 14")

⇒ nil

Chapter 35: Syntax Tables 627

Functionchar-syntax character
This function returns the syntax class of character, represented by its mnemonic
designator character. This returns only the class, not any matching parenthesis or
flags.

An error is signaled if char is not a character.

The following examples apply to C mode. The first example shows that the syntax
class of space is whitespace (represented by a space). The second example shows that
the syntax of ‘/’ is punctuation. This does not show the fact that it is also part of
comment-start and -end sequences. The third example shows that open parenthesis
is in the class of open parentheses. This does not show the fact that it has a matching
character, ‘)’.

(string (char-syntax ?\))
⇒ " "

(string (char-syntax ?/))
⇒ "."

(string (char-syntax ?\())
⇒ "("

We use string to make it easier to see the character returned by char-syntax.

Functionset-syntax-table table
This function makes table the syntax table for the current buffer. It returns table.

Functionsyntax-table
This function returns the current syntax table, which is the table for the current
buffer.

Macrowith-syntax-table table body...
This macro executes body using table as the current syntax table. It returns the
value of the last form in body, after restoring the old current syntax table.

Since each buffer has its own current syntax table, we should make that more precise:
with-syntax-table temporarily alters the current syntax table of whichever buffer
is current at the time the macro execution starts. Other buffers are not affected.

35.4 Syntax Properties

When the syntax table is not flexible enough to specify the syntax of a language, you
can use syntax-table text properties to override the syntax table for specific character
occurrences in the buffer. See Section 32.19 [Text Properties], page 562.

The valid values of syntax-table text property are:

syntax-table
If the property value is a syntax table, that table is used instead of the cur-
rent buffer’s syntax table to determine the syntax for this occurrence of the
character.

628 GNU Emacs Lisp Reference Manual

(syntax-code . matching-char)
A cons cell of this format specifies the syntax for this occurrence of the character.
(see Section 35.8 [Syntax Table Internals], page 631)

nil If the property is nil, the character’s syntax is determined from the current
syntax table in the usual way.

Variableparse-sexp-lookup-properties
If this is non-nil, the syntax scanning functions pay attention to syntax text prop-
erties. Otherwise they use only the current syntax table.

35.5 Motion and Syntax

This section describes functions for moving across characters that have certain syntax
classes.

Functionskip-syntax-forward syntaxes &optional limit
This function moves point forward across characters having syntax classes mentioned
in syntaxes. It stops when it encounters the end of the buffer, or position limit (if
specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value is the distance traveled, which is a nonnegative integer.

Functionskip-syntax-backward syntaxes &optional limit
This function moves point backward across characters whose syntax classes are men-
tioned in syntaxes. It stops when it encounters the beginning of the buffer, or position
limit (if specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value indicates the distance traveled. It is an integer that is zero or less.

Functionbackward-prefix-chars
This function moves point backward over any number of characters with expression
prefix syntax. This includes both characters in the expression prefix syntax class, and
characters with the ‘p’ flag.

35.6 Parsing Balanced Expressions

Here are several functions for parsing and scanning balanced expressions, also known as
sexps, in which parentheses match in pairs. The syntax table controls the interpretation of
characters, so these functions can be used for Lisp expressions when in Lisp mode and for
C expressions when in C mode. See Section 30.2.6 [List Motion], page 516, for convenient
higher-level functions for moving over balanced expressions.

Chapter 35: Syntax Tables 629

Functionparse-partial-sexp start limit &optional target-depth stop-before state
stop-comment

This function parses a sexp in the current buffer starting at start, not scanning past
limit. It stops at position limit or when certain criteria described below are met, and
sets point to the location where parsing stops. It returns a value describing the status
of the parse at the point where it stops.

If state is nil, start is assumed to be at the top level of parenthesis structure, such
as the beginning of a function definition. Alternatively, you might wish to resume
parsing in the middle of the structure. To do this, you must provide a state argument
that describes the initial status of parsing.

If the third argument target-depth is non-nil, parsing stops if the depth in parentheses
becomes equal to target-depth. The depth starts at 0, or at whatever is given in state.

If the fourth argument stop-before is non-nil, parsing stops when it comes to any
character that starts a sexp. If stop-comment is non-nil, parsing stops when it
comes to the start of a comment. If stop-comment is the symbol syntax-table,
parsing stops after the start of a comment or a string, or the end of a comment or a
string, whichever comes first.

The fifth argument state is a nine-element list of the same form as the value of this
function, described below. (It is OK to omit the last element of the nine.) The return
value of one call may be used to initialize the state of the parse on another call to
parse-partial-sexp.

The result is a list of nine elements describing the final state of the parse:

0. The depth in parentheses, counting from 0.

1. The character position of the start of the innermost parenthetical grouping con-
taining the stopping point; nil if none.

2. The character position of the start of the last complete subexpression terminated;
nil if none.

3. Non-nil if inside a string. More precisely, this is the character that will terminate
the string, or t if a generic string delimiter character should terminate it.

4. t if inside a comment (of either style), or the comment nesting level if inside a
kind of comment that can be nested.

5. t if point is just after a quote character.

6. The minimum parenthesis depth encountered during this scan.

7. What kind of comment is active: nil for a comment of style “a”, t for a comment
of style “b”, and syntax-table for a comment that should be ended by a generic
comment delimiter character.

8. The string or comment start position. While inside a comment, this is the posi-
tion where the comment began; while inside a string, this is the position where
the string began. When outside of strings and comments, this element is nil.

Elements 0, 3, 4, 5 and 7 are significant in the argument state.

This function is most often used to compute indentation for languages that have
nested parentheses.

630 GNU Emacs Lisp Reference Manual

Functionscan-lists from count depth
This function scans forward count balanced parenthetical groupings from position
from. It returns the position where the scan stops. If count is negative, the scan
moves backwards.
If depth is nonzero, parenthesis depth counting begins from that value. The only
candidates for stopping are places where the depth in parentheses becomes zero;
scan-lists counts count such places and then stops. Thus, a positive value for
depth means go out depth levels of parenthesis.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of the buffer (or its accessible portion), and
the depth is not zero, an error is signaled. If the depth is zero but the count is not
used up, nil is returned.

Functionscan-sexps from count
This function scans forward count sexps from position from. It returns the position
where the scan stops. If count is negative, the scan moves backwards.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of (the accessible part of) the buffer while in
the middle of a parenthetical grouping, an error is signaled. If it reaches the beginning
or end between groupings but before count is used up, nil is returned.

Variablemultibyte-syntax-as-symbol
If this variable is non-nil, scan-sexps treats all non-ascii characters as symbol
constituents regardless of what the syntax table says about them. (However, text
properties can still override the syntax.)

Variableparse-sexp-ignore-comments
If the value is non-nil, then comments are treated as whitespace by the functions in
this section and by forward-sexp.
In older Emacs versions, this feature worked only when the comment terminator is
something like ‘*/’, and appears only to end a comment. In languages where newlines
terminate comments, it was necessary make this variable nil, since not every newline
is the end of a comment. This limitation no longer exists.

You can use forward-comment to move forward or backward over one comment or several
comments.

Functionforward-comment count
This function moves point forward across count comments (backward, if count is
negative). If it finds anything other than a comment or whitespace, it stops, leaving
point at the place where it stopped. It also stops after satisfying count.

To move forward over all comments and whitespace following point, use (forward-
comment (buffer-size)). (buffer-size) is a good argument to use, because the number
of comments in the buffer cannot exceed that many.

Chapter 35: Syntax Tables 631

35.7 Some Standard Syntax Tables

Most of the major modes in Emacs have their own syntax tables. Here are several of
them:

Functionstandard-syntax-table
This function returns the standard syntax table, which is the syntax table used in
Fundamental mode.

Variabletext-mode-syntax-table
The value of this variable is the syntax table used in Text mode.

Variablec-mode-syntax-table
The value of this variable is the syntax table for C-mode buffers.

Variableemacs-lisp-mode-syntax-table
The value of this variable is the syntax table used in Emacs Lisp mode by editing
commands. (It has no effect on the Lisp read function.)

35.8 Syntax Table Internals

Lisp programs don’t usually work with the elements directly; the Lisp-level syntax ta-
ble functions usually work with syntax descriptors (see Section 35.2 [Syntax Descriptors],
page 621). Nonetheless, here we document the internal format. This format is used mostly
when manipulating syntax properties.

Each element of a syntax table is a cons cell of the form (syntax-code . matching-char).
The car, syntax-code, is an integer that encodes the syntax class, and any flags. The cdr,
matching-char, is non-nil if a character to match was specified.

This table gives the value of syntax-code which corresponds to each syntactic type.
Integer Class Integer Class Integer Class
0 whitespace 5 close parenthesis 10 character quote
1 punctuation 6 expression prefix 11 comment-start
2 word 7 string quote 12 comment-end
3 symbol 8 paired delimiter 13 inherit
4 open parenthesis 9 escape 14 comment-fence
15 string-fence

For example, the usual syntax value for ‘(’ is (4 . 41). (41 is the character code for ‘)’.)
The flags are encoded in higher order bits, starting 16 bits from the least significant bit.

This table gives the power of two which corresponds to each syntax flag.
Prefix Flag Prefix Flag Prefix Flag
‘1’ (lsh 1 16) ‘4’ (lsh 1 19) ‘b’ (lsh 1 21)
‘2’ (lsh 1 17) ‘p’ (lsh 1 20) ‘n’ (lsh 1 22)
‘3’ (lsh 1 18)

Functionstring-to-syntax desc
This function returns the internal form (syntax-code . matching-char) corresponding
to the syntax descriptor desc.

632 GNU Emacs Lisp Reference Manual

35.9 Categories

Categories provide an alternate way of classifying characters syntactically. You can
define several categories as needed, then independently assign each character to one or
more categories. Unlike syntax classes, categories are not mutually exclusive; it is normal
for one character to belong to several categories.

Each buffer has a category table which records which categories are defined and also
which characters belong to each category. Each category table defines its own categories,
but normally these are initialized by copying from the standard categories table, so that
the standard categories are available in all modes.

Each category has a name, which is an ascii printing character in the range ‘ ’ to ‘~’.
You specify the name of a category when you define it with define-category.

The category table is actually a char-table (see Section 6.6 [Char-Tables], page 89). The
element of the category table at index c is a category set—a bool-vector—that indicates
which categories character c belongs to. In this category set, if the element at index cat is
t, that means category cat is a member of the set, and that character c belongs to category
cat.

Functiondefine-category char docstring &optional table
This function defines a new category, with name char and documentation docstring.

The new category is defined for category table table, which defaults to the current
buffer’s category table.

Functioncategory-docstring category &optional table
This function returns the documentation string of category category in category table
table.

(category-docstring ?a)
⇒ "ASCII"

(category-docstring ?l)
⇒ "Latin"

Functionget-unused-category table
This function returns a category name (a character) which is not currently defined in
table. If all possible categories are in use in table, it returns nil.

Functioncategory-table
This function returns the current buffer’s category table.

Functioncategory-table-p object
This function returns t if object is a category table, otherwise nil.

Functionstandard-category-table
This function returns the standard category table.

Chapter 35: Syntax Tables 633

Functioncopy-category-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the current category table. Otherwise, an error is signaled
if table is not a category table.

Functionset-category-table table
This function makes table the category table for the current buffer. It returns table.

Functionmake-category-table
This creates and returns an empty category table. In an empty category table, no
categories have been allocated, and no characters belong to any categories.

Functionmake-category-set categories
This function returns a new category set—a bool-vector—whose initial contents are
the categories listed in the string categories. The elements of categories should be
category names; the new category set has t for each of those categories, and nil for
all other categories.

(make-category-set "al")
⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

Functionchar-category-set char
This function returns the category set for character char. This is the bool-vector
which records which categories the character char belongs to. The function char-
category-set does not allocate storage, because it returns the same bool-vector that
exists in the category table.

(char-category-set ?a)
⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

Functioncategory-set-mnemonics category-set
This function converts the category set category-set into a string containing the char-
acters that designate the categories that are members of the set.

(category-set-mnemonics (char-category-set ?a))
⇒ "al"

Functionmodify-category-entry character category &optional table reset
This function modifies the category set of character in category table table (which
defaults to the current buffer’s category table).
Normally, it modifies the category set by adding category to it. But if reset is non-nil,
then it deletes category instead.

Commanddescribe-categories
This function describes the category specifications in the current category table. The
descriptions are inserted in a buffer, which is then displayed.

634 GNU Emacs Lisp Reference Manual

Chapter 36: Abbrevs and Abbrev Expansion 635

36 Abbrevs and Abbrev Expansion

An abbreviation or abbrev is a string of characters that may be expanded to a longer
string. The user can insert the abbrev string and find it replaced automatically with the
expansion of the abbrev. This saves typing.

The set of abbrevs currently in effect is recorded in an abbrev table. Each buffer has a
local abbrev table, but normally all buffers in the same major mode share one abbrev table.
There is also a global abbrev table. Normally both are used.

An abbrev table is represented as an obarray containing a symbol for each abbreviation.
The symbol’s name is the abbreviation; its value is the expansion; its function definition
is the hook function to do the expansion (see Section 36.3 [Defining Abbrevs], page 636);
its property list cell contains the use count, the number of times the abbreviation has been
expanded. Because these symbols are not interned in the usual obarray, they will never
appear as the result of reading a Lisp expression; in fact, normally they are never used
except by the code that handles abbrevs. Therefore, it is safe to use them in an extremely
nonstandard way. See Section 8.3 [Creating Symbols], page 101.

For the user-level commands for abbrevs, see section “Abbrev Mode” in The GNU Emacs
Manual.

36.1 Setting Up Abbrev Mode

Abbrev mode is a minor mode controlled by the value of the variable abbrev-mode.

Variableabbrev-mode
A non-nil value of this variable turns on the automatic expansion of abbrevs when
their abbreviations are inserted into a buffer. If the value is nil, abbrevs may be
defined, but they are not expanded automatically.

This variable automatically becomes buffer-local when set in any fashion.

Variabledefault-abbrev-mode
This is the value of abbrev-mode for buffers that do not override it. This is the same
as (default-value ’abbrev-mode).

36.2 Abbrev Tables

This section describes how to create and manipulate abbrev tables.

Functionmake-abbrev-table
This function creates and returns a new, empty abbrev table—an obarray containing
no symbols. It is a vector filled with zeros.

Functionclear-abbrev-table table
This function undefines all the abbrevs in abbrev table table, leaving it empty. It
always returns nil.

636 GNU Emacs Lisp Reference Manual

Functiondefine-abbrev-table tabname definitions
This function defines tabname (a symbol) as an abbrev table name, i.e., as a variable
whose value is an abbrev table. It defines abbrevs in the table according to definitions,
a list of elements of the form (abbrevname expansion hook usecount). The return
value is always nil.

Variableabbrev-table-name-list
This is a list of symbols whose values are abbrev tables. define-abbrev-table adds
the new abbrev table name to this list.

Functioninsert-abbrev-table-description name &optional human
This function inserts before point a description of the abbrev table named name.
The argument name is a symbol whose value is an abbrev table. The return value is
always nil.
If human is non-nil, the description is human-oriented. Otherwise the description is
a Lisp expression—a call to define-abbrev-table that would define name exactly
as it is currently defined.

36.3 Defining Abbrevs

These functions define an abbrev in a specified abbrev table. define-abbrev is the
low-level basic function, while add-abbrev is used by commands that ask for information
from the user.

Functionadd-abbrev table type arg
This function adds an abbreviation to abbrev table table based on information from
the user. The argument type is a string describing in English the kind of abbrev this
will be (typically, "global" or "mode-specific"); this is used in prompting the user.
The argument arg is the number of words in the expansion.
The return value is the symbol that internally represents the new abbrev, or nil if
the user declines to confirm redefining an existing abbrev.

Functiondefine-abbrev table name expansion &optional hook count
This function defines an abbrev named name, in table, to expand to expansion and
call hook. The value of count, if specified, initializes the abbrev’s usage-count. If
count is not specified or nil, the use count is initialized to zero. The return value is
a symbol that represents the abbrev inside Emacs; its name is name.
The argument name should be a string. The argument expansion is normally the
desired expansion (a string), or nil to undefine the abbrev. If it is anything but a
string or nil, then the abbreviation “expands” solely by running hook.
The argument hook is a function or nil. If hook is non-nil, then it is called with no
arguments after the abbrev is replaced with expansion; point is located at the end of
expansion when hook is called.
If hook is a non-nil symbol whose no-self-insert property is non-nil, hook can
explicitly control whether to insert the self-inserting input character that triggered

Chapter 36: Abbrevs and Abbrev Expansion 637

the expansion. If hook returns non-nil in this case, that inhibits insertion of the
character. By contrast, if hook returns nil, expand-abbrev also returns nil, as if
expansion had not really occurred.

User Optiononly-global-abbrevs
If this variable is non-nil, it means that the user plans to use global abbrevs only. This
tells the commands that define mode-specific abbrevs to define global ones instead.
This variable does not alter the behavior of the functions in this section; it is examined
by their callers.

36.4 Saving Abbrevs in Files

A file of saved abbrev definitions is actually a file of Lisp code. The abbrevs are saved
in the form of a Lisp program to define the same abbrev tables with the same contents.
Therefore, you can load the file with load (see Section 15.1 [How Programs Do Loading],
page 193). However, the function quietly-read-abbrev-file is provided as a more con-
venient interface.

User-level facilities such as save-some-buffers can save abbrevs in a file automatically,
under the control of variables described here.

User Optionabbrev-file-name
This is the default file name for reading and saving abbrevs.

Functionquietly-read-abbrev-file &optional filename
This function reads abbrev definitions from a file named filename, previously written
with write-abbrev-file. If filename is omitted or nil, the file specified in abbrev-
file-name is used. save-abbrevs is set to t so that changes will be saved.

This function does not display any messages. It returns nil.

User Optionsave-abbrevs
A non-nil value for save-abbrev means that Emacs should save abbrevs when files
are saved. abbrev-file-name specifies the file to save the abbrevs in.

Variableabbrevs-changed
This variable is set non-nil by defining or altering any abbrevs. This serves as a flag
for various Emacs commands to offer to save your abbrevs.

Commandwrite-abbrev-file &optional filename
Save all abbrev definitions, in all abbrev tables, in the file filename, in the form of a
Lisp program that when loaded will define the same abbrevs. If filename is nil or
omitted, abbrev-file-name is used. This function returns nil.

638 GNU Emacs Lisp Reference Manual

36.5 Looking Up and Expanding Abbreviations

Abbrevs are usually expanded by certain interactive commands, including self-insert-
command. This section describes the subroutines used in writing such commands, as well as
the variables they use for communication.

Functionabbrev-symbol abbrev &optional table
This function returns the symbol representing the abbrev named abbrev. The value
returned is nil if that abbrev is not defined. The optional second argument table is
the abbrev table to look it up in. If table is nil, this function tries first the current
buffer’s local abbrev table, and second the global abbrev table.

Functionabbrev-expansion abbrev &optional table
This function returns the string that abbrev would expand into (as defined by the
abbrev tables used for the current buffer). The optional argument table specifies the
abbrev table to use, as in abbrev-symbol.

Commandexpand-abbrev
This command expands the abbrev before point, if any. If point does not follow an
abbrev, this command does nothing. The command returns the abbrev symbol if it
did expansion, nil otherwise.

If the abbrev symbol has a hook function which is a symbol whose no-self-insert
property is non-nil, and if the hook function returns nil as its value, then expand-
abbrev returns nil even though expansion did occur.

Commandabbrev-prefix-mark &optional arg
Mark current point as the beginning of an abbrev. The next call to expand-abbrev
will use the text from here to point (where it is then) as the abbrev to expand, rather
than using the previous word as usual.

User Optionabbrev-all-caps
When this is set non-nil, an abbrev entered entirely in upper case is expanded using
all upper case. Otherwise, an abbrev entered entirely in upper case is expanded by
capitalizing each word of the expansion.

Variableabbrev-start-location
This is the buffer position for expand-abbrev to use as the start of the next abbrev
to be expanded. (nil means use the word before point instead.) abbrev-start-
location is set to nil each time expand-abbrev is called. This variable is also set
by abbrev-prefix-mark.

Variableabbrev-start-location-buffer
The value of this variable is the buffer for which abbrev-start-location has been
set. Trying to expand an abbrev in any other buffer clears abbrev-start-location.
This variable is set by abbrev-prefix-mark.

Chapter 36: Abbrevs and Abbrev Expansion 639

Variablelast-abbrev
This is the abbrev-symbol of the most recent abbrev expanded. This information is
left by expand-abbrev for the sake of the unexpand-abbrev command (see section
“Expanding Abbrevs” in The GNU Emacs Manual).

Variablelast-abbrev-location
This is the location of the most recent abbrev expanded. This contains information
left by expand-abbrev for the sake of the unexpand-abbrev command.

Variablelast-abbrev-text
This is the exact expansion text of the most recent abbrev expanded, after case
conversion (if any). Its value is nil if the abbrev has already been unexpanded. This
contains information left by expand-abbrev for the sake of the unexpand-abbrev
command.

Variablepre-abbrev-expand-hook
This is a normal hook whose functions are executed, in sequence, just before any
expansion of an abbrev. See Section 23.6 [Hooks], page 383. Since it is a normal
hook, the hook functions receive no arguments. However, they can find the abbrev
to be expanded by looking in the buffer before point. Running the hook is the first
thing that expand-abbrev does, and so a hook function can be used to change the
current abbrev table before abbrev lookup happens.

The following sample code shows a simple use of pre-abbrev-expand-hook. If the user
terminates an abbrev with a punctuation character, the hook function asks for confirma-
tion. Thus, this hook allows the user to decide whether to expand the abbrev, and aborts
expansion if it is not confirmed.

(add-hook ’pre-abbrev-expand-hook ’query-if-not-space)

;; This is the function invoked by pre-abbrev-expand-hook.

;; If the user terminated the abbrev with a space, the function does
;; nothing (that is, it returns so that the abbrev can expand). If the
;; user entered some other character, this function asks whether
;; expansion should continue.

;; If the user answers the prompt with y, the function returns
;; nil (because of the not function), but that is
;; acceptable; the return value has no effect on expansion.

(defun query-if-not-space ()
(if (/= ?\ (preceding-char))

(if (not (y-or-n-p "Do you want to expand this abbrev? "))
(error "Not expanding this abbrev"))))

640 GNU Emacs Lisp Reference Manual

36.6 Standard Abbrev Tables

Here we list the variables that hold the abbrev tables for the preloaded major modes of
Emacs.

Variableglobal-abbrev-table
This is the abbrev table for mode-independent abbrevs. The abbrevs defined in it
apply to all buffers. Each buffer may also have a local abbrev table, whose abbrev
definitions take precedence over those in the global table.

Variablelocal-abbrev-table
The value of this buffer-local variable is the (mode-specific) abbreviation table of the
current buffer.

Variablefundamental-mode-abbrev-table
This is the local abbrev table used in Fundamental mode; in other words, it is the
local abbrev table in all buffers in Fundamental mode.

Variabletext-mode-abbrev-table
This is the local abbrev table used in Text mode.

Variablelisp-mode-abbrev-table
This is the local abbrev table used in Lisp mode and Emacs Lisp mode.

Chapter 37: Processes 641

37 Processes

In the terminology of operating systems, a process is a space in which a program can
execute. Emacs runs in a process. Emacs Lisp programs can invoke other programs in
processes of their own. These are called subprocesses or child processes of the Emacs
process, which is their parent process.

A subprocess of Emacs may be synchronous or asynchronous, depending on how it is cre-
ated. When you create a synchronous subprocess, the Lisp program waits for the subprocess
to terminate before continuing execution. When you create an asynchronous subprocess, it
can run in parallel with the Lisp program. This kind of subprocess is represented within
Emacs by a Lisp object which is also called a “process”. Lisp programs can use this object
to communicate with the subprocess or to control it. For example, you can send signals,
obtain status information, receive output from the process, or send input to it.

Functionprocessp object
This function returns t if object is a process, nil otherwise.

37.1 Functions that Create Subprocesses

There are three functions that create a new subprocess in which to run a program. One
of them, start-process, creates an asynchronous process and returns a process object
(see Section 37.4 [Asynchronous Processes], page 645). The other two, call-process and
call-process-region, create a synchronous process and do not return a process object
(see Section 37.3 [Synchronous Processes], page 643).

Synchronous and asynchronous processes are explained in the following sections. Since
the three functions are all called in a similar fashion, their common arguments are described
here.

In all cases, the function’s program argument specifies the program to be run. An error
is signaled if the file is not found or cannot be executed. If the file name is relative, the
variable exec-path contains a list of directories to search. Emacs initializes exec-path
when it starts up, based on the value of the environment variable PATH. The standard file
name constructs, ‘~’, ‘.’, and ‘..’, are interpreted as usual in exec-path, but environment
variable substitutions (‘$HOME’, etc.) are not recognized; use substitute-in-file-name to
perform them (see Section 25.8.4 [File Name Expansion], page 417).

Each of the subprocess-creating functions has a buffer-or-name argument which specifies
where the standard output from the program will go. It should be a buffer or a buffer name;
if it is a buffer name, that will create the buffer if it does not already exist. It can also be
nil, which says to discard the output unless a filter function handles it. (See Section 37.9.2
[Filter Functions], page 654, and Chapter 19 [Read and Print], page 255.) Normally, you
should avoid having multiple processes send output to the same buffer because their output
would be intermixed randomly.

All three of the subprocess-creating functions have a &rest argument, args. The args
must all be strings, and they are supplied to program as separate command line arguments.
Wildcard characters and other shell constructs have no special meanings in these strings,
since the whole strings are passed directly to the specified program.

642 GNU Emacs Lisp Reference Manual

Please note: The argument program contains only the name of the program; it may not
contain any command-line arguments. You must use args to provide those.

The subprocess gets its current directory from the value of default-directory (see
Section 25.8.4 [File Name Expansion], page 417).

The subprocess inherits its environment from Emacs, but you can specify overrides for
it with process-environment. See Section 40.3 [System Environment], page 728.

Variableexec-directory
The value of this variable is a string, the name of a directory that contains programs
that come with GNU Emacs, programs intended for Emacs to invoke. The program
movemail is an example of such a program; Rmail uses it to fetch new mail from an
inbox.

User Optionexec-path
The value of this variable is a list of directories to search for programs to run in
subprocesses. Each element is either the name of a directory (i.e., a string), or nil,
which stands for the default directory (which is the value of default-directory).
The value of exec-path is used by call-process and start-process when the
program argument is not an absolute file name.

37.2 Shell Arguments

Lisp programs sometimes need to run a shell and give it a command that contains file
names that were specified by the user. These programs ought to be able to support any
valid file name. But the shell gives special treatment to certain characters, and if these
characters occur in the file name, they will confuse the shell. To handle these characters,
use the function shell-quote-argument:

Functionshell-quote-argument argument
This function returns a string which represents, in shell syntax, an argument whose
actual contents are argument. It should work reliably to concatenate the return value
into a shell command and then pass it to a shell for execution.
Precisely what this function does depends on your operating system. The function
is designed to work with the syntax of your system’s standard shell; if you use an
unusual shell, you will need to redefine this function.

;; This example shows the behavior on GNU and Unix systems.
(shell-quote-argument "foo > bar")

⇒ "foo\\ \\>\\ bar"

;; This example shows the behavior on MS-DOS and MS-Windows systems.
(shell-quote-argument "foo > bar")

⇒ "\"foo > bar\""

Here’s an example of using shell-quote-argument to construct a shell command:
(concat "diff -c "

(shell-quote-argument oldfile)
" "
(shell-quote-argument newfile))

Chapter 37: Processes 643

37.3 Creating a Synchronous Process

After a synchronous process is created, Emacs waits for the process to terminate before
continuing. Starting Dired on GNU or Unix1 is an example of this: it runs ls in a syn-
chronous process, then modifies the output slightly. Because the process is synchronous,
the entire directory listing arrives in the buffer before Emacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by
typing C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits
until the subprocess actually terminates before quitting. If during that time the user types
another C-g, that kills the subprocess instantly with SIGKILL and quits immediately (except
on MS-DOS, where killing other processes doesn’t work). See Section 21.10 [Quitting],
page 316.

The synchronous subprocess functions return an indication of how the process termi-
nated.

The output from a synchronous subprocess is generally decoded using a coding system,
much like text read from a file. The input sent to a subprocess by call-process-region is
encoded using a coding system, much like text written into a file. See Section 33.10 [Coding
Systems], page 590.

Functioncall-process program &optional infile destination display &rest args
This function calls program in a separate process and waits for it to finish.
The standard input for the process comes from file infile if infile is not nil, and from
the null device otherwise. The argument destination says where to put the process
output. Here are the possibilities:

a buffer Insert the output in that buffer, before point. This includes both the
standard output stream and the standard error stream of the process.

a string Insert the output in a buffer with that name, before point.

t Insert the output in the current buffer, before point.

nil Discard the output.

0 Discard the output, and return nil immediately without waiting for the
subprocess to finish.
In this case, the process is not truly synchronous, since it can run in
parallel with Emacs; but you can think of it as synchronous in that Emacs
is essentially finished with the subprocess as soon as this function returns.
MS-DOS doesn’t support asynchronous subprocesses, so this option
doesn’t work there.

(real-destination error-destination)
Keep the standard output stream separate from the standard error
stream; deal with the ordinary output as specified by real-destination,
and dispose of the error output according to error-destination. If
error-destination is nil, that means to discard the error output, t means

1 On other systems, Emacs uses a Lisp emulation of ls; see Section 25.9 [Contents of Directories], page 422.

644 GNU Emacs Lisp Reference Manual

mix it with the ordinary output, and a string specifies a file name to
redirect error output into.
You can’t directly specify a buffer to put the error output in; that is too
difficult to implement. But you can achieve this result by sending the
error output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted.
(However, if the coding system chosen for decoding output is undecided, meaning
deduce the encoding from the actual data, then redisplay sometimes cannot continue
once non-ascii characters are encountered. There are fundamental reasons why it is
hard to fix this; see Section 37.9 [Output from Processes], page 652.)
Otherwise the function call-process does no redisplay, and the results become vis-
ible on the screen only when Emacs redisplays that buffer in the normal course of
events.
The remaining arguments, args, are strings that specify command line arguments for
the program.
The value returned by call-process (unless you told it not to wait) indicates the
reason for process termination. A number gives the exit status of the subprocess; 0
means success, and any other value means failure. If the process terminated with a
signal, call-process returns a string describing the signal.
In the examples below, the buffer ‘foo’ is current.

(call-process "pwd" nil t)
⇒ 0

---------- Buffer: foo ----------
/usr/user/lewis/manual
---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
⇒ 0

---------- Buffer: bar ----------
lewis:5LTsHm66CSWKg:398:21:Bil Lewis:/user/lewis:/bin/csh

---------- Buffer: bar ----------

Here is a good example of the use of call-process, which used to be found in the
definition of insert-directory:

(call-process insert-directory-program nil t nil switches
(if full-directory-p

(concat (file-name-as-directory file) ".")
file))

Functioncall-process-region start end program &optional delete destination
display &rest args

This function sends the text from start to end as standard input to a process running
program. It deletes the text sent if delete is non-nil; this is useful when destination
is t, to insert the output in the current buffer in place of the input.

Chapter 37: Processes 645

The arguments destination and display control what to do with the output from the
subprocess, and whether to update the display as it comes in. For details, see the
description of call-process, above. If destination is the integer 0, call-process-
region discards the output and returns nil immediately, without waiting for the
subprocess to finish (this only works if asynchronous subprocesses are supported).

The remaining arguments, args, are strings that specify command line arguments for
the program.

The return value of call-process-region is just like that of call-process: nil if
you told it to return without waiting; otherwise, a number or string which indicates
how the subprocess terminated.

In the following example, we use call-process-region to run the cat utility, with
standard input being the first five characters in buffer ‘foo’ (the word ‘input’). cat
copies its standard input into its standard output. Since the argument destination is
t, this output is inserted in the current buffer.

---------- Buffer: foo ----------
input?
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
⇒ 0

---------- Buffer: foo ----------
inputinput?
---------- Buffer: foo ----------

The shell-command-on-region command uses call-process-region like this:
(call-process-region
start end
shell-file-name ; Name of program.
nil ; Do not delete region.
buffer ; Send output to buffer.
nil ; No redisplay during output.
"-c" command) ; Arguments for the shell.

Functionshell-command-to-string command
This function executes command (a string) as a shell command, then returns the
command’s output as a string.

37.4 Creating an Asynchronous Process

After an asynchronous process is created, Emacs and the subprocess both continue
running immediately. The process thereafter runs in parallel with Emacs, and the two
can communicate with each other using the functions described in the following sections.
However, communication is only partially asynchronous: Emacs sends data to the process
only when certain functions are called, and Emacs accepts data from the process only when
Emacs is waiting for input or for a time delay.

Here we describe how to create an asynchronous process.

646 GNU Emacs Lisp Reference Manual

Functionstart-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program
running in it. It returns a process object that stands for the new subprocess in Lisp.
The argument name specifies the name for the process object; if a process with this
name already exists, then name is modified (by appending ‘<1>’, etc.) to be unique.
The buffer buffer-or-name is the buffer to associate with the process.
The remaining arguments, args, are strings that specify command line arguments for
the program.
In the example below, the first process is started and runs (rather, sleeps) for 100 sec-
onds. Meanwhile, the second process is started, and given the name ‘my-process<1>’
for the sake of uniqueness. It inserts the directory listing at the end of the buffer
‘foo’, before the first process finishes. Then it finishes, and a message to that effect
is inserted in the buffer. Much later, the first process finishes, and another message
is inserted in the buffer for it.

(start-process "my-process" "foo" "sleep" "100")
⇒ #<process my-process>

(start-process "my-process" "foo" "ls" "-l" "/user/lewis/bin")
⇒ #<process my-process<1>>

---------- Buffer: foo ----------
total 2
lrwxrwxrwx 1 lewis 14 Jul 22 10:12 gnuemacs --> /emacs
-rwxrwxrwx 1 lewis 19 Jul 30 21:02 lemon

Process my-process<1> finished

Process my-process finished
---------- Buffer: foo ----------

Functionstart-process-shell-command name buffer-or-name command &rest
command-args

This function is like start-process except that it uses a shell to execute the specified
command. The argument command is a shell command name, and command-args
are the arguments for the shell command. The variable shell-file-name specifies
which shell to use.
The point of running a program through the shell, rather than directly with start-
process, is so that you can employ shell features such as wildcards in the arguments.
It follows that if you include an arbitrary user-specified arguments in the command,
you should quote it with shell-quote-argument first, so that any special shell char-
acters do not have their special shell meanings. See Section 37.2 [Shell Arguments],
page 642.

Variableprocess-connection-type
This variable controls the type of device used to communicate with asynchronous
subprocesses. If it is non-nil, then ptys are used, when available. Otherwise, pipes
are used.

Chapter 37: Processes 647

ptys are usually preferable for processes visible to the user, as in Shell mode, because
they allow job control (C-c, C-z, etc.) to work between the process and its children,
whereas pipes do not. For subprocesses used for internal purposes by programs, it
is often better to use a pipe, because they are more efficient. In addition, the total
number of ptys is limited on many systems and it is good not to waste them.
The value of process-connection-type is used when start-process is called. So
you can specify how to communicate with one subprocess by binding the variable
around the call to start-process.

(let ((process-connection-type nil)) ; Use a pipe.
(start-process ...))

To determine whether a given subprocess actually got a pipe or a pty, use the function
process-tty-name (see Section 37.6 [Process Information], page 648).

37.5 Deleting Processes

Deleting a process disconnects Emacs immediately from the subprocess, and removes it
from the list of active processes. It sends a signal to the subprocess to make the subprocess
terminate, but this is not guaranteed to happen immediately. The process object itself
continues to exist as long as other Lisp objects point to it. The process mark continues to
point to the same place as before (usually into a buffer where output from the process was
being inserted).

You can delete a process explicitly at any time. Processes are deleted automatically after
they terminate, but not necessarily right away. If you delete a terminated process explicitly
before it is deleted automatically, no harm results.

User Optiondelete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to
calling exit or to a signal). If it is nil, then they continue to exist until the user
runs list-processes. Otherwise, they are deleted immediately after they exit.

Functiondelete-process name
This function deletes the process associated with name, killing it with a SIGHUP signal.
The argument name may be a process, the name of a process, a buffer, or the name
of a buffer.

(delete-process "*shell*")
⇒ nil

Functionprocess-kill-without-query process &optional do-query
This function specifies whether Emacs should query the user if process is still run-
ning when Emacs is exited. If do-query is nil, the process will be deleted silently.
Otherwise, Emacs will query about killing it.
The value is t if the process was formerly set up to require query, nil otherwise. A
newly-created process always requires query.

(process-kill-without-query (get-process "shell"))
⇒ t

648 GNU Emacs Lisp Reference Manual

37.6 Process Information

Several functions return information about processes. list-processes is provided for
interactive use.

Commandlist-processes
This command displays a listing of all living processes. In addition, it finally deletes
any process whose status was ‘Exited’ or ‘Signaled’. It returns nil.

Functionprocess-list
This function returns a list of all processes that have not been deleted.

(process-list)
⇒ (#<process display-time> #<process shell>)

Functionget-process name
This function returns the process named name, or nil if there is none. An error is
signaled if name is not a string.

(get-process "shell")
⇒ #<process shell>

Functionprocess-command process
This function returns the command that was executed to start process. This is a list
of strings, the first string being the program executed and the rest of the strings being
the arguments that were given to the program.

(process-command (get-process "shell"))
⇒ ("/bin/csh" "-i")

Functionprocess-id process
This function returns the pid of process. This is an integer that distinguishes the
process process from all other processes running on the same computer at the current
time. The pid of a process is chosen by the operating system kernel when the process
is started and remains constant as long as the process exists.

Functionprocess-name process
This function returns the name of process.

Functionprocess-contact process
This function returns t for an ordinary child process, and (hostname service) for a
net connection (see Section 37.12 [Network], page 658).

Functionprocess-status process-name
This function returns the status of process-name as a symbol. The argument process-
name must be a process, a buffer, a process name (string) or a buffer name (string).
The possible values for an actual subprocess are:

run for a process that is running.

Chapter 37: Processes 649

stop for a process that is stopped but continuable.

exit for a process that has exited.

signal for a process that has received a fatal signal.

open for a network connection that is open.

closed for a network connection that is closed. Once a connection is closed, you
cannot reopen it, though you might be able to open a new connection to
the same place.

nil if process-name is not the name of an existing process.

(process-status "shell")
⇒ run

(process-status (get-buffer "*shell*"))
⇒ run

x
⇒ #<process xx<1>>

(process-status x)
⇒ exit

For a network connection, process-status returns one of the symbols open or
closed. The latter means that the other side closed the connection, or Emacs did
delete-process.

Functionprocess-exit-status process
This function returns the exit status of process or the signal number that killed it.
(Use the result of process-status to determine which of those it is.) If process has
not yet terminated, the value is 0.

Functionprocess-tty-name process
This function returns the terminal name that process is using for its communica-
tion with Emacs—or nil if it is using pipes instead of a terminal (see process-
connection-type in Section 37.4 [Asynchronous Processes], page 645).

Functionprocess-coding-system process
This function returns a cons cell describing the coding systems in use for decoding
output from process and for encoding input to process (see Section 33.10 [Coding
Systems], page 590). The value has this form:

(coding-system-for-decoding . coding-system-for-encoding)

Functionset-process-coding-system process decoding-system encoding-system
This function specifies the coding systems to use for subsequent output from and input
to process. It will use decoding-system to decode subprocess output, and encoding-
system to encode subprocess input.

650 GNU Emacs Lisp Reference Manual

37.7 Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by Emacs, which is
done with the functions in this section. You must specify the process to send input to, and
the input data to send. The data appears on the “standard input” of the subprocess.

Some operating systems have limited space for buffered input in a pty. On these systems,
Emacs sends an eof periodically amidst the other characters, to force them through. For
most programs, these eofs do no harm.

Subprocess input is normally encoded using a coding system before the subprocess re-
ceives it, much like text written into a file. You can use set-process-coding-system to
specify which coding system to use (see Section 37.6 [Process Information], page 648). Oth-
erwise, the coding system comes from coding-system-for-write, if that is non-nil; or else
from the defaulting mechanism (see Section 33.10.5 [Default Coding Systems], page 594).

Sometimes the system is unable to accept input for that process, because the input buffer
is full. When this happens, the send functions wait a short while, accepting output from
subprocesses, and then try again. This gives the subprocess a chance to read more of its
pending input and make space in the buffer. It also allows filters, sentinels and timers to
run—so take account of that in writing your code.

Functionprocess-send-string process-name string
This function sends process-name the contents of string as standard input. The
argument process-name must be a process or the name of a process. If it is nil, the
current buffer’s process is used.

The function returns nil.
(process-send-string "shell<1>" "ls\n")

⇒ nil

---------- Buffer: *shell* ----------
...
introduction.texi syntax-tables.texi~
introduction.texi~ text.texi
introduction.txt text.texi~
...
---------- Buffer: *shell* ----------

Functionprocess-send-region process-name start end
This function sends the text in the region defined by start and end as standard input
to process-name, which is a process or a process name. (If it is nil, the current
buffer’s process is used.)

An error is signaled unless both start and end are integers or markers that indicate
positions in the current buffer. (It is unimportant which number is larger.)

Functionprocess-send-eof &optional process-name
This function makes process-name see an end-of-file in its input. The eof comes after
any text already sent to it.

Chapter 37: Processes 651

If process-name is not supplied, or if it is nil, then this function sends the eof to
the current buffer’s process. An error is signaled if the current buffer has no process.
The function returns process-name.

(process-send-eof "shell")
⇒ "shell"

Functionprocess-running-child-p process
This function will tell you whether a subprocess has given control of its terminal to
its own child process. The value is t if this is true, or if Emacs cannot tell; it is nil
if Emacs can be certain that this is not so.

37.8 Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several
different signals, each with its own meaning. The set of signals and their names is defined
by the operating system. For example, the signal SIGINT means that the user has typed
C-c, or that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess,
but some stop or resume execution instead. Most signals can optionally be handled by
programs; if the program handles the signal, then we can say nothing in general about its
effects.

You can send signals explicitly by calling the functions in this section. Emacs also
sends signals automatically at certain times: killing a buffer sends a SIGHUP signal to all
its associated processes; killing Emacs sends a SIGHUP signal to all remaining processes.
(SIGHUP is a signal that usually indicates that the user hung up the phone.)

Each of the signal-sending functions takes two optional arguments: process-name and
current-group.

The argument process-name must be either a process, the name of one, or nil. If it
is nil, the process defaults to the process associated with the current buffer. An error is
signaled if process-name does not identify a process.

The argument current-group is a flag that makes a difference when you are running a
job-control shell as an Emacs subprocess. If it is non-nil, then the signal is sent to the
current process-group of the terminal that Emacs uses to communicate with the subprocess.
If the process is a job-control shell, this means the shell’s current subjob. If it is nil, the
signal is sent to the process group of the immediate subprocess of Emacs. If the subprocess
is a job-control shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the
subprocess, because the operating system does not support the distinction in the case of
pipes. For the same reason, job-control shells won’t work when a pipe is used. See process-
connection-type in Section 37.4 [Asynchronous Processes], page 645.

Functioninterrupt-process &optional process-name current-group
This function interrupts the process process-name by sending the signal SIGINT. Out-
side of Emacs, typing the “interrupt character” (normally C-c on some systems, and
DEL on others) sends this signal. When the argument current-group is non-nil, you

652 GNU Emacs Lisp Reference Manual

can think of this function as “typing C-c” on the terminal by which Emacs talks to
the subprocess.

Functionkill-process &optional process-name current-group
This function kills the process process-name by sending the signal SIGKILL. This
signal kills the subprocess immediately, and cannot be handled by the subprocess.

Functionquit-process &optional process-name current-group
This function sends the signal SIGQUIT to the process process-name. This signal is
the one sent by the “quit character” (usually C-b or C-\) when you are not inside
Emacs.

Functionstop-process &optional process-name current-group
This function stops the process process-name by sending the signal SIGTSTP. Use
continue-process to resume its execution.
Outside of Emacs, on systems with job control, the “stop character” (usually C-

z) normally sends this signal. When current-group is non-nil, you can think of
this function as “typing C-z” on the terminal Emacs uses to communicate with the
subprocess.

Functioncontinue-process &optional process-name current-group
This function resumes execution of the process process by sending it the signal
SIGCONT. This presumes that process-name was stopped previously.

Functionsignal-process pid signal
This function sends a signal to process pid, which need not be a child of Emacs. The
argument signal specifies which signal to send; it should be an integer.

37.9 Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output
stream. The output can be inserted in a buffer, which is called the associated buffer of the
process, or a function called the filter function can be called to act on the output. If the
process has no buffer and no filter function, its output is discarded.

Output from a subprocess can arrive only while Emacs is waiting: when reading terminal
input, in sit-for and sleep-for (see Section 21.9 [Waiting], page 315), and in accept-
process-output (see Section 37.9.3 [Accepting Output], page 656). This minimizes the
problem of timing errors that usually plague parallel programming. For example, you can
safely create a process and only then specify its buffer or filter function; no output can
arrive before you finish, if the code in between does not call any primitive that waits.

It is impossible to separate the standard output and standard error streams of the
subprocess, because Emacs normally spawns the subprocess inside a pseudo-TTY, and a
pseudo-TTY has only one output channel. If you want to keep the output to those streams
separate, you should redirect one of them to a file–for example, by using an appropriate
shell command.

Chapter 37: Processes 653

Subprocess output is normally decoded using a coding system before the buffer or filter
function receives it, much like text read from a file. You can use set-process-coding-
system to specify which coding system to use (see Section 37.6 [Process Information],
page 648). Otherwise, the coding system comes from coding-system-for-read, if that
is non-nil; or else from the defaulting mechanism (see Section 33.10.5 [Default Coding
Systems], page 594).

Warning: Coding systems such as undecided which determine the coding system from
the data do not work entirely reliably with asynchronous subprocess output. This is because
Emacs has to process asynchronous subprocess output in batches, as it arrives. Emacs must
try to detect the proper coding system from one batch at a time, and this does not always
work. Therefore, if at all possible, use a coding system which determines both the character
code conversion and the end of line conversion—that is, one like latin-1-unix, rather than
undecided or latin-1.

37.9.1 Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs
buffer that is used for two purposes: storing the output from the process, and deciding when
to kill the process. You can also use the buffer to identify a process to operate on, since in
normal practice only one process is associated with any given buffer. Many applications of
processes also use the buffer for editing input to be sent to the process, but this is not built
into Emacs Lisp.

Unless the process has a filter function (see Section 37.9.2 [Filter Functions], page 654),
its output is inserted in the associated buffer. The position to insert the output is determined
by the process-mark, which is then updated to point to the end of the text just inserted.
Usually, but not always, the process-mark is at the end of the buffer.

Functionprocess-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
⇒ #<buffer *shell*>

Functionprocess-mark process
This function returns the process marker for process, which is the marker that says
where to insert output from the process.

If process does not have a buffer, process-mark returns a marker that points nowhere.

Insertion of process output in a buffer uses this marker to decide where to insert, and
updates it to point after the inserted text. That is why successive batches of output
are inserted consecutively.

Filter functions normally should use this marker in the same fashion as is done by
direct insertion of output in the buffer. A good example of a filter function that uses
process-mark is found at the end of the following section.

When the user is expected to enter input in the process buffer for transmission to the
process, the process marker separates the new input from previous output.

654 GNU Emacs Lisp Reference Manual

Functionset-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the
process becomes associated with no buffer.

Functionget-buffer-process buffer-or-name
This function returns the process associated with buffer-or-name. If there are several
processes associated with it, then one is chosen. (Currently, the one chosen is the
one most recently created.) It is usually a bad idea to have more than one process
associated with the same buffer.

(get-buffer-process "*shell*")
⇒ #<process shell>

Killing the process’s buffer deletes the process, which kills the subprocess with a
SIGHUP signal (see Section 37.8 [Signals to Processes], page 651).

37.9.2 Process Filter Functions

A process filter function is a function that receives the standard output from the asso-
ciated process. If a process has a filter, then all output from that process is passed to the
filter. The process buffer is used directly for output from the process only when there is no
filter.

The filter function can only be called when Emacs is waiting for something, because
process output arrives only at such times. Emacs waits when reading terminal input, in
sit-for and sleep-for (see Section 21.9 [Waiting], page 315), and in accept-process-
output (see Section 37.9.3 [Accepting Output], page 656).

A filter function must accept two arguments: the associated process and a string, which
is output just received from it. The function is then free to do whatever it chooses with the
output.

Quitting is normally inhibited within a filter function—otherwise, the effect of typing
C-g at command level or to quit a user command would be unpredictable. If you want
to permit quitting inside a filter function, bind inhibit-quit to nil. See Section 21.10
[Quitting], page 316.

If an error happens during execution of a filter function, it is caught automatically, so
that it doesn’t stop the execution of whatever program was running when the filter function
was started. However, if debug-on-error is non-nil, the error-catching is turned off. This
makes it possible to use the Lisp debugger to debug the filter function. See Section 18.1
[Debugger], page 225.

Many filter functions sometimes or always insert the text in the process’s buffer, mimick-
ing the actions of Emacs when there is no filter. Such filter functions need to use set-buffer
in order to be sure to insert in that buffer. To avoid setting the current buffer semiper-
manently, these filter functions must save and restore the current buffer. They should also
update the process marker, and in some cases update the value of point. Here is how to do
these things:

(defun ordinary-insertion-filter (proc string)
(with-current-buffer (process-buffer proc)
(let ((moving (= (point) (process-mark proc))))

Chapter 37: Processes 655

(save-excursion
;; Insert the text, advancing the process marker.
(goto-char (process-mark proc))
(insert string)
(set-marker (process-mark proc) (point)))

(if moving (goto-char (process-mark proc))))))

The reason to use with-current-buffer, rather than using save-excursion to save and
restore the current buffer, is so as to preserve the change in point made by the second call
to goto-char.

To make the filter force the process buffer to be visible whenever new text arrives, insert
the following line just before the with-current-buffer construct:

(display-buffer (process-buffer proc))

To force point to the end of the new output, no matter where it was previously, eliminate
the variable moving and call goto-char unconditionally.

In earlier Emacs versions, every filter function that did regular expression searching
or matching had to explicitly save and restore the match data. Now Emacs does this
automatically for filter functions; they never need to do it explicitly. See Section 34.6
[Match Data], page 615.

A filter function that writes the output into the buffer of the process should check
whether the buffer is still alive. If it tries to insert into a dead buffer, it will get an error.
The expression (buffer-name (process-buffer process)) returns nil if the buffer is dead.

The output to the function may come in chunks of any size. A program that produces
the same output twice in a row may send it as one batch of 200 characters one time, and five
batches of 40 characters the next. If the filter looks for certain text strings in the subprocess
output, make sure to handle the case where one of these strings is split across two or more
batches of output.

Functionset-process-filter process filter
This function gives process the filter function filter. If filter is nil, it gives the process
no filter.

Functionprocess-filter process
This function returns the filter function of process, or nil if it has none.

Here is an example of use of a filter function:
(defun keep-output (process output)

(setq kept (cons output kept)))
⇒ keep-output

(setq kept nil)
⇒ nil

(set-process-filter (get-process "shell") ’keep-output)
⇒ keep-output

(process-send-string "shell" "ls ~/other\n")
⇒ nil

kept
⇒ ("lewis@slug[8] % "

656 GNU Emacs Lisp Reference Manual

"FINAL-W87-SHORT.MSS backup.otl kolstad.mss~
address.txt backup.psf kolstad.psf
backup.bib~ david.mss resume-Dec-86.mss~
backup.err david.psf resume-Dec.psf
backup.mss dland syllabus.mss
"
"#backups.mss# backup.mss~ kolstad.mss
")

37.9.3 Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while Emacs is waiting
for some sort of external event, such as elapsed time or terminal input. Occasionally it is
useful in a Lisp program to explicitly permit output to arrive at a specific point, or even to
wait until output arrives from a process.

Functionaccept-process-output &optional process seconds millisec
This function allows Emacs to read pending output from processes. The output is
inserted in the associated buffers or given to their filter functions. If process is non-
nil then this function does not return until some output has been received from
process.
The arguments seconds and millisec let you specify timeout periods. The former speci-
fies a period measured in seconds and the latter specifies one measured in milliseconds.
The two time periods thus specified are added together, and accept-process-output
returns after that much time whether or not there has been any subprocess output.
The argument seconds need not be an integer. If it is a floating point number, this
function waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.
Not all operating systems support waiting periods other than multiples of a second;
on those that do not, you get an error if you specify nonzero millisec.
The function accept-process-output returns non-nil if it did get some output, or
nil if the timeout expired before output arrived.

37.10 Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes
status for any reason, including signals (whether sent by Emacs or caused by the process’s
own actions) that terminate, stop, or continue the process. The process sentinel is also
called if the process exits. The sentinel receives two arguments: the process for which the
event occurred, and a string describing the type of event.

The string describing the event looks like one of the following:
• "finished\n".
• "exited abnormally with code exitcode\n".
• "name-of-signal\n".
• "name-of-signal (core dumped)\n".

Chapter 37: Processes 657

A sentinel runs only while Emacs is waiting (e.g., for terminal input, or for time to
elapse, or for process output). This avoids the timing errors that could result from running
them at random places in the middle of other Lisp programs. A program can wait, so that
sentinels will run, by calling sit-for or sleep-for (see Section 21.9 [Waiting], page 315),
or accept-process-output (see Section 37.9.3 [Accepting Output], page 656). Emacs also
allows sentinels to run when the command loop is reading input.

Quitting is normally inhibited within a sentinel—otherwise, the effect of typing C-g at
command level or to quit a user command would be unpredictable. If you want to permit
quitting inside a sentinel, bind inhibit-quit to nil. See Section 21.10 [Quitting], page 316.

A sentinel that writes the output into the buffer of the process should check whether the
buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer
is dead, (buffer-name (process-buffer process)) returns nil.

If an error happens during execution of a sentinel, it is caught automatically, so that it
doesn’t stop the execution of whatever programs was running when the sentinel was started.
However, if debug-on-error is non-nil, the error-catching is turned off. This makes it
possible to use the Lisp debugger to debug the sentinel. See Section 18.1 [Debugger],
page 225.

In earlier Emacs versions, every sentinel that did regular expression searching or match-
ing had to explicitly save and restore the match data. Now Emacs does this automatically
for sentinels; they never need to do it explicitly. See Section 34.6 [Match Data], page 615.

Functionset-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will
have no sentinel. The default behavior when there is no sentinel is to insert a message
in the process’s buffer when the process status changes.

(defun msg-me (process event)
(princ
(format "Process: %s had the event ‘%s’" process event)))

(set-process-sentinel (get-process "shell") ’msg-me)
⇒ msg-me

(kill-process (get-process "shell"))
a Process: #<process shell> had the event ‘killed’
⇒ #<process shell>

Functionprocess-sentinel process
This function returns the sentinel of process, or nil if it has none.

Functionwaiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if Emacs
was waiting for keyboard input from the user at the time the sentinel or filter function
was called, nil if it was not.

37.11 Transaction Queues

You can use a transaction queue to communicate with a subprocess using transactions.
First use tq-create to create a transaction queue communicating with a specified process.
Then you can call tq-enqueue to send a transaction.

658 GNU Emacs Lisp Reference Manual

Functiontq-create process
This function creates and returns a transaction queue communicating with process.
The argument process should be a subprocess capable of sending and receiving streams
of bytes. It may be a child process, or it may be a TCP connection to a server, possibly
on another machine.

Functiontq-enqueue queue question regexp closure fn
This function sends a transaction to queue queue. Specifying the queue has the effect
of specifying the subprocess to talk to.
The argument question is the outgoing message that starts the transaction. The
argument fn is the function to call when the corresponding answer comes back; it is
called with two arguments: closure, and the answer received.
The argument regexp is a regular expression that should match text at the end of
the entire answer, but nothing before; that’s how tq-enqueue determines where the
answer ends.
The return value of tq-enqueue itself is not meaningful.

Functiontq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete,
and then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See Section 37.9.2
[Filter Functions], page 654.

37.12 Network Connections

Emacs Lisp programs can open TCP network connections to other processes on the same
machine or other machines. A network connection is handled by Lisp much like a subprocess,
and is represented by a process object. However, the process you are communicating with
is not a child of the Emacs process, so you can’t kill it or send it signals. All you can do is
send and receive data. delete-process closes the connection, but does not kill the process
at the other end; that process must decide what to do about closure of the connection.

You can distinguish process objects representing network connections from those rep-
resenting subprocesses with the process-status function. It always returns either open
or closed for a network connection, and it never returns either of those values for a real
subprocess. See Section 37.6 [Process Information], page 648.

Functionopen-network-stream name buffer-or-name host service
This function opens a TCP connection for a service to a host. It returns a process
object to represent the connection.
The name argument specifies the name for the process object. It is modified as
necessary to make it unique.
The buffer-or-name argument is the buffer to associate with the connection. Output
from the connection is inserted in the buffer, unless you specify a filter function to
handle the output. If buffer-or-name is nil, it means that the connection is not
associated with any buffer.

Chapter 37: Processes 659

The arguments host and service specify where to connect to; host is the host name
(a string), and service is the name of a defined network service (a string) or a port
number (an integer).

660 GNU Emacs Lisp Reference Manual

Chapter 38: Emacs Display 661

38 Emacs Display

This chapter describes a number of features related to the display that Emacs presents
to the user.

38.1 Refreshing the Screen

The function redraw-frame redisplays the entire contents of a given frame (see Chap-
ter 29 [Frames], page 483).

Functionredraw-frame frame
This function clears and redisplays frame frame.

Even more powerful is redraw-display:

Commandredraw-display
This function clears and redisplays all visible frames.

Processing user input takes absolute priority over redisplay. If you call these functions
when input is available, they do nothing immediately, but a full redisplay does happen
eventually—after all the input has been processed.

Normally, suspending and resuming Emacs also refreshes the screen. Some terminal
emulators record separate contents for display-oriented programs such as Emacs and for
ordinary sequential display. If you are using such a terminal, you might want to inhibit the
redisplay on resumption.

Variableno-redraw-on-reenter
This variable controls whether Emacs redraws the entire screen after it has been
suspended and resumed. Non-nil means there is no need to redraw, nil means
redrawing is needed. The default is nil.

38.2 Forcing Redisplay

Emacs redisplay normally stops if input arrives, and does not happen at all if input is
available before it starts. Most of the time, this is exactly what you want. However, you
can prevent preemption by binding redisplay-dont-pause to a non-nil value.

Variableredisplay-dont-pause
If this variable is non-nil, pending input does not prevent or halt redisplay; redisplay
occurs, and finishes, regardless of whether input is available. This feature is available
as of Emacs 21.

You can request a display update, but only if no input is pending, with (sit-for 0).
To force a display update even when input is pending, do this:

(let ((redisplay-dont-pause t))
(sit-for 0))

662 GNU Emacs Lisp Reference Manual

38.3 Truncation

When a line of text extends beyond the right edge of a window, the line can either be
continued on the next screen line, or truncated to one screen line. The additional screen lines
used to display a long text line are called continuation lines. Normally, a ‘$’ in the rightmost
column of the window indicates truncation; a ‘\’ on the rightmost column indicates a line
that “wraps” onto the next line, which is also called continuing the line. (The display table
can specify alternative indicators; see Section 38.17 [Display Tables], page 704.)

Note that continuation is different from filling; continuation happens on the screen only,
not in the buffer contents, and it breaks a line precisely at the right margin, not at a word
boundary. See Section 32.11 [Filling], page 547.

User Optiontruncate-lines
This buffer-local variable controls how Emacs displays lines that extend beyond the
right edge of the window. The default is nil, which specifies continuation. If the
value is non-nil, then these lines are truncated.
If the variable truncate-partial-width-windows is non-nil, then truncation is al-
ways used for side-by-side windows (within one frame) regardless of the value of
truncate-lines.

User Optiondefault-truncate-lines
This variable is the default value for truncate-lines, for buffers that do not have
buffer-local values for it.

User Optiontruncate-partial-width-windows
This variable controls display of lines that extend beyond the right edge of the window,
in side-by-side windows (see Section 28.2 [Splitting Windows], page 454). If it is non-
nil, these lines are truncated; otherwise, truncate-lines says what to do with
them.

When horizontal scrolling (see Section 28.13 [Horizontal Scrolling], page 472) is in use
in a window, that forces truncation.

You can override the glyphs that indicate continuation or truncation using the display
table; see Section 38.17 [Display Tables], page 704.

If your buffer contains very long lines, and you use continuation to display them, just
thinking about them can make Emacs redisplay slow. The column computation and inden-
tation functions also become slow. Then you might find it advisable to set cache-long-
line-scans to t.

Variablecache-long-line-scans
If this variable is non-nil, various indentation and motion functions, and Emacs
redisplay, cache the results of scanning the buffer, and consult the cache to avoid
rescanning regions of the buffer unless they are modified.
Turning on the cache slows down processing of short lines somewhat.
This variable is automatically buffer-local in every buffer.

Chapter 38: Emacs Display 663

38.4 The Echo Area

The echo area is used for displaying messages made with the message primitive, and for
echoing keystrokes. It is not the same as the minibuffer, despite the fact that the minibuffer
appears (when active) in the same place on the screen as the echo area. The GNU Emacs
Manual specifies the rules for resolving conflicts between the echo area and the minibuffer
for use of that screen space (see section “The Minibuffer” in The GNU Emacs Manual).
Error messages appear in the echo area; see Section 10.5.3 [Errors], page 125.

You can write output in the echo area by using the Lisp printing functions with t as the
stream (see Section 19.5 [Output Functions], page 260), or as follows:

Functionmessage string &rest arguments
This function displays a message in the echo area. The argument string is similar
to a C language printf control string. See format in Section 4.6 [String Conver-
sion], page 55, for the details on the conversion specifications. message returns the
constructed string.
In batch mode, message prints the message text on the standard error stream, followed
by a newline.
If string, or strings among the arguments, have face text properties, these affect the
way the message is displayed.
If string is nil, message clears the echo area; if the echo area has been expanded
automatically, this brings it back to its normal size. If the minibuffer is active, this
brings the minibuffer contents back onto the screen immediately.
Normally, displaying a long message resizes the echo area to display the entire message.
But if the variable message-truncate-lines is non-nil, the echo area does not resize,
and the message is truncated to fit it, as in Emacs 20 and before.

(message "Minibuffer depth is %d."
(minibuffer-depth))

a Minibuffer depth is 0.
⇒ "Minibuffer depth is 0."

---------- Echo Area ----------
Minibuffer depth is 0.
---------- Echo Area ----------

To automatically display a message in the echo area or in a pop-buffer, depending on
its size, use display-message-or-buffer.

Macrowith-temp-message message &rest body
This construct displays a message in the echo area temporarily, during the execution
of body. It displays message, executes body, then returns the value of the last body
form while restoring the previous echo area contents.

Functionmessage-or-box string &rest arguments
This function displays a message like message, but may display it in a dialog box
instead of the echo area. If this function is called in a command that was invoked using

664 GNU Emacs Lisp Reference Manual

the mouse—more precisely, if last-nonmenu-event (see Section 21.4 [Command Loop
Info], page 295) is either nil or a list—then it uses a dialog box or pop-up menu to
display the message. Otherwise, it uses the echo area. (This is the same criterion
that y-or-n-p uses to make a similar decision; see Section 20.6 [Yes-or-No Queries],
page 280.)
You can force use of the mouse or of the echo area by binding last-nonmenu-event
to a suitable value around the call.

Functionmessage-box string &rest arguments
This function displays a message like message, but uses a dialog box (or a pop-up
menu) whenever that is possible. If it is impossible to use a dialog box or pop-up
menu, because the terminal does not support them, then message-box uses the echo
area, like message.

Functiondisplay-message-or-buffer message &optional buffer-name
not-this-window frame

This function displays the message message, which may be either a string or a buffer.
If it is shorter than the maximum height of the echo area, as defined by max-mini-
window-height, it is displayed in the echo area, using message. Otherwise, display-
buffer is used to show it in a pop-up buffer.
Returns either the string shown in the echo area, or when a pop-up buffer is used,
the window used to display it.
If message is a string, then the optional argument buffer-name is the name of the
buffer used to display it when a pop-up buffer is used, defaulting to ‘*Message*’. In
the case where message is a string and displayed in the echo area, it is not specified
whether the contents are inserted into the buffer anyway.
The optional arguments not-this-window and frame are as for display-buffer, and
only used if a buffer is displayed.

Functioncurrent-message
This function returns the message currently being displayed in the echo area, or nil
if there is none.

Variablecursor-in-echo-area
This variable controls where the cursor appears when a message is displayed in the
echo area. If it is non-nil, then the cursor appears at the end of the message.
Otherwise, the cursor appears at point—not in the echo area at all.
The value is normally nil; Lisp programs bind it to t for brief periods of time.

Variableecho-area-clear-hook
This normal hook is run whenever the echo area is cleared—either by (message nil)
or for any other reason.

Almost all the messages displayed in the echo area are also recorded in the ‘*Messages*’
buffer.

Chapter 38: Emacs Display 665

User Optionmessage-log-max
This variable specifies how many lines to keep in the ‘*Messages*’ buffer. The value
t means there is no limit on how many lines to keep. The value nil disables message
logging entirely. Here’s how to display a message and prevent it from being logged:

(let (message-log-max)
(message ...))

Variableecho-keystrokes
This variable determines how much time should elapse before command characters
echo. Its value must be an integer or floating point number, which specifies the
number of seconds to wait before echoing. If the user types a prefix key (such as C-x)
and then delays this many seconds before continuing, the prefix key is echoed in the
echo area. (Once echoing begins in a key sequence, all subsequent characters in the
same key sequence are echoed immediately.)
If the value is zero, then command input is not echoed.

38.5 Invisible Text

You can make characters invisible, so that they do not appear on the screen, with the
invisible property. This can be either a text property (see Section 32.19 [Text Properties],
page 562) or a property of an overlay (see Section 38.9 [Overlays], page 671).

In the simplest case, any non-nil invisible property makes a character invisible. This
is the default case—if you don’t alter the default value of buffer-invisibility-spec, this
is how the invisible property works.

More generally, you can use the variable buffer-invisibility-spec to control which
values of the invisible property make text invisible. This permits you to classify the
text into different subsets in advance, by giving them different invisible values, and
subsequently make various subsets visible or invisible by changing the value of buffer-
invisibility-spec.

Controlling visibility with buffer-invisibility-spec is especially useful in a program
to display the list of entries in a database. It permits the implementation of convenient
filtering commands to view just a part of the entries in the database. Setting this variable
is very fast, much faster than scanning all the text in the buffer looking for properties to
change.

Variablebuffer-invisibility-spec
This variable specifies which kinds of invisible properties actually make a character
invisible.

t A character is invisible if its invisible property is non-nil. This is the
default.

a list Each element of the list specifies a criterion for invisibility; if a charac-
ter’s invisible property fits any one of these criteria, the character is
invisible. The list can have two kinds of elements:

atom A character is invisible if its invisible property value is
atom or if it is a list with atom as a member.

666 GNU Emacs Lisp Reference Manual

(atom . t)
A character is invisible if its invisible property value is
atom or if it is a list with atom as a member. Moreover,
if this character is at the end of a line and is followed by a
visible newline, it displays an ellipsis.

Two functions are specifically provided for adding elements to buffer-invisibility-
spec and removing elements from it.

Functionadd-to-invisibility-spec element
Add the element element to buffer-invisibility-spec (if it is not already present
in that list).

Functionremove-from-invisibility-spec element
Remove the element element from buffer-invisibility-spec. This does nothing
if element is not in the list.

One convention about the use of buffer-invisibility-spec is that a major mode
should use the mode’s own name as an element of buffer-invisibility-spec and as the
value of the invisible property:

;; If you want to display an ellipsis:
(add-to-invisibility-spec ’(my-symbol . t))
;; If you don’t want ellipsis:
(add-to-invisibility-spec ’my-symbol)

(overlay-put (make-overlay beginning end)
’invisible ’my-symbol)

;; When done with the overlays:
(remove-from-invisibility-spec ’(my-symbol . t))
;; Or respectively:
(remove-from-invisibility-spec ’my-symbol)

Ordinarily, commands that operate on text or move point do not care whether the text is
invisible. The user-level line motion commands explicitly ignore invisible newlines if line-
move-ignore-invisible is non-nil, but only because they are explicitly programmed to
do so.

Incremental search can make invisible overlays visible temporarily and/or permanently
when a match includes invisible text. To enable this, the overlay should have a non-nil
isearch-open-invisible property. The property value should be a function to be called
with the overlay as an argument. This function should make the overlay visible permanently;
it is used when the match overlaps the overlay on exit from the search.

During the search, such overlays are made temporarily visible by temporarily modifying
their invisible and intangible properties. If you want this to be done differently for a certain
overlay, give it an isearch-open-invisible-temporary property which is a function. The
function is called with two arguments: the first is the overlay, and the second is nil to make
the overlay visible, or t to make it invisible again.

Chapter 38: Emacs Display 667

38.6 Selective Display

Selective display refers to a pair of related features for hiding certain lines on the screen.

The first variant, explicit selective display, is designed for use in a Lisp program: it con-
trols which lines are hidden by altering the text. The invisible text feature (see Section 38.5
[Invisible Text], page 665) has partially replaced this feature.

In the second variant, the choice of lines to hide is made automatically based on inden-
tation. This variant is designed to be a user-level feature.

The way you control explicit selective display is by replacing a newline (control-j) with
a carriage return (control-m). The text that was formerly a line following that newline is
now invisible. Strictly speaking, it is temporarily no longer a line at all, since only newlines
can separate lines; it is now part of the previous line.

Selective display does not directly affect editing commands. For example, C-f (forward-
char) moves point unhesitatingly into invisible text. However, the replacement of newline
characters with carriage return characters affects some editing commands. For example,
next-line skips invisible lines, since it searches only for newlines. Modes that use selective
display can also define commands that take account of the newlines, or that make parts of
the text visible or invisible.

When you write a selectively displayed buffer into a file, all the control-m’s are output
as newlines. This means that when you next read in the file, it looks OK, with nothing
invisible. The selective display effect is seen only within Emacs.

Variableselective-display
This buffer-local variable enables selective display. This means that lines, or portions
of lines, may be made invisible.

• If the value of selective-display is t, then the character control-m marks the
start of invisible text; the control-m, and the rest of the line following it, are not
displayed. This is explicit selective display.

• If the value of selective-display is a positive integer, then lines that start with
more than that many columns of indentation are not displayed.

When some portion of a buffer is invisible, the vertical movement commands operate
as if that portion did not exist, allowing a single next-line command to skip any
number of invisible lines. However, character movement commands (such as forward-
char) do not skip the invisible portion, and it is possible (if tricky) to insert or delete
text in an invisible portion.

In the examples below, we show the display appearance of the buffer foo, which
changes with the value of selective-display. The contents of the buffer do not
change.

668 GNU Emacs Lisp Reference Manual

(setq selective-display nil)
⇒ nil

---------- Buffer: foo ----------
1 on this column
2on this column
3n this column
3n this column

2on this column
1 on this column
---------- Buffer: foo ----------

(setq selective-display 2)
⇒ 2

---------- Buffer: foo ----------
1 on this column
2on this column
2on this column
1 on this column
---------- Buffer: foo ----------

Variableselective-display-ellipses
If this buffer-local variable is non-nil, then Emacs displays ‘...’ at the end of a line
that is followed by invisible text. This example is a continuation of the previous one.

(setq selective-display-ellipses t)
⇒ t

---------- Buffer: foo ----------
1 on this column
2on this column ...
2on this column
1 on this column
---------- Buffer: foo ----------

You can use a display table to substitute other text for the ellipsis (‘...’). See
Section 38.17 [Display Tables], page 704.

38.7 The Overlay Arrow

The overlay arrow is useful for directing the user’s attention to a particular line in
a buffer. For example, in the modes used for interface to debuggers, the overlay arrow
indicates the line of code about to be executed.

Variableoverlay-arrow-string
This variable holds the string to display to call attention to a particular line, or nil
if the arrow feature is not in use. On a graphical display the contents of the string
are ignored; instead a glyph is displayed in the fringe area to the left of the display
area.

Chapter 38: Emacs Display 669

Variableoverlay-arrow-position
This variable holds a marker that indicates where to display the overlay arrow. It
should point at the beginning of a line. On a non-graphical display the arrow text
appears at the beginning of that line, overlaying any text that would otherwise appear.
Since the arrow is usually short, and the line usually begins with indentation, normally
nothing significant is overwritten.

The overlay string is displayed only in the buffer that this marker points into. Thus,
only one buffer can have an overlay arrow at any given time.

You can do a similar job by creating an overlay with a before-string property. See
Section 38.9.1 [Overlay Properties], page 671.

38.8 Temporary Displays

Temporary displays are used by Lisp programs to put output into a buffer and then
present it to the user for perusal rather than for editing. Many help commands use this
feature.

Special Formwith-output-to-temp-buffer buffer-name forms. . .
This function executes forms while arranging to insert any output they print into the
buffer named buffer-name, which is first created if necessary, and put into Help mode.
Finally, the buffer is displayed in some window, but not selected.

If the forms do not change the major mode in the output buffer, so that it is still
Help mode at the end of their execution, then with-output-to-temp-buffer makes
this buffer read-only at the end, and also scans it for function and variable names to
make them into clickable cross-references.

The string buffer-name specifies the temporary buffer, which need not already exist.
The argument must be a string, not a buffer. The buffer is erased initially (with no
questions asked), and it is marked as unmodified after with-output-to-temp-buffer
exits.

with-output-to-temp-buffer binds standard-output to the temporary buffer,
then it evaluates the forms in forms. Output using the Lisp output functions within
forms goes by default to that buffer (but screen display and messages in the echo
area, although they are “output” in the general sense of the word, are not affected).
See Section 19.5 [Output Functions], page 260.

Several hooks are available for customizing the behavior of this construct; they are
listed below.

The value of the last form in forms is returned.

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

670 GNU Emacs Lisp Reference Manual

(with-output-to-temp-buffer "foo"
(print 20)
(print standard-output))

⇒ #<buffer foo>

---------- Buffer: foo ----------
20

#<buffer foo>

---------- Buffer: foo ----------

Variabletemp-buffer-show-function
If this variable is non-nil, with-output-to-temp-buffer calls it as a function to
do the job of displaying a help buffer. The function gets one argument, which is the
buffer it should display.

It is a good idea for this function to run temp-buffer-show-hook just as with-
output-to-temp-buffer normally would, inside of save-selected-window and with
the chosen window and buffer selected.

Variabletemp-buffer-setup-hook
This normal hook is run by with-output-to-temp-buffer before evaluating body.
When the hook runs, the help buffer is current. This hook is normally set up with a
function to put the buffer in Help mode.

Variabletemp-buffer-show-hook
This normal hook is run by with-output-to-temp-buffer after displaying the help
buffer. When the hook runs, the help buffer is current, and the window it was
displayed in is selected. This hook is normally set up with a function to make the
buffer read only, and find function names and variable names in it, provided the major
mode is still Help mode.

Functionmomentary-string-display string position &optional char message
This function momentarily displays string in the current buffer at position. It has no
effect on the undo list or on the buffer’s modification status.

The momentary display remains until the next input event. If the next input event
is char, momentary-string-display ignores it and returns. Otherwise, that event
remains buffered for subsequent use as input. Thus, typing char will simply remove
the string from the display, while typing (say) C-f will remove the string from the
display and later (presumably) move point forward. The argument char is a space by
default.

The return value of momentary-string-display is not meaningful.

If the string string does not contain control characters, you can do the same job in
a more general way by creating (and then subsequently deleting) an overlay with a
before-string property. See Section 38.9.1 [Overlay Properties], page 671.

Chapter 38: Emacs Display 671

If message is non-nil, it is displayed in the echo area while string is displayed in the
buffer. If it is nil, a default message says to type char to continue.

In this example, point is initially located at the beginning of the second line:

---------- Buffer: foo ----------
This is the contents of foo.
?Second line.
---------- Buffer: foo ----------

(momentary-string-display
"**** Important Message! ****"
(point) ?\r
"Type RET when done reading")

⇒ t

---------- Buffer: foo ----------
This is the contents of foo.
**** Important Message! ****Second line.
---------- Buffer: foo ----------

---------- Echo Area ----------
Type RET when done reading
---------- Echo Area ----------

38.9 Overlays

You can use overlays to alter the appearance of a buffer’s text on the screen, for the
sake of presentation features. An overlay is an object that belongs to a particular buffer,
and has a specified beginning and end. It also has properties that you can examine and set;
these affect the display of the text within the overlay.

38.9.1 Overlay Properties

Overlay properties are like text properties in that the properties that alter how a char-
acter is displayed can come from either source. But in most respects they are different.
Text properties are considered a part of the text; overlays are specifically considered not
to be part of the text. Thus, copying text between various buffers and strings preserves
text properties, but does not try to preserve overlays. Changing a buffer’s text properties
marks the buffer as modified, while moving an overlay or changing its properties does not.
Unlike text property changes, overlay changes are not recorded in the buffer’s undo list. See
Section 32.19 [Text Properties], page 562, for comparison.

These functions are used for reading and writing the properties of an overlay:

Functionoverlay-get overlay prop
This function returns the value of property prop recorded in overlay, if any. If overlay
does not record any value for that property, but it does have a category property
which is a symbol, that symbol’s prop property is used. Otherwise, the value is nil.

672 GNU Emacs Lisp Reference Manual

Functionoverlay-put overlay prop value
This function sets the value of property prop recorded in overlay to value. It returns
value.

See also the function get-char-property which checks both overlay properties and text
properties for a given character. See Section 32.19.1 [Examining Properties], page 562.

Many overlay properties have special meanings; here is a table of them:

priority This property’s value (which should be a nonnegative number) determines the
priority of the overlay. The priority matters when two or more overlays cover
the same character and both specify a face for display; the one whose priority
value is larger takes priority over the other, and its face attributes override the
face attributes of the lower priority overlay.
Currently, all overlays take priority over text properties. Please avoid using
negative priority values, as we have not yet decided just what they should
mean.

window If the window property is non-nil, then the overlay applies only on that window.

category If an overlay has a category property, we call it the category of the overlay.
It should be a symbol. The properties of the symbol serve as defaults for the
properties of the overlay.

face This property controls the way text is displayed—for example, which font and
which colors. See Section 38.11 [Faces], page 678, for more information.
In the simplest case, the value is a face name. It can also be a list; then each
element can be any of these possibilities:
• A face name (a symbol or string).
• Starting in Emacs 21, a property list of face attributes. This has the

form (keyword value . . .), where each keyword is a face attribute name
and value is a meaningful value for that attribute. With this feature, you
do not need to create a face each time you want to specify a particular
attribute for certain text. See Section 38.11.3 [Face Attributes], page 681.

• A cons cell of the form (foreground-color . color-name) or
(background-color . color-name). These elements specify just the
foreground color or just the background color.
(foreground-color . color-name) is equivalent to (:foreground color-
name), and likewise for the background.

mouse-face
This property is used instead of face when the mouse is within the range of
the overlay.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrower, or replaced with an image. See Section 38.12 [Display Property],
page 691.

help-echo
If an overlay has a help-echo property, then when you move the mouse onto
the text in the overlay, Emacs displays a help string in the echo area, or in

Chapter 38: Emacs Display 673

the tooltip window. For details see [Text help-echo], page 567. This feature is
available starting in Emacs 21.

modification-hooks
This property’s value is a list of functions to be called if any character within
the overlay is changed or if text is inserted strictly within the overlay.

The hook functions are called both before and after each change. If the functions
save the information they receive, and compare notes between calls, they can
determine exactly what change has been made in the buffer text.

When called before a change, each function receives four arguments: the overlay,
nil, and the beginning and end of the text range to be modified.

When called after a change, each function receives five arguments: the overlay,
t, the beginning and end of the text range just modified, and the length of
the pre-change text replaced by that range. (For an insertion, the pre-change
length is zero; for a deletion, that length is the number of characters deleted,
and the post-change beginning and end are equal.)

insert-in-front-hooks
This property’s value is a list of functions to be called before and after inserting
text right at the beginning of the overlay. The calling conventions are the same
as for the modification-hooks functions.

insert-behind-hooks
This property’s value is a list of functions to be called before and after inserting
text right at the end of the overlay. The calling conventions are the same as for
the modification-hooks functions.

invisible
The invisible property can make the text in the overlay invisible, which
means that it does not appear on the screen. See Section 38.5 [Invisible Text],
page 665, for details.

intangible
The intangible property on an overlay works just like the intangible text
property. See Section 32.19.4 [Special Properties], page 567, for details.

isearch-open-invisible
This property tells incremental search how to make an invisible overlay visible,
permanently, if the final match overlaps it. See Section 38.5 [Invisible Text],
page 665.

isearch-open-invisible-temporary
This property tells incremental search how to make an invisible overlay visible,
temporarily, during the search. See Section 38.5 [Invisible Text], page 665.

before-string
This property’s value is a string to add to the display at the beginning of the
overlay. The string does not appear in the buffer in any sense—only on the
screen.

674 GNU Emacs Lisp Reference Manual

after-string
This property’s value is a string to add to the display at the end of the overlay.
The string does not appear in the buffer in any sense—only on the screen.

evaporate
If this property is non-nil, the overlay is deleted automatically if it ever be-
comes empty (i.e., if it spans no characters).

local-map
If this property is non-nil, it specifies a keymap for a portion of the text. The
property’s value replaces the buffer’s local map, when the character after point
is within the overlay. See Section 22.6 [Active Keymaps], page 330.

keymap The keymap property is similar to local-map but overrides the buffer’s local
map (and the map specified by the local-map property) rather than replacing
it.

38.9.2 Managing Overlays

This section describes the functions to create, delete and move overlays, and to examine
their contents.

Functionmake-overlay start end &optional buffer front-advance rear-advance
This function creates and returns an overlay that belongs to buffer and ranges from
start to end. Both start and end must specify buffer positions; they may be integers
or markers. If buffer is omitted, the overlay is created in the current buffer.

The arguments front-advance and rear-advance specify the insertion type for the start
of the overlay and for the end of the overlay, respectively. See Section 31.5 [Marker
Insertion Types], page 526.

Functionoverlay-start overlay
This function returns the position at which overlay starts, as an integer.

Functionoverlay-end overlay
This function returns the position at which overlay ends, as an integer.

Functionoverlay-buffer overlay
This function returns the buffer that overlay belongs to.

Functiondelete-overlay overlay
This function deletes overlay. The overlay continues to exist as a Lisp object, and its
property list is unchanged, but it ceases to be attached to the buffer it belonged to,
and ceases to have any effect on display.

A deleted overlay is not permanently disconnected. You can give it a position in a
buffer again by calling move-overlay.

Chapter 38: Emacs Display 675

Functionmove-overlay overlay start end &optional buffer
This function moves overlay to buffer, and places its bounds at start and end. Both
arguments start and end must specify buffer positions; they may be integers or mark-
ers.

If buffer is omitted, overlay stays in the same buffer it was already associated with;
if overlay was deleted, it goes into the current buffer.

The return value is overlay.

This is the only valid way to change the endpoints of an overlay. Do not try modifying
the markers in the overlay by hand, as that fails to update other vital data structures
and can cause some overlays to be “lost”.

Here are some examples:
;; Create an overlay.
(setq foo (make-overlay 1 10))

⇒ #<overlay from 1 to 10 in display.texi>
(overlay-start foo)

⇒ 1
(overlay-end foo)

⇒ 10
(overlay-buffer foo)

⇒ #<buffer display.texi>
;; Give it a property we can check later.
(overlay-put foo ’happy t)

⇒ t
;; Verify the property is present.
(overlay-get foo ’happy)

⇒ t
;; Move the overlay.
(move-overlay foo 5 20)

⇒ #<overlay from 5 to 20 in display.texi>
(overlay-start foo)

⇒ 5
(overlay-end foo)

⇒ 20
;; Delete the overlay.
(delete-overlay foo)

⇒ nil
;; Verify it is deleted.
foo

⇒ #<overlay in no buffer>
;; A deleted overlay has no position.
(overlay-start foo)

⇒ nil
(overlay-end foo)

⇒ nil
(overlay-buffer foo)

⇒ nil
;; Undelete the overlay.

676 GNU Emacs Lisp Reference Manual

(move-overlay foo 1 20)
⇒ #<overlay from 1 to 20 in display.texi>

;; Verify the results.
(overlay-start foo)

⇒ 1
(overlay-end foo)

⇒ 20
(overlay-buffer foo)

⇒ #<buffer display.texi>
;; Moving and deleting the overlay does not change its properties.
(overlay-get foo ’happy)

⇒ t

38.9.3 Searching for Overlays

Functionoverlays-at pos
This function returns a list of all the overlays that cover the character at position pos
in the current buffer. The list is in no particular order. An overlay contains position
pos if it begins at or before pos, and ends after pos.
To illustrate usage, here is a Lisp function that returns a list of the overlays that
specify property prop for the character at point:

(defun find-overlays-specifying (prop)
(let ((overlays (overlays-at (point)))

found)
(while overlays
(let ((overlay (car overlays)))
(if (overlay-get overlay prop)

(setq found (cons overlay found))))
(setq overlays (cdr overlays)))

found))

Functionoverlays-in beg end
This function returns a list of the overlays that overlap the region beg through end.
“Overlap” means that at least one character is contained within the overlay and also
contained within the specified region; however, empty overlays are included in the
result if they are located at beg, or strictly between beg and end.

Functionnext-overlay-change pos
This function returns the buffer position of the next beginning or end of an overlay,
after pos.

Functionprevious-overlay-change pos
This function returns the buffer position of the previous beginning or end of an overlay,
before pos.

Here’s an easy way to use next-overlay-change to search for the next character which
gets a non-nil happy property from either its overlays or its text properties (see Sec-
tion 32.19.3 [Property Search], page 565):

Chapter 38: Emacs Display 677

(defun find-overlay-prop (prop)
(save-excursion
(while (and (not (eobp))

(not (get-char-property (point) ’happy)))
(goto-char (min (next-overlay-change (point))

(next-single-property-change (point) ’happy))))
(point)))

38.10 Width

Since not all characters have the same width, these functions let you check the width
of a character. See Section 32.17.1 [Primitive Indent], page 556, and Section 30.2.5 [Screen
Lines], page 514, for related functions.

Functionchar-width char
This function returns the width in columns of the character char, if it were displayed
in the current buffer and the selected window.

Functionstring-width string
This function returns the width in columns of the string string, if it were displayed
in the current buffer and the selected window.

Functiontruncate-string-to-width string width &optional start-column
padding

This function returns the part of string that fits within width columns, as a new
string.

If string does not reach width, then the result ends where string ends. If one multi-
column character in string extends across the column width, that character is not
included in the result. Thus, the result can fall short of width but cannot go beyond
it.

The optional argument start-column specifies the starting column. If this is non-
nil, then the first start-column columns of the string are omitted from the value. If
one multi-column character in string extends across the column start-column, that
character is not included.

The optional argument padding, if non-nil, is a padding character added at the
beginning and end of the result string, to extend it to exactly width columns. The
padding character is used at the end of the result if it falls short of width. It is also
used at the beginning of the result if one multi-column character in string extends
across the column start-column.

(truncate-string-to-width "\tab\t" 12 4)
⇒ "ab"

(truncate-string-to-width "\tab\t" 12 4 ?\)
⇒ " ab "

678 GNU Emacs Lisp Reference Manual

38.11 Faces

A face is a named collection of graphical attributes: font family, foreground color, back-
ground color, optional underlining, and many others. Faces are used in Emacs to control
the style of display of particular parts of the text or the frame.

Each face has its own face number, which distinguishes faces at low levels within Emacs.
However, for most purposes, you refer to faces in Lisp programs by their names.

Functionfacep object
This function returns t if object is a face name symbol (or if it is a vector of the kind
used internally to record face data). It returns nil otherwise.

Each face name is meaningful for all frames, and by default it has the same meaning in
all frames. But you can arrange to give a particular face name a special meaning in one
frame if you wish.

38.11.1 Standard Faces

This table lists all the standard faces and their uses. Most of them are used for displaying
certain parts of the frames or certain kinds of text; you can control how those places look
by customizing these faces.

default This face is used for ordinary text.

mode-line
This face is used for mode lines, and for menu bars when toolkit menus are not
used—but only if mode-line-inverse-video is non-nil.

modeline This is an alias for the mode-line face, for compatibility with old Emacs ver-
sions.

header-line
This face is used for the header lines of windows that have them.

menu This face controls the display of menus, both their colors and their font. (This
works only on certain systems.)

fringe This face controls the colors of window fringes, the thin areas on either side
that are used to display continuation and truncation glyphs.

scroll-bar
This face controls the colors for display of scroll bars.

tool-bar This face is used for display of the tool bar, if any.

region This face is used for highlighting the region in Transient Mark mode.

secondary-selection
This face is used to show any secondary selection you have made.

highlight
This face is meant to be used for highlighting for various purposes.

Chapter 38: Emacs Display 679

trailing-whitespace
This face is used to display excess whitespace at the end of a line, if show-
trailing-whitespace is non-nil.

In contrast, these faces are provided to change the appearance of text in specific ways.
You can use them on specific text, when you want the effects they produce.

bold This face uses a bold font, if possible. It uses the bold variant of the frame’s
font, if it has one. It’s up to you to choose a default font that has a bold variant,
if you want to use one.

italic This face uses the italic variant of the frame’s font, if it has one.

bold-italic
This face uses the bold italic variant of the frame’s font, if it has one.

underline
This face underlines text.

fixed-pitch
This face forces use of a particular fixed-width font.

variable-pitch
This face forces use of a particular variable-width font. It’s reasonable to cus-
tomize this to use a different variable-width font, if you like, but you should
not make it a fixed-width font.

Variableshow-trailing-whitespace
If this variable is non-nil, Emacs uses the trailing-whitespace face to display any
spaces and tabs at the end of a line.

38.11.2 Defining Faces

The way to define a new face is with defface. This creates a kind of customization
item (see Chapter 14 [Customization], page 179) which the user can customize using the
Customization buffer (see section “Easy Customization” in The GNU Emacs Manual).

Macrodefface face spec doc [keyword value]...
This declares face as a customizable face that defaults according to spec. You should
not quote the symbol face. The argument doc specifies the face documentation. The
keywords you can use in defface are the same ones that are meaningful in both
defgroup and defcustom (see Section 14.1 [Common Keywords], page 179).
When defface executes, it defines the face according to spec, then uses any cus-
tomizations that were read from the init file (see Section 40.1.2 [Init File], page 722)
to override that specification.
The purpose of spec is to specify how the face should appear on different kinds of
terminals. It should be an alist whose elements have the form (display atts). Each
element’s car, display, specifies a class of terminals. The element’s second element,
atts, is a list of face attributes and their values; it specifies what the face should
look like on that kind of terminal. The possible attributes are defined in the value of
custom-face-attributes.

680 GNU Emacs Lisp Reference Manual

The display part of an element of spec determines which frames the element applies
to. If more than one element of spec matches a given frame, the first matching element
is the only one used for that frame. There are two possibilities for display :

t This element of spec matches all frames. Therefore, any subsequent el-
ements of spec are never used. Normally t is used in the last (or only)
element of spec.

a list If display is a list, each element should have the form (characteristic
value...). Here characteristic specifies a way of classifying frames, and
the values are possible classifications which display should apply to. Here
are the possible values of characteristic:

type The kind of window system the frame uses—either graphic
(any graphics-capable display), x, pc (for the MS-DOS con-
sole), w32 (for MS Windows 9X/NT), or tty (a non-graphics-
capable display).

class What kinds of colors the frame supports—either color,
grayscale, or mono.

background
The kind of background—either light or dark.

If an element of display specifies more than one value for a given charac-
teristic, any of those values is acceptable. If display has more than one
element, each element should specify a different characteristic; then each
characteristic of the frame must match one of the values specified for it
in display.

Here’s how the standard face region is defined:
(defface region
‘((((type tty) (class color))

(:background "blue" :foreground "white"))
(((type tty) (class mono))
(:inverse-video t))
(((class color) (background dark))
(:background "blue"))
(((class color) (background light))
(:background "lightblue"))
(t (:background "gray")))

"Basic face for highlighting the region."
:group ’basic-faces)

Internally, defface uses the symbol property face-defface-spec to record the face
attributes specified in defface, saved-face for the attributes saved by the user with the
customization buffer, and face-documentation for the documentation string.

User Optionframe-background-mode
This option, if non-nil, specifies the background type to use for interpreting face def-
initions. If it is dark, then Emacs treats all frames as if they had a dark background,
regardless of their actual background colors. If it is light, then Emacs treats all
frames as if they had a light background.

Chapter 38: Emacs Display 681

38.11.3 Face Attributes

The effect of using a face is determined by a fixed set of face attributes. This table lists
all the face attributes, and what they mean. Note that in general, more than one face can
be specified for a given piece of text; when that happens, the attributes of all the faces are
merged to specify how to display the text. See Section 38.11.5 [Merging Faces], page 685.

In Emacs 21, any attribute in a face can have the value unspecified. This means the
face doesn’t specify that attribute. In face merging, when the first face fails to specify a
particular attribute, that means the next face gets a chance. However, the default face
must specify all attributes.

Some of these font attributes are meaningful only on certain kinds of displays—if your
display cannot handle a certain attribute, the attribute is ignored. (The attributes :family,
:width, :height, :weight, and :slant correspond to parts of an X Logical Font Descrip-
tor.)

:family Font family name, or fontset name (see Section 38.11.10 [Fontsets], page 690). If
you specify a font family name, the wild-card characters ‘*’ and ‘?’ are allowed.

:width Relative proportionate width, also known as the character set width
or set width. This should be one of the symbols ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, or ultra-expanded.

:height Either the font height, an integer in units of 1/10 point, a floating point number
specifying the amount by which to scale the height of any underlying face, or
a function, which is called with the old height (from the underlying face), and
should return the new height.

:weight Font weight—a symbol from this series (from most dense to most faint): ultra-
bold, extra-bold, bold, semi-bold, normal, semi-light, light, extra-
light, or ultra-light.
On a text-only terminal, any weight greater than normal is displayed as extra
bright, and any weight less than normal is displayed as half-bright (provided
the terminal supports the feature).

:slant Font slant—one of the symbols italic, oblique, normal, reverse-italic, or
reverse-oblique.
On a text-only terminal, slanted text is displayed as half-bright, if the terminal
supports the feature.

:foreground
Foreground color, a string.

:background
Background color, a string.

:inverse-video
Whether or not characters should be displayed in inverse video. The value
should be t (yes) or nil (no).

:stipple The background stipple, a bitmap.

682 GNU Emacs Lisp Reference Manual

The value can be a string; that should be the name of a file containing external-
format X bitmap data. The file is found in the directories listed in the variable
x-bitmap-file-path.

Alternatively, the value can specify the bitmap directly, with a list of the form
(width height data). Here, width and height specify the size in pixels, and
data is a string containing the raw bits of the bitmap, row by row. Each row
occupies (width+7)/8 consecutie bytes in the string (which should be a unibyte
string for best results).

If the value is nil, that means use no stipple pattern.

Normally you do not need to set the stipple attribute, because it is used auto-
matically to handle certain shades of gray.

:underline
Whether or not characters should be underlined, and in what color. If the value
is t, underlining uses the foreground color of the face. If the value is a string,
underlining uses that color. The value nil means do not underline.

:overline
Whether or not characters should be overlined, and in what color. The value
is used like that of :underline.

:strike-through
Whether or not characters should be strike-through, and in what color. The
value is used like that of :underline.

:inherit The name of a face from which to inherit attributes, or a list of face names.
Attributes from inherited faces are merged into the face like an underlying face
would be, with higher priority than underlying faces.

:box Whether or not a box should be drawn around characters, its color, the width
of the box lines, and 3D appearance.

Here are the possible values of the :box attribute, and what they mean:

nil Don’t draw a box.

t Draw a box with lines of width 1, in the foreground color.

color Draw a box with lines of width 1, in color color.

(:line-width width :color color :style style)
This way you can explicitly specify all aspects of the box. The value width
specifies the width of the lines to draw; it defaults to 1.

The value color specifies the color to draw with. The default is the foreground
color of the face for simple boxes, and the background color of the face for 3D
boxes.

The value style specifies whether to draw a 3D box. If it is released-button,
the box looks like a 3D button that is not being pressed. If it is pressed-
button, the box looks like a 3D button that is being pressed. If it is nil or
omitted, a plain 2D box is used.

Chapter 38: Emacs Display 683

The attributes :overline, :strike-through and :box are new in Emacs 21. The
attributes :family, :height, :width, :weight, :slant are also new; previous versions
used the following attributes, now semi-obsolete, to specify some of the same information:

:font This attribute specifies the font name.

:bold A non-nil value specifies a bold font.

:italic A non-nil value specifies an italic font.

For compatibility, you can still set these “attributes” in Emacs 21, even though they are
not real face attributes. Here is what that does:

:font You can specify an X font name as the “value” of this “attribute”; that sets
the :family, :width, :height, :weight, and :slant attributes according to
the font name.
If the value is a pattern with wildcards, the first font that matches the pattern
is used to set these attributes.

:bold A non-nil makes the face bold; nil makes it normal. This actually works by
setting the :weight attribute.

:italic A non-nil makes the face italic; nil makes it normal. This actually works by
setting the :slant attribute.

Variablex-bitmap-file-path
This variable specifies a list of directories for searching for bitmap files, for the
:stipple attribute.

Functionbitmap-spec-p object
This returns t if object is a valid bitmap specification, suitable for use with :stipple.
It returns nil otherwise.

38.11.4 Face Attribute Functions

You can modify the attributes of an existing face with the following functions. If you
specify frame, they affect just that frame; otherwise, they affect all frames as well as the
defaults that apply to new frames.

Functionset-face-attribute face frame &rest arguments
This function sets one or more attributes of face face for frame frame. If frame is
nil, it sets the attribute for all frames, and the defaults for new frames.
The extra arguments arguments specify the attributes to set, and the values for them.
They should consist of alternating attribute names (such as :family or :underline)
and corresponding values. Thus,

(set-face-attribute ’foo nil
:width :extended
:weight :bold
:underline "red")

sets the attributes :width, :weight and :underline to the corresponding values.

684 GNU Emacs Lisp Reference Manual

Functionface-attribute face attribute &optional frame
This returns the value of the attribute attribute of face face on frame. If frame is
nil, that means the selected frame (see Section 29.9 [Input Focus], page 495).
If frame is t, the value is the default for face for new frames.
For example,

(face-attribute ’bold :weight)
⇒ bold

The functions above did not exist before Emacs 21. For compatibility with older Emacs
versions, you can use the following functions to set and examine the face attributes which
existed in those versions.

Functionset-face-foreground face color &optional frame
Functionset-face-background face color &optional frame

These functions set the foreground (or background, respectively) color of face face to
color. The argument color should be a string, the name of a color.
Certain shades of gray are implemented by stipple patterns on black-and-white
screens.

Functionset-face-stipple face pattern &optional frame
This function sets the background stipple pattern of face face to pattern. The argu-
ment pattern should be the name of a stipple pattern defined by the X server, or nil
meaning don’t use stipple.
Normally there is no need to pay attention to stipple patterns, because they are used
automatically to handle certain shades of gray.

Functionset-face-font face font &optional frame
This function sets the font of face face.
In Emacs 21, this actually sets the attributes :family, :width, :height, :weight,
and :slant according to the font name font.
In Emacs 20, this sets the font attribute. Once you set the font explicitly, the bold and
italic attributes cease to have any effect, because the precise font that you specified
is used.

Functionset-face-bold-p face bold-p &optional frame
This function specifies whether face should be bold. If bold-p is non-nil, that means
yes; nil means no.
In Emacs 21, this sets the :weight attribute. In Emacs 20, it sets the :bold attribute.

Functionset-face-italic-p face italic-p &optional frame
This function specifies whether face should be italic. If italic-p is non-nil, that means
yes; nil means no.
In Emacs 21, this sets the :slant attribute. In Emacs 20, it sets the :italic at-
tribute.

Chapter 38: Emacs Display 685

Functionset-face-underline-p face underline-p &optional frame
This function sets the underline attribute of face face. Non-nil means do underline;
nil means don’t.

Functioninvert-face face &optional frame
This function inverts the :inverse-video attribute of face face. If the attribute is
nil, this function sets it to t, and vice versa.

These functions examine the attributes of a face. If you don’t specify frame, they refer
to the default data for new frames. They return the symbol unspecified if the face doesn’t
define any value for that attribute.

Functionface-foreground face &optional frame
Functionface-background face &optional frame

These functions return the foreground color (or background color, respectively) of
face face, as a string.

Functionface-stipple face &optional frame
This function returns the name of the background stipple pattern of face face, or nil
if it doesn’t have one.

Functionface-font face &optional frame
This function returns the name of the font of face face.

Functionface-bold-p face &optional frame
This function returns t if face is bold—that is, if it is bolder than normal. It returns
nil otherwise.

Functionface-italic-p face &optional frame
This function returns t if face is italic or oblique, nil otherwise.

Functionface-underline-p face &optional frame
This function returns the :underline attribute of face face.

Functionface-inverse-video-p face &optional frame
This function returns the :inverse-video attribute of face face.

38.11.5 Merging Faces for Display

Here are the ways to specify which faces to use for display of text:

• With defaults. The default face is used as the ultimate default for all text. (In Emacs
19 and 20, the default face is used only when no other face is specified.)
For a mode line or header line, the face modeline or header-line is used just before
default.

686 GNU Emacs Lisp Reference Manual

• With text properties. A character can have a face property; if so, the faces and face
attributes specified there apply. See Section 32.19.4 [Special Properties], page 567.
If the character has a mouse-face property, that is used instead of the face property
when the mouse is “near enough” to the character.

• With overlays. An overlay can have face and mouse-face properties too; they apply
to all the text covered by the overlay.

• With a region that is active. In Transient Mark mode, the region is highlighted with
the face region (see Section 38.11.1 [Standard Faces], page 678).

• With special glyphs. Each glyph can specify a particular face number. See Sec-
tion 38.17.3 [Glyphs], page 706.

If these various sources together specify more than one face for a particular character,
Emacs merges the attributes of the various faces specified. The attributes of the faces of
special glyphs come first; then comes the face for region highlighting, if appropriate; then
come attributes of faces from overlays, followed by those from text properties, and last the
default face.

When multiple overlays cover one character, an overlay with higher priority overrides
those with lower priority. See Section 38.9 [Overlays], page 671.

In Emacs 20, if an attribute such as the font or a color is not specified in any of the
above ways, the frame’s own font or color is used. In newer Emacs versions, this cannot
happen, because the default face specifies all attributes—in fact, the frame’s own font and
colors are synonymous with those of the default face.

38.11.6 Font Selection

Selecting a font means mapping the specified face attributes for a character to a font
that is available on a particular display. The face attributes, as determined by face merging,
specify most of the font choice, but not all. Part of the choice depends on what character
it is.

For multibyte characters, typically each font covers only one character set. So each
character set (see Section 33.5 [Character Sets], page 586) specifies a registry and encoding to
use, with the character set’s x-charset-registry property. Its value is a string containing
the registry and the encoding, with a dash between them:

(plist-get (charset-plist ’latin-iso8859-1)
’x-charset-registry)

⇒ "ISO8859-1"

Unibyte text does not have character sets, so displaying a unibyte character takes the
registry and encoding from the variable face-default-registry.

Variableface-default-registry
This variable specifies which registry and encoding to use in choosing fonts for unibyte
characters. The value is initialized at Emacs startup time from the font the user
specified for Emacs.

If the face specifies a fontset name, that fontset determines a pattern for fonts of the
given charset. If the face specifies a font family, a font pattern is constructed.

Chapter 38: Emacs Display 687

Emacs tries to find an available font for the given face attributes and character’s registry
and encoding. If there is a font that matches exactly, it is used, of course. The hard case
is when no available font exactly fits the specification. Then Emacs looks for one that is
“close”—one attribute at a time. You can specify the order to consider the attributes. In
the case where a specified font family is not available, you can specify a set of mappings for
alternatives to try.

Variableface-font-selection-order
This variable specifies the order of importance of the face attributes :width, :height,
:weight, and :slant. The value should be a list containing those four symbols, in
order of decreasing importance.

Font selection first finds the best available matches for the first attribute listed; then,
among the fonts which are best in that way, it searches for the best matches in the
second attribute, and so on.

The attributes :weight and :width have symbolic values in a range centered around
normal. Matches that are more extreme (farther from normal) are somewhat pre-
ferred to matches that are less extreme (closer to normal); this is designed to ensure
that non-normal faces contrast with normal ones, whenever possible.

The default is (:width :height :weight :slant), which means first find the fonts
closest to the specified :width, then—among the fonts with that width—find a best
match for the specified font height, and so on.

One example of a case where this variable makes a difference is when the default font
has no italic equivalent. With the default ordering, the italic face will use a non-
italic font that is similar to the default one. But if you put :slant before :height,
the italic face will use an italic font, even if its height is not quite right.

Variableface-font-family-alternatives
This variable lets you specify alternative font families to try, if a given family is
specified and doesn’t exist. Each element should have this form:

(family alternate-families...)

If family is specified but not available, Emacs will try the other families given in
alternate-families, one by one, until it finds a family that does exist.

Variableface-font-registry-alternatives
This variable lets you specify alternative font registries to try, if a given registry is
specified and doesn’t exist. Each element should have this form:

(registry alternate-registries...)

If registry is specified but not available, Emacs will try the other registries given in
alternate-registries, one by one, until it finds a registry that does exist.

Emacs can make use of scalable fonts, but by default it does not use them, since the use
of too many or too big scalable fonts can crash XFree86 servers.

688 GNU Emacs Lisp Reference Manual

Variablescalable-fonts-allowed
This variable controls which scalable fonts to use. A value of nil, the default, means
do not use scalable fonts. t means to use any scalable font that seems appropriate
for the text.
Otherwise, the value must be a list of regular expressions. Then a scalable font is
enabled for use if its name matches any regular expression in the list. For example,

(setq scalable-fonts-allowed ’("muleindian-2$"))

allows the use of scalable fonts with registry muleindian-2.

Functionclear-face-cache &optional unload-p
This function clears the face cache for all frames. If unload-p is non-nil, that means
to unload all unused fonts as well.

38.11.7 Functions for Working with Faces

Here are additional functions for creating and working with faces.

Functionmake-face name
This function defines a new face named name, initially with all attributes nil. It
does nothing if there is already a face named name.

Functionface-list
This function returns a list of all defined face names.

Functioncopy-face old-face new-name &optional frame new-frame
This function defines the face new-name as a copy of the existing face named old-face.
It creates the face new-name if that doesn’t already exist.
If the optional argument frame is given, this function applies only to that frame.
Otherwise it applies to each frame individually, copying attributes from old-face in
each frame to new-face in the same frame.
If the optional argument new-frame is given, then copy-face copies the attributes of
old-face in frame to new-name in new-frame.

Functionface-id face
This function returns the face number of face face.

Functionface-documentation face
This function returns the documentation string of face face, or nil if none was spec-
ified for it.

Functionface-equal face1 face2 &optional frame
This returns t if the faces face1 and face2 have the same attributes for display.

Functionface-differs-from-default-p face &optional frame
This returns t if the face face displays differently from the default face. A face is
considered to be “the same” as the default face if each attribute is either the same as
that of the default face, or unspecified (meaning to inherit from the default).

Chapter 38: Emacs Display 689

38.11.8 Automatic Face Assignment

Starting with Emacs 21, a hook is available for automatically assigning faces to text in
the buffer. This hook is used for part of the implementation of Font-Lock mode.

Variablefontification-functions
This variable holds a list of functions that are called by Emacs redisplay as needed
to assign faces automatically to text in the buffer.

The functions are called in the order listed, with one argument, a buffer position pos.
Each function should attempt to assign faces to the text in the current buffer starting
at pos.

Each function should record the faces they assign by setting the face property. It
should also add a non-nil fontified property for all the text it has assigned faces
to. That property tells redisplay that faces have been assigned to that text already.

It is probably a good idea for each function to do nothing if the character after pos
already has a non-nil fontified property, but this is not required. If one function
overrides the assignments made by a previous one, the properties as they are after
the last function finishes are the ones that really matter.

For efficiency, we recommend writing these functions so that they usually assign faces
to around 400 to 600 characters at each call.

38.11.9 Looking Up Fonts

Functionx-list-fonts pattern &optional face frame maximum
This function returns a list of available font names that match pattern. If the optional
arguments face and frame are specified, then the list is limited to fonts that are the
same size as face currently is on frame.

The argument pattern should be a string, perhaps with wildcard characters: the ‘*’
character matches any substring, and the ‘?’ character matches any single character.
Pattern matching of font names ignores case.

If you specify face and frame, face should be a face name (a symbol) and frame should
be a frame.

The optional argument maximum sets a limit on how many fonts to return. If this is
non-nil, then the return value is truncated after the first maximum matching fonts.
Specifying a small value for maximum can make this function much faster, in cases
where many fonts match the pattern.

These additional functions are available starting in Emacs 21.

Functionx-family-fonts &optional family frame
This function returns a list describing the available fonts for family family on frame.
If family is omitted or nil, this list applies to all families, and therefore, it contains
all available fonts. Otherwise, family must be a string; it may contain the wildcards
‘?’ and ‘*’.

690 GNU Emacs Lisp Reference Manual

The list describes the display that frame is on; if frame is omitted or nil, it applies
to the selected frame’s display (see Section 29.9 [Input Focus], page 495).
The list contains a vector of the following form for each font:

[family width point-size weight slant
fixed-p full registry-and-encoding]

The first five elements correspond to face attributes; if you specify these attributes
for a face, it will use this font.
The last three elements give additional information about the font. fixed-p is non-nil
if the font is fixed-pitch. full is the full name of the font, and registry-and-encoding
is a string giving the registry and encoding of the font.
The result list is sorted according to the current face font sort order.

Functionx-font-family-list &optional frame
This function returns a list of the font families available for frame’s display. If frame
is omitted or nil, it describes the selected frame’s display (see Section 29.9 [Input
Focus], page 495).
The value is a list of elements of this form:

(family . fixed-p)

Here family is a font family, and fixed-p is non-nil if fonts of that family are fixed-
pitch.

Variablefont-list-limit
This variable specifies maximum number of fonts to consider in font matching. The
function x-family-fonts will not return more than that many fonts, and font se-
lection will consider only that many fonts when searching a matching font for face
attributes. The default is currently 100.

38.11.10 Fontsets

A fontset is a list of fonts, each assigned to a range of character codes. An individual
font cannot display the whole range of characters that Emacs supports, but a fontset can.
Fontsets have names, just as fonts do, and you can use a fontset name in place of a font
name when you specify the “font” for a frame or a face. Here is information about defining
a fontset under Lisp program control.

Functioncreate-fontset-from-fontset-spec fontset-spec &optional
style-variant-p noerror

This function defines a new fontset according to the specification string fontset-spec.
The string should have this format:

fontpattern, [charsetname:fontname]. . .
Whitespace characters before and after the commas are ignored.
The first part of the string, fontpattern, should have the form of a standard X font
name, except that the last two fields should be ‘fontset-alias’.
The new fontset has two names, one long and one short. The long name is fontpattern
in its entirety. The short name is ‘fontset-alias’. You can refer to the fontset by

Chapter 38: Emacs Display 691

either name. If a fontset with the same name already exists, an error is signaled,
unless noerror is non-nil, in which case this function does nothing.

If optional argument style-variant-p is non-nil, that says to create bold, italic and
bold-italic variants of the fontset as well. These variant fontsets do not have a short
name, only a long one, which is made by altering fontpattern to indicate the bold or
italic status.

The specification string also says which fonts to use in the fontset. See below for the
details.

The construct ‘charset:font’ specifies which font to use (in this fontset) for one particular
character set. Here, charset is the name of a character set, and font is the font to use for
that character set. You can use this construct any number of times in the specification
string.

For the remaining character sets, those that you don’t specify explicitly, Emacs chooses a
font based on fontpattern: it replaces ‘fontset-alias’ with a value that names one character
set. For the ascii character set, ‘fontset-alias’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not useful because it is better
to use the smaller font in its own size, which Emacs does.

Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ascii characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in the family
field. In such a case, ‘Fontset-n’ can be specified as below:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\
chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

38.12 The display Property

The display text property (or overlay property) is used to insert images into text, and
also control other aspects of how text displays. These features are available starting in
Emacs 21. The value of the display property should be a display specification, or a list
or vector containing several display specifications. The rest of this section describes several
kinds of display specifications and what they mean.

692 GNU Emacs Lisp Reference Manual

38.12.1 Specified Spaces

To display a space of specified width and/or height, use a display specification of the
form (space . props), where props is a property list (a list of alternating properties and
values). You can put this property on one or more consecutive characters; a space of the
specified height and width is displayed in place of all of those characters. These are the
properties you can use to specify the weight of the space:

:width width
Specifies that the space width should be width times the normal character
width. width can be an integer or floating point number.

:relative-width factor
Specifies that the width of the stretch should be computed from the first charac-
ter in the group of consecutive characters that have the same display property.
The space width is the width of that character, multiplied by factor.

:align-to hpos
Specifies that the space should be wide enough to reach hpos. The value hpos
is measured in units of the normal character width. It may be an interer or a
floating point number.

Exactly one of the above properties should be used. You can also specify the height of
the space, with other properties:

:height height
Specifies the height of the space, as height, measured in terms of the normal
line height.

:relative-height factor
Specifies the height of the space, multiplying the ordinary height of the text
having this display specification by factor.

:ascent ascent
Specifies that ascent percent of the height of the space should be considered
as the ascent of the space—that is, the part above the baseline. The value of
ascent must be a non-negative number no greater than 100.

You should not use both :height and :relative-height together.

38.12.2 Other Display Specifications

(image . image-props)
This is in fact an image descriptor (see Section 38.13 [Images], page 694). When
used as a display specification, it means to display the image instead of the text
that has the display specification.

((margin nil) string)
string A display specification of this form means to display string instead of the text

that has the display specification, at the same position as that text. This
is a special case of marginal display (see Section 38.12.3 [Display Margins],
page 693).

Chapter 38: Emacs Display 693

Recursive display specifications are not supported, i.e. string display specifica-
tions that have a display specification property themselves.

(space-width factor)
This display specification affects all the space characters within the text that has
the specification. It displays all of these spaces factor times as wide as normal.
The element factor should be an integer or float. Characters other than spaces
are not affected at all; in particular, this has no effect on tab characters.

(height height)
This display specification makes the text taller or shorter. Here are the possi-
bilities for height:

(+ n) This means to use a font that is n steps larger. A “step” is defined
by the set of available fonts—specifically, those that match what
was otherwise specified for this text, in all attributes except height.
Each size for which a suitable font is available counts as another
step. n should be an integer.

(- n) This means to use a font that is n steps smaller.

a number, factor
A number, factor, means to use a font that is factor times as tall
as the default font.

a symbol, function
A symbol is a function to compute the height. It is called with the
current height as argument, and should return the new height to
use.

anything else, form
If the height value doesn’t fit the previous possibilities, it is a form.
Emacs evaluates it to get the new height, with the symbol height
bound to the current specified font height.

(raise factor)
This kind of display specification raises or lowers the text it applies to, relative
to the baseline of the line.
factor must be a number, which is interpreted as a multiple of the height of the
affected text. If it is positive, that means to display the characters raised. If it
is negative, that means to display them lower down.
If the text also has a height display specification, that does not affect the
amount of raising or lowering, which is based on the faces used for the text.

38.12.3 Displaying in the Margins

A buffer can have blank areas called display margins on the left and on the right.
Ordinary text never appears in these areas, but you can put things into the display margins
using the display property.

To put text in the left or right display margin of the window, use a display specification
of the form (margin right-margin) or (margin left-margin) on it. To put an image in

694 GNU Emacs Lisp Reference Manual

a display margin, use that display specification along with the display specification for the
image.

Before the display margins can display anything, you must give them a nonzero width.
The usual way to do that is to set these variables:

Variableleft-margin-width
This variable specifies the width of the left margin. It is buffer-local in all buffers.

Variableright-margin-width
This variable specifies the width of the right margin. It is buffer-local in all buffers.

Setting these variables does not immediately affect the window. These variables are
checked when a new buffer is displayed in the window. Thus, you can make changes take
effect by calling set-window-buffer.

You can also set the margin widths immediately.

Functionset-window-margins window left &optional right
This function specifies the margin widths for window window. The argument left
controls the left margin and right controls the right margin (default 0).

Functionwindow-margins &optional window
This function returns the left and right margins of window as a cons cell of the form
(left . right). If window is nil, the selected window is used.

38.12.4 Conditional Display Specifications

You can make any display specification conditional. To do that, package it in another
list of the form (when condition . spec). Then the specification spec applies only when
condition evaluates to a non-nil value. During the evaluation, object is bound to the
string or buffer having the conditional display property. position and buffer-position
are bound to the position within object and the buffer position where the display property
was found, respectively. Both positions can be different when object is a string.

38.13 Images

To display an image in an Emacs buffer, you must first create an image descriptor,
then use it as a display specifier in the display property of text that is displayed (see
Section 38.12 [Display Property], page 691). Like the display property, this feature is
available starting in Emacs 21.

Emacs can display a number of different image formats; some of them are supported only
if particular support libraries are installed on your machine. The supported image formats
include XBM, XPM (needing the libraries libXpm version 3.4k and libz), GIF (needing
libungif 4.1.0), Postscript, PBM, JPEG (needing the libjpeg library version v6a), TIFF
(needing libtiff v3.4), and PNG (needing libpng 1.0.2).

You specify one of these formats with an image type symbol. The image type symbols
are xbm, xpm, gif, postscript, pbm, jpeg, tiff, and png.

Chapter 38: Emacs Display 695

Variableimage-types
This variable contains a list of those image type symbols that are supported in the
current configuration.

38.13.1 Image Descriptors

An image description is a list of the form (image . props), where props is a property
list containing alternating keyword symbols (symbols whose names start with a colon) and
their values. You can use any Lisp object as a property, but the only properties that have
any special meaning are certain symbols, all of them keywords.

Every image descriptor must contain the property :type type to specify the format of
the image. The value of type should be an image type symbol; for example, xpm for an
image in XPM format.

Here is a list of other properties that are meaningful for all image types:

:file file The :file property specifies to load the image from file file. If file is not an
absolute file name, it is expanded in data-directory.

:data data
The :data property specifies the actual contents of the image. Each image must
use either :data or :file, but not both. For most image types, the value of the
:data property should be a string containing the image data; we recommend
using a unibyte string.
Before using :data, look for further information in the section below describing
the specific image format. For some image types, :data may not be supported;
for some, it allows other data types; for some, :data alone is not enough, so
you need to use other image properties along with :data.

:margin margin
The :margin property specifies how many pixels to add as an extra margin
around the image. The value, margin, must be a a non-negative number, or a
pair (x . y) of such numbers. If it is a pair, x specifies how many pixels to
add horizontally, and y specifies how many pixels to add vertically. If :margin
is not specified, the default is zero.

:ascent ascent
The :ascent property specifies the amount of the image’s height to use for
its ascent—that is, the part above the baseline. The value, ascent, must be a
number in the range 0 to 100, or the symbol center.
If ascent is a number, that percentage of the image’s height is used for its ascent.
If ascent is center, the image is vertically centered around a centerline which
would be the vertical centerline of text drawn at the position of the image,
in the manner specified by the text properties and overlays that apply to the
image.
If this property is omitted, it defaults to 50.

:relief relief
The :relief property, if non-nil, adds a shadow rectangle around the image.
The value, relief, specifies the width of the shadow lines, in pixels. If relief is

696 GNU Emacs Lisp Reference Manual

negative, shadows are drawn so that the image appears as a pressed button;
otherwise, it appears as an unpressed button.

:conversion algorithm
The :conversion property, if non-nil, specifies a conversion algorithm that
should be applied to the image before it is displayed; the value, algorithm,
specifies which algorithm.

laplace
emboss Specifies the Laplace edge detection algorithm, which blurs out

small differences in color while highlighting larger differences. Peo-
ple sometimes consider this useful for displaying the image for a
“disabled” button.

(edge-detection :matrix matrix :color-adjust adjust)
Specifies a general edge-detection algorithm. matrix must be either
a nine-element list or a nine-element vector of numbers. A pixel at
position x/y in the transformed image is computed from original
pixels around that position. matrix specifies, for each pixel in the
neighborhood of x/y, a factor with which that pixel will influence
the transformed pixel; element 0 specifies the factor for the pixel
at x− 1/y− 1, element 1 the factor for the pixel at x/y− 1 etc., as
shown below:

x− 1/y − 1 x/y − 1 x + 1/y − 1
x− 1/y x/y x + 1/y

x− 1/y + 1 x/y + 1 x + 1/y + 1

The resulting pixel is computed from the color intensity of the color
resulting from summing up the RGB values of surrounding pixels,
multiplied by the specified factors, and dividing that sum by the
sum of the factors’ absolute values.
Laplace edge-detection currently uses a matrix of

1 0 0
0 0 0
9 9 −1

Emboss edge-detection uses a matrix of

2 −1 0
−1 0 1
0 1 −2

disabled Specifies transforming the image so that it looks “disabled”.

:mask mask
If mask is heuristic or (heuristic bg), build a clipping mask for the image,
so that the background of a frame is visible behind the image. If bg is not
specified, or if bg is t, determine the background color of the image by looking

Chapter 38: Emacs Display 697

at the four corners of the image, assuming the most frequently occurring color
from the corners is the background color of the image. Otherwise, bg must be
a list (red green blue) specifying the color to assume for the background of the
image.
If mask is nil, remove a mask from the image, if it has one. Images in some
formats include a mask which can be removed by specifying :mask nil.

Functionimage-mask-p spec &optional frame
This function returns t if image spec has a mask bitmap. frame is the frame on which
the image will be displayed. frame nil or omitted means to use the selected frame
(see Section 29.9 [Input Focus], page 495).

38.13.2 XBM Images

To use XBM format, specify xbm as the image type. This image format doesn’t require
an external library, so images of this type are always supported.

Additional image properties supported for the xbm image type are:

:foreground foreground
The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the XBM that
is 1. The default is the frame’s foreground color.

:background background
The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the XBM
that is 0. The default is the frame’s background color.

If you specify an XBM image using data within Emacs instead of an external file, use
the following three properties:

:data data
The value, data, specifies the contents of the image. There are three formats
you can use for data:
• A vector of strings or bool-vectors, each specifying one line of the image.

Do specify :height and :width.
• A string containing the same byte sequence as an XBM file would contain.

You must not specify :height and :width in this case, because omitting
them is what indicates the data has the format of an XBM file. The file
contents specify the height and width of the image.

• A string or a bool-vector containing the bits of the image (plus perhaps
some extra bits at the end that will not be used). It should contain at least
width * height bits. In this case, you must specify :height and :width,
both to indicate that the string contains just the bits rather than a whole
XBM file, and to specify the size of the image.

:width width
The value, width, specifies the width of the image, in pixels.

:height height
The value, height, specifies the height of the image, in pixels.

698 GNU Emacs Lisp Reference Manual

38.13.3 XPM Images

To use XPM format, specify xpm as the image type. The additional image property
:color-symbols is also meaningful with the xpm image type:

:color-symbols symbols
The value, symbols, should be an alist whose elements have the form (name .
color). In each element, name is the name of a color as it appears in the image
file, and color specifies the actual color to use for displaying that name.

38.13.4 GIF Images

For GIF images, specify image type gif. Because of the patents in the US covering the
LZW algorithm, the continued use of GIF format is a problem for the whole Internet; to
end this problem, it is a good idea for everyone, even outside the US, to stop using GIFS
right away (http://www.burnallgifs.org/). But if you still want to use them, Emacs can
display them.

:index index
You can use :index to specify one image from a GIF file that contains more
than one image. This property specifies use of image number index from the
file. An error is signaled if the GIF file doesn’t contain an image with index
index.

38.13.5 Postscript Images

To use Postscript for an image, specify image type postscript. This works only if you
have Ghostscript installed. You must always use these three properties:

:pt-width width
The value, width, specifies the width of the image measured in points (1/72
inch). width must be an integer.

:pt-height height
The value, height, specifies the height of the image in points (1/72 inch). height
must be an integer.

:bounding-box box
The value, box, must be a list or vector of four integers, which specifying the
bounding box of the Postscript image, analogous to the ‘BoundingBox’ comment
found in Postscript files.

%%BoundingBox: 22 171 567 738

Displaying Postscript images from Lisp data is not currently implemented, but it may
be implemented by the time you read this. See the ‘etc/NEWS’ file to make sure.

38.13.6 Other Image Types

For PBM images, specify image type pbm. Color, gray-scale and monochromatic images
are supported. For mono PBM images, two additional image properties are supported.

Chapter 38: Emacs Display 699

:foreground foreground
The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the XBM that
is 1. The default is the frame’s foreground color.

:background background
The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the XBM
that is 0. The default is the frame’s background color.

For JPEG images, specify image type jpeg.
For TIFF images, specify image type tiff.
For PNG images, specify image type png.

38.13.7 Defining Images

The functions create-image, defimage and find-image provide convenient ways to
create image descriptors.

Functioncreate-image file &optional type &rest props
This function creates and returns an image descriptor which uses the data in file.
The optional argument type is a symbol specifying the image type. If type is omitted
or nil, create-image tries to determine the image type from the file’s first few bytes,
or else from the file’s name.
The remaining arguments, props, specify additional image properties—for example,

(create-image "foo.xpm" ’xpm :heuristic-mask t)

The function returns nil if images of this type are not supported. Otherwise it
returns an image descriptor.

Macrodefimage variable doc &rest specs
This macro defines variable as an image name. The second argument, doc, is an
optional documentation string. The remaining arguments, specs, specify alternative
ways to display the image.
Each argument in specs has the form of a property list, and each one should specify
at least the :type property and the :file property. Here is an example:

(defimage test-image
’((:type xpm :file "~/test1.xpm")
(:type xbm :file "~/test1.xbm")))

defimage tests each argument, one by one, to see if it is usable—that is, if the type
is supported and the file exists. The first usable argument is used to make an image
descriptor which is stored in the variable variable.
If none of the alternatives will work, then variable is defined as nil.

Functionfind-image specs
This function provides a convenient way to find an image satisfying one of a list of
image specifications specs.

700 GNU Emacs Lisp Reference Manual

Each specification in specs is a property list with contents depending on image type.
All specifications must at least contain the properties :type type and either :file file
or :data DATA, where type is a symbol specifying the image type, e.g. xbm, file is
the file to load the image from, and data is a string containing the actual image data.
The first specification in the list whose type is supported, and file exists, is used to
construct the image specification to be returned. If no specification is satisfied, nil
is returned.
The image is looked for first on load-path and then in data-directory.

38.13.8 Showing Images

You can use an image descriptor by setting up the display property yourself, but it is
easier to use the functions in this section.

Functioninsert-image image &optional string area
This function inserts image in the current buffer at point. The value image should
be an image descriptor; it could be a value returned by create-image, or the value
of a symbol defined with defimage. The argument string specifies the text to put in
the buffer to hold the image.
The argument area specifies whether to put the image in a margin. If it is left-
margin, the image appears in the left margin; right-margin specifies the right mar-
gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.
Internally, this function inserts string in the buffer, and gives it a display property
which specifies image. See Section 38.12 [Display Property], page 691.

Functionput-image image pos &optional string area
This function puts image image in front of pos in the current buffer. The argument
pos should be an integer or a marker. It specifies the buffer position where the image
should appear. The argument string specifies the text that should hold the image as
an alternative to the default.
The argument image must be an image descriptor, perhaps returned by create-image
or stored by defimage.
The argument area specifies whether to put the image in a margin. If it is left-
margin, the image appears in the left margin; right-margin specifies the right mar-
gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.
Internally, this function creates an overlay, and gives it a before-string property
containing text that has a display property whose value is the image. (Whew!)

Functionremove-images start end &optional buffer
This function removes images in buffer between positions start and end. If buffer is
omitted or nil, images are removed from the current buffer.
This removes only images that were put into buffer the way put-image does it, not
images that were inserted with insert-image or in other ways.

Chapter 38: Emacs Display 701

Functionimage-size spec &optional pixels frame
This function returns the size of an image as a pair (width . height). spec is an
image specification. pixels non-nil means return sizes measured in pixels, otherwise
return sizes measured in canonical character units (fractions of the width/height of
the frame’s default font). frame is the frame on which the image will be displayed.
frame null or omitted means use the selected frame (see Section 29.9 [Input Focus],
page 495).

38.13.9 Image Cache

Emacs stores images in an image cache when it displays them, so it can display them
again more efficiently. It removes an image from the cache when it hasn’t been displayed
for a specified period of time.

When an image is looked up in the cache, its specification is compared with cached image
specifications using equal. This means that all images with equal specifications share the
same image in the cache.

Variableimage-cache-eviction-delay
This variable specifies the number of seconds an image can remain in the cache without
being displayed. When an image is not displayed for this length of time, Emacs
removes it from the image cache.

If the value is nil, Emacs does not remove images from the cache except when you
explicitly clear it. This mode can be useful for debugging.

Functionclear-image-cache &optional frame
This function clears the image cache. If frame is non-nil, only the cache for that
frame is cleared. Otherwise all frames’ caches are cleared.

38.14 Blinking Parentheses

This section describes the mechanism by which Emacs shows a matching open parenthesis
when the user inserts a close parenthesis.

Variableblink-paren-function
The value of this variable should be a function (of no arguments) to be called whenever
a character with close parenthesis syntax is inserted. The value of blink-paren-
function may be nil, in which case nothing is done.

User Optionblink-matching-paren
If this variable is nil, then blink-matching-open does nothing.

User Optionblink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching parenthesis
before giving up.

702 GNU Emacs Lisp Reference Manual

User Optionblink-matching-delay
This variable specifies the number of seconds for the cursor to remain at the matching
parenthesis. A fraction of a second often gives good results, but the default is 1, which
works on all systems.

Commandblink-matching-open
This function is the default value of blink-paren-function. It assumes that point
follows a character with close parenthesis syntax and moves the cursor momentarily
to the matching opening character. If that character is not already on the screen, it
displays the character’s context in the echo area. To avoid long delays, this function
does not search farther than blink-matching-paren-distance characters.

Here is an example of calling this function explicitly.
(defun interactive-blink-matching-open ()
"Indicate momentarily the start of sexp before point."
(interactive)
(let ((blink-matching-paren-distance

(buffer-size))
(blink-matching-paren t))

(blink-matching-open)))

38.15 Inverse Video

User Optioninverse-video
This variable controls whether Emacs uses inverse video for all text on the screen.
Non-nil means yes, nil means no. The default is nil.

User Optionmode-line-inverse-video
This variable controls the use of inverse video for mode lines and menu bars. If it is
non-nil, then these lines are displayed in inverse video. Otherwise, these lines are
displayed normally, just like other text. The default is t.

For window frames, this feature actually applies the face named mode-line; that face
is normally set up as the inverse of the default face, unless you change it.

38.16 Usual Display Conventions

The usual display conventions define how to display each character code. You can
override these conventions by setting up a display table (see Section 38.17 [Display Tables],
page 704). Here are the usual display conventions:

• Character codes 32 through 126 map to glyph codes 32 through 126. Normally this
means they display as themselves.

• Character code 9 is a horizontal tab. It displays as whitespace up to a position deter-
mined by tab-width.

• Character code 10 is a newline.

Chapter 38: Emacs Display 703

• All other codes in the range 0 through 31, and code 127, display in one of two ways
according to the value of ctl-arrow. If it is non-nil, these codes map to sequences of
two glyphs, where the first glyph is the ascii code for ‘^’. (A display table can specify
a glyph to use instead of ‘^’.) Otherwise, these codes map just like the codes in the
range 128 to 255.
On MS-DOS terminals, Emacs arranges by default for the character code 127 to be
mapped to the glyph code 127, which normally displays as an empty polygon. This
glyph is used to display non-ascii characters that the MS-DOS terminal doesn’t sup-
port. See section “MS-DOS and MULE” in The GNU Emacs Manual.

• Character codes 128 through 255 map to sequences of four glyphs, where the first glyph
is the ascii code for ‘\’, and the others are digit characters representing the character
code in octal. (A display table can specify a glyph to use instead of ‘\’.)

• Multibyte character codes above 256 are displayed as themselves, or as a question mark
or empty box if the terminal cannot display that character.

The usual display conventions apply even when there is a display table, for any character
whose entry in the active display table is nil. Thus, when you set up a display table, you
need only specify the characters for which you want special behavior.

These display rules apply to carriage return (character code 13), when it appears in
the buffer. But that character may not appear in the buffer where you expect it, if it was
eliminated as part of end-of-line conversion (see Section 33.10.1 [Coding System Basics],
page 590).

These variables affect the way certain characters are displayed on the screen. Since
they change the number of columns the characters occupy, they also affect the indentation
functions. These variables also affect how the mode line is displayed; if you want to force
redisplay of the mode line using the new values, call the function force-mode-line-update
(see Section 23.3 [Mode Line Format], page 368).

User Optionctl-arrow
This buffer-local variable controls how control characters are displayed. If it is non-
nil, they are displayed as a caret followed by the character: ‘^A’. If it is nil, they
are displayed as a backslash followed by three octal digits: ‘\001’.

Variabledefault-ctl-arrow
The value of this variable is the default value for ctl-arrow in buffers that do not
override it. See Section 11.10.3 [Default Value], page 150.

User Optionindicate-empty-lines
When this is non-nil, Emacs displays a special glyph in each empty line at the end
of the buffer, on terminals that support it (window systems).

User Optiontab-width
The value of this variable is the spacing between tab stops used for displaying tab
characters in Emacs buffers. The value is in units of columns, and the default is 8.
Note that this feature is completely independent of the user-settable tab stops used
by the command tab-to-tab-stop. See Section 32.17.5 [Indent Tabs], page 560.

704 GNU Emacs Lisp Reference Manual

38.17 Display Tables

You can use the display table feature to control how all possible character codes display
on the screen. This is useful for displaying European languages that have letters not in the
ascii character set.

The display table maps each character code into a sequence of glyphs, each glyph being
a graphic that takes up one character position on the screen. You can also define how to
display each glyph on your terminal, using the glyph table.

Display tables affect how the mode line is displayed; if you want to force redisplay of
the mode line using a new display table, call force-mode-line-update (see Section 23.3
[Mode Line Format], page 368).

38.17.1 Display Table Format

A display table is actually a char-table (see Section 6.6 [Char-Tables], page 89) with
display-table as its subtype.

Functionmake-display-table
This creates and returns a display table. The table initially has nil in all elements.

The ordinary elements of the display table are indexed by character codes; the element
at index c says how to display the character code c. The value should be nil or a vector
of glyph values (see Section 38.17.3 [Glyphs], page 706). If an element is nil, it says to
display that character according to the usual display conventions (see Section 38.16 [Usual
Display], page 702).

If you use the display table to change the display of newline characters, the whole buffer
will be displayed as one long “line.”

The display table also has six “extra slots” which serve special purposes. Here is a table
of their meanings; nil in any slot means to use the default for that slot, as stated below.

0 The glyph for the end of a truncated screen line (the default for this is ‘$’). See
Section 38.17.3 [Glyphs], page 706. Newer Emacs versions, on some platforms,
display arrows to indicate truncation—the display table has no effect in these
situations.

1 The glyph for the end of a continued line (the default is ‘\’). Newer Emacs
versions, on some platforms, display curved arrows to indicate truncation—the
display table has no effect in these situations.

2 The glyph for indicating a character displayed as an octal character code (the
default is ‘\’).

3 The glyph for indicating a control character (the default is ‘^’).

4 A vector of glyphs for indicating the presence of invisible lines (the default is
‘...’). See Section 38.6 [Selective Display], page 667.

5 The glyph used to draw the border between side-by-side windows (the default
is ‘|’). See Section 28.2 [Splitting Windows], page 454. This takes effect only
when there are no scroll bars; if scroll bars are supported and in use, a scroll
bar separates the two windows.

Chapter 38: Emacs Display 705

For example, here is how to construct a display table that mimics the effect of setting
ctl-arrow to a non-nil value:

(setq disptab (make-display-table))
(let ((i 0))
(while (< i 32)
(or (= i ?\t) (= i ?\n)

(aset disptab i (vector ?^ (+ i 64))))
(setq i (1+ i)))

(aset disptab 127 (vector ?^ ??)))

Functiondisplay-table-slot display-table slot
This function returns the value of the extra slot slot of display-table. The argument
slot may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

Functionset-display-table-slot display-table slot value
This function stores value in the extra slot slot of display-table. The argument slot
may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

Functiondescribe-display-table display-table
This function displays a description of the display table display-table in a help buffer.

Commanddescribe-current-display-table
This command displays a description of the current display table in a help buffer.

38.17.2 Active Display Table

Each window can specify a display table, and so can each buffer. When a buffer b is
displayed in window w, display uses the display table for window w if it has one; otherwise,
the display table for buffer b if it has one; otherwise, the standard display table if any. The
display table chosen is called the active display table.

Functionwindow-display-table window
This function returns window’s display table, or nil if window does not have an
assigned display table.

Functionset-window-display-table window table
This function sets the display table of window to table. The argument table should
be either a display table or nil.

Variablebuffer-display-table
This variable is automatically buffer-local in all buffers; its value in a particular buffer
specifies the display table for that buffer. If it is nil, that means the buffer does not
have an assigned display table.

706 GNU Emacs Lisp Reference Manual

Variablestandard-display-table
This variable’s value is the default display table, used whenever a window has no
display table and neither does the buffer displayed in that window. This variable is
nil by default.

If there is no display table to use for a particular window—that is, if the window specifies
none, its buffer specifies none, and standard-display-table is nil—then Emacs uses the
usual display conventions for all character codes in that window. See Section 38.16 [Usual
Display], page 702.

A number of functions for changing the standard display table are defined in the library
‘disp-table’.

38.17.3 Glyphs

A glyph is a generalization of a character; it stands for an image that takes up a sin-
gle character position on the screen. Glyphs are represented in Lisp as integers, just as
characters are.

The meaning of each integer, as a glyph, is defined by the glyph table, which is the value
of the variable glyph-table.

Variableglyph-table
The value of this variable is the current glyph table. It should be a vector; the gth
element defines glyph code g. If the value is nil instead of a vector, then all glyphs
are simple (see below). The glyph table is not used on windowed displays.

Here are the possible types of elements in the glyph table:

string Send the characters in string to the terminal to output this glyph. This alter-
native is available on character terminals, but not under a window system.

integer Define this glyph code as an alias for glyph code integer. You can use an alias
to specify a face code for the glyph; see below.

nil This glyph is simple. The glyph code mod 524288 is the character to output, and
the glyph code divided by 524288 specifies the face number (see Section 38.11.7
[Face Functions], page 688) to use while outputting it. (524288 is 219.) See
Section 38.11 [Faces], page 678.

If a glyph code is greater than or equal to the length of the glyph table, that code is
automatically simple.

Functioncreate-glyph string
This function returns a newly-allocated glyph code which is set up to display by
sending string to the terminal.

Chapter 38: Emacs Display 707

38.18 Beeping

This section describes how to make Emacs ring the bell (or blink the screen) to attract
the user’s attention. Be conservative about how often you do this; frequent bells can
become irritating. Also be careful not to use just beeping when signaling an error is more
appropriate. (See Section 10.5.3 [Errors], page 125.)

Functionding &optional do-not-terminate
This function beeps, or flashes the screen (see visible-bell below). It also termi-
nates any keyboard macro currently executing unless do-not-terminate is non-nil.

Functionbeep &optional do-not-terminate
This is a synonym for ding.

User Optionvisible-bell
This variable determines whether Emacs should flash the screen to represent a bell.
Non-nil means yes, nil means no. This is effective on a window system, and on a
character-only terminal provided the terminal’s Termcap entry defines the visible bell
capability (‘vb’).

Variablering-bell-function
If this is non-nil, it specifies how Emacs should “ring the bell.” Its value should be
a function of no arguments. If this is non-nil, it takes precedence over the visible-
bell variable.

38.19 Window Systems

Emacs works with several window systems, most notably the X Window System. Both
Emacs and X use the term “window”, but use it differently. An Emacs frame is a single
window as far as X is concerned; the individual Emacs windows are not known to X at all.

Variablewindow-system
This variable tells Lisp programs what window system Emacs is running under. The
possible values are

x Emacs is displaying using X.

pc Emacs is displaying using MS-DOS.

w32 Emacs is displaying using Windows.

mac Emacs is displaying using a Macintosh.

nil Emacs is using a character-based terminal.

Variablewindow-setup-hook
This variable is a normal hook which Emacs runs after handling the initialization
files. Emacs runs this hook after it has completed loading your init file, the default
initialization file (if any), and the terminal-specific Lisp code, and running the hook
term-setup-hook.
This hook is used for internal purposes: setting up communication with the window
system, and creating the initial window. Users should not interfere with it.

708 GNU Emacs Lisp Reference Manual

Chapter 39: Customizing the Calendar and Diary 709

39 Customizing the Calendar and Diary

There are many customizations that you can use to make the calendar and diary suit
your personal tastes.

39.1 Customizing the Calendar

If you set the variable view-diary-entries-initially to t, calling up the calendar
automatically displays the diary entries for the current date as well. The diary dates appear
only if the current date is visible. If you add both of the following lines to your init file:

(setq view-diary-entries-initially t)
(calendar)

this displays both the calendar and diary windows whenever you start Emacs.
Similarly, if you set the variable view-calendar-holidays-initially to t, entering

the calendar automatically displays a list of holidays for the current three-month period.
The holiday list appears in a separate window.

You can set the variable mark-diary-entries-in-calendar to t in order to mark any
dates with diary entries. This takes effect whenever the calendar window contents are recom-
puted. There are two ways of marking these dates: by changing the face (see Section 38.11
[Faces], page 678), or by placing a plus sign (‘+’) beside the date.

Similarly, setting the variable mark-holidays-in-calendar to t marks holiday dates,
either with a change of face or with an asterisk (‘*’).

The variable calendar-holiday-marker specifies how to mark a date as being a holiday.
Its value may be a character to insert next to the date, or a face name to use for displaying
the date. Likewise, the variable diary-entry-marker specifies how to mark a date that has
diary entries. The calendar creates faces named holiday-face and diary-face for these
purposes; those symbols are the default values of these variables.

The variable calendar-load-hook is a normal hook run when the calendar package is
first loaded (before actually starting to display the calendar).

Starting the calendar runs the normal hook initial-calendar-window-hook. Recom-
putation of the calendar display does not run this hook. But if you leave the calendar with
the q command and reenter it, the hook runs again.

The variable today-visible-calendar-hook is a normal hook run after the calendar
buffer has been prepared with the calendar when the current date is visible in the window.
One use of this hook is to replace today’s date with asterisks; to do that, use the hook
function calendar-star-date.

(add-hook ’today-visible-calendar-hook ’calendar-star-date)

Another standard hook function marks the current date, either by changing its face or by
adding an asterisk. Here’s how to use it:

(add-hook ’today-visible-calendar-hook ’calendar-mark-today)

The variable calendar-today-marker specifies how to mark today’s date. Its value should
be a character to insert next to the date or a face name to use for displaying the date. A
face named calendar-today-face is provided for this purpose; that symbol is the default
for this variable.

710 GNU Emacs Lisp Reference Manual

A similar normal hook, today-invisible-calendar-hook is run if the current date is not
visible in the window.

Starting in Emacs 21, each of the calendar cursor motion commands runs the hook
calendar-move-hook after it moves the cursor.

39.2 Customizing the Holidays

Emacs knows about holidays defined by entries on one of several lists. You can cus-
tomize these lists of holidays to your own needs, adding or deleting holidays. The lists
of holidays that Emacs uses are for general holidays (general-holidays), local holidays
(local-holidays), Christian holidays (christian-holidays), Hebrew (Jewish) holidays
(hebrew-holidays), Islamic (Moslem) holidays (islamic-holidays), and other holidays
(other-holidays).

The general holidays are, by default, holidays common throughout the United States.
To eliminate these holidays, set general-holidays to nil.

There are no default local holidays (but sites may supply some). You can set the variable
local-holidays to any list of holidays, as described below.

By default, Emacs does not include all the holidays of the religions that it knows, only
those commonly found in secular calendars. For a more extensive collection of religious
holidays, you can set any (or all) of the variables all-christian-calendar-holidays,
all-hebrew-calendar-holidays, or all-islamic-calendar-holidays to t. If you want
to eliminate the religious holidays, set any or all of the corresponding variables christian-
holidays, hebrew-holidays, and islamic-holidays to nil.

You can set the variable other-holidays to any list of holidays. This list, normally
empty, is intended for individual use.

Each of the lists (general-holidays, local-holidays, christian-holidays, hebrew-
holidays, islamic-holidays, and other-holidays) is a list of holiday forms, each holiday
form describing a holiday (or sometimes a list of holidays).

Here is a table of the possible kinds of holiday form. Day numbers and month numbers
count starting from 1, but “dayname” numbers count Sunday as 0. The element string is
always the name of the holiday, as a string.

(holiday-fixed month day string)
A fixed date on the Gregorian calendar.

(holiday-float month dayname k string)
The kth dayname in month on the Gregorian calendar (dayname=0 for Sunday,
and so on); negative k means count back from the end of the month.

(holiday-hebrew month day string)
A fixed date on the Hebrew calendar.

(holiday-islamic month day string)
A fixed date on the Islamic calendar.

(holiday-julian month day string)
A fixed date on the Julian calendar.

Chapter 39: Customizing the Calendar and Diary 711

(holiday-sexp sexp string)
A date calculated by the Lisp expression sexp. The expression should use the
variable year to compute and return the date of a holiday, or nil if the holiday
doesn’t happen this year. The value of sexp must represent the date as a list
of the form (month day year).

(if condition holiday-form)
A holiday that happens only if condition is true.

(function [args])
A list of dates calculated by the function function, called with arguments args.

For example, suppose you want to add Bastille Day, celebrated in France on July 14.
You can do this as follows:

(setq other-holidays ’((holiday-fixed 7 14 "Bastille Day")))

The holiday form (holiday-fixed 7 14 "Bastille Day") specifies the fourteenth day of
the seventh month (July).

Many holidays occur on a specific day of the week, at a specific time of month. Here is
a holiday form describing Hurricane Supplication Day, celebrated in the Virgin Islands on
the fourth Monday in August:

(holiday-float 8 1 4 "Hurricane Supplication Day")

Here the 8 specifies August, the 1 specifies Monday (Sunday is 0, Tuesday is 2, and so on),
and the 4 specifies the fourth occurrence in the month (1 specifies the first occurrence, 2 the
second occurrence, −1 the last occurrence, −2 the second-to-last occurrence, and so on).

You can specify holidays that occur on fixed days of the Hebrew, Islamic, and Julian
calendars too. For example,

(setq other-holidays
’((holiday-hebrew 10 2 "Last day of Hanukkah")
(holiday-islamic 3 12 "Mohammed’s Birthday")
(holiday-julian 4 2 "Jefferson’s Birthday")))

adds the last day of Hanukkah (since the Hebrew months are numbered with 1 starting
from Nisan), the Islamic feast celebrating Mohammed’s birthday (since the Islamic months
are numbered from 1 starting with Muharram), and Thomas Jefferson’s birthday, which is
2 April 1743 on the Julian calendar.

To include a holiday conditionally, use either Emacs Lisp’s if or the holiday-sexp
form. For example, American presidential elections occur on the first Tuesday after the
first Monday in November of years divisible by 4:

(holiday-sexp (if (= 0 (% year 4))
(calendar-gregorian-from-absolute
(1+ (calendar-dayname-on-or-before

1 (+ 6 (calendar-absolute-from-gregorian
(list 11 1 year))))))

"US Presidential Election"))

or
(if (= 0 (% displayed-year 4))

(fixed 11
(extract-calendar-day

712 GNU Emacs Lisp Reference Manual

(calendar-gregorian-from-absolute
(1+ (calendar-dayname-on-or-before

1 (+ 6 (calendar-absolute-from-gregorian
(list 11 1 displayed-year)))))))

"US Presidential Election"))

Some holidays just don’t fit into any of these forms because special calculations are
involved in their determination. In such cases you must write a Lisp function to do the
calculation. To include eclipses, for example, add (eclipses) to other-holidays and
write an Emacs Lisp function eclipses that returns a (possibly empty) list of the relevant
Gregorian dates among the range visible in the calendar window, with descriptive strings,
like this:

(((6 27 1991) "Lunar Eclipse") ((7 11 1991) "Solar Eclipse") ...)

39.3 Date Display Format

You can customize the manner of displaying dates in the diary, in mode lines, and in
messages by setting calendar-date-display-form. This variable holds a list of expressions
that can involve the variables month, day, and year, which are all numbers in string form,
and monthname and dayname, which are both alphabetic strings. In the American style, the
default value of this list is as follows:

((if dayname (concat dayname ", ")) monthname " " day ", " year)

while in the European style this value is the default:

((if dayname (concat dayname ", ")) day " " monthname " " year)

The ISO standard date representation is this:

(year "-" month "-" day)

This specifies a typical American format:

(month "/" day "/" (substring year -2))

39.4 Time Display Format

The calendar and diary by default display times of day in the conventional American
style with the hours from 1 through 12, minutes, and either ‘am’ or ‘pm’. If you prefer the
European style, also known in the US as military, in which the hours go from 00 to 23, you
can alter the variable calendar-time-display-form. This variable is a list of expressions
that can involve the variables 12-hours, 24-hours, and minutes, which are all numbers
in string form, and am-pm and time-zone, which are both alphabetic strings. The default
value of calendar-time-display-form is as follows:

(12-hours ":" minutes am-pm
(if time-zone " (") time-zone (if time-zone ")"))

Here is a value that provides European style times:

(24-hours ":" minutes
(if time-zone " (") time-zone (if time-zone ")"))

Chapter 39: Customizing the Calendar and Diary 713

39.5 Daylight Savings Time

Emacs understands the difference between standard time and daylight savings time—the
times given for sunrise, sunset, solstices, equinoxes, and the phases of the moon take that
into account. The rules for daylight savings time vary from place to place and have also
varied historically from year to year. To do the job properly, Emacs needs to know which
rules to use.

Some operating systems keep track of the rules that apply to the place where you are;
on these systems, Emacs gets the information it needs from the system automatically. If
some or all of this information is missing, Emacs fills in the gaps with the rules currently
used in Cambridge, Massachusetts, which is the center of GNU’s world.

If the default choice of rules is not appropriate for your location, you can tell Emacs the
rules to use by setting the variables calendar-daylight-savings-starts and calendar-
daylight-savings-ends. Their values should be Lisp expressions that refer to the variable
year, and evaluate to the Gregorian date on which daylight savings time starts or (respec-
tively) ends, in the form of a list (month day year). The values should be nil if your area
does not use daylight savings time.

Emacs uses these expressions to determine the start and end dates of daylight savings
time as holidays and for correcting times of day in the solar and lunar calculations.

The values for Cambridge, Massachusetts are as follows:
(calendar-nth-named-day 1 0 4 year)
(calendar-nth-named-day -1 0 10 year)

i.e., the first 0th day (Sunday) of the fourth month (April) in the year specified by year,
and the last Sunday of the tenth month (October) of that year. If daylight savings time
were changed to start on October 1, you would set calendar-daylight-savings-starts
to this:

(list 10 1 year)

For a more complex example, suppose daylight savings time begins on the first of Nisan
on the Hebrew calendar. You should set calendar-daylight-savings-starts to this
value:

(calendar-gregorian-from-absolute
(calendar-absolute-from-hebrew
(list 1 1 (+ year 3760))))

because Nisan is the first month in the Hebrew calendar and the Hebrew year differs from
the Gregorian year by 3760 at Nisan.

If there is no daylight savings time at your location, or if you want all times in standard
time, set calendar-daylight-savings-starts and calendar-daylight-savings-ends
to nil.

The variable calendar-daylight-time-offset specifies the difference between daylight
savings time and standard time, measured in minutes. The value for Cambridge is 60.

The variable calendar-daylight-savings-starts-time and the variable calendar-
daylight-savings-ends-time specify the number of minutes after midnight local time
when the transition to and from daylight savings time should occur. For Cambridge, both
variables’ values are 120.

714 GNU Emacs Lisp Reference Manual

39.6 Customizing the Diary

Ordinarily, the mode line of the diary buffer window indicates any holidays that fall on
the date of the diary entries. The process of checking for holidays can take several seconds,
so including holiday information delays the display of the diary buffer noticeably. If you’d
prefer to have a faster display of the diary buffer but without the holiday information, set
the variable holidays-in-diary-buffer to nil.

The variable number-of-diary-entries controls the number of days of diary entries
to be displayed at one time. It affects the initial display when view-diary-entries-
initially is t, as well as the command M-x diary. For example, the default value is
1, which says to display only the current day’s diary entries. If the value is 2, both the
current day’s and the next day’s entries are displayed. The value can also be a vector of
seven elements: for example, if the value is [0 2 2 2 2 4 1] then no diary entries appear
on Sunday, the current date’s and the next day’s diary entries appear Monday through
Thursday, Friday through Monday’s entries appear on Friday, while on Saturday only that
day’s entries appear.

The variable print-diary-entries-hook is a normal hook run after preparation of
a temporary buffer containing just the diary entries currently visible in the diary buffer.
(The other, irrelevant diary entries are really absent from the temporary buffer; in the diary
buffer, they are merely hidden.) The default value of this hook does the printing with the
command lpr-buffer. If you want to use a different command to do the printing, just
change the value of this hook. Other uses might include, for example, rearranging the lines
into order by day and time.

You can customize the form of dates in your diary file, if neither the standard American
nor European styles suits your needs, by setting the variable diary-date-forms. This
variable is a list of patterns for recognizing a date. Each date pattern is a list whose
elements may be regular expressions (see Section 34.2 [Regular Expressions], page 602)
or the symbols month, day, year, monthname, and dayname. All these elements serve as
patterns that match certain kinds of text in the diary file. In order for the date pattern, as
a whole, to match, all of its elements must match consecutively.

A regular expression in a date pattern matches in its usual fashion, using the standard
syntax table altered so that ‘*’ is a word constituent.

The symbols month, day, year, monthname, and dayname match the month number,
day number, year number, month name, and day name of the date being considered. The
symbols that match numbers allow leading zeros; those that match names allow three-letter
abbreviations and capitalization. All the symbols can match ‘*’; since ‘*’ in a diary entry
means “any day”, “any month”, and so on, it should match regardless of the date being
considered.

The default value of diary-date-forms in the American style is this:
((month "/" day "[^/0-9]")
(month "/" day "/" year "[^0-9]")
(monthname " *" day "[^,0-9]")
(monthname " *" day ", *" year "[^0-9]")
(dayname "\\W"))

The date patterns in the list must be mutually exclusive and must not match any portion
of the diary entry itself, just the date and one character of whitespace. If, to be mutually

Chapter 39: Customizing the Calendar and Diary 715

exclusive, the pattern must match a portion of the diary entry text—beyond the whitespace
that ends the date—then the first element of the date pattern must be backup. This causes
the date recognizer to back up to the beginning of the current word of the diary entry, after
finishing the match. Even if you use backup, the date pattern must absolutely not match
more than a portion of the first word of the diary entry. The default value of diary-date-
forms in the European style is this list:

((day "/" month "[^/0-9]")
(day "/" month "/" year "[^0-9]")
(backup day " *" monthname "\\W+\\<[^*0-9]")
(day " *" monthname " *" year "[^0-9]")
(dayname "\\W"))

Notice the use of backup in the third pattern, because it needs to match part of a word
beyond the date itself to distinguish it from the fourth pattern.

39.7 Hebrew- and Islamic-Date Diary Entries

Your diary file can have entries based on Hebrew or Islamic dates, as well as entries based
on the world-standard Gregorian calendar. However, because recognition of such entries is
time-consuming and most people don’t use them, you must explicitly enable their use. If
you want the diary to recognize Hebrew-date diary entries, for example, you must do this:

(add-hook ’nongregorian-diary-listing-hook ’list-hebrew-diary-entries)
(add-hook ’nongregorian-diary-marking-hook ’mark-hebrew-diary-entries)

If you want Islamic-date entries, do this:
(add-hook ’nongregorian-diary-listing-hook ’list-islamic-diary-entries)
(add-hook ’nongregorian-diary-marking-hook ’mark-islamic-diary-entries)

Hebrew- and Islamic-date diary entries have the same formats as Gregorian-date diary
entries, except that ‘H’ precedes a Hebrew date and ‘I’ precedes an Islamic date. Moreover,
because the Hebrew and Islamic month names are not uniquely specified by the first three
letters, you may not abbreviate them. For example, a diary entry for the Hebrew date
Heshvan 25 could look like this:

HHeshvan 25 Happy Hebrew birthday!

and would appear in the diary for any date that corresponds to Heshvan 25 on the Hebrew
calendar. And here is an Islamic-date diary entry that matches Dhu al-Qada 25:

IDhu al-Qada 25 Happy Islamic birthday!

As with Gregorian-date diary entries, Hebrew- and Islamic-date entries are nonmarking
if they are preceded with an ampersand (‘&’).

Here is a table of commands used in the calendar to create diary entries that match the
selected date and other dates that are similar in the Hebrew or Islamic calendar:

i h d Add a diary entry for the Hebrew date corresponding to the selected date
(insert-hebrew-diary-entry).

i h m Add a diary entry for the day of the Hebrew month corresponding to the selected
date (insert-monthly-hebrew-diary-entry). This diary entry matches any
date that has the same Hebrew day-within-month as the selected date.

716 GNU Emacs Lisp Reference Manual

i h y Add a diary entry for the day of the Hebrew year corresponding to the selected
date (insert-yearly-hebrew-diary-entry). This diary entry matches any
date which has the same Hebrew month and day-within-month as the selected
date.

i i d Add a diary entry for the Islamic date corresponding to the selected date
(insert-islamic-diary-entry).

i i m Add a diary entry for the day of the Islamic month corresponding to the selected
date (insert-monthly-islamic-diary-entry).

i i y Add a diary entry for the day of the Islamic year corresponding to the selected
date (insert-yearly-islamic-diary-entry).

These commands work much like the corresponding commands for ordinary diary entries:
they apply to the date that point is on in the calendar window, and what they do is insert
just the date portion of a diary entry at the end of your diary file. You must then insert
the rest of the diary entry.

39.8 Fancy Diary Display

Diary display works by preparing the diary buffer and then running the hook diary-
display-hook. The default value of this hook (simple-diary-display) hides the irrelevant
diary entries and then displays the buffer. However, if you specify the hook as follows,

(add-hook ’diary-display-hook ’fancy-diary-display)

this enables fancy diary display. It displays diary entries and holidays by copying them
into a special buffer that exists only for the sake of display. Copying to a separate buffer
provides an opportunity to change the displayed text to make it prettier—for example, to
sort the entries by the dates they apply to.

As with simple diary display, you can print a hard copy of the buffer with print-diary-
entries. To print a hard copy of a day-by-day diary for a week, position point on Sunday
of that week, type 7 d, and then do M-x print-diary-entries. As usual, the inclusion of
the holidays slows down the display slightly; you can speed things up by setting the variable
holidays-in-diary-buffer to nil.

Ordinarily, the fancy diary buffer does not show days for which there are no diary entries,
even if that day is a holiday. If you want such days to be shown in the fancy diary buffer,
set the variable diary-list-include-blanks to t.

If you use the fancy diary display, you can use the normal hook list-diary-entries-
hook to sort each day’s diary entries by their time of day. Here’s how:

(add-hook ’list-diary-entries-hook ’sort-diary-entries t)

For each day, this sorts diary entries that begin with a recognizable time of day according
to their times. Diary entries without times come first within each day.

Fancy diary display also has the ability to process included diary files. This permits a
group of people to share a diary file for events that apply to all of them. Lines in the diary
file of this form:

#include "filename"

Chapter 39: Customizing the Calendar and Diary 717

includes the diary entries from the file filename in the fancy diary buffer. The include
mechanism is recursive, so that included files can include other files, and so on; you must
be careful not to have a cycle of inclusions, of course. Here is how to enable the include
facility:

(add-hook ’list-diary-entries-hook ’include-other-diary-files)
(add-hook ’mark-diary-entries-hook ’mark-included-diary-files)

The include mechanism works only with the fancy diary display, because ordinary diary
display shows the entries directly from your diary file.

39.9 Sexp Entries and the Fancy Diary Display

Sexp diary entries allow you to do more than just have complicated conditions under
which a diary entry applies. If you use the fancy diary display, sexp entries can generate
the text of the entry depending on the date itself. For example, an anniversary diary entry
can insert the number of years since the anniversary date into the text of the diary entry.
Thus the ‘%d’ in this dairy entry:

%%(diary-anniversary 10 31 1948) Arthur’s birthday (%d years old)

gets replaced by the age, so on October 31, 1990 the entry appears in the fancy diary buffer
like this:

Arthur’s birthday (42 years old)

If the diary file instead contains this entry:
%%(diary-anniversary 10 31 1948) Arthur’s %d%s birthday

the entry in the fancy diary buffer for October 31, 1990 appears like this:
Arthur’s 42nd birthday

Similarly, cyclic diary entries can interpolate the number of repetitions that have oc-
curred:

%%(diary-cyclic 50 1 1 1990) Renew medication (%d%s time)

looks like this:
Renew medication (5th time)

in the fancy diary display on September 8, 1990.
There is an early reminder diary sexp that includes its entry in the diary not only on

the date of occurrence, but also on earlier dates. For example, if you want a reminder a
week before your anniversary, you can use

%%(diary-remind ’(diary-anniversary 12 22 1968) 7) Ed’s anniversary

and the fancy diary will show
Ed’s anniversary

both on December 15 and on December 22.
The function diary-date applies to dates described by a month, day, year combination,

each of which can be an integer, a list of integers, or t. The value t means all values. For
example,

%%(diary-date ’(10 11 12) 22 t) Rake leaves

causes the fancy diary to show

718 GNU Emacs Lisp Reference Manual

Rake leaves

on October 22, November 22, and December 22 of every year.
The function diary-float allows you to describe diary entries that apply to dates

like the third Friday of November, or the last Tuesday in April. The parameters are the
month, dayname, and an index n. The entry appears on the nth dayname of month, where
dayname=0 means Sunday, 1 means Monday, and so on. If n is negative it counts backward
from the end of month. The value of month can be a list of months, a single month, or t to
specify all months. You can also use an optional parameter day to specify the nth dayname
of month on or after/before day ; the value of day defaults to 1 if n is positive and to the
last day of month if n is negative. For example,

%%(diary-float t 1 -1) Pay rent

causes the fancy diary to show
Pay rent

on the last Monday of every month.
The generality of sexp diary entries lets you specify any diary entry that you can describe

algorithmically. A sexp diary entry contains an expression that computes whether the entry
applies to any given date. If its value is non-nil, the entry applies to that date; otherwise,
it does not. The expression can use the variable date to find the date being considered; its
value is a list (month day year) that refers to the Gregorian calendar.

Suppose you get paid on the 21st of the month if it is a weekday, and on the Friday
before if the 21st is on a weekend. Here is how to write a sexp diary entry that matches
those dates:

&%%(let ((dayname (calendar-day-of-week date))
(day (car (cdr date))))

(or (and (= day 21) (memq dayname ’(1 2 3 4 5)))
(and (memq day ’(19 20)) (= dayname 5)))
) Pay check deposited

The following sexp diary entries take advantage of the ability (in the fancy diary display)
to concoct diary entries whose text varies based on the date:

%%(diary-sunrise-sunset)
Make a diary entry for the local times of today’s sunrise and sunset.

%%(diary-phases-of-moon)
Make a diary entry for the phases (quarters) of the moon.

%%(diary-day-of-year)
Make a diary entry with today’s day number in the current year and the number
of days remaining in the current year.

%%(diary-iso-date)
Make a diary entry with today’s equivalent ISO commercial date.

%%(diary-julian-date)
Make a diary entry with today’s equivalent date on the Julian calendar.

%%(diary-astro-day-number)
Make a diary entry with today’s equivalent astronomical (Julian) day number.

Chapter 39: Customizing the Calendar and Diary 719

%%(diary-hebrew-date)
Make a diary entry with today’s equivalent date on the Hebrew calendar.

%%(diary-islamic-date)
Make a diary entry with today’s equivalent date on the Islamic calendar.

%%(diary-french-date)
Make a diary entry with today’s equivalent date on the French Revolutionary
calendar.

%%(diary-mayan-date)
Make a diary entry with today’s equivalent date on the Mayan calendar.

Thus including the diary entry
&%%(diary-hebrew-date)

causes every day’s diary display to contain the equivalent date on the Hebrew
calendar, if you are using the fancy diary display. (With simple diary display, the
line ‘&%%(diary-hebrew-date)’ appears in the diary for any date, but does nothing
particularly useful.)

These functions can be used to construct sexp diary entries based on the Hebrew calendar
in certain standard ways:

%%(diary-rosh-hodesh)
Make a diary entry that tells the occurrence and ritual announcement of each
new Hebrew month.

%%(diary-parasha)
Make a Saturday diary entry that tells the weekly synagogue scripture reading.

%%(diary-sabbath-candles)
Make a Friday diary entry that tells the local time of Sabbath candle lighting.

%%(diary-omer)
Make a diary entry that gives the omer count, when appropriate.

%%(diary-yahrzeit month day year) name
Make a diary entry marking the anniversary of a date of death. The date is the
Gregorian (civil) date of death. The diary entry appears on the proper Hebrew
calendar anniversary and on the day before. (In the European style, the order
of the parameters is changed to day, month, year.)

39.10 Customizing Appointment Reminders

You can specify exactly how Emacs reminds you of an appointment, and how far in
advance it begins doing so, by setting these variables:

appt-message-warning-time
The time in minutes before an appointment that the reminder begins. The
default is 10 minutes.

appt-audible
If this is non-nil, Emacs rings the terminal bell for appointment reminders.
The default is t.

720 GNU Emacs Lisp Reference Manual

appt-visible
If this is non-nil, Emacs displays the appointment message in the echo area.
The default is t.

appt-display-mode-line
If this is non-nil, Emacs displays the number of minutes to the appointment
on the mode line. The default is t.

appt-msg-window
If this is non-nil, Emacs displays the appointment message in another window.
The default is t.

appt-disp-window-function
This variable holds a function to use to create the other window for the ap-
pointment message.

appt-delete-window-function
This variable holds a function to use to get rid of the appointment message
window, when its time is up.

appt-display-duration
The number of seconds to display an appointment message. The default is 5
seconds.

Chapter 40: Operating System Interface 721

40 Operating System Interface

This chapter is about starting and getting out of Emacs, access to values in the operating
system environment, and terminal input, output, and flow control.

See Section E.1 [Building Emacs], page 777, for related information. See also Chapter 38
[Display], page 661, for additional operating system status information pertaining to the
terminal and the screen.

40.1 Starting Up Emacs

This section describes what Emacs does when it is started, and how you can customize
these actions.

40.1.1 Summary: Sequence of Actions at Startup

The order of operations performed (in ‘startup.el’) by Emacs when it is started up is
as follows:
1. It adds subdirectories to load-path, by running the file named ‘subdirs.el’ in each

directory in the list. Normally this file adds the directory’s subdirectories to the list,
and these will be scanned in their turn. The files ‘subdirs.el’ are normally generated
automatically by Emacs installation.

2. It sets the language environment and the terminal coding system, if requested by
environment variables such as LANG.

3. It loads the initialization library for the window system, if you are using a window
system. This library’s name is ‘term/windowsystem-win.el’.

4. It processes the initial options. (Some of them are handled even earlier than this.)
5. It initializes the window frame and faces, if appropriate.
6. It runs the normal hook before-init-hook.
7. It loads the library ‘site-start’, unless the option ‘-no-site-file’ was specified.

The library’s file name is usually ‘site-start.el’.
8. It loads your init file (usually ‘~/.emacs’), unless ‘-q’, ‘-no-init-file’, or ‘-batch’

was specified on the command line. The ‘-u’ option can specify another user whose
home directory should be used instead of ‘~’.

9. It loads the library ‘default’, unless inhibit-default-init is non-nil. (This is not
done in ‘-batch’ mode or if ‘-q’ was specified on the command line.) The library’s file
name is usually ‘default.el’.

10. It runs the normal hook after-init-hook.
11. It sets the major mode according to initial-major-mode, provided the buffer

‘*scratch*’ is still current and still in Fundamental mode.
12. It loads the terminal-specific Lisp file, if any, except when in batch mode or using a

window system.
13. It displays the initial echo area message, unless you have suppressed that with inhibit-

startup-echo-area-message.
14. It processes the action arguments from the command line.

722 GNU Emacs Lisp Reference Manual

15. It runs emacs-startup-hook and then term-setup-hook.
16. It calls frame-notice-user-settings, which modifies the parameters of the selected

frame according to whatever the init files specify.
17. It runs window-setup-hook. See Section 38.19 [Window Systems], page 707.
18. It displays copyleft, nonwarranty, and basic use information, provided there were no re-

maining command-line arguments (a few steps above), the value of inhibit-startup-
message is nil, and the buffer is still empty.

User Optioninhibit-startup-message
This variable inhibits the initial startup messages (the nonwarranty, etc.). If it is
non-nil, then the messages are not printed.
This variable exists so you can set it in your personal init file, once you are familiar
with the contents of the startup message. Do not set this variable in the init file of
a new user, or in a way that affects more than one user, because that would prevent
new users from receiving the information they are supposed to see.

User Optioninhibit-startup-echo-area-message
This variable controls the display of the startup echo area message. You can suppress
the startup echo area message by adding text with this form to your init file:

(setq inhibit-startup-echo-area-message
"your-login-name")

Emacs explicitly checks for an expression as shown above in your init file; your login
name must appear in the expression as a Lisp string constant. Other methods of
setting inhibit-startup-echo-area-message to the same value do not inhibit the
startup message.
This way, you can easily inhibit the message for yourself if you wish, but thoughtless
copying of your init file will not inhibit the message for someone else.

40.1.2 The Init File, ‘.emacs’

When you start Emacs, it normally attempts to load your init file, a file in your home
directory. Its normal name is ‘.emacs’, but you can alternatively call it ‘.emacs.el’, which
enables you to byte-compile it (see Chapter 16 [Byte Compilation], page 205); then the
actual file loaded will be ‘.emacs.elc’.

The command-line switches ‘-q’ and ‘-u’ control whether and where to find the init file;
‘-q’ says not to load an init file, and ‘-u user’ says to load user’s init file instead of yours.
See section “Entering Emacs” in The GNU Emacs Manual. If neither option is specified,
Emacs uses the LOGNAME environment variable, or the USER (most systems) or USERNAME
(MS systems) variable, to find your home directory and thus your init file; this way, even
if you have su’d, Emacs still loads your own init file. If those environment variables are
absent, though, Emacs uses your user-id to find your home directory.

A site may have a default init file, which is the library named ‘default.el’. Emacs
finds the ‘default.el’ file through the standard search path for libraries (see Section 15.1
[How Programs Do Loading], page 193). The Emacs distribution does not come with this
file; sites may provide one for local customizations. If the default init file exists, it is loaded

Chapter 40: Operating System Interface 723

whenever you start Emacs, except in batch mode or if ‘-q’ is specified. But your own
personal init file, if any, is loaded first; if it sets inhibit-default-init to a non-nil value,
then Emacs does not subsequently load the ‘default.el’ file.

Another file for site-customization is ‘site-start.el’. Emacs loads this before the user’s
init file. You can inhibit the loading of this file with the option ‘-no-site-file’.

Variablesite-run-file
This variable specifies the site-customization file to load before the user’s init file. Its
normal value is "site-start". The only way you can change it with real effect is to
do so before dumping Emacs.

See section “Init File Examples” in The GNU Emacs Manual, for examples of how to
make various commonly desired customizations in your ‘.emacs’ file.

User Optioninhibit-default-init
This variable prevents Emacs from loading the default initialization library file for
your session of Emacs. If its value is non-nil, then the default library is not loaded.
The default value is nil.

Variablebefore-init-hook
This normal hook is run, once, just before loading all the init files (the user’s init file,
‘default.el’, and/or ‘site-start.el’). (The only way to change it with real effect
is before dumping Emacs.)

Variableafter-init-hook
This normal hook is run, once, just after loading all the init files (the user’s init file,
‘default.el’, and/or ‘site-start.el’), before loading the terminal-specific library
and processing the command-line arguments.

Variableemacs-startup-hook
This normal hook is run, once, just after handling the command line arguments, just
before term-setup-hook.

Variableuser-init-file
This variable holds the file name of the user’s init file. If the actual init file loaded
is a compiled file, such as ‘.emacs.elc’, the value refers to the corresponding source
file.

40.1.3 Terminal-Specific Initialization

Each terminal type can have its own Lisp library that Emacs loads when run on that type
of terminal. The library’s name is constructed by concatenating the value of the variable
term-file-prefix and the terminal type (specified by the environment variable TERM).
Normally, term-file-prefix has the value "term/"; changing this is not recommended.
Emacs finds the file in the normal manner, by searching the load-path directories, and
trying the ‘.elc’ and ‘.el’ suffixes.

724 GNU Emacs Lisp Reference Manual

The usual function of a terminal-specific library is to enable special keys to send se-
quences that Emacs can recognize. It may also need to set or add to function-key-map
if the Termcap entry does not specify all the terminal’s function keys. See Section 40.8
[Terminal Input], page 738.

When the name of the terminal type contains a hyphen, only the part of the name before
the first hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’
and ‘aaa-30-rv’ both use the ‘term/aaa’ library. If necessary, the library can evaluate
(getenv "TERM") to find the full name of the terminal type.

Your init file can prevent the loading of the terminal-specific library by setting the
variable term-file-prefix to nil. This feature is useful when experimenting with your
own peculiar customizations.

You can also arrange to override some of the actions of the terminal-specific library by
setting the variable term-setup-hook. This is a normal hook which Emacs runs using
run-hooks at the end of Emacs initialization, after loading both your init file and any
terminal-specific libraries. You can use this variable to define initializations for terminals
that do not have their own libraries. See Section 23.6 [Hooks], page 383.

Variableterm-file-prefix
If the term-file-prefix variable is non-nil, Emacs loads a terminal-specific initial-
ization file as follows:

(load (concat term-file-prefix (getenv "TERM")))

You may set the term-file-prefix variable to nil in your init file if you do not
wish to load the terminal-initialization file. To do this, put the following in your init
file: (setq term-file-prefix nil).
On MS-DOS, if the environment variable TERM is not set, Emacs uses ‘internal’ as
the terminal type.

Variableterm-setup-hook
This variable is a normal hook that Emacs runs after loading your init file, the default
initialization file (if any) and the terminal-specific Lisp file.
You can use term-setup-hook to override the definitions made by a terminal-specific
file.

See window-setup-hook in Section 38.19 [Window Systems], page 707, for a related
feature.

40.1.4 Command-Line Arguments

You can use command-line arguments to request various actions when you start Emacs.
Since you do not need to start Emacs more than once per day, and will often leave your
Emacs session running longer than that, command-line arguments are hardly ever used.
As a practical matter, it is best to avoid making the habit of using them, since this habit
would encourage you to kill and restart Emacs unnecessarily often. These options exist for
two reasons: to be compatible with other editors (for invocation by other programs) and to
enable shell scripts to run specific Lisp programs.

This section describes how Emacs processes command-line arguments, and how you can
customize them.

Chapter 40: Operating System Interface 725

Functioncommand-line
This function parses the command line that Emacs was called with, processes it, loads
the user’s init file and displays the startup messages.

Variablecommand-line-processed
The value of this variable is t once the command line has been processed.
If you redump Emacs by calling dump-emacs, you may wish to set this variable to
nil first in order to cause the new dumped Emacs to process its new command-line
arguments.

Variablecommand-switch-alist
The value of this variable is an alist of user-defined command-line options and asso-
ciated handler functions. This variable exists so you can add elements to it.
A command-line option is an argument on the command line, which has the form:

-option

The elements of the command-switch-alist look like this:
(option . handler-function)

The car, option, is a string, the name of a command-line option (not including the
initial hyphen). The handler-function is called to handle option, and receives the
option name as its sole argument.
In some cases, the option is followed in the command line by an argument. In these
cases, the handler-function can find all the remaining command-line arguments in the
variable command-line-args-left. (The entire list of command-line arguments is in
command-line-args.)
The command-line arguments are parsed by the command-line-1 function in the
‘startup.el’ file. See also section “Command Line Switches and Arguments” in The
GNU Emacs Manual.

Variablecommand-line-args
The value of this variable is the list of command-line arguments passed to Emacs.

Variablecommand-line-functions
This variable’s value is a list of functions for handling an unrecognized command-line
argument. Each time the next argument to be processed has no special meaning, the
functions in this list are called, in order of appearance, until one of them returns a
non-nil value.
These functions are called with no arguments. They can access the command-line
argument under consideration through the variable argi, which is bound temporarily
at this point. The remaining arguments (not including the current one) are in the
variable command-line-args-left.
When a function recognizes and processes the argument in argi, it should return a
non-nil value to say it has dealt with that argument. If it has also dealt with some of
the following arguments, it can indicate that by deleting them from command-line-
args-left.
If all of these functions return nil, then the argument is used as a file name to visit.

726 GNU Emacs Lisp Reference Manual

40.2 Getting Out of Emacs

There are two ways to get out of Emacs: you can kill the Emacs job, which exits perma-
nently, or you can suspend it, which permits you to reenter the Emacs process later. As a
practical matter, you seldom kill Emacs—only when you are about to log out. Suspending
is much more common.

40.2.1 Killing Emacs

Killing Emacs means ending the execution of the Emacs process. The parent process
normally resumes control. The low-level primitive for killing Emacs is kill-emacs.

Functionkill-emacs &optional exit-data
This function exits the Emacs process and kills it.
If exit-data is an integer, then it is used as the exit status of the Emacs process. (This
is useful primarily in batch operation; see Section 40.13 [Batch Mode], page 746.)
If exit-data is a string, its contents are stuffed into the terminal input buffer so that
the shell (or whatever program next reads input) can read them.

All the information in the Emacs process, aside from files that have been saved, is lost
when the Emacs process is killed. Because killing Emacs inadvertently can lose a lot of
work, Emacs queries for confirmation before actually terminating if you have buffers that
need saving or subprocesses that are running. This is done in the function save-buffers-
kill-emacs.

Variablekill-emacs-query-functions
After asking the standard questions, save-buffers-kill-emacs calls the functions
in the list kill-emacs-query-functions, in order of appearance, with no arguments.
These functions can ask for additional confirmation from the user. If any of them
returns nil, Emacs is not killed.

Variablekill-emacs-hook
This variable is a normal hook; once save-buffers-kill-emacs is finished with all
file saving and confirmation, it runs the functions in this hook.

40.2.2 Suspending Emacs

Suspending Emacs means stopping Emacs temporarily and returning control to its su-
perior process, which is usually the shell. This allows you to resume editing later in the
same Emacs process, with the same buffers, the same kill ring, the same undo history, and
so on. To resume Emacs, use the appropriate command in the parent shell—most likely fg.

Some operating systems do not support suspension of jobs; on these systems, “suspen-
sion” actually creates a new shell temporarily as a subprocess of Emacs. Then you would
exit the shell to return to Emacs.

Suspension is not useful with window systems, because the Emacs job may not have a
parent that can resume it again, and in any case you can give input to some other job such
as a shell merely by moving to a different window. Therefore, suspending is not allowed
when Emacs is using a window system (X or MS Windows).

Chapter 40: Operating System Interface 727

Functionsuspend-emacs string
This function stops Emacs and returns control to the superior process. If and when
the superior process resumes Emacs, suspend-emacs returns nil to its caller in Lisp.

If string is non-nil, its characters are sent to be read as terminal input by Emacs’s
superior shell. The characters in string are not echoed by the superior shell; only the
results appear.

Before suspending, suspend-emacs runs the normal hook suspend-hook.

After the user resumes Emacs, suspend-emacs runs the normal hook suspend-
resume-hook. See Section 23.6 [Hooks], page 383.

The next redisplay after resumption will redraw the entire screen, unless the variable
no-redraw-on-reenter is non-nil (see Section 38.1 [Refresh Screen], page 661).

In the following example, note that ‘pwd’ is not echoed after Emacs is suspended. But
it is read and executed by the shell.

(suspend-emacs)
⇒ nil

(add-hook ’suspend-hook
(function (lambda ()

(or (y-or-n-p
"Really suspend? ")

(error "Suspend cancelled")))))
⇒ (lambda nil

(or (y-or-n-p "Really suspend? ")
(error "Suspend cancelled")))

(add-hook ’suspend-resume-hook
(function (lambda () (message "Resumed!"))))

⇒ (lambda nil (message "Resumed!"))
(suspend-emacs "pwd")

⇒ nil
---------- Buffer: Minibuffer ----------
Really suspend? y
---------- Buffer: Minibuffer ----------

---------- Parent Shell ----------
lewis@slug[23] % /user/lewis/manual
lewis@slug[24] % fg

---------- Echo Area ----------
Resumed!

Variablesuspend-hook
This variable is a normal hook that Emacs runs before suspending.

Variablesuspend-resume-hook
This variable is a normal hook that Emacs runs on resuming after a suspension.

728 GNU Emacs Lisp Reference Manual

40.3 Operating System Environment

Emacs provides access to variables in the operating system environment through various
functions. These variables include the name of the system, the user’s uid, and so on.

Variablesystem-configuration
This variable holds the GNU configuration name for the hardware/software configu-
ration of your system, as a string. The convenient way to test parts of this string is
with string-match.

Variablesystem-type
The value of this variable is a symbol indicating the type of operating system Emacs
is operating on. Here is a table of the possible values:

alpha-vms
VMS on the Alpha.

aix-v3 AIX.

berkeley-unix
Berkeley BSD.

dgux Data General DGUX operating system.

gnu the GNU system (using the GNU kernel, which consists of the HURD
and Mach).

gnu/linux
A GNU/Linux system—that is, a variant GNU system, using the Linux
kernel. (These systems are the ones people often call “Linux,” but actu-
ally Linux is just the kernel, not the whole system.)

hpux Hewlett-Packard HPUX operating system.

irix Silicon Graphics Irix system.

ms-dos Microsoft MS-DOS “operating system.” Emacs compiled with DJGPP
for MS-DOS binds system-type to ms-dos even when you run it on MS-
Windows.

next-mach
NeXT Mach-based system.

rtu Masscomp RTU, UCB universe.

unisoft-unix
UniSoft UniPlus.

usg-unix-v
AT&T System V.

vax-vms VAX VMS.

windows-nt
Microsoft windows NT. The same executable supports Windows 9X, but
the value of system-type is windows-nt in either case.

Chapter 40: Operating System Interface 729

xenix SCO Xenix 386.

We do not wish to add new symbols to make finer distinctions unless it is absolutely
necessary! In fact, we hope to eliminate some of these alternatives in the future. We
recommend using system-configuration to distinguish between different operating
systems.

Functionsystem-name
This function returns the name of the machine you are running on.

(system-name)
⇒ "www.gnu.org"

The symbol system-name is a variable as well as a function. In fact, the function returns
whatever value the variable system-name currently holds. Thus, you can set the variable
system-name in case Emacs is confused about the name of your system. The variable is
also useful for constructing frame titles (see Section 29.4 [Frame Titles], page 492).

Variablemail-host-address
If this variable is non-nil, it is used instead of system-name for purposes of generating
email addresses. For example, it is used when constructing the default value of user-
mail-address. See Section 40.4 [User Identification], page 731. (Since this is done
when Emacs starts up, the value actually used is the one saved when Emacs was
dumped. See Section E.1 [Building Emacs], page 777.)

Commandgetenv var
This function returns the value of the environment variable var, as a string.
Within Emacs, the environment variable values are kept in the Lisp variable
process-environment.

(getenv "USER")
⇒ "lewis"

lewis@slug[10] % printenv
PATH=.:/user/lewis/bin:/usr/bin:/usr/local/bin
USER=lewis
TERM=ibmapa16
SHELL=/bin/csh
HOME=/user/lewis

Commandsetenv variable value
This command sets the value of the environment variable named variable to value.
Both arguments should be strings. This function works by modifying process-
environment; binding that variable with let is also reasonable practice.

Variableprocess-environment
This variable is a list of strings, each describing one environment variable. The
functions getenv and setenv work by means of this variable.

730 GNU Emacs Lisp Reference Manual

process-environment
⇒ ("l=/usr/stanford/lib/gnuemacs/lisp"

"PATH=.:/user/lewis/bin:/usr/class:/nfsusr/local/bin"
"USER=lewis"
"TERM=ibmapa16"
"SHELL=/bin/csh"
"HOME=/user/lewis")

Variablepath-separator
This variable holds a string which says which character separates directories in a
search path (as found in an environment variable). Its value is ":" for Unix and
GNU systems, and ";" for MS-DOS and MS-Windows.

Functionparse-colon-path path
This function takes a search path string such as would be the value of the PATH
environment variable, and splits it at the separators, returning a list of directory
names. nil in this list stands for “use the current directory.” Although the function’s
name says “colon,” it actually uses the value of path-separator.

(parse-colon-path ":/foo:/bar")
⇒ (nil "/foo/" "/bar/")

Variableinvocation-name
This variable holds the program name under which Emacs was invoked. The value is
a string, and does not include a directory name.

Variableinvocation-directory
This variable holds the directory from which the Emacs executable was invoked, or
perhaps nil if that directory cannot be determined.

Variableinstallation-directory
If non-nil, this is a directory within which to look for the ‘lib-src’ and ‘etc’ subdi-
rectories. This is non-nil when Emacs can’t find those directories in their standard
installed locations, but can find them in a directory related somehow to the one
containing the Emacs executable.

Functionload-average &optional use-float
This function returns the current 1-minute, 5-minute, and 15-minute load averages,
in a list.
By default, the values are integers that are 100 times the system load averages, which
indicate the average number of processes trying to run. If use-float is non-nil, then
they are returned as floating point numbers and without multiplying by 100.

(load-average)
⇒ (169 48 36)

(load-average t)
⇒ (1.69 0.48 0.36)

lewis@rocky[5] % uptime
11:55am up 1 day, 19:37, 3 users,
load average: 1.69, 0.48, 0.36

Chapter 40: Operating System Interface 731

Functionemacs-pid
This function returns the process id of the Emacs process.

Variabletty-erase-char
This variable holds the erase character that was selected in the system’s terminal
driver, before Emacs was started.

Functionsetprv privilege-name &optional setp getprv
This function sets or resets a VMS privilege. (It does not exist on other systems.)
The first argument is the privilege name, as a string. The second argument, setp, is
t or nil, indicating whether the privilege is to be turned on or off. Its default is nil.
The function returns t if successful, nil otherwise.
If the third argument, getprv, is non-nil, setprv does not change the privilege, but
returns t or nil indicating whether the privilege is currently enabled.

40.4 User Identification

Variableinit-file-user
This variable says which user’s init files should be used by Emacs—or nil if none.
The value reflects command-line options such as ‘-q’ or ‘-u user’.
Lisp packages that load files of customizations, or any other sort of user profile, should
obey this variable in deciding where to find it. They should load the profile of the
user name found in this variable. If init-file-user is nil, meaning that the ‘-q’
option was used, then Lisp packages should not load any customization files or user
profile.

Variableuser-mail-address
This holds the nominal email address of the user who is using Emacs. Emacs normally
sets this variable to a default value after reading your init files, but not if you have
already set it. So you can set the variable to some other value in your init file if you
do not want to use the default value.

Functionuser-login-name &optional uid
If you don’t specify uid, this function returns the name under which the user is logged
in. If the environment variable LOGNAME is set, that value is used. Otherwise, if the
environment variable USER is set, that value is used. Otherwise, the value is based on
the effective uid, not the real uid.
If you specify uid, the value is the user name that corresponds to uid (which should
be an integer).

(user-login-name)
⇒ "lewis"

Functionuser-real-login-name
This function returns the user name corresponding to Emacs’s real uid. This ignores
the effective uid and ignores the environment variables LOGNAME and USER.

732 GNU Emacs Lisp Reference Manual

Functionuser-full-name &optional uid
This function returns the full name of the logged-in user—or the value of the envi-
ronment variable NAME, if that is set.

(user-full-name)
⇒ "Bil Lewis"

If the Emacs job’s user-id does not correspond to any known user (and provided NAME
is not set), the value is "unknown".
If uid is non-nil, then it should be an integer (a user-id) or a string (a login name).
Then user-full-name returns the full name corresponding to that user-id or login
name. If you specify a user-id or login name that isn’t defined, it returns nil.

The symbols user-login-name, user-real-login-name and user-full-name are vari-
ables as well as functions. The functions return the same values that the variables hold.
These variables allow you to “fake out” Emacs by telling the functions what to return.
The variables are also useful for constructing frame titles (see Section 29.4 [Frame Titles],
page 492).

Functionuser-real-uid
This function returns the real uid of the user.

(user-real-uid)
⇒ 19

Functionuser-uid
This function returns the effective uid of the user.

40.5 Time of Day

This section explains how to determine the current time and the time zone.

Functioncurrent-time-string &optional time-value
This function returns the current time and date as a human-readable string. The
format of the string is unvarying; the number of characters used for each part is
always the same, so you can reliably use substring to extract pieces of it. It is wise
to count the characters from the beginning of the string rather than from the end, as
additional information may some day be added at the end.
The argument time-value, if given, specifies a time to format instead of the current
time. The argument should be a list whose first two elements are integers. Thus, you
can use times obtained from current-time (see below) and from file-attributes
(see Section 25.6.4 [File Attributes], page 409).

(current-time-string)
⇒ "Wed Oct 14 22:21:05 1987"

Functioncurrent-time
This function returns the system’s time value as a list of three integers: (high low
microsec). The integers high and low combine to give the number of seconds since
0:00 January 1, 1970 (local time), which is high ∗ 216 + low.

Chapter 40: Operating System Interface 733

The third element, microsec, gives the microseconds since the start of the current
second (or 0 for systems that return time with the resolution of only one second).
The first two elements can be compared with file time values such as you get with
the function file-attributes. See Section 25.6.4 [File Attributes], page 409.

Functioncurrent-time-zone &optional time-value
This function returns a list describing the time zone that the user is in.
The value has the form (offset name). Here offset is an integer giving the number of
seconds ahead of UTC (east of Greenwich). A negative value means west of Green-
wich. The second element, name, is a string giving the name of the time zone. Both
elements change when daylight savings time begins or ends; if the user has specified
a time zone that does not use a seasonal time adjustment, then the value is constant
through time.
If the operating system doesn’t supply all the information necessary to compute the
value, both elements of the list are nil.
The argument time-value, if given, specifies a time to analyze instead of the current
time. The argument should be a cons cell containing two integers, or a list whose first
two elements are integers. Thus, you can use times obtained from current-time (see
above) and from file-attributes (see Section 25.6.4 [File Attributes], page 409).

Functionfloat-time &optional time-value
This function returns the current time as a floating-point number of seconds since the
epoch. The argument time-value, if given, specifies a time to convert instead of the
current time. The argument should have the same form as for current-time-string
(see above), and it also accepts the output of current-time and file-attributes.
Warning : Since the result is floating point, it may not be exact. Do not use this
function if precise time stamps are required.

40.6 Time Conversion

These functions convert time values (lists of two or three integers) to strings or to
calendrical information. There is also a function to convert calendrical information to a time
value. You can get time values from the functions current-time (see Section 40.5 [Time
of Day], page 732) and file-attributes (see Section 25.6.4 [File Attributes], page 409).

Many operating systems are limited to time values that contain 32 bits of information;
these systems typically handle only the times from 1901-12-13 20:45:52 UTC through 2038-
01-19 03:14:07 UTC. However, some operating systems have larger time values, and can
represent times far in the past or future.

Time conversion functions always use the Gregorian calendar, even for dates before the
Gregorian calendar was introduced. Year numbers count the number of years since the
year 1 B.C., and do not skip zero as traditional Gregorian years do; for example, the year
number −37 represents the Gregorian year 38 B.C.

Functionformat-time-string format-string &optional time universal
This function converts time (or the current time, if time is omitted) to a string
according to format-string. The argument format-string may contain ‘%’-sequences

734 GNU Emacs Lisp Reference Manual

which say to substitute parts of the time. Here is a table of what the ‘%’-sequences
mean:

‘%a’ This stands for the abbreviated name of the day of week.

‘%A’ This stands for the full name of the day of week.

‘%b’ This stands for the abbreviated name of the month.

‘%B’ This stands for the full name of the month.

‘%c’ This is a synonym for ‘%x %X’.

‘%C’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%A, %B %e, %Y’.

‘%d’ This stands for the day of month, zero-padded.

‘%D’ This is a synonym for ‘%m/%d/%y’.

‘%e’ This stands for the day of month, blank-padded.

‘%h’ This is a synonym for ‘%b’.

‘%H’ This stands for the hour (00-23).

‘%I’ This stands for the hour (01-12).

‘%j’ This stands for the day of the year (001-366).

‘%k’ This stands for the hour (0-23), blank padded.

‘%l’ This stands for the hour (1-12), blank padded.

‘%m’ This stands for the month (01-12).

‘%M’ This stands for the minute (00-59).

‘%n’ This stands for a newline.

‘%p’ This stands for ‘AM’ or ‘PM’, as appropriate.

‘%r’ This is a synonym for ‘%I:%M:%S %p’.

‘%R’ This is a synonym for ‘%H:%M’.

‘%S’ This stands for the seconds (00-59).

‘%t’ This stands for a tab character.

‘%T’ This is a synonym for ‘%H:%M:%S’.

‘%U’ This stands for the week of the year (01-52), assuming that weeks start
on Sunday.

‘%w’ This stands for the numeric day of week (0-6). Sunday is day 0.

‘%W’ This stands for the week of the year (01-52), assuming that weeks start
on Monday.

‘%x’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%D’.

Chapter 40: Operating System Interface 735

‘%X’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%T’.

‘%y’ This stands for the year without century (00-99).

‘%Y’ This stands for the year with century.

‘%Z’ This stands for the time zone abbreviation.

You can also specify the field width and type of padding for any of these ‘%’-sequences.
This works as in printf: you write the field width as digits in the middle of a ‘%’-
sequences. If you start the field width with ‘0’, it means to pad with zeros. If you
start the field width with ‘_’, it means to pad with spaces.
For example, ‘%S’ specifies the number of seconds since the minute; ‘%03S’ means to
pad this with zeros to 3 positions, ‘%_3S’ to pad with spaces to 3 positions. Plain
‘%3S’ pads with zeros, because that is how ‘%S’ normally pads to two positions.
The characters ‘E’ and ‘O’ act as modifiers when used between ‘%’ and one of the
letters in the table above. ‘E’ specifies using the current locale’s “alternative” version
of the date and time. In a Japanese locale, for example, %Ex might yield a date format
based on the Japanese Emperors’ reigns. ‘E’ is allowed in ‘%Ec’, ‘%EC’, ‘%Ex’, ‘%EX’,
‘%Ey’, and ‘%EY’.
‘O’ means to use the current locale’s “alternative” representation of numbers, instead
of the ordinary decimal digits. This is allowed with most letters, all the ones that
output numbers.
If universal is non-nil, that means to describe the time as Universal Time; nil means
describe it using what Emacs believes is the local time zone (see current-time-zone).
This function uses the C library function strftime to do most of the work. In order
to communicate with that function, it first encodes its argument using the coding
system specified by locale-coding-system (see Section 33.12 [Locales], page 600);
after strftime returns the resulting string, format-time-string decodes the string
using that same coding system.

Functiondecode-time time
This function converts a time value into calendrical information. The return value is
a list of nine elements, as follows:

(seconds minutes hour day month year dow dst zone)

Here is what the elements mean:

seconds The number of seconds past the minute, as an integer between 0 and 59.

minutes The number of minutes past the hour, as an integer between 0 and 59.

hour The hour of the day, as an integer between 0 and 23.

day The day of the month, as an integer between 1 and 31.

month The month of the year, as an integer between 1 and 12.

year The year, an integer typically greater than 1900.

dow The day of week, as an integer between 0 and 6, where 0 stands for
Sunday.

736 GNU Emacs Lisp Reference Manual

dst t if daylight savings time is effect, otherwise nil.

zone An integer indicating the time zone, as the number of seconds east of
Greenwich.

Common Lisp Note: Common Lisp has different meanings for dow and zone.

Functionencode-time seconds minutes hour day month year &optional zone
This function is the inverse of decode-time. It converts seven items of calendrical
data into a time value. For the meanings of the arguments, see the table above under
decode-time.
Year numbers less than 100 are not treated specially. If you want them to stand for
years above 1900, or years above 2000, you must alter them yourself before you call
encode-time.
The optional argument zone defaults to the current time zone and its daylight savings
time rules. If specified, it can be either a list (as you would get from current-time-
zone), a string as in the TZ environment variable, or an integer (as you would get
from decode-time). The specified zone is used without any further alteration for
daylight savings time.
If you pass more than seven arguments to encode-time, the first six are used as
seconds through year, the last argument is used as zone, and the arguments in between
are ignored. This feature makes it possible to use the elements of a list returned by
decode-time as the arguments to encode-time, like this:

(apply ’encode-time (decode-time ...))

You can perform simple date arithmetic by using out-of-range values for the sec-
onds, minutes, hour, day, and month arguments; for example, day 0 means the day
preceding the given month.
The operating system puts limits on the range of possible time values; if you try to
encode a time that is out of range, an error results.

40.7 Timers for Delayed Execution

You can set up a timer to call a function at a specified future time or after a certain
length of idleness.

Emacs cannot run timers at any arbitrary point in a Lisp program; it can run them only
when Emacs could accept output from a subprocess: namely, while waiting or inside certain
primitive functions such as sit-for or read-event which can wait. Therefore, a timer’s
execution may be delayed if Emacs is busy. However, the time of execution is very precise
if Emacs is idle.

Functionrun-at-time time repeat function &rest args
This function arranges to call function with arguments args at time time. The argu-
ment function is a function to call later, and args are the arguments to give it when
it is called. The time time is specified as a string.
Absolute times may be specified in a wide variety of formats; this function tries to
accept all the commonly used date formats. Valid formats include these two,

Chapter 40: Operating System Interface 737

year-month-day hour:min:sec timezone

hour:min:sec timezone month/day/year

where in both examples all fields are numbers; the format that current-time-string
returns is also allowed, and many others as well.
To specify a relative time, use numbers followed by units. For example:

‘1 min’ denotes 1 minute from now.

‘1 min 5 sec’
denotes 65 seconds from now.

‘1 min 2 sec 3 hour 4 day 5 week 6 fortnight 7 month 8 year’
denotes exactly 103 months, 123 days, and 10862 seconds from now.

For relative time values, Emacs considers a month to be exactly thirty days, and a
year to be exactly 365.25 days.
If time is a number (integer or floating point), that specifies a relative time measured
in seconds.
The argument repeat specifies how often to repeat the call. If repeat is nil, there are
no repetitions; function is called just once, at time. If repeat is a number, it specifies
a repetition period measured in seconds.
In most cases, repeat has no effect on when first call takes place—time alone specifies
that. There is one exception: if time is t, then the timer runs whenever the time is a
multiple of repeat seconds after the epoch. This is useful for functions like display-
time.
The function run-at-time returns a timer value that identifies the particular sched-
uled future action. You can use this value to call cancel-timer (see below).

Macrowith-timeout (seconds timeout-forms. . .) body. . .
Execute body, but give up after seconds seconds. If body finishes before the time
is up, with-timeout returns the value of the last form in body. If, however, the
execution of body is cut short by the timeout, then with-timeout executes all the
timeout-forms and returns the value of the last of them.
This macro works by setting a timer to run after seconds seconds. If body finishes be-
fore that time, it cancels the timer. If the timer actually runs, it terminates execution
of body, then executes timeout-forms.
Since timers can run within a Lisp program only when the program calls a primitive
that can wait, with-timeout cannot stop executing body while it is in the midst of a
computation—only when it calls one of those primitives. So use with-timeout only
with a body that waits for input, not one that does a long computation.

The function y-or-n-p-with-timeout provides a simple way to use a timer to avoid
waiting too long for an answer. See Section 20.6 [Yes-or-No Queries], page 280.

Functionrun-with-idle-timer secs repeat function &rest args
Set up a timer which runs when Emacs has been idle for secs seconds. The value of
secs may be an integer or a floating point number.

738 GNU Emacs Lisp Reference Manual

If repeat is nil, the timer runs just once, the first time Emacs remains idle for a long
enough time. More often repeat is non-nil, which means to run the timer each time
Emacs remains idle for secs seconds.
The function run-with-idle-timer returns a timer value which you can use in calling
cancel-timer (see below).

Emacs becomes “idle” when it starts waiting for user input, and it remains idle until the
user provides some input. If a timer is set for five seconds of idleness, it runs approximately
five seconds after Emacs first becomes idle. Even if repeat is non-nil, this timer will not
run again as long as Emacs remains idle, because the duration of idleness will continue to
increase and will not go down to five seconds again.

Emacs can do various things while idle: garbage collect, autosave or handle data from a
subprocess. But these interludes during idleness do not interfere with idle timers, because
they do not reset the clock of idleness to zero. An idle timer set for 600 seconds will run
when ten minutes have elapsed since the last user command was finished, even if subprocess
output has been accepted thousands of times within those ten minutes, and even if there
have been garbage collections and autosaves.

When the user supplies input, Emacs becomes non-idle while executing the input. Then
it becomes idle again, and all the idle timers that are set up to repeat will subsequently run
another time, one by one.

Functioncancel-timer timer
Cancel the requested action for timer, which should be a value previously returned by
run-at-time or run-with-idle-timer. This cancels the effect of that call to run-
at-time; the arrival of the specified time will not cause anything special to happen.

40.8 Terminal Input

This section describes functions and variables for recording or manipulating terminal
input. See Chapter 38 [Display], page 661, for related functions.

40.8.1 Input Modes

Functionset-input-mode interrupt flow meta quit-char
This function sets the mode for reading keyboard input. If interrupt is non-null, then
Emacs uses input interrupts. If it is nil, then it uses cbreak mode. The default
setting is system-dependent. Some systems always use cbreak mode regardless of
what is specified.
When Emacs communicates directly with X, it ignores this argument and uses inter-
rupts if that is the way it knows how to communicate.
If flow is non-nil, then Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This has no effect except in cbreak mode. See Section 40.12 [Flow
Control], page 745.
The argument meta controls support for input character codes above 127. If meta is
t, Emacs converts characters with the 8th bit set into Meta characters. If meta is

Chapter 40: Operating System Interface 739

nil, Emacs disregards the 8th bit; this is necessary when the terminal uses it as a
parity bit. If meta is neither t nor nil, Emacs uses all 8 bits of input unchanged.
This is good for terminals that use 8-bit character sets.
If quit-char is non-nil, it specifies the character to use for quitting. Normally this
character is C-g. See Section 21.10 [Quitting], page 316.

The current-input-mode function returns the input mode settings Emacs is currently
using.

Functioncurrent-input-mode
This function returns the current mode for reading keyboard input. It returns a list,
corresponding to the arguments of set-input-mode, of the form (interrupt flow meta
quit) in which:

interrupt is non-nil when Emacs is using interrupt-driven input. If nil, Emacs is
using cbreak mode.

flow is non-nil if Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This value is meaningful only when interrupt is nil.

meta is t if Emacs treats the eighth bit of input characters as the meta bit;
nil means Emacs clears the eighth bit of every input character; any other
value means Emacs uses all eight bits as the basic character code.

quit is the character Emacs currently uses for quitting, usually C-g.

40.8.2 Translating Input Events

This section describes features for translating input events into other input events before
they become part of key sequences. These features apply to each event in the order they
are described here: each event is first modified according to extra-keyboard-modifiers,
then translated through keyboard-translate-table (if applicable), and finally decoded
with the specified keyboard coding system. If it is being read as part of a key sequence, it
is then added to the sequence being read; then subsequences containing it are checked first
with function-key-map and then with key-translation-map.

Variableextra-keyboard-modifiers
This variable lets Lisp programs “press” the modifier keys on the keyboard. The
value is a bit mask:

1 The 〈SHIFT〉 key.

2 The 〈LOCK〉 key.

4 The 〈CTL〉 key.

8 The 〈META〉 key.

Each time the user types a keyboard key, it is altered as if the modifier keys specified
in the bit mask were held down.
When using a window system, the program can “press” any of the modifier keys in
this way. Otherwise, only the 〈CTL〉 and 〈META〉 keys can be virtually pressed.

740 GNU Emacs Lisp Reference Manual

Variablekeyboard-translate-table
This variable is the translate table for keyboard characters. It lets you reshuffle the
keys on the keyboard without changing any command bindings. Its value is normally
a char-table, or else nil.
If keyboard-translate-table is a char-table (see Section 6.6 [Char-Tables],
page 89), then each character read from the keyboard is looked up in this char-table.
If the value found there is non-nil, then it is used instead of the actual input
character.
In the example below, we set keyboard-translate-table to a char-table. Then
we fill it in to swap the characters C-s and C-\ and the characters C-q and C-^.
Subsequently, typing C-\ has all the usual effects of typing C-s, and vice versa. (See
Section 40.12 [Flow Control], page 745, for more information on this subject.)

(defun evade-flow-control ()
"Replace C-s with C-\ and C-q with C-^."
(interactive)
(setq keyboard-translate-table

(make-char-table ’keyboard-translate-table nil))
;; Swap C-s and C-\.
(aset keyboard-translate-table ?\034 ?\^s)
(aset keyboard-translate-table ?\^s ?\034)
;; Swap C-q and C-^.
(aset keyboard-translate-table ?\036 ?\^q)
(aset keyboard-translate-table ?\^q ?\036))

Note that this translation is the first thing that happens to a character after it is read
from the terminal. Record-keeping features such as recent-keys and dribble files
record the characters after translation.

Functionkeyboard-translate from to
This function modifies keyboard-translate-table to translate character code from
into character code to. It creates the keyboard translate table if necessary.

The remaining translation features translate subsequences of key sequences being read.
They are implemented in read-key-sequence and have no effect on input read with read-
event.

Variablefunction-key-map
This variable holds a keymap that describes the character sequences sent by function
keys on an ordinary character terminal. This keymap has the same structure as other
keymaps, but is used differently: it specifies translations to make while reading key
sequences, rather than bindings for key sequences.
If function-key-map “binds” a key sequence k to a vector v, then when k appears
as a subsequence anywhere in a key sequence, it is replaced with the events in v.
For example, VT100 terminals send 〈ESC〉 O P when the keypad 〈PF1〉 key is pressed.
Therefore, we want Emacs to translate that sequence of events into the single event
pf1. We accomplish this by “binding” 〈ESC〉 O P to [pf1] in function-key-map, when
using a VT100.

Chapter 40: Operating System Interface 741

Thus, typing C-c 〈PF1〉 sends the character sequence C-c 〈ESC〉 O P; later the function
read-key-sequence translates this back into C-c 〈PF1〉, which it returns as the vector
[?\C-c pf1].
Entries in function-key-map are ignored if they conflict with bindings made in the
minor mode, local, or global keymaps. The intent is that the character sequences
that function keys send should not have command bindings in their own right—but
if they do, the ordinary bindings take priority.
The value of function-key-map is usually set up automatically according to the
terminal’s Terminfo or Termcap entry, but sometimes those need help from terminal-
specific Lisp files. Emacs comes with terminal-specific files for many common termi-
nals; their main purpose is to make entries in function-key-map beyond those that
can be deduced from Termcap and Terminfo. See Section 40.1.3 [Terminal-Specific],
page 723.

Variablekey-translation-map
This variable is another keymap used just like function-key-map to translate input
events into other events. It differs from function-key-map in two ways:
• key-translation-map goes to work after function-key-map is finished; it re-

ceives the results of translation by function-key-map.
• key-translation-map overrides actual key bindings. For example, if C-x f has

a binding in key-translation-map, that translation takes effect even though
C-x f also has a key binding in the global map.

The intent of key-translation-map is for users to map one character set to another,
including ordinary characters normally bound to self-insert-command.

You can use function-key-map or key-translation-map for more than simple aliases,
by using a function, instead of a key sequence, as the “translation” of a key. Then this
function is called to compute the translation of that key.

The key translation function receives one argument, which is the prompt that was speci-
fied in read-key-sequence—or nil if the key sequence is being read by the editor command
loop. In most cases you can ignore the prompt value.

If the function reads input itself, it can have the effect of altering the event that follows.
For example, here’s how to define C-c h to turn the character that follows into a Hyper
character:

(defun hyperify (prompt)
(let ((e (read-event)))
(vector (if (numberp e)

(logior (lsh 1 24) e)
(if (memq ’hyper (event-modifiers e))

e
(add-event-modifier "H-" e))))))

(defun add-event-modifier (string e)
(let ((symbol (if (symbolp e) e (car e))))
(setq symbol (intern (concat string

(symbol-name symbol))))

742 GNU Emacs Lisp Reference Manual

(if (symbolp e)
symbol

(cons symbol (cdr e)))))

(define-key function-key-map "\C-ch" ’hyperify)

Finally, if you have enabled keyboard character set decoding using set-keyboard-
coding-system, decoding is done after the translations listed above. See Section 33.10.6
[Specifying Coding Systems], page 596. In future Emacs versions, character set decoding
may be done before the other translations.

40.8.3 Recording Input

Functionrecent-keys
This function returns a vector containing the last 100 input events from the keyboard
or mouse. All input events are included, whether or not they were used as parts of
key sequences. Thus, you always get the last 100 input events, not counting events
generated by keyboard macros. (These are excluded because they are less interesting
for debugging; it should be enough to see the events that invoked the macros.)
A call to clear-this-command-keys (see Section 21.4 [Command Loop Info],
page 295) causes this function to return an empty vector immediately afterward.

Commandopen-dribble-file filename
This function opens a dribble file named filename. When a dribble file is open, each
input event from the keyboard or mouse (but not those from keyboard macros) is
written in that file. A non-character event is expressed using its printed representation
surrounded by ‘<...>’.
You close the dribble file by calling this function with an argument of nil.
This function is normally used to record the input necessary to trigger an Emacs bug,
for the sake of a bug report.

(open-dribble-file "~/dribble")
⇒ nil

See also the open-termscript function (see Section 40.9 [Terminal Output], page 742).

40.9 Terminal Output

The terminal output functions send output to the terminal, or keep track of output sent
to the terminal. The variable baud-rate tells you what Emacs thinks is the output speed
of the terminal.

Variablebaud-rate
This variable’s value is the output speed of the terminal, as far as Emacs knows.
Setting this variable does not change the speed of actual data transmission, but
the value is used for calculations such as padding. It also affects decisions about
whether to scroll part of the screen or repaint—even when using a window system.

Chapter 40: Operating System Interface 743

(We designed it this way despite the fact that a window system has no true “output
speed”, to give you a way to tune these decisions.)
The value is measured in baud.

If you are running across a network, and different parts of the network work at different
baud rates, the value returned by Emacs may be different from the value used by your local
terminal. Some network protocols communicate the local terminal speed to the remote
machine, so that Emacs and other programs can get the proper value, but others do not.
If Emacs has the wrong value, it makes decisions that are less than optimal. To fix the
problem, set baud-rate.

Functionbaud-rate
This obsolete function returns the value of the variable baud-rate.

Functionsend-string-to-terminal string
This function sends string to the terminal without alteration. Control characters in
string have terminal-dependent effects.
One use of this function is to define function keys on terminals that have downloadable
function key definitions. For example, this is how (on certain terminals) to define
function key 4 to move forward four characters (by transmitting the characters C-u

C-f to the computer):
(send-string-to-terminal "\eF4\^U\^F")

⇒ nil

Commandopen-termscript filename
This function is used to open a termscript file that will record all the characters sent
by Emacs to the terminal. It returns nil. Termscript files are useful for investigating
problems where Emacs garbles the screen, problems that are due to incorrect Termcap
entries or to undesirable settings of terminal options more often than to actual Emacs
bugs. Once you are certain which characters were actually output, you can determine
reliably whether they correspond to the Termcap specifications in use.
See also open-dribble-file in Section 40.8 [Terminal Input], page 738.

(open-termscript "../junk/termscript")
⇒ nil

40.10 Sound Output

To play sound using Emacs, use the function play-sound. Only certain systems are
supported; if you call play-sound on a system which cannot really do the job, it gives an
error. Emacs version 20 and earlier did not support sound at all.

The sound must be stored as a file in RIFF-WAVE format (‘.wav’) or Sun Audio format
(‘.au’).

Functionplay-sound sound
This function plays a specified sound. The argument, sound, has the form (sound
properties...), where the properties consist of alternating keywords (particular sym-
bols recognized specially) and values corresponding to them.

744 GNU Emacs Lisp Reference Manual

Here is a table of the keywords that are currently meaningful in sound, and their
meanings:

:file file This specifies the file containing the sound to play. If the file name is not
absolute, it is expanded against the directory data-directory.

:data data
This specifies the sound to play without need to refer to a file. The value,
data, should be a string containing the same bytes as a sound file. We
recommend using a unibyte string.

:volume volume
This specifies how loud to play the sound. It should be a number in the
range of 0 to 1. The default is to use whatever volume has been specified
before.

:device device
This specifies the system device on which to play the sound, as a string.
The default device is system-dependent.

Before actually playing the sound, play-sound calls the functions in the list play-
sound-functions. Each function is called with one argument, sound.

Functionplay-sound-file file &optional volume device
This function is an alternative interface to playing a sound file specifying an optional
volume and device.

Variableplay-sound-functions
A list of functions to be called before playing a sound. Each function is called with
one argument, a property list that describes the sound.

40.11 System-Specific X11 Keysyms

To define system-specific X11 keysyms, set the variable system-key-alist.

Variablesystem-key-alist
This variable’s value should be an alist with one element for each system-specific
keysym. Each element has the form (code . symbol), where code is the numeric
keysym code (not including the “vendor specific” bit, −228), and symbol is the name
for the function key.
For example (168 . mute-acute) defines a system-specific key (used by HP X servers)
whose numeric code is −228 + 168.
It is not crucial to exclude from the alist the keysyms of other X servers; those do no
harm, as long as they don’t conflict with the ones used by the X server actually in
use.
The variable is always local to the current terminal, and cannot be buffer-local. See
Section 29.2 [Multiple Displays], page 484.

Chapter 40: Operating System Interface 745

40.12 Flow Control

This section attempts to answer the question “Why does Emacs use flow-control char-
acters in its command character set?” For a second view on this issue, read the comments
on flow control in the ‘emacs/INSTALL’ file from the distribution; for help with Termcap
entries and DEC terminal concentrators, see ‘emacs/etc/TERMS’.

At one time, most terminals did not need flow control, and none used C-s and C-q

for flow control. Therefore, the choice of C-s and C-q as command characters for search-
ing and quoting was natural and uncontroversial. With so many commands needing key
assignments, of course we assigned meanings to nearly all ascii control characters.

Later, some terminals were introduced which required these characters for flow control.
They were not very good terminals for full-screen editing, so Emacs maintainers ignored
them. In later years, flow control with C-s and C-q became widespread among terminals,
but by this time it was usually an option. And the majority of Emacs users, who can turn
flow control off, did not want to switch to less mnemonic key bindings for the sake of flow
control.

So which usage is “right”—Emacs’s or that of some terminal and concentrator manufac-
turers? This question has no simple answer.

One reason why we are reluctant to cater to the problems caused by C-s and C-q is that
they are gratuitous. There are other techniques (albeit less common in practice) for flow
control that preserve transparency of the character stream. Note also that their use for flow
control is not an official standard. Interestingly, on the model 33 teletype with a paper tape
punch (around 1970), C-s and C-q were sent by the computer to turn the punch on and off!

As window systems and PC terminal emulators replace character-only terminals, the flow
control problem is gradually disappearing. For the mean time, Emacs provides a convenient
way of enabling flow control if you want it: call the function enable-flow-control.

Commandenable-flow-control
This function enables use of C-s and C-q for output flow control, and provides the
characters C-\ and C-^ as aliases for them using keyboard-translate-table (see
Section 40.8.2 [Translating Input], page 739).

You can use the function enable-flow-control-on in your init file to enable flow control
automatically on certain terminal types.

Functionenable-flow-control-on &rest termtypes
This function enables flow control, and the aliases C-\ and C-^, if the terminal type
is one of termtypes. For example:

(enable-flow-control-on "vt200" "vt300" "vt101" "vt131")

Here is how enable-flow-control does its job:
1. It sets cbreak mode for terminal input, and tells the operating system to handle flow

control, with (set-input-mode nil t).
2. It sets up keyboard-translate-table to translate C-\ and C-^ into C-s and C-q.

Except at its very lowest level, Emacs never knows that the characters typed were
anything but C-s and C-q, so you can in effect type them as C-\ and C-^ even when
they are input for other commands. See Section 40.8.2 [Translating Input], page 739.

746 GNU Emacs Lisp Reference Manual

If the terminal is the source of the flow control characters, then once you enable kernel
flow control handling, you probably can make do with less padding than normal for that
terminal. You can reduce the amount of padding by customizing the Termcap entry. You
can also reduce it by setting baud-rate to a smaller value so that Emacs uses a smaller
speed when calculating the padding needed. See Section 40.9 [Terminal Output], page 742.

40.13 Batch Mode

The command-line option ‘-batch’ causes Emacs to run noninteractively. In this mode,
Emacs does not read commands from the terminal, it does not alter the terminal modes,
and it does not expect to be outputting to an erasable screen. The idea is that you specify
Lisp programs to run; when they are finished, Emacs should exit. The way to specify the
programs to run is with ‘-l file’, which loads the library named file, and ‘-f function’,
which calls function with no arguments.

Any Lisp program output that would normally go to the echo area, either using message,
or using prin1, etc., with t as the stream, goes instead to Emacs’s standard error descriptor
when in batch mode. Similarly, input that would normally come from the minibuffer is
read from the standard input descriptor. Thus, Emacs behaves much like a noninteractive
application program. (The echo area output that Emacs itself normally generates, such as
command echoing, is suppressed entirely.)

Variablenoninteractive
This variable is non-nil when Emacs is running in batch mode.

Appendix A: Emacs 20 Antinews 747

Appendix A Emacs 20 Antinews

For those users who live backwards in time, here is information about downgrading to
Emacs version 20.4. We hope you will enjoy the greater simplicity that results from the
absence of many Emacs 21 features. In the following section, we carry this information back
to Emacs 20.3, for which the previous printed edition of this manual was made.

A.1 Old Lisp Features in Emacs 20

• The push and pop macros are not defined. Neither are dolist and dotimes.
• You can’t display images in buffers. (Emacs is meant for editing text.) With no images,

there are no display margins, and no tool bars.
• The display text property has no special meaning; you can use it freely in Lisp pro-

grams, with no effects except what you implement for yourself. With no images, who
needs the display text property?

• The field text property has no special meaning; buffers are no longer subdivided into
fields. (The division of information into fields is always rather arbitrary.)

• Faces have fewer attributes. The attributes :family, :height, :width, :weight, and
:slant, have been replaced with a font name, a “bold” flag, and an “italic” flag.
The attributes :overline, :strike-through and :box have been eliminated too. Un-
derlining now always has the same color as the text—using any other color would be
bad taste.
With fewer font attributes, there are no functions set-face-attribute and face-
attribute. Instead, you access these attributes using functions such as face-font,
and set them with functions such as set-face-font. (These functions were available
in Emacs 21, but are not as useful there.)

• The standard faces scroll-bar, menu, border, cursor, and mouse have been elim-
inated. They are rather strange, as faces, and therefore shouldn’t really exist. You
can use set-border-color, set-cursor-color and set-mouse-color to specify the
colors for the frame border, the text cursor, and the mouse cursor. To specify menu
colors, use X resources.

• Colors and other face attributes are no longer supported on character terminals, so you
no longer have to worry about terminals making faces at you.

• Emacs will respect your peace and quiet, aside from occasional beeps, because there
are no facilities for playing sounds.

• Emacs 20 provides a complex and badly designed method for handling character com-
position for languages such as Thai that display several letters as a single combined
image. We are too ashamed of it to tell you any more than that.

• delete-and-extract-region has been deleted; instead, use buffer-substring to
extract the text, then use delete-region to delete it.

• Regular expressions do not support the POSIX character classes such as ‘[:alpha:]’.
All characters are created equal.

• Hash tables have been eliminated; use alists instead.

748 GNU Emacs Lisp Reference Manual

• The Lisp printer does not detect and report circular structure. That is ok, because
the Lisp reader cannot recreate circular structure anyway. However, there is a library
‘cust-print.el’ which can report circular structure.

• Emacs provides its own implementation of scroll bars, instead of using those of the X
toolkit. They always use the frame foreground and background colors, so you cannot
specify different colors for the scroll bars.

• For simplicity, all ascii characters now have the same height and width. (Certain
characters, such as Chinese characters, always have twice the standard width.) All
characters are created equal.

• You can now resize any Emacs window, and size changes in one window can propagate
to all others. Windows can no longer use window-size-fixed to get special privileges.

• The function intern-soft no longer accepts a symbol as argument.

• The function bitmap-spec-p has been renamed to pixmap-spec-p to encourage users
to practice Emacs’ help system while trying to find it.

• Tooltips operate using ordinary Emacs frames.

• Areas of the mode line are not mouse-sensitive; however, some mouse commands are
available for the mode line as a whole.

• Windows cannot have header lines. Conversely, there is no way to turn off the mode
line of a window unless it is a minibuffer.

• Plain dashes are the only separators you can use in a menu.

• Vertical fractional scrolling does not exist.

• The functions format and message ignore and discard text properties.

• The function propertize does not exist; you can get the job done using set-text-
properties.

• Colors are supported only on window systems, not on text-only terminals. So the
support functions for colors on text-only terminals are not needed, and have been
eliminated.

• The functions color-values, color-defined-p and defined-colors have been re-
named to x-color-values, x-color-defined-p and x-defined-colors.

• Windows cannot be made fixed-width or fixed-height; Emacs will adjust the size of all
windows when it needs to.

• The string used as the value of the before-string or after-string property must
contain only characters that display as a single column—control characters, including
tabs and newlines, will give strange results.

• The minibuffer prompt does not actually appear in content of the minibuffer; it is
displayed specially in the minibuffer window.

• The “exclusive open” feature of write-region has been eliminated; any non-nil value
for the seventh argument now means to ask the user for confirmation.

• The function buffer-size always reports on the current buffer.

• The function assq-delete-all has itself been deleted. So there!

• The keyword :set-after no longer does anything in defcustom.

Appendix A: Emacs 20 Antinews 749

• The variable small-temporary-file-directory has no special meaning. There’s only
one variable for specifying which directory to use for temporary files, temporary-file-
directory, but not all Emacs features use it anyway. Some use the TMP environment
variable, and some use the TMPDIR environment variable.

• If the second argument of save-some-buffers, pred, is not nil, then the precise value
no longer matters. Any non-nil value means the same as t: offer to save each non-file
buffer that has a non-nil value for buffer-offer-save.

• The variable inhibit-modification-hooks has no special meaning.
• The hook fontification-functions has been eliminated, but there are other hooks,

such as window-scroll-functions, that you can use to do a similar job.
• The variable redisplay-dont-pause has no special meaning.
• The hook calendar-move-hook has been deleted.
• The function move-to-column treats any non-nil second argument just like t.

A.2 Old Lisp Features in Emacs 20.3

Here are the most important of the features that you will learn to do without in Emacs
20.3:

Here are changes in the Lisp language itself:
• The functions line-beginning-position and line-end-position have been elimi-

nated.
• The functions directory-files-and-attributes, file-attributes-lessp, and

file-expand-wildcards, have been eliminated.
• The functions decode-coding-region and encode-coding-region leave text proper-

ties untouched, in case that is useful. (It rarely makes any sense, though.)
• The functions position-bytes and byte-to-position have been eliminated.
• Temporary buffers made with with-output-to-temp-buffer are now modifiable by

default, and use Fundamental mode rather than Help mode.
• The functions sref interprets its index argument as a number of bytes, not a number

of characters. And the function char-bytes actually tries to report on the number of
bytes that a character occupies.

• The function process-running-child-p has been eliminated.
• The function interrupt-process and similar functions no longer do anything special

when the second argument is lambda.
• The function define-prefix-command accepts only two arguments.
• The meaning of the second argument to read-char, read-event, and read-char-

exclusive has been reversed: they use the current input method if the argument is if
nil.

• The function with-temp-message has been eliminated.
• The function clear-this-command-keys has been eliminated.
• The functions gap-position and gap-size have been eliminated.
• In modify-face, an argument of (nil) has no special meaning.

750 GNU Emacs Lisp Reference Manual

• The base64 conversion functions have been eliminated.
• Wildcard support has been eliminated from find-file and allied functions.
• file-attributes returns the file size and the file inode number only as a simple

integer.

Appendix B: GNU Free Documentation License 751

Appendix B GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

752 GNU Emacs Lisp Reference Manual

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix B: GNU Free Documentation License 753

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).
C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

754 GNU Emacs Lisp Reference Manual

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.
K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
M. Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.
N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix B: GNU Free Documentation License 755

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

756 GNU Emacs Lisp Reference Manual

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix C: GNU General Public License 757

Appendix C GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

758 GNU Emacs Lisp Reference Manual

Terms and Conditions for Copying, Distribution and
Modification

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

Appendix C: GNU General Public License 759

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

760 GNU Emacs Lisp Reference Manual

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

Appendix C: GNU General Public License 761

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

762 GNU Emacs Lisp Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

Appendix C: GNU General Public License 763

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License.

764 GNU Emacs Lisp Reference Manual

Appendix D: Tips and Conventions 765

Appendix D Tips and Conventions

This chapter describes no additional features of Emacs Lisp. Instead it gives advice
on making effective use of the features described in the previous chapters, and describes
conventions Emacs Lisp programmers should follow.

You can automatically check some of the conventions described below by running the
command M-x checkdoc RET when visiting a Lisp file. It cannot check all of the conven-
tions, and not all the warnings it gives necessarily correspond to problems, but it is worth
examining them all.

D.1 Emacs Lisp Coding Conventions

Here are conventions that you should follow when writing Emacs Lisp code intended for
widespread use:
• Since all global variables share the same name space, and all functions share another

name space, you should choose a short word to distinguish your program from other
Lisp programs.1 Then take care to begin the names of all global variables, constants,
and functions in your program with the chosen prefix. This helps avoid name conflicts.
This recommendation applies even to names for traditional Lisp primitives that are not
primitives in Emacs Lisp—even to copy-list. Believe it or not, there is more than one
plausible way to define copy-list. Play it safe; append your name prefix to produce
a name like foo-copy-list or mylib-copy-list instead.
If you write a function that you think ought to be added to Emacs under a certain
name, such as twiddle-files, don’t call it by that name in your program. Call it
mylib-twiddle-files in your program, and send mail to ‘bug-gnu-emacs@gnu.org’
suggesting we add it to Emacs. If and when we do, we can change the name easily
enough.
If one prefix is insufficient, your package may use two or three alternative common
prefixes, so long as they make sense.
Separate the prefix from the rest of the symbol name with a hyphen, ‘-’. This will be
consistent with Emacs itself and with most Emacs Lisp programs.

• It is often useful to put a call to provide in each separate library program, at least if
there is more than one entry point to the program.

• If a file requires certain other library programs to be loaded beforehand, then the
comments at the beginning of the file should say so. Also, use require to make sure
they are loaded.

• If one file foo uses a macro defined in another file bar, foo should contain this expression
before the first use of the macro:

(eval-when-compile (require ’bar))

(And the library bar should contain (provide ’bar), to make the require work.) This
will cause bar to be loaded when you byte-compile foo. Otherwise, you risk compiling
foo without the necessary macro loaded, and that would produce compiled code that
won’t work right. See Section 13.3 [Compiling Macros], page 172.

1 The benefits of a Common Lisp-style package system are considered not to outweigh the costs.

766 GNU Emacs Lisp Reference Manual

Using eval-when-compile avoids loading bar when the compiled version of foo is used.
• Please don’t require the cl package of Common Lisp extensions at run time. Use of

this package is optional, and it is not part of the standard Emacs namespace. If your
package loads cl at run time, that could cause name clashes for users who don’t use
that package.
However, there is no problem with using the cl package at compile time, for the sake
of macros. You do that like this:

(eval-when-compile (require ’cl))

• When defining a major mode, please follow the major mode conventions. See Sec-
tion 23.1.1 [Major Mode Conventions], page 356.

• When defining a minor mode, please follow the minor mode conventions. See Sec-
tion 23.2.1 [Minor Mode Conventions], page 365.

• If the purpose of a function is to tell you whether a certain condition is true or false,
give the function a name that ends in ‘p’. If the name is one word, add just ‘p’; if the
name is multiple words, add ‘-p’. Examples are framep and frame-live-p.

• If a user option variable records a true-or-false condition, give it a name that ends in
‘-flag’.

• Please do not define C-c letter as a key in your major modes. These sequences are
reserved for users; they are the only sequences reserved for users, so do not block them.
Instead, define sequences consisting of C-c followed by a control character, a digit, or
certain punctuation characters. These sequences are reserved for major modes.
Changing all the Emacs major modes to follow this convention was a lot of work.
Abandoning this convention would make that work go to waste, and inconvenience
users.

• Sequences consisting of C-c followed by {, }, <, >, : or ; are also reserved for major
modes.

• Sequences consisting of C-c followed by any other punctuation character are allocated
for minor modes. Using them in a major mode is not absolutely prohibited, but if you
do that, the major mode binding may be shadowed from time to time by minor modes.

• Function keys 〈F5〉 through 〈F9〉 without modifier keys are reserved for users to define.
• Do not bind C-h following any prefix character (including C-c). If you don’t bind C-h,

it is automatically available as a help character for listing the subcommands of the
prefix character.

• Do not bind a key sequence ending in 〈ESC〉 except following another 〈ESC〉. (That is, it
is OK to bind a sequence ending in 〈ESC〉 〈ESC〉.)
The reason for this rule is that a non-prefix binding for 〈ESC〉 in any context prevents
recognition of escape sequences as function keys in that context.

• Anything which acts like a temporary mode or state which the user can enter and leave
should define 〈ESC〉 〈ESC〉 or 〈ESC〉 〈ESC〉 〈ESC〉 as a way to escape.
For a state which accepts ordinary Emacs commands, or more generally any kind of
state in which 〈ESC〉 followed by a function key or arrow key is potentially meaningful,
then you must not define 〈ESC〉 〈ESC〉, since that would preclude recognizing an escape
sequence after 〈ESC〉. In these states, you should define 〈ESC〉 〈ESC〉 〈ESC〉 as the way to
escape. Otherwise, define 〈ESC〉 〈ESC〉 instead.

Appendix D: Tips and Conventions 767

• Applications should not bind mouse events based on button 1 with the shift key held
down. These events include S-mouse-1, M-S-mouse-1, C-S-mouse-1, and so on. They
are reserved for users.

• Special major modes used for read-only text should usually redefine mouse-2 and 〈RET〉
to trace some sort of reference in the text. Modes such as Dired, Info, Compilation,
and Occur redefine it in this way.

• When a package provides a modification of ordinary Emacs behavior, it is good to
include a command to enable and disable the feature, Provide a command named
whatever-mode which turns the feature on or off, and make it autoload (see Section 15.4
[Autoload], page 197). Design the package so that simply loading it has no visible
effect—that should not enable the feature.2 Users will request the feature by invoking
the command.

• It is a bad idea to define aliases for the Emacs primitives. Use the standard names
instead.

• If a package needs to define an alias or a new function for compatibility with some
other version of Emacs, name it with the package prefix, not with the raw name with
which it occurs in the other version. Here is an example from Gnus, which provides
many examples of such compatibility issues.

(defalias ’gnus-point-at-bol
(if (fboundp ’point-at-bol)

’point-at-bol
’line-beginning-position))

• Redefining (or advising) an Emacs primitive is discouraged. It may do the right thing
for a particular program, but there is no telling what other programs might break as a
result.

• If a file does replace any of the functions or library programs of standard Emacs, promi-
nent comments at the beginning of the file should say which functions are replaced,
and how the behavior of the replacements differs from that of the originals.

• Please keep the names of your Emacs Lisp source files to 13 characters or less. This
way, if the files are compiled, the compiled files’ names will be 14 characters or less,
which is short enough to fit on all kinds of Unix systems.

• Don’t use next-line or previous-line in programs; nearly always, forward-line
is more convenient as well as more predictable and robust. See Section 30.2.4 [Text
Lines], page 512.

• Don’t call functions that set the mark, unless setting the mark is one of the intended
features of your program. The mark is a user-level feature, so it is incorrect to change
the mark except to supply a value for the user’s benefit. See Section 31.7 [The Mark],
page 527.

In particular, don’t use any of these functions:

• beginning-of-buffer, end-of-buffer

• replace-string, replace-regexp

2 Consider that the package may be loaded arbitrarily by Custom for instance.

768 GNU Emacs Lisp Reference Manual

If you just want to move point, or replace a certain string, without any of the other
features intended for interactive users, you can replace these functions with one or two
lines of simple Lisp code.

• Use lists rather than vectors, except when there is a particular reason to use a vector.
Lisp has more facilities for manipulating lists than for vectors, and working with lists
is usually more convenient.
Vectors are advantageous for tables that are substantial in size and are accessed in
random order (not searched front to back), provided there is no need to insert or delete
elements (only lists allow that).

• The recommended way to print a message in the echo area is with the message function,
not princ. See Section 38.4 [The Echo Area], page 663.

• When you encounter an error condition, call the function error (or signal). The
function error does not return. See Section 10.5.3.1 [Signaling Errors], page 125.
Do not use message, throw, sleep-for, or beep to report errors.

• An error message should start with a capital letter but should not end with a period.
• In interactive, if you use a Lisp expression to produce a list of arguments, don’t

try to provide the “correct” default values for region or position arguments. Instead,
provide nil for those arguments if they were not specified, and have the function body
compute the default value when the argument is nil. For instance, write this:

(defun foo (pos)
(interactive
(list (if specified specified-pos)))

(unless pos (setq pos default-pos))
...)

rather than this:
(defun foo (pos)
(interactive
(list (if specified specified-pos

default-pos)))
...)

This is so that repetition of the command will recompute these defaults based on the
current circumstances.
You do not need to take such precautions when you use interactive specs ‘d’, ‘m’ and
‘r’, because they make special arrangements to recompute the argument values on
repetition of the command.

• Many commands that take a long time to execute display a message that says something
like ‘Operating...’ when they start, and change it to ‘Operating...done’ when they
finish. Please keep the style of these messages uniform: no space around the ellipsis,
and no period after ‘done’.

• Try to avoid using recursive edits. Instead, do what the Rmail e command does: use a
new local keymap that contains one command defined to switch back to the old local
keymap. Or do what the edit-options command does: switch to another buffer and
let the user switch back at will. See Section 21.12 [Recursive Editing], page 319.

• In some other systems there is a convention of choosing variable names that begin and
end with ‘*’. We don’t use that convention in Emacs Lisp, so please don’t use it in

Appendix D: Tips and Conventions 769

your programs. (Emacs uses such names only for special-purpose buffers.) The users
will find Emacs more coherent if all libraries use the same conventions.

• Try to avoid compiler warnings about undefined free variables, by adding defvar defi-
nitions for these variables.

Sometimes adding a require for another package is useful to avoid compilation warn-
ings for variables and functions defined in that package. If you do this, often it is better
if the require acts only at compile time. Here’s how to do that:

(eval-when-compile
(require ’foo)
(defvar bar-baz))

If you bind a variable in one function, and use it or set it in another function, the
compiler warns about the latter function unless the variable has a definition. But often
these variables have short names, and it is not clean for Lisp packages to define such
variable names. Therefore, you should rename the variable to start with the name
prefix used for the other functions and variables in your package.

• Indent each function with C-M-q (indent-sexp) using the default indentation param-
eters.

• Don’t make a habit of putting close-parentheses on lines by themselves; Lisp pro-
grammers find this disconcerting. Once in a while, when there is a sequence of many
consecutive close-parentheses, it may make sense to split the sequence in one or two
significant places.

• Please put a copyright notice on the file if you give copies to anyone. Use a message
like this one:

;; Copyright (C) year name

;; This program is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License as
;; published by the Free Software Foundation; either version 2 of
;; the License, or (at your option) any later version.

;; This program is distributed in the hope that it will be
;; useful, but WITHOUT ANY WARRANTY; without even the implied
;; warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
;; PURPOSE. See the GNU General Public License for more details.

;; You should have received a copy of the GNU General Public
;; License along with this program; if not, write to the Free
;; Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
;; MA 02111-1307 USA

If you have signed papers to assign the copyright to the Foundation, then use ‘Free
Software Foundation, Inc.’ as name. Otherwise, use your name.

D.2 Tips for Making Compiled Code Fast

Here are ways of improving the execution speed of byte-compiled Lisp programs.

770 GNU Emacs Lisp Reference Manual

• Profile your program with the ‘profile’ library or the ‘elp’ library. See the files
‘profile.el’ and ‘elp.el’ for instructions.

• Use iteration rather than recursion whenever possible. Function calls are slow in Emacs
Lisp even when a compiled function is calling another compiled function.

• Using the primitive list-searching functions memq, member, assq, or assoc is even faster
than explicit iteration. It can be worth rearranging a data structure so that one of
these primitive search functions can be used.

• Certain built-in functions are handled specially in byte-compiled code, avoiding the
need for an ordinary function call. It is a good idea to use these functions rather than
alternatives. To see whether a function is handled specially by the compiler, examine
its byte-compile property. If the property is non-nil, then the function is handled
specially.
For example, the following input will show you that aref is compiled specially (see
Section 6.3 [Array Functions], page 86):

(get ’aref ’byte-compile)
⇒ byte-compile-two-args

• If calling a small function accounts for a substantial part of your program’s running
time, make the function inline. This eliminates the function call overhead. Since
making a function inline reduces the flexibility of changing the program, don’t do it
unless it gives a noticeable speedup in something slow enough that users care about
the speed. See Section 12.9 [Inline Functions], page 168.

D.3 Tips for Documentation Strings

Here are some tips and conventions for the writing of documentation strings. You can
check many of these conventions by running the command M-x checkdoc-minor-mode.

• Every command, function, or variable intended for users to know about should have a
documentation string.

• An internal variable or subroutine of a Lisp program might as well have a documenta-
tion string. In earlier Emacs versions, you could save space by using a comment instead
of a documentation string, but that is no longer the case—documentation strings now
take up very little space in a running Emacs.

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary. M-x apropos displays just the first line,
and if that line’s contents don’t stand on their own, the result looks bad. In particular,
start the first line with a capital letter and end with a period.
The documentation string is not limited to one line; use as many lines as you need to
explain the details of how to use the function or variable. Please use complete sentences
in the additional lines.

• For consistency, phrase the verb in the first sentence of a function’s documentation
string as an imperative–for instance, use “Return the cons of A and B.” in preference
to “Returns the cons of A and B.” Usually it looks good to do likewise for the rest of
the first paragraph. Subsequent paragraphs usually look better if each sentence has a
proper subject.

Appendix D: Tips and Conventions 771

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Emacs to display text in boldface,” write just “Display text in boldface.”

• When a command is meaningful only in a certain mode or situation, do mention that
in the documentation string. For example, the documentation of dired-find-file is:

In Dired, visit the file or directory named on this line.

• Do not start or end a documentation string with whitespace.

• Format the documentation string so that it fits in an Emacs window on an 80-column
screen. It is a good idea for most lines to be no wider than 60 characters. The first line
should not be wider than 67 characters or it will look bad in the output of apropos.

You can fill the text if that looks good. However, rather than blindly filling the entire
documentation string, you can often make it much more readable by choosing certain
line breaks with care. Use blank lines between topics if the documentation string is
long.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• When the user tries to use a disabled command, Emacs displays just the first paragraph
of its documentation string—everything through the first blank line. If you wish, you
can choose which information to include before the first blank line so as to make this
display useful.

• A variable’s documentation string should start with ‘*’ if the variable is one that users
would often want to set interactively. If the value is a long list, or a function, or if the
variable would be set only in init files, then don’t start the documentation string with
‘*’. See Section 11.5 [Defining Variables], page 137.

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Non-nil means. . . ”, to make it clear that all non-nil values are equivalent
and indicate explicitly what nil and non-nil mean.

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the function eval refers to its second argument as
‘FORM’, because the actual argument name is form:

Evaluate FORM and return its value.

Also write metasyntactic variables in capital letters, such as when you show the decom-
position of a list or vector into subunits, some of which may vary. ‘KEY’ and ‘VALUE’ in
the following example illustrate this practice:

The argument TABLE should be an alist whose elements
have the form (KEY . VALUE). Here, KEY is ...

• If a line in a documentation string begins with an open-parenthesis, write a backslash
before the open-parenthesis, like this:

772 GNU Emacs Lisp Reference Manual

The argument FOO can be either a number
\(a buffer position) or a string (a file name).

This prevents the open-parenthesis from being treated as the start of a defun (see
section “Defuns” in The GNU Emacs Manual).

• When a documentation string refers to a Lisp symbol, write it as it would be printed
(which usually means in lower case), with single-quotes around it. For example:
‘‘lambda’’. There are two exceptions: write t and nil without single-quotes.

Help mode automatically creates a hyperlink when a documentation string uses a sym-
bol name inside single quotes, if the symbol has either a function or a variable definition.
You do not need to do anything special to make use of this feature. However, when a
symbol has both a function definition and a variable definition, and you want to refer
to just one of them, you can specify which one by writing one of the words ‘variable’,
‘option’, ‘function’, or ‘command’, immediately before the symbol name. (Case makes
no difference in recognizing these indicator words.) For example, if you write

This function sets the variable ‘buffer-file-name’.

then the hyperlink will refer only to the variable documentation of buffer-file-name,
and not to its function documentation.

If a symbol has a function definition and/or a variable definition, but those are irrelevant
to the use of the symbol that you are documenting, you can write the word ‘symbol’
before the symbol name to prevent making any hyperlink. For example,

If the argument KIND-OF-RESULT is the symbol ‘list’,
this function returns a list of all the objects
that satisfy the criterion.

does not make a hyperlink to the documentation, irrelevant here, of the function list.

To make a hyperlink to Info documentation, write the name of the Info node in single
quotes, preceded by ‘info node’ or ‘Info node’. The Info file name defaults to ‘emacs’.
For example,

See Info node ‘Font Lock’ and Info node ‘(elisp)Font Lock Basics’.

• Don’t write key sequences directly in documentation strings. Instead, use the ‘\\[...]’
construct to stand for them. For example, instead of writing ‘C-f’, write the construct
‘\\[forward-char]’. When Emacs displays the documentation string, it substitutes
whatever key is currently bound to forward-char. (This is normally ‘C-f’, but it may
be some other character if the user has moved key bindings.) See Section 24.3 [Keys
in Documentation], page 390.

• In documentation strings for a major mode, you will want to refer to the key bindings of
that mode’s local map, rather than global ones. Therefore, use the construct ‘\\<...>’
once in the documentation string to specify which key map to use. Do this before the
first use of ‘\\[...]’. The text inside the ‘\\<...>’ should be the name of the variable
containing the local keymap for the major mode.

It is not practical to use ‘\\[...]’ very many times, because display of the documen-
tation string will become slow. So use this to describe the most important commands
in your major mode, and then use ‘\\{...}’ to display the rest of the mode’s keymap.

Appendix D: Tips and Conventions 773

D.4 Tips on Writing Comments

We recommend these conventions for where to put comments and how to indent them:

‘;’ Comments that start with a single semicolon, ‘;’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on the same line does its job. In Lisp mode and related modes,
the M-; (indent-for-comment) command automatically inserts such a ‘;’ in
the right place, or aligns such a comment if it is already present.
This and following examples are taken from the Emacs sources.

(setq base-version-list ; there was a base
(assoc (substring fn 0 start-vn) ; version to which

file-version-assoc-list)) ; this looks like
; a subversion

‘;;’ Comments that start with two semicolons, ‘;;’, should be aligned to the same
level of indentation as the code. Such comments usually describe the purpose
of the following lines or the state of the program at that point. For example:

(prog1 (setq auto-fill-function
...
...

;; update mode line
(force-mode-line-update)))

We also normally use two semicolons for comments outside functions.
;; This Lisp code is run in Emacs
;; when it is to operate as a server
;; for other processes.

Every function that has no documentation string (presumably one that is used
only internally within the package it belongs to), should instead have a two-
semicolon comment right before the function, explaining what the function does
and how to call it properly. Explain precisely what each argument means and
how the function interprets its possible values.

‘;;;’ Comments that start with three semicolons, ‘;;;’, should start at the left mar-
gin. These are used, occasionally, for comments within functions that should
start at the margin. We also use them sometimes for comments that are be-
tween functions—whether to use two or three semicolons there is a matter of
style.
Another use for triple-semicolon comments is for commenting out lines within
a function. We use three semicolons for this precisely so that they remain at
the left margin.

(defun foo (a)
;;; This is no longer necessary.
;;; (force-mode-line-update)
(message "Finished with %s" a))

‘;;;;’ Comments that start with four semicolons, ‘;;;;’, should be aligned to the left
margin and are used for headings of major sections of a program. For example:

;;;; The kill ring

774 GNU Emacs Lisp Reference Manual

The indentation commands of the Lisp modes in Emacs, such as M-; (indent-for-comment)
and 〈TAB〉 (lisp-indent-line), automatically indent comments according to these conven-
tions, depending on the number of semicolons. See section “Manipulating Comments” in
The GNU Emacs Manual.

D.5 Conventional Headers for Emacs Libraries

Emacs has conventions for using special comments in Lisp libraries to divide them into
sections and give information such as who wrote them. This section explains these conven-
tions.

We’ll start with an example, a package that is included in the Emacs distribution.

Parts of this example reflect its status as part of Emacs; for example, the copyright notice
lists the Free Software Foundation as the copyright holder, and the copying permission says
the file is part of Emacs. When you write a package and post it, the copyright holder would
be you (unless your employer claims to own it instead), and you should get the suggested
copying permission from the end of the GNU General Public License itself. Don’t say your
file is part of Emacs if we haven’t installed it in Emacs yet!

With that warning out of the way, on to the example:
;;; lisp-mnt.el --- minor mode for Emacs Lisp maintainers

;; Copyright (C) 1992 Free Software Foundation, Inc.

;; Author: Eric S. Raymond <esr@snark.thyrsus.com>
;; Maintainer: Eric S. Raymond <esr@snark.thyrsus.com>
;; Created: 14 Jul 1992
;; Version: 1.2
;; Keywords: docs

;; This file is part of GNU Emacs.
...
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.

The very first line should have this format:
;;; filename --- description

The description should be complete in one line.

After the copyright notice come several header comment lines, each beginning with ‘;;
header-name:’. Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the principal author of the
library.
If there are multiple authors, you can list them on continuation lines led by ;;
and a tab character, like this:

;; Author: Ashwin Ram <Ram-Ashwin@cs.yale.edu>
;; Dave Sill <de5@ornl.gov>
;; Dave Brennan <brennan@hal.com>
;; Eric Raymond <esr@snark.thyrsus.com>

Appendix D: Tips and Conventions 775

‘Maintainer’
This line should contain a single name/address as in the Author line, or an
address only, or the string ‘FSF’. If there is no maintainer line, the person(s)
in the Author field are presumed to be the maintainers. The example above is
mildly bogus because the maintainer line is redundant.
The idea behind the ‘Author’ and ‘Maintainer’ lines is to make possible a Lisp
function to “send mail to the maintainer” without having to mine the name out
by hand.
Be sure to surround the network address with ‘<...>’ if you include the person’s
full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file. For historical
interest only.

‘Version’ If you wish to record version numbers for the individual Lisp program, put them
in this line.

‘Adapted-By’
In this header line, place the name of the person who adapted the library for
installation (to make it fit the style conventions, for example).

‘Keywords’
This line lists keywords for the finder-by-keyword help command. Please use
that command to see a list of the meaningful keywords.
This field is important; it’s how people will find your package when they’re
looking for things by topic area. To separate the keywords, you can use spaces,
commas, or both.

Just about every Lisp library ought to have the ‘Author’ and ‘Keywords’ header comment
lines. Use the others if they are appropriate. You can also put in header lines with other
header names—they have no standard meanings, so they can’t do any harm.

We use additional stylized comments to subdivide the contents of the library file. These
should be separated by blank lines from anything else. Here is a table of them:

‘;;; Commentary:’
This begins introductory comments that explain how the library works. It
should come right after the copying permissions, terminated by a ‘Change Log’,
‘History’ or ‘Code’ comment line. This text is used by the Finder package, so
it should make sense in that context.

‘;;; Documentation’
This has been used in some files in place of ‘;;; Commentary:’, but ‘;;;
Commentary:’ is preferred.

‘;;; Change Log:’
This begins change log information stored in the library file (if you store the
change history there). For Lisp files distributed with Emacs, the change history
is kept in the file ‘ChangeLog’ and not in the source file at all; these files generally
do not have a ‘;;; Change Log:’ line. ‘History’ is an alternative to ‘Change
Log’.

776 GNU Emacs Lisp Reference Manual

‘;;; Code:’
This begins the actual code of the program.

‘;;; filename ends here’
This is the footer line; it appears at the very end of the file. Its purpose is to
enable people to detect truncated versions of the file from the lack of a footer
line.

Appendix E: GNU Emacs Internals 777

Appendix E GNU Emacs Internals

This chapter describes how the runnable Emacs executable is dumped with the preloaded
Lisp libraries in it, how storage is allocated, and some internal aspects of GNU Emacs that
may be of interest to C programmers.

E.1 Building Emacs

This section explains the steps involved in building the Emacs executable. You don’t
have to know this material to build and install Emacs, since the makefiles do all these things
automatically. This information is pertinent to Emacs maintenance.

Compilation of the C source files in the ‘src’ directory produces an executable file called
‘temacs’, also called a bare impure Emacs. It contains the Emacs Lisp interpreter and I/O
routines, but not the editing commands.

The command ‘temacs -l loadup’ uses ‘temacs’ to create the real runnable Emacs ex-
ecutable. These arguments direct ‘temacs’ to evaluate the Lisp files specified in the file
‘loadup.el’. These files set up the normal Emacs editing environment, resulting in an
Emacs that is still impure but no longer bare.

It takes a substantial time to load the standard Lisp files. Luckily, you don’t have to
do this each time you run Emacs; ‘temacs’ can dump out an executable program called
‘emacs’ that has these files preloaded. ‘emacs’ starts more quickly because it does not need
to load the files. This is the Emacs executable that is normally installed.

To create ‘emacs’, use the command ‘temacs -batch -l loadup dump’. The purpose of
‘-batch’ here is to prevent ‘temacs’ from trying to initialize any of its data on the terminal;
this ensures that the tables of terminal information are empty in the dumped Emacs. The
argument ‘dump’ tells ‘loadup.el’ to dump a new executable named ‘emacs’.

Some operating systems don’t support dumping. On those systems, you must start
Emacs with the ‘temacs -l loadup’ command each time you use it. This takes a substantial
time, but since you need to start Emacs once a day at most—or once a week if you never
log out—the extra time is not too severe a problem.

You can specify additional files to preload by writing a library named ‘site-load.el’
that loads them. You may need to add a definition

#define SITELOAD_PURESIZE_EXTRA n

to make n added bytes of pure space to hold the additional files. (Try adding increments of
20000 until it is big enough.) However, the advantage of preloading additional files decreases
as machines get faster. On modern machines, it is usually not advisable.

After ‘loadup.el’ reads ‘site-load.el’, it finds the documentation strings for primitive
and preloaded functions (and variables) in the file ‘etc/DOC’ where they are stored, by calling
Snarf-documentation (see Section 24.2 [Accessing Documentation], page 388).

You can specify other Lisp expressions to execute just before dumping by putting them
in a library named ‘site-init.el’. This file is executed after the documentation strings
are found.

If you want to preload function or variable definitions, there are three ways you can do
this and make their documentation strings accessible when you subsequently run Emacs:

778 GNU Emacs Lisp Reference Manual

• Arrange to scan these files when producing the ‘etc/DOC’ file, and load them with
‘site-load.el’.

• Load the files with ‘site-init.el’, then copy the files into the installation directory
for Lisp files when you install Emacs.

• Specify a non-nil value for byte-compile-dynamic-docstrings as a local variable in
each of these files, and load them with either ‘site-load.el’ or ‘site-init.el’. (This
method has the drawback that the documentation strings take up space in Emacs all
the time.)

It is not advisable to put anything in ‘site-load.el’ or ‘site-init.el’ that would
alter any of the features that users expect in an ordinary unmodified Emacs. If you feel
you must override normal features for your site, do it with ‘default.el’, so that users can
override your changes if they wish. See Section 40.1.1 [Startup Summary], page 721.

Functiondump-emacs to-file from-file
This function dumps the current state of Emacs into an executable file to-file. It takes
symbols from from-file (this is normally the executable file ‘temacs’).

If you want to use this function in an Emacs that was already dumped, you must run
Emacs with ‘-batch’.

E.2 Pure Storage

Emacs Lisp uses two kinds of storage for user-created Lisp objects: normal storage and
pure storage. Normal storage is where all the new data created during an Emacs session
are kept; see the following section for information on normal storage. Pure storage is used
for certain data in the preloaded standard Lisp files—data that should never change during
actual use of Emacs.

Pure storage is allocated only while ‘temacs’ is loading the standard preloaded Lisp li-
braries. In the file ‘emacs’, it is marked as read-only (on operating systems that permit this),
so that the memory space can be shared by all the Emacs jobs running on the machine at
once. Pure storage is not expandable; a fixed amount is allocated when Emacs is compiled,
and if that is not sufficient for the preloaded libraries, ‘temacs’ crashes. If that happens,
you must increase the compilation parameter PURESIZE in the file ‘src/puresize.h’. This
normally won’t happen unless you try to preload additional libraries or add features to the
standard ones.

Functionpurecopy object
This function makes a copy in pure storage of object, and returns it. It copies a
string by simply making a new string with the same characters in pure storage. It
recursively copies the contents of vectors and cons cells. It does not make copies of
other objects such as symbols, but just returns them unchanged. It signals an error
if asked to copy markers.

This function is a no-op except while Emacs is being built and dumped; it is usually
called only in the file ‘emacs/lisp/loaddefs.el’, but a few packages call it just in
case you decide to preload them.

Appendix E: GNU Emacs Internals 779

Variablepure-bytes-used
The value of this variable is the number of bytes of pure storage allocated so far.
Typically, in a dumped Emacs, this number is very close to the total amount of pure
storage available—if it were not, we would preallocate less.

Variablepurify-flag
This variable determines whether defun should make a copy of the function definition
in pure storage. If it is non-nil, then the function definition is copied into pure
storage.
This flag is t while loading all of the basic functions for building Emacs initially
(allowing those functions to be sharable and non-collectible). Dumping Emacs as an
executable always writes nil in this variable, regardless of the value it actually has
before and after dumping.
You should not change this flag in a running Emacs.

E.3 Garbage Collection

When a program creates a list or the user defines a new function (such as by loading
a library), that data is placed in normal storage. If normal storage runs low, then Emacs
asks the operating system to allocate more memory in blocks of 1k bytes. Each block is
used for one type of Lisp object, so symbols, cons cells, markers, etc., are segregated in
distinct blocks in memory. (Vectors, long strings, buffers and certain other editing types,
which are fairly large, are allocated in individual blocks, one per object, while small strings
are packed into blocks of 8k bytes.)

It is quite common to use some storage for a while, then release it by (for example)
killing a buffer or deleting the last pointer to an object. Emacs provides a garbage collector
to reclaim this abandoned storage. (This name is traditional, but “garbage recycler” might
be a more intuitive metaphor for this facility.)

The garbage collector operates by finding and marking all Lisp objects that are still
accessible to Lisp programs. To begin with, it assumes all the symbols, their values and
associated function definitions, and any data presently on the stack, are accessible. Any
objects that can be reached indirectly through other accessible objects are also accessible.

When marking is finished, all objects still unmarked are garbage. No matter what the
Lisp program or the user does, it is impossible to refer to them, since there is no longer a
way to reach them. Their space might as well be reused, since no one will miss them. The
second (“sweep”) phase of the garbage collector arranges to reuse them.

The sweep phase puts unused cons cells onto a free list for future allocation; likewise for
symbols and markers. It compacts the accessible strings so they occupy fewer 8k blocks;
then it frees the other 8k blocks. Vectors, buffers, windows, and other large objects are
individually allocated and freed using malloc and free.

Common Lisp note: Unlike other Lisps, GNU Emacs Lisp does not call the
garbage collector when the free list is empty. Instead, it simply requests the
operating system to allocate more storage, and processing continues until gc-
cons-threshold bytes have been used.
This means that you can make sure that the garbage collector will not run
during a certain portion of a Lisp program by calling the garbage collector

780 GNU Emacs Lisp Reference Manual

explicitly just before it (provided that portion of the program does not use so
much space as to force a second garbage collection).

Commandgarbage-collect
This command runs a garbage collection, and returns information on the amount of
space in use. (Garbage collection can also occur spontaneously if you use more than
gc-cons-threshold bytes of Lisp data since the previous garbage collection.)
garbage-collect returns a list containing the following information:

((used-conses . free-conses)
(used-syms . free-syms)
(used-miscs . free-miscs)
used-string-chars
used-vector-slots
(used-floats . free-floats)
(used-intervals . free-intervals)
(used-strings . free-strings))

Here is an example:
(garbage-collect)

⇒ ((106886 . 13184) (9769 . 0)
(7731 . 4651) 347543 121628
(31 . 94) (1273 . 168)
(25474 . 3569))

Here is a table explaining each element:

used-conses
The number of cons cells in use.

free-conses
The number of cons cells for which space has been obtained from the
operating system, but that are not currently being used.

used-syms The number of symbols in use.

free-syms The number of symbols for which space has been obtained from the op-
erating system, but that are not currently being used.

used-miscs
The number of miscellaneous objects in use. These include markers and
overlays, plus certain objects not visible to users.

free-miscs The number of miscellaneous objects for which space has been obtained
from the operating system, but that are not currently being used.

used-string-chars
The total size of all strings, in characters.

used-vector-slots
The total number of elements of existing vectors.

used-floats
The number of floats in use.

Appendix E: GNU Emacs Internals 781

free-floats The number of floats for which space has been obtained from the operat-
ing system, but that are not currently being used.

used-intervals
The number of intervals in use. Intervals are an internal data structure
used for representing text properties.

free-intervals
The number of intervals for which space has been obtained from the
operating system, but that are not currently being used.

used-strings
The number of strings in use.

free-strings
The number of string headers for which the space was obtained from the
operating system, but which are currently not in use. (A string object
consists of a header and the storage for the string text itself; the latter is
only allocated when the string is created.)

User Optiongarbage-collection-messages
If this variable is non-nil, Emacs displays a message at the beginning and end of
garbage collection. The default value is nil, meaning there are no such messages.

User Optiongc-cons-threshold
The value of this variable is the number of bytes of storage that must be allocated for
Lisp objects after one garbage collection in order to trigger another garbage collection.
A cons cell counts as eight bytes, a string as one byte per character plus a few bytes
of overhead, and so on; space allocated to the contents of buffers does not count.
Note that the subsequent garbage collection does not happen immediately when the
threshold is exhausted, but only the next time the Lisp evaluator is called.

The initial threshold value is 400,000. If you specify a larger value, garbage collection
will happen less often. This reduces the amount of time spent garbage collecting, but
increases total memory use. You may want to do this when running a program that
creates lots of Lisp data.

You can make collections more frequent by specifying a smaller value, down to 10,000.
A value less than 10,000 will remain in effect only until the subsequent garbage col-
lection, at which time garbage-collect will set the threshold back to 10,000.

The value return by garbage-collect describes the amount of memory used by Lisp
data, broken down by data type. By contrast, the function memory-limit provides infor-
mation on the total amount of memory Emacs is currently using.

Functionmemory-limit
This function returns the address of the last byte Emacs has allocated, divided by
1024. We divide the value by 1024 to make sure it fits in a Lisp integer.

You can use this to get a general idea of how your actions affect the memory usage.

782 GNU Emacs Lisp Reference Manual

E.4 Memory Usage

These functions and variables give information about the total amount of memory allo-
cation that Emacs has done, broken down by data type. Note the difference between these
and the values returned by (garbage-collect); those count objects that currently exist,
but these count the number or size of all allocations, including those for objects that have
since been freed.

Variablecons-cells-consed
The total number of cons cells that have been allocated so far in this Emacs session.

Variablefloats-consed
The total number of floats that have been allocated so far in this Emacs session.

Variablevector-cells-consed
The total number of vector cells that have been allocated so far in this Emacs session.

Variablesymbols-consed
The total number of symbols that have been allocated so far in this Emacs session.

Variablestring-chars-consed
The total number of string characters that have been allocated so far in this Emacs
session.

Variablemisc-objects-consed
The total number of miscellaneous objects that have been allocated so far in this
Emacs session. These include markers and overlays, plus certain objects not visible
to users.

Variableintervals-consed
The total number of intervals that have been allocated so far in this Emacs session.

Variablestrings-consed
The total number of strings that have been allocated so far in this Emacs session.

E.5 Writing Emacs Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C
function so that Lisp can call it are handled by a few C macros. The only way to really
understand how to write new C code is to read the source, but we can explain some things
here.

An example of a special form is the definition of or, from ‘eval.c’. (An ordinary function
would have the same general appearance.)

Appendix E: GNU Emacs Internals 783

DEFUN ("or", For, Sor, 0, UNEVALLED, 0,
"Eval args until one of them yields non-nil; return that value.\n\

The remaining args are not evalled at all.\n\
If all args return nil, return nil.")
(args)

Lisp_Object args;
{
register Lisp_Object val;
Lisp_Object args_left;
struct gcpro gcpro1;

if (NILP (args))
return Qnil;

args_left = args;
GCPRO1 (args_left);

do
{
val = Feval (Fcar (args_left));
if (!NILP (val))
break;

args_left = Fcdr (args_left);
}

while (!NILP (args_left));

UNGCPRO;
return val;

}

Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:

DEFUN (lname, fname, sname, min, max, interactive, doc)

lname This is the name of the Lisp symbol to define as the function name; in the
example above, it is or.

fname This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to
the Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores.
Thus, to call this function from C code, call For. Remember that the arguments
must be of type Lisp_Object; various macros and functions for creating values
of type Lisp_Object are declared in the file ‘lisp.h’.

sname This is a C variable name to use for a structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. By convention, this name is always fname with
‘F’ replaced with ‘S’.

min This is the minimum number of arguments that the function requires. The
function or allows a minimum of zero arguments.

784 GNU Emacs Lisp Reference Manual

max This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY
are macros. If max is a number, it may not be less than min and it may not be
greater than seven.

interactive
This is an interactive specification, a string such as might be used as the ar-
gument of interactive in a Lisp function. In the case of or, it is 0 (a null
pointer), indicating that or cannot be called interactively. A value of "" indi-
cates a function that should receive no arguments when called interactively.

doc This is the documentation string. It is written just like a documentation string
for a function defined in Lisp, except you must write ‘\n\’ at the end of each
line. In particular, the first line should be a single sentence.

After the call to the DEFUN macro, you must write the argument name list that every C
function must have, followed by ordinary C declarations for the arguments. For a function
with a fixed maximum number of arguments, declare a C argument for each Lisp argument,
and give them all type Lisp_Object. When a Lisp function has no upper limit on the
number of arguments, its implementation in C actually receives exactly two arguments: the
first is the number of Lisp arguments, and the second is the address of a block containing
their values. They have types int and Lisp_Object *.

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. GCPRO1
is used to “protect” a variable from garbage collection—to inform the garbage collector
that it must look in that variable and regard its contents as an accessible object. This is
necessary whenever you call Feval or anything that can directly or indirectly call Feval. At
such a time, any Lisp object that you intend to refer to again must be protected somehow.
UNGCPRO cancels the protection of the variables that are protected in the current function.
It is necessary to do this explicitly.

For most data types, it suffices to protect at least one pointer to the object; as long
as the object is not recycled, all pointers to it remain valid. This is not so for strings,
because the garbage collector can move them. When the garbage collector moves a string,
it relocates all the pointers it knows about; any other pointers become invalid. Therefore,
you must protect all pointers to strings across any point where garbage collection may be
possible.

The macro GCPRO1 protects just one local variable. If you want to protect two, use
GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3 and GCPRO4 also exist.

These macros implicitly use local variables such as gcpro1; you must declare these
explicitly, with type struct gcpro. Thus, if you use GCPRO2, you must declare gcpro1 and
gcpro2. Alas, we can’t explain all the tricky details here.

You must not use C initializers for static or global variables unless the variables are never
written once Emacs is dumped. These variables with initializers are allocated in an area
of memory that becomes read-only (on certain operating systems) as a result of dumping
Emacs. See Section E.2 [Pure Storage], page 778.

Do not use static variables within functions—place all static variables at top level in the
file. This is necessary because Emacs on some operating systems defines the keyword static

Appendix E: GNU Emacs Internals 785

as a null macro. (This definition is used because those systems put all variables declared
static in a place that becomes read-only after dumping, whether they have initializers or
not.)

Defining the C function is not enough to make a Lisp primitive available; you must also
create the Lisp symbol for the primitive and store a suitable subr object in its function cell.
The code looks like this:

defsubr (&subr-structure-name);

Here subr-structure-name is the name you used as the third argument to DEFUN.
If you add a new primitive to a file that already has Lisp primitives defined in it, find the

function (near the end of the file) named syms_of_something , and add the call to defsubr
there. If the file doesn’t have this function, or if you create a new file, add to it a syms_
of_filename (e.g., syms_of_myfile). Then find the spot in ‘emacs.c’ where all of these
functions are called, and add a call to syms_of_filename there.

The function syms_of_filename is also the place to define any C variables that are to be
visible as Lisp variables. DEFVAR_LISP makes a C variable of type Lisp_Object visible in
Lisp. DEFVAR_INT makes a C variable of type int visible in Lisp with a value that is always
an integer. DEFVAR_BOOL makes a C variable of type int visible in Lisp with a value that
is either t or nil. Note that variables defined with DEFVAR_BOOL are automatically added
to the list byte-boolean-vars used by the byte compiler.

If you define a file-scope C variable of type Lisp_Object, you must protect it from
garbage-collection by calling staticpro in syms_of_filename, like this:

staticpro (&variable);

Here is another example function, with more complicated arguments. This comes from
the code in ‘window.c’, and it demonstrates the use of macros and functions to manipulate
Lisp objects.

DEFUN ("coordinates-in-window-p", Fcoordinates_in_window_p,
Scoordinates_in_window_p, 2, 2,
"xSpecify coordinate pair: \nXExpression which evals to window: ",
"Return non-nil if COORDINATES is in WINDOW.\n\

COORDINATES is a cons of the form (X . Y), X and Y being distances\n\
...
If they are on the border between WINDOW and its right sibling,\n\

‘vertical-line’ is returned.")
(coordinates, window)

register Lisp_Object coordinates, window;
{
int x, y;

CHECK_LIVE_WINDOW (window, 0);
CHECK_CONS (coordinates, 1);
x = XINT (Fcar (coordinates));
y = XINT (Fcdr (coordinates));

switch (coordinates_in_window (XWINDOW (window), &x, &y))
{
case 0: /* NOT in window at all. */
return Qnil;

786 GNU Emacs Lisp Reference Manual

case 1: /* In text part of window. */
return Fcons (make_number (x), make_number (y));

case 2: /* In mode line of window. */
return Qmode_line;

case 3: /* On right border of window. */
return Qvertical_line;

default:
abort ();

}
}

Note that C code cannot call functions by name unless they are defined in C. The way
to call a function written in Lisp is to use Ffuncall, which embodies the Lisp function
funcall. Since the Lisp function funcall accepts an unlimited number of arguments, in C
it takes two: the number of Lisp-level arguments, and a one-dimensional array containing
their values. The first Lisp-level argument is the Lisp function to call, and the rest are the
arguments to pass to it. Since Ffuncall can call the evaluator, you must protect pointers
from garbage collection around the call to Ffuncall.

The C functions call0, call1, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’ is a very good file to look through for examples; ‘lisp.h’ contains the definitions
for some important macros and functions.

If you define a function which is side-effect free, update the code in ‘byte-opt.el’ which
binds side-effect-free-fns and side-effect-and-error-free-fns to include it. This
will help the optimizer.

E.6 Object Internals

GNU Emacs Lisp manipulates many different types of data. The actual data are stored
in a heap and the only access that programs have to it is through pointers. Pointers are
thirty-two bits wide in most implementations. Depending on the operating system and type
of machine for which you compile Emacs, twenty-eight bits are used to address the object,
and the remaining four bits are used for a GC mark bit and the tag that identifies the
object’s type.

Because Lisp objects are represented as tagged pointers, it is always possible to determine
the Lisp data type of any object. The C data type Lisp_Object can hold any Lisp object
of any data type. Ordinary variables have type Lisp_Object, which means they can hold
any type of Lisp value; you can determine the actual data type only at run time. The
same is true for function arguments; if you want a function to accept only a certain type
of argument, you must check the type explicitly using a suitable predicate (see Section 2.6
[Type Predicates], page 27).

E.6.1 Buffer Internals

Buffers contain fields not directly accessible by the Lisp programmer. We describe them
here, naming them by the names used in the C code. Many are accessible indirectly in Lisp
programs via Lisp primitives.

Appendix E: GNU Emacs Internals 787

Two structures are used to represent buffers in C. The buffer_text structure contains
fields describing the text of a buffer; the buffer structure holds other fields. In the case of
indirect buffers, two or more buffer structures reference the same buffer_text structure.

Here is a list of the struct buffer_text fields:

beg This field contains the actual address of the buffer contents.

gpt This holds the character position of the gap in the buffer.

z This field contains the character position of the end of the buffer text.

gpt_byte Contains the byte position of the gap.

z_byte Holds the byte position of the end of the buffer text.

gap_size Contains the size of buffer’s gap.

modiff This field counts buffer-modification events for this buffer. It is incremented
for each such event, and never otherwise changed.

save_modiff
Contains the previous value of modiff, as of the last time a buffer was visited
or saved in a file.

overlay_modiff
Counts modifications to overlays analogous to modiff.

beg_unchanged
Holds the number of characters at the start of the text that are known to be
unchanged since the last redisplay that finished.

end_unchanged
Holds the number of characters at the end of the text that are known to be
unchanged since the last redisplay that finished.

unchanged_modified
Contains the value of modiff at the time of the last redisplay that finished.
If this value matches modiff, beg_unchanged and end_unchanged contain no
useful information.

overlay_unchanged_modified
Contains the value of overlay_modiff at the time of the last redisplay that
finished. If this value matches overlay_modiff, beg_unchanged and end_
unchanged contain no useful information.

markers The markers that refer to this buffer. This is actually a single marker, and
successive elements in its marker chain are the other markers referring to this
buffer text.

intervals
Contains the interval tree which records the text properties of this buffer.

The fields of struct buffer are:

next Points to the next buffer, in the chain of all buffers including killed buffers.
This chain is used only for garbage collection, in order to collect killed buffers
properly. Note that vectors, and most kinds of objects allocated as vectors, are
all on one chain, but buffers are on a separate chain of their own.

788 GNU Emacs Lisp Reference Manual

own_text This is a struct buffer_text structure. In an ordinary buffer, it holds the
buffer contents. In indirect buffers, this field is not used.

text This points to the buffer_text structure that is used for this buffer. In an
ordinary buffer, this is the own_text field above. In an indirect buffer, this is
the own_text field of the base buffer.

pt Contains the character position of point in a buffer.

pt_byte Contains the byte position of point in a buffer.

begv This field contains the character position of the beginning of the accessible
range of text in the buffer.

begv_byte
This field contains the byte position of the beginning of the accessible range of
text in the buffer.

zv This field contains the character position of the end of the accessible range of
text in the buffer.

zv_byte This field contains the byte position of the end of the accessible range of text
in the buffer.

base_buffer
In an indirect buffer, this points to the base buffer. In an ordinary buffer, it is
null.

local_var_flags
This field contains flags indicating that certain variables are local in this buffer.
Such variables are declared in the C code using DEFVAR_PER_BUFFER, and their
buffer-local bindings are stored in fields in the buffer structure itself. (Some of
these fields are described in this table.)

modtime This field contains the modification time of the visited file. It is set when the
file is written or read. Before writing the buffer into a file, this field is compared
to the modification time of the file to see if the file has changed on disk. See
Section 27.5 [Buffer Modification], page 445.

auto_save_modified
This field contains the time when the buffer was last auto-saved.

auto_save_failure_time
The time at which we detected a failure to auto-save, or -1 if we didn’t have a
failure.

last_window_start
This field contains the window-start position in the buffer as of the last time
the buffer was displayed in a window.

clip_changed
This flag is set when narrowing changes in a buffer.

prevent_redisplay_optimizations_p
this flag indicates that redisplay optimizations should not be used to display
this buffer.

Appendix E: GNU Emacs Internals 789

undo_list
This field points to the buffer’s undo list. See Section 32.9 [Undo], page 544.

name The buffer name is a string that names the buffer. It is guaranteed to be unique.
See Section 27.3 [Buffer Names], page 442.

filename The name of the file visited in this buffer, or nil.

directory
The directory for expanding relative file names.

save_length
Length of the file this buffer is visiting, when last read or saved. This and other
fields concerned with saving are not kept in the buffer_text structure because
indirect buffers are never saved.

auto_save_file_name
File name used for auto-saving this buffer. This is not in the buffer_text
because it’s not used in indirect buffers at all.

read_only
Non-nil means this buffer is read-only.

mark This field contains the mark for the buffer. The mark is a marker, hence it is
also included on the list markers. See Section 31.7 [The Mark], page 527.

local_var_alist
This field contains the association list describing the buffer-local variable bind-
ings of this buffer, not including the built-in buffer-local bindings that have
special slots in the buffer object. (Those slots are omitted from this table.) See
Section 11.10 [Buffer-Local Variables], page 146.

major_mode
Symbol naming the major mode of this buffer, e.g., lisp-mode.

mode_name
Pretty name of major mode, e.g., "Lisp".

mode_line_format
Mode line element that controls the format of the mode line. If this is nil, no
mode line will be displayed.

header_line_format
This field is analoguous to mode_line_format for the mode line displayed at
the top of windows.

keymap This field holds the buffer’s local keymap. See Chapter 22 [Keymaps], page 325.

abbrev_table
This buffer’s local abbrevs.

syntax_table
This field contains the syntax table for the buffer. See Chapter 35 [Syntax
Tables], page 621.

category_table
This field contains the category table for the buffer.

790 GNU Emacs Lisp Reference Manual

case_fold_search
The value of case-fold-search in this buffer.

tab_width
The value of tab-width in this buffer.

fill_column
The value of fill-column in this buffer.

left_margin
The value of left-margin in this buffer.

auto_fill_function
The value of auto-fill-function in this buffer.

downcase_table
This field contains the conversion table for converting text to lower case. See
Section 4.9 [Case Tables], page 60.

upcase_table
This field contains the conversion table for converting text to upper case. See
Section 4.9 [Case Tables], page 60.

case_canon_table
This field contains the conversion table for canonicalizing text for case-folding
search. See Section 4.9 [Case Tables], page 60.

case_eqv_table
This field contains the equivalence table for case-folding search. See Section 4.9
[Case Tables], page 60.

truncate_lines
The value of truncate-lines in this buffer.

ctl_arrow
The value of ctl-arrow in this buffer.

selective_display
The value of selective-display in this buffer.

selective_display_ellipsis
The value of selective-display-ellipsis in this buffer.

minor_modes
An alist of the minor modes of this buffer.

overwrite_mode
The value of overwrite_mode in this buffer.

abbrev_mode
The value of abbrev-mode in this buffer.

display_table
This field contains the buffer’s display table, or nil if it doesn’t have one. See
Section 38.17 [Display Tables], page 704.

Appendix E: GNU Emacs Internals 791

save_modified
This field contains the time when the buffer was last saved, as an integer. See
Section 27.5 [Buffer Modification], page 445.

mark_active
This field is non-nil if the buffer’s mark is active.

overlays_before
This field holds a list of the overlays in this buffer that end at or before the
current overlay center position. They are sorted in order of decreasing end
position.

overlays_after
This field holds a list of the overlays in this buffer that end after the current
overlay center position. They are sorted in order of increasing beginning posi-
tion.

overlay_center
This field holds the current overlay center position. See Section 38.9 [Overlays],
page 671.

enable_multibyte_characters
This field holds the buffer’s local value of enable-multibyte-characters—
either t or nil.

buffer_file_coding_system
The value of buffer-file-coding-system in this buffer.

file_format
The value of buffer-file-format in this buffer.

pt_marker
In an indirect buffer, or a buffer that is the base of an indirect buffer, this holds
a marker that records point for this buffer when the buffer is not current.

begv_marker
In an indirect buffer, or a buffer that is the base of an indirect buffer, this holds
a marker that records begv for this buffer when the buffer is not current.

zv_marker
In an indirect buffer, or a buffer that is the base of an indirect buffer, this holds
a marker that records zv for this buffer when the buffer is not current.

file_truename
The truename of the visited file, or nil.

invisibility_spec
The value of buffer-invisibility-spec in this buffer.

last_selected_window
This is the last window that was selected with this buffer in it, or nil if that
window no longer displays this buffer.

display_count
This field is incremented each time the buffer is displayed in a window.

792 GNU Emacs Lisp Reference Manual

left_margin_width
The value of left-margin-width in this buffer.

right_margin_width
The value of right-margin-width in this buffer.

indicate_empty_lines
Non-nil means indicate empty lines (lines with no text) with a small bitmap
in the fringe, when using a window system that can do it.

display_time
This holds a time stamp that is updated each time this buffer is displayed in a
window.

scroll_up_aggressively
The value of scroll-up-aggressively in this buffer.

scroll_down_aggressively
The value of scroll-down-aggressively in this buffer.

E.6.2 Window Internals

Windows have the following accessible fields:

frame The frame that this window is on.

mini_p Non-nil if this window is a minibuffer window.

parent Internally, Emacs arranges windows in a tree; each group of siblings has a parent
window whose area includes all the siblings. This field points to a window’s
parent.
Parent windows do not display buffers, and play little role in display except to
shape their child windows. Emacs Lisp programs usually have no access to the
parent windows; they operate on the windows at the leaves of the tree, which
actually display buffers.
The following four fields also describe the window tree structure.

hchild In a window subdivided horizontally by child windows, the leftmost child. Oth-
erwise, nil.

vchild In a window subdivided vertically by child windows, the topmost child. Other-
wise, nil.

next The next sibling of this window. It is nil in a window that is the rightmost or
bottommost of a group of siblings.

prev The previous sibling of this window. It is nil in a window that is the leftmost
or topmost of a group of siblings.

left This is the left-hand edge of the window, measured in columns. (The leftmost
column on the screen is column 0.)

top This is the top edge of the window, measured in lines. (The top line on the
screen is line 0.)

Appendix E: GNU Emacs Internals 793

height The height of the window, measured in lines.

width The width of the window, measured in columns. This width includes the scroll
bar and fringes, and/or the separator line on the right of the window (if any).

buffer The buffer that the window is displaying. This may change often during the
life of the window.

start The position in the buffer that is the first character to be displayed in the
window.

pointm This is the value of point in the current buffer when this window is selected;
when it is not selected, it retains its previous value.

force_start
If this flag is non-nil, it says that the window has been scrolled explicitly by
the Lisp program. This affects what the next redisplay does if point is off the
screen: instead of scrolling the window to show the text around point, it moves
point to a location that is on the screen.

frozen_window_start_p
This field is set temporarily to 1 to indicate to redisplay that start of this
window should not be changed, even if point gets invisible.

start_at_line_beg
Non-nil means current value of start was the beginning of a line when it was
chosen.

too_small_ok
Non-nil means don’t delete this window for becoming “too small”.

height_fixed_p
This field is temporarily set to 1 to fix the height of the selected window when
the echo area is resized.

use_time This is the last time that the window was selected. The function get-lru-
window uses this field.

sequence_number
A unique number assigned to this window when it was created.

last_modified
The modiff field of the window’s buffer, as of the last time a redisplay completed
in this window.

last_overlay_modified
The overlay_modiff field of the window’s buffer, as of the last time a redisplay
completed in this window.

last_point
The buffer’s value of point, as of the last time a redisplay completed in this
window.

last_had_star
A non-nil value means the window’s buffer was “modified” when the window
was last updated.

794 GNU Emacs Lisp Reference Manual

vertical_scroll_bar
This window’s vertical scroll bar.

left_margin_width
The width of the left margin in this window, or nil not to specify it (in which
case the buffer’s value of left-margin-width is used.

right_margin_width
Likewise for the right margin.

window_end_pos
This is computed as z minus the buffer position of the last glyph in the current
matrix of the window. The value is only valid if window_end_valid is not nil.

window_end_bytepos
The byte position corresponding to window_end_pos.

window_end_vpos
The window-relative vertical position of the line containing window_end_pos.

window_end_valid
This field is set to a non-nil value if window_end_pos is truly valid. This
is nil if nontrivial redisplay is preempted since in that case the display that
window_end_pos was computed for did not get onto the screen.

redisplay_end_trigger
If redisplay in this window goes beyond this buffer position, it runs run the
redisplay-end-trigger-hook.

cursor A structure describing where the cursor is in this window.

last_cursor
The value of cursor as of the last redisplay that finished.

phys_cursor
A structure describing where the cursor of this window physically is.

phys_cursor_type
The type of cursor that was last displayed on this window.

phys_cursor_on_p
This field is non-zero if the cursor is physically on.

cursor_off_p
Non-zero means the cursor in this window is logically on.

last_cursor_off_p
This field contains the value of cursor_off_p as of the time of the last redisplay.

must_be_updated_p
This is set to 1 during redisplay when this window must be updated.

hscroll This is the number of columns that the display in the window is scrolled hori-
zontally to the left. Normally, this is 0.

vscroll Vertical scroll amount, in pixels. Normally, this is 0.

Appendix E: GNU Emacs Internals 795

dedicated
Non-nil if this window is dedicated to its buffer.

display_table
The window’s display table, or nil if none is specified for it.

update_mode_line
Non-nil means this window’s mode line needs to be updated.

base_line_number
The line number of a certain position in the buffer, or nil. This is used for
displaying the line number of point in the mode line.

base_line_pos
The position in the buffer for which the line number is known, or nil meaning
none is known.

region_showing
If the region (or part of it) is highlighted in this window, this field holds the
mark position that made one end of that region. Otherwise, this field is nil.

column_number_displayed
The column number currently displayed in this window’s mode line, or nil if
column numbers are not being displayed.

current_matrix
A glyph matrix describing the current display of this window.

desired_matrix
A glyph matrix describing the desired display of this window.

E.6.3 Process Internals

The fields of a process are:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.

filter A function used to accept output from the process instead of a buffer, or nil.

sentinel A function called whenever the process receives a signal, or nil.

buffer The associated buffer of the process.

pid An integer, the Unix process id.

childp A flag, non-nil if this is really a child process. It is nil for a network connection.

mark A marker indicating the position of the end of the last output from this process
inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query
If this is non-nil, killing Emacs while this process is still running does not ask
for confirmation about killing the process.

796 GNU Emacs Lisp Reference Manual

raw_status_low
raw_status_high

These two fields record 16 bits each of the process status returned by the wait
system call.

status The process status, as process-status should return it.

tick
update_tick

If these two fields are not equal, a change in the status of the process needs
to be reported, either by running the sentinel or by inserting a message in the
process buffer.

pty_flag Non-nil if communication with the subprocess uses a pty; nil if it uses a pipe.

infd The file descriptor for input from the process.

outfd The file descriptor for output to the process.

subtty The file descriptor for the terminal that the subprocess is using. (On some
systems, there is no need to record this, so the value is nil.)

tty_name The name of the terminal that the subprocess is using, or nil if it is using
pipes.

decode_coding_system
Coding-system for decoding the input from this process.

decoding_buf
A working buffer for decoding.

decoding_carryover
Size of carryover in decoding.

encode_coding_system
Coding-system for encoding the output to this process.

encoding_buf
A working buffer for enecoding.

encoding_carryover
Size of carryover in encoding.

inherit_coding_system_flag
Flag to set coding-system of the process buffer from the coding system used
to decode process output.

Appendix F: Standard Errors 797

Appendix F Standard Errors

Here is the complete list of the error symbols in standard Emacs, grouped by concept.
The list includes each symbol’s message (on the error-message property of the symbol)
and a cross reference to a description of how the error can occur.

Each error symbol has an error-conditions property that is a list of symbols. Normally
this list includes the error symbol itself and the symbol error. Occasionally it includes ad-
ditional symbols, which are intermediate classifications, narrower than error but broader
than a single error symbol. For example, all the errors in accessing files have the condi-
tion file-error. If we do not say here that a certain error symbol has additional error
conditions, that means it has none.

As a special exception, the error symbol quit does not have the condition error, because
quitting is not considered an error.

See Section 10.5.3 [Errors], page 125, for an explanation of how errors are generated and
handled.

symbol string ; reference.

error "error"
See Section 10.5.3 [Errors], page 125.

quit "Quit"
See Section 21.10 [Quitting], page 316.

args-out-of-range
"Args out of range"
See Chapter 6 [Sequences Arrays Vectors], page 83.

arith-error
"Arithmetic error"
See / and % in Chapter 3 [Numbers], page 33.

beginning-of-buffer
"Beginning of buffer"
See Section 30.2 [Motion], page 510.

buffer-read-only
"Buffer is read-only"
See Section 27.7 [Read Only Buffers], page 447.

coding-system-error
"Invalid coding system"
See Section 33.10 [Coding Systems], page 590.

cyclic-function-indirection
"Symbol’s chain of function indirections\
contains a loop"
See Section 9.1.4 [Function Indirection], page 109.

end-of-buffer
"End of buffer"
See Section 30.2 [Motion], page 510.

798 GNU Emacs Lisp Reference Manual

end-of-file
"End of file during parsing"
Note that this is not a subcategory of file-error, because it pertains to the
Lisp reader, not to file I/O. See Section 19.3 [Input Functions], page 257.

file-already-exists
This is a subcategory of file-error.
See Section 25.4 [Writing to Files], page 404.

file-date-error
This is a subcategory of file-error. It occurs when copy-file tries and fails
to set the last-modification time of the output file. See Section 25.7 [Changing
Files], page 412.

file-error
This error and its subcategories do not have error-strings, because the error
message is constructed from the data items alone when the error condition
file-error is present.
See Chapter 25 [Files], page 397.

file-locked
This is a subcategory of file-error.
See Section 25.5 [File Locks], page 405.

file-supersession
This is a subcategory of file-error.
See Section 27.6 [Modification Time], page 445.

ftp-error
This is a subcategory of file-error, which results from problems in accessing
a remote file using ftp.
See section “Remote Files” in The GNU Emacs Manual.

invalid-function
"Invalid function"
See Section 9.1.3 [Classifying Lists], page 109.

invalid-read-syntax
"Invalid read syntax"
See Section 19.3 [Input Functions], page 257.

invalid-regexp
"Invalid regexp"
See Section 34.2 [Regular Expressions], page 602.

mark-inactive
"Mark inactive"
See Section 31.7 [The Mark], page 527.

no-catch "No catch for tag"
See Section 10.5.1 [Catch and Throw], page 123.

Appendix F: Standard Errors 799

scan-error
"Scan error"
This happens when certain syntax-parsing functions find invalid syntax or mis-
matched parentheses.
See Section 30.2.6 [List Motion], page 516, and Section 35.6 [Parsing Expres-
sions], page 628.

search-failed
"Search failed"
See Chapter 34 [Searching and Matching], page 601.

setting-constant
"Attempt to set a constant symbol"
The values of the symbols nil and t, and any symbols that start with ‘:’, may
not be changed.
See Section 11.2 [Variables that Never Change], page 133.

text-read-only
"Text is read-only"
See Section 32.19.4 [Special Properties], page 567.

undefined-color
"Undefined color"
See Section 29.19 [Color Names], page 503.

void-function
"Symbol’s function definition is void"
See Section 12.8 [Function Cells], page 166.

void-variable
"Symbol’s value as variable is void"
See Section 11.7 [Accessing Variables], page 141.

wrong-number-of-arguments
"Wrong number of arguments"
See Section 9.1.3 [Classifying Lists], page 109.

wrong-type-argument
"Wrong type argument"
See Section 2.6 [Type Predicates], page 27.

These kinds of error, which are classified as special cases of arith-error, can occur on
certain systems for invalid use of mathematical functions.

domain-error
"Arithmetic domain error"
See Section 3.9 [Math Functions], page 45.

overflow-error
"Arithmetic overflow error"
See Section 3.9 [Math Functions], page 45.

range-error
"Arithmetic range error"
See Section 3.9 [Math Functions], page 45.

800 GNU Emacs Lisp Reference Manual

singularity-error
"Arithmetic singularity error"
See Section 3.9 [Math Functions], page 45.

underflow-error
"Arithmetic underflow error"
See Section 3.9 [Math Functions], page 45.

Appendix G: Buffer-Local Variables 801

Appendix G Buffer-Local Variables

The table below lists the general-purpose Emacs variables that automatically become
buffer-local in each buffer. Most become buffer-local only when set; a few of them are always
local in every buffer. Many Lisp packages define such variables for their internal use, but
we don’t try to list them all here.

abbrev-mode
See Chapter 36 [Abbrevs], page 635.

auto-fill-function
See Section 32.14 [Auto Filling], page 551.

buffer-auto-save-file-name
See Section 26.2 [Auto-Saving], page 434.

buffer-backed-up
See Section 26.1 [Backup Files], page 429.

buffer-display-count
See Section 28.7 [Displaying Buffers], page 461.

buffer-display-table
See Section 38.17 [Display Tables], page 704.

buffer-file-coding-system
See Section 33.10.2 [Encoding and I/O], page 591.

buffer-file-format
See Section 25.12 [Format Conversion], page 426.

buffer-file-name
See Section 27.4 [Buffer File Name], page 443.

buffer-file-number
See Section 27.4 [Buffer File Name], page 443.

buffer-file-truename
See Section 27.4 [Buffer File Name], page 443.

buffer-file-type
See Section 33.10.9 [MS-DOS File Types], page 598.

buffer-invisibility-spec
See Section 38.5 [Invisible Text], page 665.

buffer-offer-save
See Section 25.2 [Saving Buffers], page 400.

buffer-read-only
See Section 27.7 [Read Only Buffers], page 447.

buffer-saved-size
See Section 30.1 [Point], page 509.

buffer-undo-list
See Section 32.9 [Undo], page 544.

802 GNU Emacs Lisp Reference Manual

cache-long-line-scans
See Section 30.2.4 [Text Lines], page 512.

case-fold-search
See Section 34.7 [Searching and Case], page 619.

ctl-arrow
See Section 38.16 [Usual Display], page 702.

comment-column
See section “Comments” in The GNU Emacs Manual.

default-directory
See Section 40.3 [System Environment], page 728.

defun-prompt-regexp
See Section 30.2.6 [List Motion], page 516.

enable-multibyte-characters
Chapter 33 [Non-ASCII Characters], page 583.

fill-column
See Section 32.14 [Auto Filling], page 551.

goal-column
See section “Moving Point” in The GNU Emacs Manual.

header-line-format
See Section 23.3.1 [Mode Line Data], page 369.

indicate-empty-lines
See Section 38.16 [Usual Display], page 702.

left-margin
See Section 32.17 [Indentation], page 556.

left-margin-width
See Section 38.12.3 [Display Margins], page 693.

local-abbrev-table
See Chapter 36 [Abbrevs], page 635.

local-write-file-hooks
See Section 25.2 [Saving Buffers], page 400.

major-mode
See Section 23.1.4 [Mode Help], page 364.

mark-active
See Section 31.7 [The Mark], page 527.

mark-ring
See Section 31.7 [The Mark], page 527.

minor-modes
See Section 23.2 [Minor Modes], page 365.

Appendix G: Buffer-Local Variables 803

mode-line-buffer-identification
See Section 23.3.2 [Mode Line Variables], page 371.

mode-line-format
See Section 23.3.1 [Mode Line Data], page 369.

mode-line-modified
See Section 23.3.2 [Mode Line Variables], page 371.

mode-line-process
See Section 23.3.2 [Mode Line Variables], page 371.

mode-name
See Section 23.3.2 [Mode Line Variables], page 371.

overwrite-mode
See Section 32.4 [Insertion], page 534.

paragraph-separate
See Section 34.8 [Standard Regexps], page 620.

paragraph-start
See Section 34.8 [Standard Regexps], page 620.

point-before-scroll
Used for communication between mouse commands and scroll-bar commands.

require-final-newline
See Section 32.4 [Insertion], page 534.

right-margin-width
See Section 38.12.3 [Display Margins], page 693.

scroll-down-aggressively
See Section 28.11 [Textual Scrolling], page 469.

scroll-up-aggressively
See Section 28.11 [Textual Scrolling], page 469.

selective-display
See Section 38.6 [Selective Display], page 667.

selective-display-ellipses
See Section 38.6 [Selective Display], page 667.

tab-width
See Section 38.16 [Usual Display], page 702.

truncate-lines
See Section 38.3 [Truncation], page 662.

vc-mode See Section 23.3.2 [Mode Line Variables], page 371.

804 GNU Emacs Lisp Reference Manual

Appendix H: Standard Keymaps 805

Appendix H Standard Keymaps

The following symbols are used as the names for various keymaps. Some of these exist
when Emacs is first started, others are loaded only when their respective mode is used. This
is not an exhaustive list.

Almost all of these maps are used as local maps. Indeed, of the modes that presently
exist, only Vip mode and Terminal mode ever change the global keymap.

Buffer-menu-mode-map
A full keymap used by Buffer Menu mode.

c-mode-map
A sparse keymap used by C mode.

command-history-map
A full keymap used by Command History mode.

ctl-x-4-map
A sparse keymap for subcommands of the prefix C-x 4.

ctl-x-5-map
A sparse keymap for subcommands of the prefix C-x 5.

ctl-x-map
A full keymap for C-x commands.

debugger-mode-map
A full keymap used by Debugger mode.

dired-mode-map
A full keymap for dired-mode buffers.

edit-abbrevs-map
A sparse keymap used in edit-abbrevs.

edit-tab-stops-map
A sparse keymap used in edit-tab-stops.

electric-buffer-menu-mode-map
A full keymap used by Electric Buffer Menu mode.

electric-history-map
A full keymap used by Electric Command History mode.

emacs-lisp-mode-map
A sparse keymap used by Emacs Lisp mode.

facemenu-menu
The sparse keymap that displays the Text Properties menu.

facemenu-background-menu
The sparse keymap that displays the Background Color submenu of the Text
Properties menu.

facemenu-face-menu
The sparse keymap that displays the Face submenu of the Text Properties
menu.

806 GNU Emacs Lisp Reference Manual

facemenu-foreground-menu
The sparse keymap that displays the Foreground Color submenu of the Text
Properties menu.

facemenu-indentation-menu
The sparse keymap that displays the Indentation submenu of the Text Proper-
ties menu.

facemenu-justification-menu
The sparse keymap that displays the Justification submenu of the Text Prop-
erties menu.

facemenu-special-menu
The sparse keymap that displays the Special Props submenu of the Text Prop-
erties menu.

function-key-map
The keymap for translating keypad and function keys.
If there are none, then it contains an empty sparse keymap. See Section 40.8.2
[Translating Input], page 739.

fundamental-mode-map
The sparse keymap for Fundamental mode.
It is empty and should not be changed.

Helper-help-map
A full keymap used by the help utility package.
It has the same keymap in its value cell and in its function cell.

Info-edit-map
A sparse keymap used by the e command of Info.

Info-mode-map
A sparse keymap containing Info commands.

isearch-mode-map
A keymap that defines the characters you can type within incremental search.

key-translation-map
A keymap for translating keys. This one overrides ordinary key bindings, unlike
function-key-map. See Section 40.8.2 [Translating Input], page 739.

lisp-interaction-mode-map
A sparse keymap used by Lisp Interaction mode.

lisp-mode-map
A sparse keymap used by Lisp mode.

menu-bar-edit-menu
The keymap which displays the Edit menu in the menu bar.

menu-bar-files-menu
The keymap which displays the Files menu in the menu bar.

menu-bar-help-menu
The keymap which displays the Help menu in the menu bar.

Appendix H: Standard Keymaps 807

menu-bar-mule-menu
The keymap which displays the Mule menu in the menu bar.

menu-bar-search-menu
The keymap which displays the Search menu in the menu bar.

menu-bar-tools-menu
The keymap which displays the Tools menu in the menu bar.

mode-specific-map
The keymap for characters following C-c. Note, this is in the global map. This
map is not actually mode specific: its name was chosen to be informative for
the user in C-h b (display-bindings), where it describes the main use of the
C-c prefix key.

occur-mode-map
A sparse keymap used by Occur mode.

query-replace-map
A sparse keymap used for responses in query-replace and related commands;
also for y-or-n-p and map-y-or-n-p. The functions that use this map do not
support prefix keys; they look up one event at a time.

text-mode-map
A sparse keymap used by Text mode.

view-mode-map
A full keymap used by View mode.

808 GNU Emacs Lisp Reference Manual

Appendix I: Standard Hooks 809

Appendix I Standard Hooks

The following is a list of hook variables that let you provide functions to be called from
within Emacs on suitable occasions.

Most of these variables have names ending with ‘-hook’. They are normal hooks, run by
means of run-hooks. The value of such a hook is a list of functions; the functions are called
with no arguments and their values are completely ignored. The recommended way to put
a new function on such a hook is to call add-hook. See Section 23.6 [Hooks], page 383, for
more information about using hooks.

The variables whose names end in ‘-hooks’ or ‘-functions’ are usually abnormal hooks;
their values are lists of functions, but these functions are called in a special way (they are
passed arguments, or their values are used). A few of these variables are actually normal
hooks which were named before we established the convention that normal hooks’ names
should end in ‘-hook’.

The variables whose names end in ‘-function’ have single functions as their values. (In
older Emacs versions, some of these variables had names ending in ‘-hook’ even though
they were not normal hooks; however, we have renamed all of those.)

activate-mark-hook

after-change-functions

after-init-hook

after-insert-file-functions

after-make-frame-functions

after-revert-hook

after-save-hook

apropos-mode-hook

auto-fill-function

auto-save-hook

before-change-functions

before-init-hook

before-make-frame-hook

before-revert-hook

blink-paren-function

buffer-access-fontify-functions

c-mode-hook

calendar-load-hook

change-major-mode-hook

command-history-hook

command-line-functions

comment-indent-function

deactivate-mark-hook

diary-display-hook

810 GNU Emacs Lisp Reference Manual

diary-hook

dired-mode-hook

disabled-command-hook

echo-area-clear-hook

edit-picture-hook

electric-buffer-menu-mode-hook

electric-command-history-hook

electric-help-mode-hook

emacs-lisp-mode-hook

find-file-hooks

find-file-not-found-hooks

first-change-hook

fortran-comment-hook

fortran-mode-hook

indent-mim-hook

initial-calendar-window-hook

kbd-macro-termination-hook

kill-buffer-hook

kill-buffer-query-functions

kill-emacs-hook

kill-emacs-query-functions

LaTeX-mode-hook

ledit-mode-hook

lisp-indent-function

lisp-interaction-mode-hook

lisp-mode-hook

list-diary-entries-hook

local-write-file-hooks

mail-mode-hook

mail-setup-hook

mark-diary-entries-hook

medit-mode-hook

menu-bar-update-hook

minibuffer-setup-hook

minibuffer-exit-hook

mouse-position-function

news-mode-hook

news-reply-mode-hook

news-setup-hook

Appendix I: Standard Hooks 811

nongregorian-diary-listing-hook

nongregorian-diary-marking-hook

nroff-mode-hook

outline-mode-hook

plain-TeX-mode-hook

post-command-hook

pre-abbrev-expand-hook

pre-command-hook

print-diary-entries-hook

prolog-mode-hook

protect-innocence-hook

redisplay-end-trigger-functions

rmail-edit-mode-hook

rmail-mode-hook

rmail-summary-mode-hook

scheme-indent-hook

scheme-mode-hook

scribe-mode-hook

shell-mode-hook

shell-set-directory-error-hook

suspend-hook

suspend-resume-hook

temp-buffer-show-function

term-setup-hook

terminal-mode-hook

terminal-mode-break-hook

TeX-mode-hook

text-mode-hook

today-visible-calendar-hook

today-invisible-calendar-hook

vi-mode-hook

view-hook

window-configuration-change-hook

window-scroll-functions

window-setup-hook

window-size-change-functions

write-contents-hooks

write-file-hooks

write-region-annotate-functions

812 GNU Emacs Lisp Reference Manual

Index 813

Index

#
‘#$’ . 235

‘#’’ syntax . 185

‘#@count’ . 235

‘#colon’ read syntax . 15

‘#n#’ read syntax . 29

‘#n=’ read syntax . 29

$
‘$’ in display . 758

‘$’ in regexp . 694

%
% . 43

‘%’ in format . 60

&
‘&’ in replacement . 706

&define (Edebug) . 282

¬ (Edebug) . 282

&optional . 176

&optional (Edebug) . 282

&or (Edebug) . 282

&rest . 176

&rest (Edebug) . 282

’
‘’’ for quoting . 126

(
‘(’ in regexp . 697

‘(...)’ in lists . 17

)
‘)’ in regexp . 697

*
* . 42

‘*’ in interactive . 331

‘*’ in regexp . 692

‘*scratch*’ . 416

,
, (with Backquote) . 194
,@ (with Backquote) . 194

-
- . 42

.
‘.’ in lists . 17
‘.’ in regexp . 691
‘.emacs’ . 826

/
/ . 42
/= . 38

;
‘;’ in comment . 10

?
‘?’ in character constant . 11
? in minibuffer . 307
‘?’ in regexp . 692

@
‘@’ in interactive . 331

[
‘[’ in regexp . 693
[. . .] (Edebug) . 283

]
‘]’ in regexp . 693

‘
‘ . 194
‘ (list substitution) . 194

|
‘|’ in regexp . 696

814 GNU Emacs Lisp Reference Manual

"
‘"’ in printing . 297

‘"’ in strings . 19

+
+ . 41

‘+’ in regexp . 692

=
= . 38

>
> . 39

>= . 39

^
‘^’ in regexp . 694

\
‘\’ in character constant . 13

‘\’ in display . 758

‘\’ in printing . 297

‘\’ in regexp . 694

‘\’ in replacement . 706

‘\’ in strings . 19

‘\’ in symbols . 14

‘\’’ in regexp . 698

‘\=’ in regexp . 698

‘\‘’ in regexp . 698

‘\>’ in regexp . 699

‘\<’ in regexp . 699

‘\a’ . 12

‘\b’ . 12

‘\b’ in regexp . 698

‘\B’ in regexp . 698

‘\e’ . 12

‘\f’ . 12

‘\n’ . 12

‘\n’ in print . 300

‘\n’ in replacement . 706

‘\r’ . 12

‘\s’ in regexp . 698

‘\S’ in regexp . 698

‘\t’ . 12

‘\v’ . 12

‘\w’ in regexp . 698

‘\W’ in regexp . 698

<
< . 38
<= . 39

1
1- . 41
1+ . 41

2
2C-mode-map . 378

A
abbrev . 729
abbrev table . 729
abbrev tables in modes . 410
abbrev-all-caps . 732
abbrev-expansion . 732
abbrev-file-name . 731
abbrev-mode . 729
abbrev-prefix-mark . 732
abbrev-start-location . 733
abbrev-start-location-buffer 733
abbrev-symbol . 732
abbrev-table-name-list 730
abbreviate-file-name . 476
abbrevs-changed . 732
abnormal hook . 439
abort-recursive-edit . 368
aborting . 367
abs . 39
absolute file name . 476
accept-process-output . 752
access-file . 465
accessibility of a file . 464
accessible portion (of a buffer) 595
accessible-keymaps . 392
accessing data of mouse events 352
acos . 49
activate-mark-hook . 607
activating advice . 248
active display table . 807
active keymap . 379
active-minibuffer-window 326
ad-activate . 248
ad-activate-all . 248
ad-activate-regexp . 249
ad-add-advice . 247
ad-deactivate . 248
ad-deactivate-all . 248
ad-deactivate-regexp . 249
ad-default-compilation-action 249
ad-define-subr-args . 253

Index 815

ad-disable-advice . 250
ad-disable-regexp . 250
ad-do-it . 247
ad-enable-advice . 250
ad-enable-regexp . 250
ad-get-arg . 252
ad-get-args . 252
ad-return-value . 244
ad-set-arg . 252
ad-set-args . 252
ad-start-advice . 249
ad-stop-advice . 249
ad-unadvise . 246
ad-unadvise-all . 246
ad-update . 248
ad-update-all . 248
ad-update-regexp . 249
Adaptive Fill mode . 632
adaptive-fill-first-line-regexp 632
adaptive-fill-function 632
adaptive-fill-mode . 632
adaptive-fill-regexp . 632
add-abbrev . 730
add-hook . 440
add-name-to-file . 470
add-text-properties . 646
add-to-invisibility-spec 762
add-to-list . 158
address field of register . 15
advice, activating . 248
advice, deactivating . 248
advice, defining . 244
advice, enabling and disabling 250
advice, preactivating . 250
advising functions . 243
after-advice . 244
after-change-functions 666
after-find-file . 456
after-init-hook . 827
after-insert-file-functions 656
after-load-alist . 229
after-make-frame-functions 554
after-revert-hook . 502
after-save-hook . 459
after-string (overlay property) 771
alist . 85
all-christian-calendar-holidays 812
all-completions . 312
all-hebrew-calendar-holidays 812
all-islamic-calendar-holidays 812
alt characters . 13
and . 133
anonymous function . 184
anonymous lambda expressions (Edebug) 267
apostrophe for quoting . 126
append . 74

append-to-file . 461
apply . 182
apply, and debugging . 264
appt-audible . 823
appt-delete-window-function 823
appt-disp-window-function 823
appt-display-duration . 823
appt-display-mode-line 823
appt-message-warning-time 823
appt-msg-window . 823
appt-visible . 823
apropos . 449
aref . 95
argument binding . 176
argument descriptors . 330
argument evaluation form 331
argument prompt . 331
arguments, reading . 303
arith-error example . 142
arith-error in division . 42
arithmetic shift . 46
around-advice . 244
array . 93
array elements . 95
arrayp . 94
ascii character codes . 11
aset . 95
ash . 46
asin . 49
ask-user-about-lock . 463
ask-user-about-supersession-threat 511
asking the user questions . 321
assoc . 86
assoc-default . 88
assoc-ignore-case . 57
assoc-ignore-representation 57
association list . 85
assq . 87
assq-delete-all . 89
asynchronous subprocess . 740
atan . 49
atom . 16
atom . 69
atoms . 69
attributes of text . 644
Auto Fill mode . 633
auto-coding-regexp-alist 682
auto-fill-chars . 633
auto-fill-function . 633
auto-mode-alist . 416
auto-raise-tool-bar-items 405
auto-resize-tool-bar . 405
auto-save-default . 499
auto-save-file-format . 489
auto-save-file-name-p . 497
auto-save-hook . 499

816 GNU Emacs Lisp Reference Manual

auto-save-interval . 498
auto-save-list-file-name 500
auto-save-list-file-prefix 500
auto-save-mode . 497
auto-save-timeout . 499
auto-save-visited-file-name 498
auto-saving . 497
autoload . 221
autoload . 222
autoload errors . 223
automatic face assignment 788
automatically buffer-local 163

B
back-to-indentation . 642
backquote (list substitution) 194
backslash in character constant 13
backslash in strings . 19
backslash in symbols . 14
backspace . 12
backtrace . 263
backtrace-debug . 264
backtrace-frame . 264
backtracking . 284
backup file . 491
backup files, how to make them 493
backup-buffer . 491
backup-by-copying . 493
backup-by-copying-when-linked 493
backup-by-copying-when-mismatch 493
backup-by-copying-when-privileged-mismatch

. 494
backup-directory-alist 492
backup-enable-predicate 492
backup-file-name-p . 495
backup-inhibited . 492
backward-char . 585
backward-delete-char-untabify 617
backward-delete-char-untabify-method 617
backward-list . 591
backward-prefix-chars . 721
backward-sexp . 592
backward-to-indentation 642
backward-word . 586
balancing parentheses . 803
barf-if-buffer-read-only 512
base 64 encoding . 664
base buffer . 517
base coding system . 677
base for reading an integer 35
base64-decode-region . 665
base64-decode-string . 665
base64-encode-region . 665
base64-encode-string . 665
basic code (of input character) 341

batch mode . 854
batch-byte-compile . 234
baud-rate . 850
beep . 809
beeping . 809
before point, insertion . 613
before-advice . 244
before-change-functions 666
before-init-hook . 827
before-make-frame-hook 554
before-revert-hook . 501
before-string (overlay property) 771
beginning of line . 588
beginning of line in regexp. 694
beginning-of-buffer . 586
beginning-of-defun . 592
beginning-of-defun-function 593
beginning-of-line . 587
bell . 809
bell character . 12
binary files and text files . 686
binding arguments . 176
binding local variables . 148
binding of a key . 373
bitmap-spec-p . 782
bitwise and . 47
bitwise exclusive or . 48
bitwise not . 48
bitwise or . 48
blink-matching-delay . 803
blink-matching-open . 803
blink-matching-paren . 803
blink-matching-paren-distance 803
blink-paren-function . 803
blinking . 803
bobp . 610
body of function . 175
bold (face name) . 777
bold-italic (face name) . 777
bolp . 610
bool-vector-p . 101
Bool-vectors . 101
boolean . 3
boundp . 151
box diagrams, for lists . 16
box representation for lists 67
break . 255
breakpoints . 270
bucket (in obarray) . 112
buffer . 503
buffer contents . 609
buffer file name . 508
buffer input stream . 292
buffer internals . 900
buffer list . 513
buffer modification . 509

Index 817

buffer names . 506
buffer output stream . 295
buffer text notation . 4
buffer, read-only . 512
buffer-access-fontified-property 658
buffer-access-fontify-functions 657
buffer-auto-save-file-name 497
buffer-backed-up . 491
buffer-base-buffer . 518
buffer-disable-undo . 626
buffer-display-table . 807
buffer-display-time . 529
buffer-enable-undo . 626
buffer-end . 584
buffer-file-coding-system 678
buffer-file-format . 488
buffer-file-name . 508
buffer-file-number . 508
buffer-file-truename . 508
buffer-file-type . 686
buffer-flush-undo . 627
buffer-has-markers-at . 603
buffer-invisibility-spec 762
buffer-list . 513
buffer-local variables . 162
buffer-local variables in modes 410
buffer-local-variables 165
Buffer-menu-mode-map . 921
buffer-modified-p . 510
buffer-modified-tick . 510
buffer-name . 506
buffer-name-history . 309
buffer-offer-save . 517
buffer-read-only . 512
buffer-saved-size . 500
buffer-size . 584
buffer-string . 611
buffer-substring . 611
buffer-substring-no-properties 611
buffer-undo-list . 624
bufferp . 503
buffers, controlled in windows 527
buffers, creating . 515
buffers, killing . 516
building Emacs . 889
building lists . 73
built-in function . 173
bury-buffer . 514
butlast . 72
button-down event . 346
byte-boolean-vars . 898
byte-code . 231
byte-code . 234
byte-code function . 237
byte-code interpreter . 234
byte-code-function-p . 174

byte-compile . 232
byte-compile-dynamic . 236
byte-compile-dynamic-docstrings 235
byte-compile-file . 233
byte-compiling macros . 192
byte-compiling require . 225
byte-recompile-directory 234
byte-to-position . 670
bytes . 51
bytes and characters . 674

C
C-c . 377
C-g . 362
C-h . 377
C-M-x . 266
c-mode-map . 921
c-mode-syntax-table . 724
C-q . 852
C-s . 852
C-x . 378
C-x 4 . 378
C-x 5 . 378
C-x 6 . 378
C-x 〈RET〉 . 378
C-x v . 378
caar . 72
cache-long-line-scans . 758
cadr . 72
calendar-date-display-form 814
calendar-daylight-savings-ends 815
calendar-daylight-savings-ends-time 816
calendar-daylight-savings-starts 815
calendar-daylight-savings-starts-time . . . 816
calendar-daylight-time-offset 816
calendar-holiday-marker 811
calendar-holidays . 812
calendar-load-hook . 811
calendar-mark-today . 811
calendar-move-hook . 812
calendar-star-date . 811
calendar-time-display-form 815
calendar-today-marker . 812
call stack . 263
call-interactively . 336
call-process . 737
call-process-region . 739
calling a function . 181
cancel-debug-on-entry . 258
cancel-timer . 845
candle lighting times . 822
capitalization . 63
capitalize . 63
capitalize-region . 643
capitalize-word . 644

818 GNU Emacs Lisp Reference Manual

car . 70
car-safe . 70
case conversion in buffers . 643
case conversion in Lisp . 62
case in replacements . 706
case-fold-search . 711
case-replace . 710
case-table-p . 65
catch . 136
categories of characters . 725
category (overlay property) 769
category (text property) . 650
category of text character 650
category-docstring . 726
category-set-mnemonics 727
category-table . 726
category-table-p . 726
cbreak . 853
cdar . 72
cddr . 72
cdr . 70
cdr-safe . 70
ceiling . 40
centering point . 540
change hooks . 666
change hooks for a character 653
change-major-mode-hook 167
changing key bindings . 387
changing to another buffer 503
changing window size . 545
char-after . 609
char-before . 609
char-category-set . 727
char-charset . 673
char-equal . 55
char-or-string-p . 52
char-syntax . 719
char-table-extra-slot . 99
char-table-p . 99
char-table-parent . 99
char-table-range . 99
char-table-subtype . 99
char-tables . 98
char-to-string . 58
char-valid-p . 673
char-width . 775
character alternative (in regexp) 693
character arrays . 51
character case . 62
character classes in regexp 695
character code conversion 677
character codes . 672
character insertion . 615
character printing . 448
character quote . 716
character sets . 673

character to string . 58
character translation tables 676
characters . 51
characters for interactive codes 332
charset-bytes . 674
charset-dimension . 674
charset-list . 673
charset-plist . 673
charsetp . 673
check-coding-system . 679
checkdoc-minor-mode . 881
child process . 735
christian-holidays . 812
circular structure, read syntax 29
cl . 2
CL note—allocate more storage 892
CL note—case of letters . 14
CL note—default optional arg 177
CL note—integers vrs eq . 38
CL note—interning existing symbol 114
CL note—lack union, intersection. 83
CL note—no continuable errors 140
CL note—only throw in Emacs 136
CL note—rplaca vrs setcar 76
CL note—set local . 158
CL note—special forms compared 125
CL note—special variables. 159
CL note—symbol in obarrays 113
cl-specs.el . 267
cl.el (Edebug) . 267
class of advice . 244
cleanup forms . 145
clear-abbrev-table . 730
clear-face-cache . 787
clear-image-cache . 802
clear-this-command-keys 339
clear-visited-file-modtime 511
click event . 344
clickable text . 658
clipboard support (for MS-Windows) 575
close parenthesis . 803
close parenthesis character 715
closures not available . 161
clrhash . 105
codes, interactive, description of 332
coding standards . 875
coding system . 677
coding-system-change-eol-conversion 679
coding-system-change-text-conversion 679
coding-system-for-read 683
coding-system-for-write 684
coding-system-get . 677
coding-system-list . 679
coding-system-p . 679
color-defined-p . 576
color-gray-p . 576

Index 819

color-supported-p . 576
color-values . 576
colors on text-only terminals 577
columns . 637
combine-after-change-calls 667
command . 174
command descriptions . 5
command history . 369
command in keymap . 383
command loop . 329
command loop, recursive . 366
command-debug-status . 264
command-execute . 336
command-history . 369
command-history-map . 921
command-line . 829
command-line arguments . 829
command-line options . 829
command-line-args . 830
command-line-functions 830
command-line-processed 829
command-switch-alist . 829
commandp . 336
commandp example . 317
commands, defining . 330
comment ender . 716
comment starter . 716
comment syntax . 716
comments . 10
Common Lisp . 2
Common Lisp (Edebug) . 267
compare-buffer-substrings 612
compare-strings . 57
compare-window-configurations 550
comparing buffer text . 612
comparison of modification time 510
compilation . 231
compilation functions . 232
compile-defun . 233
compiled function . 237
complete key . 373
completing-read . 312
completion . 310
completion, file name . 480
completion-auto-help . 316
completion-ignore-case 312
completion-ignored-extensions 481
complex arguments . 303
complex command . 369
compute-motion . 590
concat . 54
concatenating lists . 80
concatenating strings . 54
cond . 131
condition name . 143
condition-case . 142

conditional display specifications 794
conditional evaluation . 130
conditional selection of windows 525
cons . 73
cons cell as box . 67
cons cells . 73
cons-cells-consed . 895
consing . 73
consp . 69
constrain-to-field . 660
continuation lines . 758
continue-process . 748
control character key constants 387
control character printing 448
control characters . 12
control characters in display 805
control characters, reading 359
control structures . 129
Control-X-prefix . 378
conventions for writing minor modes 419
conversion of strings . 58
convert-standard-filename 481
coordinates-in-window-p 548
copy-alist . 88
copy-category-table . 726
copy-face . 787
copy-file . 471
copy-hash-table . 107
copy-keymap . 376
copy-marker . 601
copy-region-as-kill . 621
copy-sequence . 92
copy-syntax-table . 719
copying alists . 88
copying files . 470
copying lists . 74
copying sequences . 92
copying strings . 54
copying vectors . 97
cos . 49
count-lines . 588
count-loop . 6
count-screen-lines . 589
counting columns . 637
coverage testing . 277
create-file-buffer . 456
create-fontset-from-fontset-spec 790
create-glyph . 808
create-image . 800
creating buffers . 515
creating keymaps . 375
ctl-arrow . 805
ctl-x-4-map . 378
ctl-x-5-map . 378
ctl-x-map . 378
current binding . 148

820 GNU Emacs Lisp Reference Manual

current buffer . 503
current buffer excursion . 594
current buffer mark . 605
current buffer point and mark (Edebug) 279
current buffer position . 583
current command . 338
current stack frame . 259
current-buffer . 505
current-case-table . 65
current-column . 637
current-fill-column . 631
current-frame-configuration 570
current-global-map . 380
current-indentation . 638
current-input-method . 687
current-input-mode . 845
current-justification . 629
current-kill . 622
current-left-margin . 631
current-local-map . 380
current-message . 760
current-minor-mode-maps 380
current-prefix-arg . 365
current-time . 838
current-time-string . 838
current-time-zone . 839
current-window-configuration 548
cursor-in-echo-area . 761
cursor-type . 561
cust-print . 275
custom-add-option . 206
cut buffer . 575
cyclic ordering of windows 525

D
data type . 9
data-directory . 452
daylight savings time . 815
deactivate-mark . 606
deactivate-mark-hook . 607
deactivating advice . 248
debug . 261
debug-ignored-errors . 256
debug-on-entry . 257
debug-on-error . 255
debug-on-error use . 140
debug-on-next-call . 264
debug-on-quit . 257
debug-on-signal . 256
debugger . 255
debugger . 262
debugger command list . 260
debugger-mode-map . 921
debugging errors . 255
debugging specific functions 257

decode-coding-region . 685
decode-coding-string . 685
decode-time . 841
decoding file formats . 487
decoding text . 684
decrement field of register . 15
dedicated window . 534
deep binding . 161
def-edebug-spec . 280
defadvice . 244
defalias . 180
default (face name) . 776
default argument string . 332
default init file . 827
default key binding . 374
default value . 167
default value of char-table . 98
default-abbrev-mode . 729
default-boundp . 167
default-buffer-file-type 687
default-case-fold-search 711
default-ctl-arrow . 805
default-directory . 477
default-enable-multibyte-characters 669
default-file-modes . 472
default-fill-column . 630
default-frame-alist . 556
default-header-line-format 430
default-input-method . 687
default-justification . 629
default-major-mode . 416
default-minibuffer-frame 567
default-mode-line-format 427
default-process-coding-system 683
default-text-properties 645
default-truncate-lines 758
default-value . 167
‘default.el’ . 825
defconst . 153
defcustom . 203
defface . 777
defgroup . 202
defimage . 800
define-abbrev . 730
define-abbrev-table . 730
define-category . 726
define-derived-mode . 418
define-hash-table-test 106
define-key . 387
define-key-after . 406
define-logical-name . 472
define-minor-mode . 421
define-prefix-command . 378
defined-colors . 576
defining a function . 179
defining advice . 244

Index 821

defining commands . 330
defining menus . 394
defining-kbd-macro . 370
definition of a symbol . 111
defmacro . 193
defsubst . 188
defun . 179
defun-prompt-regexp . 592
defvar . 152
delete . 84
delete previous char . 617
delete-and-extract-region 616
delete-auto-save-file-if-necessary 499
delete-auto-save-files 499
delete-backward-char . 617
delete-blank-lines . 619
delete-char . 617
delete-directory . 484
delete-exited-processes 742
delete-field . 660
delete-file . 471
delete-frame . 565
delete-frame event . 348
delete-frame-hook . 565
delete-horizontal-space 618
delete-indentation . 618
delete-minibuffer-contents 326
delete-old-versions . 495
delete-other-windows . 523
delete-overlay . 772
delete-process . 742
delete-region . 616
delete-to-left-margin . 631
delete-window . 523
delete-windows-on . 523
deleting files . 470
deleting processes . 742
deleting whitespace . 618
deleting windows . 523
deletion of elements . 83
deletion of frames . 564
deletion vs killing . 616
delq . 83
describe-bindings . 393
describe-buffer-case-table 66
describe-categories . 727
describe-current-display-table 807
describe-display-table 807
describe-mode . 417
describe-prefix-bindings 451
description for interactive codes 332
description format . 5
destructive list operations . 76
detect-coding-region . 680
detect-coding-string . 680
diagrams, boxed, for lists . 16

dialog boxes . 573
diary buffer . 819
diary-anniversary . 820
diary-astro-day-number 821
diary-cyclic . 820
diary-date . 820
diary-date-forms . 817
diary-day-of-year . 821
diary-display-hook . 819
diary-entry-marker . 811
diary-float . 821
diary-french-date . 821
diary-hebrew-date . 821
diary-islamic-date . 821
diary-iso-date . 821
diary-julian-date . 821
diary-list-include-blanks 819
diary-mayan-date . 821
diary-omer . 822
diary-parasha . 822
diary-phases-of-moon . 821
diary-remind . 820
diary-rosh-hodesh . 822
diary-sabbath-candles . 822
diary-sunrise-sunset . 821
diary-yahrzeit . 822
digit-argument . 366
dimension (of character set) 674
ding . 809
directory name . 475
directory name abbreviation 475
directory part (of file name) 473
directory-abbrev-alist 475
directory-file-name . 475
directory-files . 482
directory-oriented functions 482
dired-kept-versions . 495
dired-mode-map . 921
disable undo . 627
disable-command . 369
disable-point-adjustment 340
disabled . 368
disabled command . 368
disabled-command-hook . 369
disabling advice . 250
disassemble . 238
disassembled byte-code . 238
discard input . 360
discard-input . 360
display (overlay property) 770
display (text property) 651, 791
display feature testing . 579
display margins . 794
display specification . 791
display table . 805
display-backing-store . 580

822 GNU Emacs Lisp Reference Manual

display-buffer . 531
display-buffer-function 534
display-buffer-reuse-frames 531
display-color-cells . 580
display-color-p . 579
display-completion-list 315
display-graphic-p . 579
display-grayscale-p . 579
display-images-p . 579
display-message-or-buffer 760
display-mm-height . 580
display-mm-width . 580
display-mouse-p . 579
display-pixel-height . 580
display-pixel-width . 580
display-planes . 580
display-popup-menus-p . 579
display-save-under . 580
display-screens . 580
display-selections-p . 579
display-table-slot . 807
display-visual-class . 580
displaying a buffer . 529
displays, multiple . 554
do-auto-save . 499
‘DOC’ (documentation) file 443
doc-directory . 446
documentation . 444
documentation conventions 443
documentation for major mode 417
documentation notation . 3
documentation of function 178
documentation strings . 443
documentation, keys in . 447
documentation-property 444
dolist . 135
DOS file types . 686
dotimes . 135
dotted lists (Edebug) . 283
dotted pair notation . 17
double-click events . 346
double-click-fuzz . 347
double-click-time . 347
double-quote in strings . 19
down-list . 592
downcase . 62
downcase-region . 643
downcase-word . 644
downcasing in lookup-key 356
drag event . 345
drag-n-drop event . 349
dribble file . 849
dump-emacs . 890
dynamic loading of documentation 234
dynamic loading of functions 235
dynamic scoping . 159

E
easy-mmode-define-minor-mode 422
echo area . 759
echo-area-clear-hook . 761
echo-keystrokes . 761
edebug . 272
Edebug . 264
Edebug execution modes . 267
Edebug mode . 264
Edebug specification list . 281
edebug-all-defs . 286
edebug-all-forms . 286
edebug-continue-kbd-macro 287
edebug-display-freq-count 277
edebug-eval-top-level-form 266
edebug-global-break-condition 287
edebug-initial-mode . 287
edebug-on-error . 287
edebug-on-quit . 287
edebug-print-circle . 276
edebug-print-length . 276
edebug-print-level . 276
edebug-print-trace-after 276
edebug-print-trace-before 276
edebug-save-displayed-buffer-points 286
edebug-save-windows . 286
edebug-set-global-break-condition 271
edebug-setup-hook . 286
edebug-test-coverage . 287
edebug-trace . 277, 287
edebug-tracing . 277
edebug-unwrap . 281
edit-abbrevs-map . 921
edit-and-eval-command . 308
edit-tab-stops-map . 921
editing types . 25
editor command loop . 329
electric-buffer-menu-mode-map 921
electric-future-map . 7
electric-history-map . 921
element (of list) . 67
elements of sequences . 92
‘elp.el’ . 880
elt . 92
Emacs event standard notation 448
emacs-build-time . 7
emacs-lisp-mode-map . 921
emacs-lisp-mode-syntax-table 724
emacs-major-version . 8
emacs-minor-version . 8
emacs-pid . 836
emacs-startup-hook . 828
emacs-version . 7, 8
‘emacs/etc/DOC-version’ . 443
EMACSLOADPATH environment variable 219

Index 823

empty list . 17
enable-command . 369
enable-flow-control . 853
enable-flow-control-on 853
enable-local-eval . 171
enable-local-variables 171
enable-multibyte-characters 669
enable-recursive-minibuffers 327
enabling advice . 250
encode-coding-region . 685
encode-coding-string . 685
encode-time . 842
encoding file formats . 487
encoding text . 684
end of buffer marker . 601
end of line conversion . 677
end of line in regexp . 694
end-of-buffer . 586
end-of-defun . 592
end-of-defun-function . 593
end-of-file . 294
end-of-line . 588
enlarge-window . 545
enlarge-window-horizontally 546
environment . 119
environment variable access 834
environment variables, subprocesses 736
eobp . 610
eolp . 610
eq . 33
equal . 33
equality . 32
erase-buffer . 616
error . 139
error cleanup . 145
error debugging . 255
error description . 142
error display . 759
error handler . 140
error in debug . 262
error message notation . 4
error name . 143
error symbol . 143
error-conditions . 143
error-message-string . 142
errors . 138
〈ESC〉 . 386
esc-map . 377
ESC-prefix . 377
escape . 12
escape . 715
escape characters . 300
escape characters in printing 297
escape sequence . 12
‘etc/DOC-version’ . 443
eval . 126

eval, and debugging . 264
eval-after-load . 228
eval-and-compile . 236
eval-current-buffer . 127
eval-current-buffer (Edebug) 266
eval-defun (Edebug) . 266
eval-expression (Edebug) 267
eval-minibuffer . 307
eval-region . 127
eval-region (Edebug) . 266
eval-when-compile . 236
evaluated expression argument 334
evaluation . 119
evaluation error . 150
evaluation list group . 274
evaluation notation . 3
evaluation of buffer contents 127
evaporate (overlay property) 771
even-window-heights . 532
event printing . 448
event type . 350
event, reading only one . 356
event-basic-type . 351
event-click-count . 347
event-convert-list . 352
event-end . 352
event-modifiers . 350
event-start . 352
eventp . 341
events . 341
examining the interactive form 332
examining windows . 527
examples of using interactive 335
excursion . 594
exec-directory . 736
exec-path . 736
execute program . 735
execute with prefix argument 337
execute-extended-command 337
execute-kbd-macro . 370
executing-macro . 370
execution speed . 880
exit . 367
exit recursive editing . 367
exit-minibuffer . 325
exit-recursive-edit . 368
exiting Emacs . 830
exp . 49
expand-abbrev . 732
expand-file-name . 477
expansion of file names . 476
expansion of macros . 191
expression . 119
expression prefix . 716
expt . 50
extended-command-history 309

824 GNU Emacs Lisp Reference Manual

extent . 159
extra slots of char-table . 98
extra-keyboard-modifiers 846

F
face . 776
face (overlay property) . 769
face (text property) . 650
face attributes . 779
face codes of text . 650
face id . 776
face-attribute . 782
face-background . 784
face-bold-p . 784
face-default-registry . 785
face-differs-from-default-p 788
face-documentation . 788
face-equal . 788
face-font . 784
face-font-family-alternatives 786
face-font-registry-alternatives 786
face-font-selection-order 786
face-foreground . 784
face-id . 788
face-inverse-video-p . 784
face-italic-p . 784
face-list . 787
face-stipple . 784
face-underline-p . 784
facemenu-background-menu 921
facemenu-face-menu . 922
facemenu-foreground-menu 922
facemenu-indentation-menu 922
facemenu-justification-menu 922
facemenu-keymap . 378
facemenu-menu . 921
facemenu-special-menu . 922
facep . 776
faces, automatic choice . 788
false . 3
fancy-diary-display . 819
fboundp . 187
fceiling . 44
feature-unload-hook . 227
featurep . 227
features . 225
features . 227
fetch-bytecode . 236
ffloor . 44
field (text property) . 653
field width . 61
field-beginning . 660
field-end . 660
field-string . 660
field-string-no-properties 660

fields . 659
file accessibility . 464
file age . 465
file attributes . 467
file format conversion . 487
file hard link . 470
file locks . 462
file mode specification error 415
file modes and MS-DOS . 472
file modification time . 465
file name completion subroutines 480
file name of buffer . 508
file name of directory . 475
file names . 473
file names in directory . 482
file open error . 456
file symbolic links . 466
file types on MS-DOS and Windows 686
file with multiple names . 470
file-accessible-directory-p 465
file-already-exists . 472
file-attributes . 468
file-chase-links . 467
file-coding-system-alist 682
file-directory-p . 466
file-error . 218
file-executable-p . 464
file-exists-p . 464
file-expand-wildcards . 483
file-local-copy . 486
file-locked . 463
file-locked-p . 463
file-modes . 467
file-name-absolute-p . 476
file-name-all-completions 480
file-name-all-versions 482
file-name-as-directory 475
file-name-buffer-file-type-alist 686
file-name-completion . 480
file-name-directory . 473
file-name-extension . 474
file-name-history . 309
file-name-nondirectory 474
file-name-sans-extension 474
file-name-sans-versions 474
file-newer-than-file-p 465
file-newest-backup . 496
file-nlinks . 468
file-ownership-preserved-p 465
file-precious-flag . 459
file-readable-p . 464
file-regular-p . 466
file-relative-name . 477
file-supersession . 511
file-symlink-p . 466
file-truename . 467

Index 825

file-writable-p . 464
fill-column . 630
fill-context-prefix . 632
fill-individual-paragraphs 628
fill-individual-varying-indent 628
fill-nobreak-predicate 632
fill-paragraph . 628
fill-paragraph-function 629
fill-prefix . 630
fill-region . 628
fill-region-as-paragraph 629
fillarray . 95
filling a paragraph . 628
filling, automatic . 633
filling, explicit . 627
filter function . 750
find-backup-file-name . 496
find-charset-region . 675
find-charset-string . 675
find-coding-systems-for-charsets 680
find-coding-systems-region 680
find-coding-systems-string 680
find-file . 454
find-file-hooks . 455
find-file-name-handler 486
find-file-noselect . 454
find-file-not-found-hooks 456
find-file-other-window 455
find-file-read-only . 455
find-file-wildcards . 455
find-image . 801
find-operation-coding-system 683
finding files . 453
finding windows . 525
first-change-hook . 667
fixed-pitch (face name) . 777
fixup-whitespace . 619
float . 39
float-time . 839
floatp . 37
floats-consed . 895
floor . 40
flow control characters . 852
flow control example . 847
flush input . 360
fmakunbound . 187
focus event . 348
focus-follows-mouse . 569
following-char . 610
Font Lock Mode . 433
font-list-limit . 790
Font-Lock mode . 788
font-lock-beginning-of-syntax-function . . 437
font-lock-builtin-face 438
font-lock-comment-face 438
font-lock-constant-face 438

font-lock-defaults . 433
font-lock-function-name-face 438
font-lock-keyword-face 438
font-lock-keywords . 434
font-lock-keywords-case-fold-search 436
font-lock-keywords-only 436
font-lock-mark-block-function 437
font-lock-string-face . 438
font-lock-syntactic-keywords 438
font-lock-syntax-table 436
font-lock-type-face . 438
font-lock-variable-name-face 438
font-lock-warning-face 438
fontification-functions 788
fontified (text property) 651
fonts . 3
fonts, more than one on display 579
foo . 5
for . 196
force-mode-line-update 423
forcing redisplay . 757
format . 60
format definition . 487
format of keymaps . 374
format specification . 60
format-alist . 487
format-find-file . 488
format-insert-file . 489
format-time-string . 839
format-write-file . 488
formatting strings . 60
formfeed . 12
forms . 119
forward advice . 245
forward-char . 585
forward-comment . 724
forward-line . 588
forward-list . 591
forward-sexp . 592
forward-to-indentation 643
forward-word . 585
frame . 553
frame configuration . 570
frame size . 562
frame visibility . 569
frame-background-mode . 779
frame-char-height . 562
frame-char-width . 562
frame-first-window . 566
frame-height . 562
frame-list . 565
frame-live-p . 565
frame-parameter . 555
frame-parameters . 555
frame-pixel-height . 562
frame-pixel-width . 562

826 GNU Emacs Lisp Reference Manual

frame-selected-window . 566
frame-title-format . 564
frame-visible-p . 569
frame-width . 562
framep . 553
frames, more than one on display 579
free list . 892
frequency counts . 277
fringe (face name) . 776
fround . 44
fset . 187
ftp-login . 146
ftruncate . 44
full keymap . 374
funcall . 181
funcall, and debugging . 264
function . 173
function . 185
function call . 123
function call debugging . 257
function cell . 109
function cell in autoload . 222
function definition . 178
function descriptions . 5
function form evaluation . 123
function input stream . 292
function invocation . 181
function keys . 342
function name . 178
function output stream . 295
function quoting . 186
function-key-map . 847
functionals . 182
functionp . 174
functions in modes . 409
functions, making them interactive 330
Fundamental mode . 407
fundamental-mode . 415
fundamental-mode-abbrev-table 734
fundamental-mode-map . 922

G
gamma correction . 561
gap-position . 518
gap-size . 518
garbage collection protection 895
garbage collector . 891
garbage-collect . 892
garbage-collection-messages 894
gc-cons-threshold . 894
general-holidays . 812
generate-new-buffer . 515
generate-new-buffer-name 507
generic characters . 675
generic comment delimiter 717

generic string delimiter 717
geometry specification . 563
get . 116
get-buffer . 507
get-buffer-create . 515
get-buffer-process . 749
get-buffer-window . 528
get-buffer-window-list 528
get-char-property . 645
get-file-buffer . 509
get-file-char . 294
get-largest-window . 525
get-lru-window . 525
get-process . 743
get-register . 663
get-text-property . 645
get-unused-category . 726
get-window-with-predicate 525
getenv . 834
gethash . 105
GIF . 799
global binding . 148
global break condition. 271
global keymap . 379
global variable . 147
global-abbrev-table . 734
global-disable-point-adjustment 341
global-key-binding . 385
global-map . 380
global-mode-string . 426
global-set-key . 391
global-unset-key . 391
glyph . 808
glyph table . 808
glyph-table . 808
goto-char . 584
goto-line . 587

H
hack-local-variables . 171
handle-switch-frame . 568
handling errors . 140
hash code . 106
hash notation . 10
hash tables . 103
hash-table-count . 107
hash-table-p . 107
hash-table-rehash-size 108
hash-table-rehash-threshold 108
hash-table-size . 108
hash-table-test . 107
hash-table-weakness . 107
hashing . 112
header comments . 886
header line (of a window). 430

Index 827

header-line (face name) . 776
header-line prefix key . 356
header-line-format . 430
hebrew-holidays . 812
help for major mode . 417
help-char . 450
help-command . 450
help-echo (text property) 651, 770
help-event-list . 451
help-form . 451
help-map . 450
Helper-describe-bindings 451
Helper-help . 452
Helper-help-map . 922
highlight (face name) . 777
highlighting . 803
history list . 308
history of commands . 369
holiday forms . 812
holidays-in-diary-buffer 816
HOME environment variable 735
hooks . 439
hooks for changing a character 653
hooks for loading . 228
hooks for motion of point 653
hooks for text changes . 666
horizontal position . 637
horizontal scrolling . 541
horizontal-scroll-bar prefix key 356
hyper characters . 13

I
icon-title-format . 564
iconified frame . 569
iconify-frame . 569
iconify-frame event. 349
identity . 182
idleness . 844
IEEE floating point . 36
if . 131
ignore . 182
ignored-local-variables 171
image descriptor . 795
image-cache-eviction-delay 802
image-mask-p . 797
image-size . 802
image-types . 795
images in buffers . 795
Imenu . 430
imenu-case-fold-search 431
imenu-create-index-function 432
imenu-extract-index-name-function 432
imenu-generic-expression 430
imenu-index-alist . 432
imenu-prev-index-position-function 432

imenu-syntax-alist . 431
implicit progn . 129
inc . 191
include-other-diary-files 820
indent-according-to-mode 639
indent-code-rigidly . 641
indent-for-tab-command 639
indent-line-function . 639
indent-region . 640
indent-region-function 640
indent-relative . 641
indent-relative-maybe . 642
indent-rigidly . 640
indent-tabs-mode . 639
indent-to . 638
indent-to-left-margin . 631
indentation . 638
indenting with parentheses 723
indicate-empty-lines . 805
indirect buffers . 517
indirect specifications . 282
indirect-function . 122
indirection . 121
infinite loops . 257
infinite recursion . 150
infinity . 36
Info-edit-map . 922
Info-mode-map . 922
inherit . 716
inheritance of text properties 654
inheriting a keymap’s bindings 376
inhibit-default-init . 827
inhibit-eol-conversion 684
inhibit-field-text-motion 586
inhibit-file-name-handlers 486
inhibit-file-name-operation 486
inhibit-modification-hooks 667
inhibit-point-motion-hooks 654
inhibit-quit . 364
inhibit-read-only . 512
inhibit-startup-echo-area-message 826
inhibit-startup-message 826
init file . 826
init-file-user . 836
initial-calendar-window-hook 811
initial-frame-alist . 556
initial-major-mode . 416
initialization . 825
inline functions . 188
innermost containing parentheses 722
input events . 341
input focus . 567
input methods . 687
input modes . 845
input stream . 292
input-method-alist . 687

828 GNU Emacs Lisp Reference Manual

input-method-function . 358
input-pending-p . 360
insert . 613
insert-abbrev-table-description 730
insert-and-inherit . 656
insert-before-markers . 613
insert-before-markers-and-inherit 656
insert-behind-hooks (overlay property) 771
insert-behind-hooks (text property) 653
insert-buffer . 615
insert-buffer-substring 614
insert-char . 614
insert-default-directory 319
insert-directory . 483
insert-directory-program 483
insert-file-contents . 460
insert-file-contents-literally 460
insert-hebrew-diary-entry 819
insert-image . 801
insert-in-front-hooks (overlay property) . . . 771
insert-in-front-hooks (text property) 653
insert-islamic-diary-entry 819
insert-monthly-hebrew-diary-entry 819
insert-monthly-islamic-diary-entry 819
insert-register . 664
insert-yearly-hebrew-diary-entry 819
insert-yearly-islamic-diary-entry 819
inserting killed text . 621
insertion before point . 613
insertion of text . 613
insertion type of a marker 603
inside comment . 722
inside string . 722
installation-directory 836
int-to-string . 59
intangible (overlay property) 771
intangible (text property) 652
integer to decimal . 58
integer to hexadecimal . 61
integer to octal . 61
integer to string . 58
integer-or-marker-p . 600
integerp . 37
integers . 35
integers in specific radix . 35
interactive . 330
interactive call . 335
interactive code description 332
interactive commands (Edebug) 267
interactive completion . 332
interactive function . 330
interactive, examples of using 335
interactive-form . 332
interactive-p . 337
intern . 113
intern-soft . 114

internals, of buffer . 900
internals, of process . 910
internals, of window . 906
interning . 112
interpreter . 119
interpreter-mode-alist 417
interprogram-cut-function 623
interprogram-paste-function 623
interrupt-process . 747
intervals . 661
intervals-consed . 895
introduction sequence . 674
invalid function . 122
invalid prefix key error . 387
invalid-function . 122
invalid-read-syntax . 10
invalid-regexp . 699
Inverse Video . 803
inverse-video . 803
invert-face . 784
invisible (overlay property) 771
invisible (text property) 652
invisible frame . 569
invisible text . 761
invocation-directory . 835
invocation-name . 835
isearch-mode-map . 922
islamic-holidays . 812
italic (face name) . 777
iteration . 134

J
joining lists. 80
just-one-space . 619
justify-current-line . 629

K
kbd-macro-termination-hook 371
kept-new-versions . 494
kept-old-versions . 494
key . 373
key binding . 373
key lookup . 382
key sequence . 355
key sequence error . 387
key sequence input . 355
key translation function . 848
key-binding . 385
key-description . 448
key-translation-map . 848
keyboard events in strings 353
keyboard macro execution 336
keyboard macro termination 809
keyboard macros . 370

Index 829

keyboard macros (Edebug) 268
keyboard-coding-system 685
keyboard-quit . 364
keyboard-translate . 847
keyboard-translate-table 846
keymap . 373
keymap (overlay property) 772
keymap (text property) . 652
keymap entry . 382
keymap format . 374
keymap in keymap . 383
keymap inheritance . 376
keymap of character . 652
keymap of character (and overlays) 771
keymap prompt string . 374
keymap-parent . 377
keymapp . 375
keymaps in modes . 409
keys in documentation strings 447
keys, reserved . 876
keystroke . 373
keystroke command . 174
keyword symbol . 148
keywordp . 148
kill command repetition . 339
kill ring . 619
kill-all-local-variables 166
kill-append . 622
kill-buffer . 516
kill-buffer-hook . 517
kill-buffer-query-functions 517
kill-emacs . 831
kill-emacs-hook . 831
kill-emacs-query-functions 831
kill-local-variable . 166
kill-new . 622
kill-process . 747
kill-read-only-ok . 621
kill-region . 621
kill-ring . 624
kill-ring-max . 624
kill-ring-yank-pointer 624
killing buffers . 516
killing Emacs . 831

L
lambda expression . 175
lambda in debug . 261
lambda in keymap . 383
lambda list . 175
lambda-list (Edebug) . 284
last . 72
last-abbrev . 733
last-abbrev-location . 733
last-abbrev-text . 733

last-coding-system-used 679
last-command . 338
last-command-char . 340
last-command-event . 340
last-event-frame . 340
last-input-char . 360
last-input-event . 360
last-kbd-macro . 371
last-nonmenu-event . 340
last-prefix-arg . 366
lazy loading . 235
leading code . 669
left-margin . 631
left-margin-width . 794
length . 92
let . 149
let* . 149
lexical binding (Edebug) . 274
lexical comparison . 56
library . 217
library compilation . 234
library header comments . 886
line wrapping . 758
line-beginning-position 587
line-end-position . 588
line-move-ignore-invisible 763
lines . 587
lines in region . 588
linking files . 470
Lisp debugger . 255
Lisp expression motion . 591
Lisp history . 2
Lisp library . 217
Lisp nesting error . 128
Lisp object . 9
Lisp printer . 298
Lisp reader . 291
lisp-interaction-mode-map 922
lisp-mode-abbrev-table 734
lisp-mode-map . 922
‘lisp-mode.el’ . 412
list . 67
list . 73
list elements . 70
list form evaluation . 121
list in keymap . 383
list length . 92
list motion . 591
list structure . 67
list-buffers-directory 509
list-diary-entries-hook 820
list-hebrew-diary-entries 818
list-islamic-diary-entries 818
list-processes . 743
listify-key-sequence . 360
listp . 69

830 GNU Emacs Lisp Reference Manual

lists and cons cells . 67

lists as sets . 83

lists represented as boxes . 67

literal evaluation . 120

ln . 472

load . 217

load error with require . 225

load errors . 218

load-average . 836

load-file . 218

load-history . 227

load-in-progress . 218

load-library . 218

load-path . 219

load-read-function . 219

loadhist-special-hooks 228

loading . 217

loading hooks . 228

‘loadup.el’ . 889

local binding . 148

local keymap . 379

local variables . 148

local-abbrev-table . 734

local-holidays . 812

local-key-binding . 385

local-map (overlay property) 771

local-map (text property) 652

local-set-key . 391

local-unset-key . 391

local-variable-p . 165

local-write-file-hooks 458

locale . 688

locale-coding-system . 688

locate-library . 220

lock-buffer . 463

log . 49

log10 . 49

logand . 47

logb . 37

logical and . 47

logical exclusive or . 48

logical inclusive or . 48

logical not . 48

logical shift . 45

logior . 48

lognot . 48

logxor . 48

looking-at . 703

lookup-key . 384

loops, infinite . 257

lower case . 62

lower-frame . 570

lowering a frame . 570

lsh . 45

M
M-g . 378
M-x . 337
Maclisp . 2
macro . 173
macro argument evaluation 196
macro call . 191
macro call evaluation . 123
macro compilation . 232
macro descriptions . 5
macro expansion . 192
macroexpand . 192
macros . 191
magic file names . 484
mail-host-address . 834
major mode . 407
major mode hook . 410
major mode keymap . 379
major-mode . 417
make-abbrev-table . 729
make-auto-save-file-name 497
make-backup-file-name . 495
make-backup-file-name-function 493
make-backup-files . 491
make-bool-vector . 101
make-byte-code . 237
make-category-set . 727
make-category-table . 726
make-char . 675
make-char-table . 98
make-directory . 483
make-display-table . 806
make-face . 787
make-frame . 553
make-frame-invisible . 569
make-frame-on-display . 554
make-frame-visible . 569
make-frame-visible event 349
make-hash-table . 103
make-help-screen . 452
make-indirect-buffer . 517
make-keymap . 375
make-list . 74
make-local-hook . 441
make-local-variable . 164
make-marker . 601
make-overlay . 772
make-sparse-keymap . 376
make-string . 52
make-symbol . 113
make-symbolic-link . 471
make-syntax-table . 718
make-temp-file . 478
make-temp-name . 479
make-translation-table 676

Index 831

make-variable-buffer-local 165
make-variable-frame-local 169
make-vector . 97
makehash . 105
makunbound . 150
map-char-table . 100
map-y-or-n-p . 323
mapatoms . 114
mapc . 183
mapcar . 183
mapconcat . 184
maphash . 105
mapping functions . 183
margins, display . 794
mark . 605
mark excursion . 594
mark ring . 604
mark, the . 604
mark-active . 606
mark-diary-entries-hook 820
mark-diary-entries-in-calendar 811
mark-even-if-inactive . 606
mark-hebrew-diary-entries 818
mark-holidays-in-calendar 811
mark-included-diary-files 820
mark-islamic-diary-entries 818
mark-marker . 605
mark-ring . 607
mark-ring-max . 607
marker argument . 334
marker garbage collection 599
marker input stream . 292
marker output stream . 295
marker relocation . 599
marker-buffer . 602
marker-insertion-type . 603
marker-position . 602
markerp . 600
markers . 599
markers as numbers . 599
match data . 706
match-beginning . 707
match-data . 709
match-end . 708
match-string . 707
match-string-no-properties 707
mathematical functions . 49
max . 39
max-lisp-eval-depth . 127
max-specpdl-size . 150
md5 . 665
MD5 checksum . 665
member . 84
member-ignore-case . 83
membership in a list . 83
memory allocation . 891

memory-limit . 894
memq . 83
menu bar . 401
menu definition example . 400
menu keymaps . 394
menu prompt string . 394
menu separators . 397
menu-bar prefix key . 356
menu-bar-edit-menu . 923
menu-bar-files-menu . 923
menu-bar-final-items . 402
menu-bar-help-menu . 923
menu-bar-mule-menu . 923
menu-bar-search-menu . 923
menu-bar-tools-menu . 923
menu-bar-update-hook . 402
menu-item . 395
menu-prompt-more-char . 400
message . 759
message digest computation 665
message-box . 760
message-log-max . 761
message-or-box . 760
message-truncate-lines 759
meta character key constants 387
meta character printing . 448
meta characters . 13
meta characters lookup . 375
meta-prefix-char . 386
min . 39
minibuffer . 303
minibuffer history . 308
minibuffer input . 367
minibuffer window . 526
minibuffer-allow-text-properties 306
minibuffer-auto-raise . 570
minibuffer-complete . 315
minibuffer-complete-and-exit 315
minibuffer-complete-word 315
minibuffer-completion-confirm 315
minibuffer-completion-help 315
minibuffer-completion-predicate 315
minibuffer-completion-table 315
minibuffer-contents . 325
minibuffer-contents-no-properties 326
minibuffer-depth . 327
minibuffer-exit-hook . 326
minibuffer-frame-alist 556
minibuffer-help-form . 326
minibuffer-history . 309
minibuffer-local-completion-map 314
minibuffer-local-map . 306
minibuffer-local-must-match-map 314
minibuffer-local-ns-map 307
minibuffer-prompt . 325
minibuffer-prompt-end . 325

832 GNU Emacs Lisp Reference Manual

minibuffer-scroll-window 327
minibuffer-setup-hook . 326
minibuffer-window . 326
minibuffer-window-active-p 327
minimum window size . 547
minor mode . 419
minor mode conventions . 419
minor-mode-alist . 427
minor-mode-key-binding 386
minor-mode-map-alist . 381
minor-mode-overriding-map-alist 381
minubuffer-prompt-width 326
misc-objects-consed . 895
mod . 43
mode . 407
mode help . 417
mode hook . 410
mode line . 422
mode line construct . 423
mode loading . 411
mode variable . 419
mode-class property . 410
mode-line (face name) . 776
mode-line prefix key . 356
mode-line-buffer-identification 426
mode-line-format . 423
mode-line-frame-identification 426
mode-line-inverse-video 804
mode-line-modified . 426
mode-line-mule-info . 426
mode-line-process . 427
mode-name . 426
mode-specific-map . 377
modeline (face name) . 776
modification flag (of buffer) 509
modification of lists . 80
modification time, comparison of 510
modification-hooks (overlay property) 770
modification-hooks (text property) 653
modifier bits (of input character) 341
modify-category-entry . 727
modify-frame-parameters 556
modify-syntax-entry . 719
modulus . 43
momentary-string-display 767
motion event . 348
mouse click event . 344
mouse drag event . 345
mouse event, timestamp . 353
mouse events, accessing the data 352
mouse events, in special parts of frame 356
mouse events, repeated . 346
mouse motion events . 348
mouse pointer shape . 574
mouse position . 571
mouse position list, accessing 352

mouse tracking . 571
mouse, availability . 579
mouse-2 . 877
mouse-face (overlay property) 770
mouse-face (text property) 651
mouse-movement-p . 351
mouse-pixel-position . 572
mouse-position . 571
mouse-position-function 571
mouse-wheel event . 349
move-marker . 604
move-overlay . 772
move-to-column . 638
move-to-left-margin . 631
move-to-window-line . 590
movemail . 736
MS-DOS and file modes . 472
MS-DOS file types . 686
mule-keymap . 378
multibyte characters . 669
multibyte text . 669
multibyte-string-p . 670
multibyte-syntax-as-symbol 723
multiple windows . 519
multiple X displays . 554
multiple-frames . 564

N
named function . 178
NaN . 36
narrow-to-page . 596
narrow-to-region . 595
narrowing . 595
natnump . 37
natural numbers . 37
nbutlast . 72
nconc . 80
negative infinity . 36
negative-argument . 366
network connection . 755
network-coding-system-alist 682
new file message . 456
newline . 12
newline . 615
newline and Auto Fill mode 615
newline in print . 299
newline in strings . 20
newline-and-indent . 639
next input . 359
next-char-property-change 649
next-frame . 565
next-history-element . 325
next-matching-history-element 325
next-overlay-change . 774
next-property-change . 648

Index 833

next-screen-context-lines 540
next-single-char-property-change 649
next-single-property-change 648
next-window . 526
nil . 148
nil and lists . 67
nil in keymap . 383
nil in lists . 17
nil input stream . 292
nil output stream . 295
nil, uses of. 3
nlistp . 69
no-catch . 137
no-redraw-on-reenter . 757
non-ascii characters . 669
non-ascii text in keybindings 390
nonascii-insert-offset 671
nonascii-translation-table 671
nondirectory part (of file name) 473
nongregorian-diary-listing-hook 818
nongregorian-diary-marking-hook 818
noninteractive . 854
noninteractive use . 854
nonlocal exits . 135
nonprinting characters, reading 359
normal hook . 439
normal-auto-fill-function 633
normal-backup-enable-predicate 492
normal-mode . 415
not . 132
not-modified . 510
nreverse . 81
nth . 71
nthcdr . 71
null . 69
num-input-keys . 356
num-nonmacro-input-events 356
number equality . 38
number-of-diary-entries 816
number-or-marker-p . 600
number-to-string . 58
numberp . 37
numbers . 35
numeric prefix . 61
numeric prefix argument . 364
numeric prefix argument usage 334

O
obarray . 112
obarray . 114
obarray in completion . 310
object . 9
object internals . 900
object to string . 299
obsolete buffer . 511

occur-mode-map . 923
octal character code . 13
octal character input . 359
omer count . 822
one-window-p . 522
only-global-abbrevs . 731
open parenthesis character 715
open-dribble-file . 849
open-network-stream . 755
open-paren-in-column-0-is-defun-start . . . 593
open-termscript . 850
operating system environment 833
option descriptions . 7
optional arguments . 176
options on command line . 829
or . 133
ordering of windows, cyclic 525
other-buffer . 514
other-holidays . 812
other-window . 527
other-window-scroll-buffer 539
output from processes . 748
output stream . 295
overall prompt string . 374
overflow . 35
overlay arrow . 765
overlay-arrow-position 765
overlay-arrow-string . 765
overlay-buffer . 772
overlay-end . 772
overlay-get . 769
overlay-put . 769
overlay-start . 772
overlays . 768
overlays-at . 774
overlays-in . 774
overriding-local-map . 381
overriding-local-map-menu-flag 382
overriding-terminal-local-map 382
overwrite-mode . 616

P
padding . 61
page-delimiter . 711
paired delimiter . 716
paragraph-separate . 711
paragraph-start . 711
parasha, weekly . 822
parent of char-table . 98
parent process . 735
parenthesis . 16
parenthesis depth . 722
parenthesis matching . 803
parenthesis syntax . 715
parse state . 722

834 GNU Emacs Lisp Reference Manual

parse-colon-path . 835
parse-partial-sexp . 722
parse-sexp-ignore-comments 723
parse-sexp-lookup-properties 721
parsing . 713
passwords, reading . 324
PATH environment variable 735
path-separator . 835
pausing . 361
PBM . 800
peculiar error . 144
peeking at input . 359
percent symbol in mode line 424
perform-replace . 704
performance analysis . 277
permanent local variable . 167
permission . 467
piece of advice . 243
pipes . 741
play-sound . 851
play-sound-file . 852
play-sound-functions . 852
plist . 115
plist-get . 117
plist-member . 117
plist-put . 117
point . 583
point excursion . 594
point in window . 534
point with narrowing . 583
point-entered (text property) 653
point-left (text property) 653
point-marker . 601
point-max . 584
point-max-marker . 601
point-min . 583
point-min-marker . 601
pointer shape . 574
pointers . 15
pop . 71
pop-mark . 606
pop-to-buffer . 530
pop-up-frame-alist . 532
pop-up-frame-function . 532
pop-up-frames . 532
pop-up-windows . 532
pos-visible-in-window-p 537
position (in buffer) . 583
position argument . 333
position in window . 534
position of mouse . 571
position-bytes . 670
positive infinity . 36
posix-looking-at . 704
posix-search-backward . 703
posix-search-forward . 703

posix-string-match . 704
posn-col-row . 353
posn-point . 352
posn-timestamp . 353
posn-window . 352
posn-x-y . 352
post-command-hook . 330
Postscript images . 799
pre-abbrev-expand-hook 733
pre-command-hook . 329
preactivating advice . 250
preceding-char . 610
predicates . 30
prefix argument . 364
prefix argument unreading 359
prefix command . 378
prefix key . 377
prefix-arg . 366
prefix-help-command . 451
prefix-numeric-value . 365
preventing backtracking . 282
preventing prefix key . 384
previous complete subexpression 722
previous-char-property-change 649
previous-frame . 566
previous-history-element 325
previous-matching-history-element 325
previous-overlay-change 774
previous-property-change 649
previous-single-char-property-change 649
previous-single-property-change 649
previous-window . 527
primitive . 173
primitive function internals 895
primitive type . 9
primitive-undo . 626
prin1 . 298
prin1-to-string . 299
princ . 298
print . 298
print example . 296
print name cell . 109
print-circle . 301
print-diary-entries . 816
print-diary-entries-hook 816
print-escape-multibyte 300
print-escape-newlines . 300
print-escape-nonascii . 300
print-gensym . 301
print-help-return-message 450
print-length . 300
print-level . 301
printed representation . 9
printed representation for characters 11
printing . 291
printing (Edebug) . 275

Index 835

printing circular structures 275
printing limits . 301
printing notation . 4
priority (overlay property) 769
process . 735
process filter . 750
process input . 745
process internals . 910
process output . 748
process sentinel . 753
process signals . 746
process-buffer . 749
process-coding-system . 745
process-coding-system-alist 682
process-command . 743
process-connection-type 741
process-contact . 744
process-environment . 835
process-exit-status . 744
process-filter . 751
process-id . 743
process-kill-without-query 742
process-list . 743
process-mark . 749
process-name . 743
process-running-child-p 746
process-send-eof . 746
process-send-region . 746
process-send-string . 745
process-sentinel . 754
process-status . 744
process-tty-name . 744
processp . 735
‘profile.el’ . 880
profiling . 880
prog1 . 130
prog2 . 130
progn . 129
program arguments . 736
program directories . 736
programmed completion . 320
programming types . 10
prompt string (of menu) . 394
prompt string of keymap . 374
properties of text . 644
propertize . 647
property list . 115
property list cell . 109
property lists vs association lists 115
protected forms . 145
provide . 226
providing features . 225
ptys . 741
punctuation character . 715
pure storage . 890
pure-bytes-used . 891

purecopy . 891
purify-flag . 891
push . 73
push-mark . 606
put . 116
put-image . 801
put-text-property . 646
puthash . 105

Q
query-replace-history . 309
query-replace-map . 704
querying the user . 321
question mark in character constant 11
quietly-read-abbrev-file 731
quit-flag . 363
quit-process . 747
quitting . 362
quitting from infinite loop 257
quote . 126
quote character . 723
quoted character input . 358
quoted-insert suppression 389
quoting . 125
quoting characters in printing 297
quoting using apostrophe . 126

R
radix for reading an integer 35
raise-frame . 570
raising a frame . 570
random . 50
random numbers . 50
rassoc . 87
rassq . 87
raw prefix argument . 364
raw prefix argument usage 334
re-search-backward . 702
re-search-forward . 701
reactivating advice . 249
read . 294
read command name . 337
read syntax . 9
read syntax for characters . 11
read-buffer . 316
read-buffer-function . 317
read-char . 357
read-char-exclusive . 358
read-coding-system . 681
read-command . 317
read-event . 357
read-expression-history 309
read-file-name . 318

836 GNU Emacs Lisp Reference Manual

read-from-minibuffer . 304
read-from-string . 294
read-input-method-name 687
read-kbd-macro . 449
read-key-sequence . 355
read-key-sequence-vector 356
read-minibuffer . 307
read-no-blanks-input . 306
read-non-nil-coding-system 681
read-only (text property) 652
read-only buffer . 512
read-only buffers in interactive 331
read-only character . 652
read-passwd . 324
read-quoted-char . 358
read-quoted-char quitting 363
read-string . 305
read-variable . 317
reading . 291
reading a single event . 356
reading interactive arguments 332
reading symbols . 112
real-last-command . 338
rearrangement of lists . 80
rebinding . 387
recent-auto-save-p . 498
recent-keys . 849
recenter . 540
record command history . 336
recursion . 134
recursion-depth . 368
recursive command loop . 366
recursive editing level . 366
recursive evaluation . 119
recursive-edit . 367
redirect-frame-focus . 568
redisplay-dont-pause . 757
redisplay-end-trigger-functions 551
redo . 624
redraw-display . 757
redraw-frame . 757
references, following . 877
regexp . 691
regexp alternative . 696
regexp grouping . 697
regexp searching . 701
regexp-history . 309
regexp-opt . 700
regexp-opt-depth . 700
regexp-quote . 700
regexps used standardly in editing 711
region (face name) . 776
region argument . 334
region, the . 607
region-beginning . 607
region-end . 607

register-alist . 663
registers . 662
regular expression . 691
regular expression searching 701
reindent-then-newline-and-indent 639
relative file name . 476
remainder . 43
remhash . 105
remove . 85
remove-from-invisibility-spec 762
remove-hook . 441
remove-images . 802
remove-text-properties 646
remq . 76
rename-auto-save-file . 499
rename-buffer . 507
rename-file . 471
renaming files . 470
repeat events . 346
repeated loading . 224
replace bindings . 388
replace characters . 662
replace-buffer-in-windows 530
replace-match . 706
replacement . 704
require . 226
require-final-newline . 459
requiring features . 225
reserved keys . 876
resize frame . 562
rest arguments . 176
restriction (in a buffer) . 595
resume (cf. no-redraw-on-reenter) 757
return . 12
reverse . 76
reversing a list . 81
revert-buffer . 500
revert-buffer-function 501
revert-buffer-insert-file-contents-function

. 501
revert-without-query . 501
rgb value . 577
right-margin-width . 794
ring-bell-function . 809
rm . 471
rosh hodesh . 822
round . 40
rounding in conversions . 39
rounding without conversion 44
rplaca . 76
rplacd . 76
run time stack . 263
run-at-time . 843
run-hook-with-args . 440
run-hook-with-args-until-failure 440
run-hook-with-args-until-success 440

Index 837

run-hooks . 440
run-with-idle-timer . 844

S
safe-length . 72
same-window-buffer-names 534
same-window-regexps . 534
save-abbrevs . 731
save-buffer . 457
save-buffer-coding-system 678
save-current-buffer . 505
save-excursion . 594
save-match-data . 710
save-restriction . 596
save-selected-window . 524
save-some-buffers . 457
save-window-excursion . 549
saving text properties . 656
saving window information 548
scalable-fonts-allowed 787
scan-lists . 723
scan-sexps . 723
scope . 159
screen layout . 27
screen of terminal . 520
screen size . 562
screen-height . 562
screen-width . 562
scroll-bar (face name) . 776
scroll-bar-event-ratio 353
scroll-bar-scale . 353
scroll-conservatively . 539
scroll-down . 538
scroll-down-aggressively 539
scroll-left . 542
scroll-margin . 539
scroll-other-window . 538
scroll-preserve-screen-position 540
scroll-right . 542
scroll-step . 540
scroll-up . 538
scroll-up-aggressively 540
scrolling textually . 538
search-backward . 690
search-failed . 689
search-forward . 689
searching . 689
searching and case . 710
searching for regexp . 701
secondary-selection (face name) 777
select-frame . 568
select-safe-coding-system 680
select-safe-coding-system-accept-default-p

. 681
select-window . 524

selected frame . 567
selected window . 519
selected-frame . 567
selected-window . 524
selecting a buffer . 503
selecting windows . 524
selection (for window systems) 574
selection-coding-system 575
selective display . 763
selective-display . 764
selective-display-ellipses 765
self-evaluating form . 120
self-insert-and-exit . 325
self-insert-command . 615
self-insert-command override 389
self-insert-command, minor modes 421
self-insertion . 615
send-string-to-terminal 850
sending signals . 746
sentence-end . 712
sentence-end-double-space 629
sentinel . 753
sequence . 91
sequence length . 92
sequencep . 91
set . 157
set-auto-mode . 415
set-buffer . 505
set-buffer-auto-saved . 498
set-buffer-major-mode . 416
set-buffer-modified-p . 510
set-buffer-multibyte . 671
set-case-syntax . 66
set-case-syntax-delims . 66
set-case-syntax-pair . 65
set-case-table . 65
set-category-table . 726
set-char-table-default . 99
set-char-table-extra-slot 99
set-char-table-parent . 99
set-char-table-range . 100
set-default . 168
set-default-file-modes 472
set-display-table-slot 807
set-face-attribute . 782
set-face-background . 783
set-face-bold-p . 783
set-face-font . 783
set-face-foreground . 783
set-face-italic-p . 783
set-face-stipple . 783
set-face-underline-p . 783
set-file-modes . 472
set-frame-configuration 570
set-frame-height . 563
set-frame-position . 562

838 GNU Emacs Lisp Reference Manual

set-frame-size . 562
set-frame-width . 563
set-input-method . 687
set-input-mode . 845
set-keyboard-coding-system 686
set-keymap-parent . 377
set-left-margin . 630
set-mark . 605
set-marker . 603
set-marker-insertion-type 603
set-match-data . 709
set-mouse-pixel-position 572
set-mouse-position . 572
set-process-buffer . 749
set-process-coding-system 745
set-process-filter . 751
set-process-sentinel . 753
set-register . 663
set-right-margin . 631
set-screen-height . 563
set-screen-width . 563
set-standard-case-table 65
set-syntax-table . 720
set-terminal-coding-system 686
set-text-properties . 647
set-visited-file-modtime 511
set-visited-file-name . 509
set-window-buffer . 528
set-window-configuration 549
set-window-dedicated-p 534
set-window-display-table 807
set-window-hscroll . 543
set-window-margins . 794
set-window-point . 535
set-window-redisplay-end-trigger 551
set-window-start . 536
set-window-vscroll . 541
setcar . 77
setcdr . 78
setenv . 835
setplist . 116
setprv . 836
setq . 157
setq-default . 168
sets . 83
setting modes of files . 470
setting-constant . 148
sexp diary entries . 820
sexp motion . 591
shadowing of variables . 148
shallow binding . 161
shared structure, read syntax 29
Shell mode mode-line-format 425
shell-command-history . 309
shell-command-to-string 740
shell-quote-argument . 736

show-help-function . 654
show-trailing-whitespace 777
shrink-window . 546
shrink-window-horizontally 546
shrink-window-if-larger-than-buffer 546
side effect . 120
signal . 139
signal-process . 748
signaling errors . 139
signals . 746
simple-diary-display . 819
sin . 49
single-key-description 448
sit-for . 361
‘site-init.el’ . 890
‘site-load.el’ . 889
site-run-file . 827
‘site-start.el’ . 825
size of frame . 562
size of window . 543
skip-chars-backward . 594
skip-chars-forward . 593
skip-syntax-backward . 721
skip-syntax-forward . 721
skipping characters . 593
skipping comments . 723
sleep-for . 362
small-temporary-file-directory 479
Snarf-documentation . 446
sort . 82
sort-columns . 637
sort-diary-entries . 819
sort-fields . 636
sort-fold-case . 635
sort-lines . 636
sort-numeric-fields . 637
sort-pages . 636
sort-paragraphs . 636
sort-regexp-fields . 635
sort-subr . 633
sorting diary entries. 819
sorting lists . 82
sorting text . 633
sound . 851
source breakpoints . 272
spaces, specified height or width 791
sparse keymap . 374
〈SPC〉 in minibuffer . 307
special . 410
special events. 361
special form descriptions . 5
special form evaluation . 124
special forms . 24
special forms (Edebug) . 267
special forms for control structures 129
special-display-buffer-names 533

Index 839

special-display-frame-alist 533
special-display-function 533
special-display-popup-frame 533
special-display-regexps 533
special-event-map . 382
specified spaces . 791
speedups . 880
splicing (with backquote) . 194
split-char . 674
split-height-threshold 532
split-line . 615
split-string . 54
split-window . 520
split-window-horizontally 522
split-window-vertically 522
splitting windows . 520
sqrt . 50
stable sort. 82
standard regexps used in editing 711
standard-case-table . 65
standard-category-table 726
standard-display-table 808
standard-input . 295
standard-output . 300
standard-syntax-table . 724
standard-translation-table-for-decode . . . 676
standard-translation-table-for-encode . . . 676
standards of coding style . 875
start-process . 740
start-process-shell-command 741
startup of Emacs . 825
‘startup.el’ . 825
sticky text properties . 654
stop points . 265
stop-process . 747
stopping an infinite loop . 257
stopping on events . 271
store-match-data . 709
store-substring . 55
stream (for printing) . 295
stream (for reading) . 292
string . 53
string equality . 55
string in keymap . 383
string input stream . 292
string length . 92
string quote . 715
string search . 689
string to character . 58
string to number . 59
string to object . 294
string, writing a doc string 443
string-as-multibyte . 672
string-as-unibyte . 672
string-chars-consed . 895
string-equal . 56

string-lessp . 57
string-make-multibyte . 671
string-make-unibyte . 671
string-match . 702
string-to-char . 58
string-to-int . 59
string-to-number . 59
string-to-syntax . 725
string-width . 775
string= . 55
string< . 56
stringp . 52
strings . 51
strings with keyboard events 353
strings, formatting them . 60
strings-consed . 895
subprocess . 735
subr . 173
subr-arity . 174
subrp . 174
subst-char-in-region . 662
substitute-command-keys 447
substitute-in-file-name 478
substitute-key-definition 388
substituting keys in documentation 447
substring . 53
subtype of char-table . 98
super characters . 13
suppress-keymap . 389
suspend (cf. no-redraw-on-reenter) 757
suspend evaluation . 367
suspend-emacs . 832
suspend-hook . 832
suspend-resume-hook . 833
suspending Emacs . 831
switch-to-buffer . 529
switch-to-buffer-other-window 529
switches on command line 829
switching to a buffer . 529
sxhash . 106
symbol . 109
symbol components . 109
symbol constituent . 714
symbol equality . 112
symbol evaluation . 121
symbol function indirection 121
symbol in keymap . 383
symbol name hashing . 112
symbol-file . 228
symbol-function . 186
symbol-name . 113
symbol-plist . 116
symbol-value . 156
symbolp . 109
symbols-consed . 895
synchronous subprocess . 737

840 GNU Emacs Lisp Reference Manual

syntax classes . 713
syntax descriptor . 714
syntax error (Edebug) . 284
syntax flags . 717
syntax for characters . 11
syntax table . 713
syntax table example . 412
syntax table internals . 724
syntax tables in modes . 409
syntax-table . 720
syntax-table (text property) 720
syntax-table-p . 713
system-configuration . 833
system-key-alist . 852
system-messages-locale 688
system-name . 834
system-time-locale . 688
system-type . 833

T
t . 148
t and truth. 3
t input stream . 292
t output stream . 295
tab . 12
tab deletion . 617
〈TAB〉 in minibuffer . 307
tab-stop-list . 642
tab-to-tab-stop . 642
tab-width . 805
tabs stops for indentation 642
tag on run time stack . 137
tan . 49
TCP . 755
temacs . 889
TEMP environment variable 479
temp-buffer-setup-hook 767
temp-buffer-show-function 767
temp-buffer-show-hook . 767
temporary-file-directory 479
TERM environment variable 828
term-file-prefix . 828
term-setup-hook . 829
Termcap . 828
terminal frame . 553
terminal input . 845
terminal input modes . 845
terminal output . 850
terminal screen . 520
terminal-coding-system 686
terminal-specific initialization 828
terminate keyboard macro 360
termscript file . 850
terpri . 299
testing types . 30

text . 609
text files and binary files . 686
text insertion . 613
text parsing . 713
text properties . 644
text properties in files . 656
text representations . 669
text-char-description . 449
text-mode-abbrev-table 734
text-mode-map . 923
text-mode-syntax-table 724
text-properties-at . 645
text-property-any . 650
text-property-default-nonsticky 655
text-property-not-all . 650
textual scrolling . 538
thing-at-point . 612
this-command . 338
this-command-keys . 339
this-command-keys-vector 339
three-step-help . 452
throw . 137
throw example . 367
tiled windows . 520
timer . 843
timestamp of a mouse event 353
timing programs . 880
tips . 875
TMP environment variable . 479
TMPDIR environment variable 479
today-invisible-calendar-hook 812
today-visible-calendar-hook 811
toggle-read-only . 512
tool bar . 403
tool-bar (face name) . 776
tool-bar-add-item . 404
tool-bar-add-item-from-menu 404
tool-bar-item-margin . 405
tool-bar-item-relief . 405
tool-bar-map . 404
top-level . 368
top-level form . 217
tq-close . 755
tq-create . 754
tq-enqueue . 754
trace buffer . 276
track-mouse . 571
tracking the mouse . 571
trailing codes . 669
trailing-whitespace (face name) 777
transaction queue . 754
transcendental functions . 49
Transient Mark mode . 606
transient-mark-mode . 606
translate-region . 662
translating input events . 846

Index 841

translation tables . 676
transpose-regions . 664
triple-click events . 346
true . 3
truename (of file) . 467
truncate . 40
truncate-lines . 758
truncate-partial-width-windows 758
truncate-string-to-width 775
truth value . 3
try-completion . 310
tty-color-alist . 578
tty-color-approximate . 578
tty-color-clear . 578
tty-color-define . 577
tty-color-translate . 578
tty-erase-char . 836
two’s complement . 35
type . 9
type checking . 30
type checking internals . 900
type predicates . 30
type-of . 32

U
unbinding keys . 391
undefined . 385
undefined in keymap . 384
undefined key . 373
underline (face name) . 777
undo avoidance . 662
undo-boundary . 625
undo-limit . 627
undo-strong-limit . 627
unexec . 890
unhandled-file-name-directory 486
unibyte text . 669
unintern . 115
uninterned symbol . 112
universal-argument . 366
unless . 131
unload-feature . 227
unloading . 227
unlock-buffer . 463
unread-command-char . 360
unread-command-events . 359
unwind-protect . 145
unwinding . 145
up-list . 591
upcase . 63
upcase-initials . 64
upcase-region . 643
upcase-word . 644
update-directory-autoloads 223
update-file-autoloads . 223

upper case . 62
upper case key sequence . 356
use-global-map . 381
use-hard-newlines . 630
use-local-map . 381
user option . 154
user-defined error . 143
user-full-name . 837
user-init-file . 828
user-login-name . 837
user-mail-address . 837
user-real-login-name . 837
user-real-uid . 838
user-uid . 838
user-variable-p . 154
user-variable-p example 318

V
value cell . 109
value of expression . 119
values . 128
variable . 147
variable definition . 152
variable descriptions . 7
variable limit error . 150
variable-documentation 443
variable-interactive . 154
variable-pitch (face name) 777
variable-width spaces . 791
variables, buffer-local . 162
variant coding system . 677
vc-mode . 427
vc-prefix-map . 378
vconcat . 97
vector . 96
vector . 97
vector evaluation . 120
vector length . 92
vector-cells-consed . 895
vectorp . 97
verify-visited-file-modtime 510
version number (in file name) 473
version-control . 494
Vertical Fractional Scrolling 541
vertical tab . 12
vertical-line prefix key 356
vertical-motion . 589
vertical-scroll-bar prefix key 356
view-calendar-holidays-initially 811
view-diary-entries-initially 811
view-file . 455
view-mode-map . 923
view-register . 664
visible frame . 569
visible-bell . 809

842 GNU Emacs Lisp Reference Manual

visible-frame-list . 565
visited file . 508
visited file mode . 415
visited-file-modtime . 511
visiting files . 453
void function . 121
void function cell . 186
void variable . 150
void-function . 186
void-variable . 150

W
waiting . 361
waiting for command key input 360
waiting-for-user-input-p 754
walk-windows . 527
when . 131
where-is-internal . 392
while . 134
whitespace . 12
whitespace character . 714
wholenump . 37
widen . 596
widening . 596
window . 519
window (overlay property) 769
window configuration (Edebug) 279
window configurations . 548
window excursions . 594
window frame . 553
window header line . 430
window internals . 906
window ordering, cyclic . 525
window point . 534
window point internals . 907
window position . 534
window resizing . 545
window size . 543
window size, changing . 545
window splitting . 520
window that satisfies a predicate 525
window top line . 535
window-at . 547
window-buffer . 528
window-configuration-change-hook 551
window-configuration-p 550
window-dedicated-p . 534
window-display-table . 807
window-edges . 544
window-end . 536
window-frame . 566
window-height . 543
window-hscroll . 542
window-list . 527
window-live-p . 523

window-margins . 794
window-min-height . 547
window-min-width . 547
window-minibuffer-p . 326
window-point . 535
window-redisplay-end-trigger 551
window-scroll-functions 550
window-setup-hook . 810
window-size-change-functions 550
window-size-fixed . 546
window-start . 535
window-system . 809
window-vscroll . 541
window-width . 544
windowp . 520
Windows file types . 686
windows, controlling precisely 527
with-current-buffer . 505
with-output-to-string . 299
with-output-to-temp-buffer 766
with-syntax-table . 720
with-temp-buffer . 506
with-temp-file . 462
with-temp-message . 760
with-timeout . 844
word constituent . 714
word search . 690
word-search-backward . 691
word-search-forward . 690
words-include-escapes . 586
write-abbrev-file . 732
write-char . 299
write-contents-hooks . 459
write-file . 458
write-file-hooks . 458
write-region . 461
write-region-annotate-functions 656
writing a documentation string 443
wrong-number-of-arguments 176
wrong-type-argument . 30

X
X Window System . 809
x-bitmap-file-path . 782
x-close-connection . 555
x-color-defined-p . 576
x-color-values . 577
x-defined-colors . 576
x-display-color-p . 579
x-display-list . 554
x-family-fonts . 789
x-font-family-list . 789
x-get-cut-buffer . 575
x-get-resource . 578
x-get-selection . 574

Index 843

x-list-fonts . 789
x-open-connection . 554
x-parse-geometry . 563
x-pointer-shape . 574
x-popup-dialog . 573
x-popup-menu . 572
x-resource-class . 578
x-select-enable-clipboard 575
x-sensitive-text-pointer-shape 574
x-server-vendor . 581
x-server-version . 581
x-set-cut-buffer . 575
x-set-selection . 574
XBM . 798
XPM . 798

Y
y-or-n-p . 321

y-or-n-p-with-timeout . 322

yahrzeits . 822

yank . 621

yank suppression . 389

yank-pop . 622

yes-or-no questions. 321

yes-or-no-p . 322

Z
zerop . 37

844 GNU Emacs Lisp Reference Manual

New Symbols Since the Previous Edition 845

New Symbols Since the Previous Edition

A
after-make-frame-functions 554
assq-delete-all . 89
auto-raise-tool-bar-items 405
auto-resize-tool-bar . 405
auto-save-list-file-prefix 500

B
backup-directory-alist 492
base64-decode-region . 665
base64-decode-string . 665
base64-encode-region . 665
base64-encode-string . 665
beginning-of-defun-function 593
buffer-has-markers-at . 603
byte-to-position . 670

C
charset-bytes . 674
charset-plist . 673
clear-face-cache . 787
clear-image-cache . 802
clear-this-command-keys 339
clrhash . 105
color-defined-p . 576
color-gray-p . 576
color-supported-p . 576
color-values . 576
constrain-to-field . 660
copy-hash-table . 107
create-glyph . 808
create-image . 800

D
default-header-line-format 430
defimage . 800
define-hash-table-test 106
define-minor-mode . 421
defined-colors . 576
delete-and-extract-region 616
delete-field . 660
delete-minibuffer-contents 326
describe-current-display-table 807
describe-display-table 807
disable-point-adjustment 340
display-backing-store . 580
display-color-cells . 580
display-color-p . 579

display-graphic-p . 579
display-grayscale-p . 579
display-message-or-buffer 760
display-mm-height . 580
display-mm-width . 580
display-mouse-p . 579
display-pixel-height . 580
display-pixel-width . 580
display-planes . 580
display-popup-menus-p . 579
display-save-under . 580
display-screens . 580
display-selections-p . 579
display-visual-class . 580
dolist . 135
dotimes . 135

E
emacs-startup-hook . 828
end-of-defun-function . 593

F
face-attribute . 782
face-font-family-alternatives 786
face-font-registry-alternatives 786
face-font-selection-order 786
field-beginning . 660
field-end . 660
field-string . 660
field-string-no-properties 660
file-expand-wildcards . 482
find-file-wildcards . 455
find-image . 801
font-list-limit . 790
fontification-functions 788
frame-parameter . 555

G
gethash . 105
global-disable-point-adjustment 341

H
hash-table-count . 107
hash-table-p . 107
hash-table-rehash-size 107
hash-table-rehash-threshold 108
hash-table-size . 108
hash-table-test . 107

846 GNU Emacs Lisp Reference Manual

hash-table-weakness . 107
header-line-format . 430

I
image-cache-eviction-delay 802
image-mask-p . 797
image-size . 802
indicate-empty-lines . 805
inhibit-field-text-motion 586
inhibit-modification-hooks 668

K
keywordp . 148

L
left-margin-width . 794
line-beginning-position 587
line-end-position . 588
locale-coding-system . 688

M
make-backup-file-name-function 493
make-category-table . 726
make-hash-table . 103
make-temp-file . 478
makehash . 105
mapc . 184
maphash . 105
minibuffer-contents . 325
minibuffer-contents-no-properties 326
minibuffer-prompt-end . 325
multibyte-syntax-as-symbol 723

N
next-single-char-property-change 649

P
parse-colon-path . 835
play-sound . 851
play-sound-file . 852
play-sound-functions . 852
plist-member . 117
pop . 71
position-bytes . 670
previous-single-char-property-change 650
print-circle . 301
print-gensym . 301
process-running-child-p process 746
propertize . 647

push . 73
puthash . 105

R
redisplay-dont-pause . 757
remhash . 105
right-margin-width . 794

S
scalable-fonts-allowed 787
scroll-down-aggressively 539
scroll-up-aggressively 540
set-face-attribute . 782
set-window-margins . 794
show-help-function . 654
show-trailing-whitespace 777
small-temporary-file-directory 479
subr-arity . 174
sxhash . 106
system-messages-locale 688
system-time-locale . 688

T
temp-buffer-setup-hook 767
text-property-default-nonsticky 655
tool-bar-add-item . 404
tool-bar-add-item-from-menu 404
tool-bar-item-margin . 405
tool-bar-item-relief . 405
tool-bar-map . 404
tty-color-alist . 578
tty-color-approximate . 578
tty-color-clear . 578
tty-color-define . 577
tty-color-translate . 578

U
user-init-file . 828

W
window-margins . 794
window-size-fixed . 546
with-syntax-table . 720
with-temp-message . 760

X
x-family-fonts . 789
x-font-family-list . 789

i

Short Contents

1 Introduction . 1

2 Lisp Data Types. 9

3 Numbers . 33

4 Strings and Characters . 49

5 Lists . 63

6 Sequences, Arrays, and Vectors . 83

7 Hash Tables . 93

8 Symbols . 99

9 Evaluation . 107

10 Control Structures . 117

11 Variables . 133

12 Functions . 155

13 Macros . 171

14 Writing Customization Definitions 179

15 Loading . 193

16 Byte Compilation . 205

17 Advising Emacs Lisp Functions . 215

18 Debugging Lisp Programs . 225

19 Reading and Printing Lisp Objects 255

20 Minibuffers . 265

21 Command Loop . 287

22 Keymaps . 325

23 Major and Minor Modes . 355

24 Documentation . 387

25 Files . 397

26 Backups and Auto-Saving . 429

27 Buffers . 439

28 Windows . 453

29 Frames. 483

30 Positions . 509

31 Markers . 523

32 Text . 531

33 Non-ascii Characters . 583

34 Searching and Matching . 601

35 Syntax Tables . 621

ii GNU Emacs Lisp Reference Manual

36 Abbrevs and Abbrev Expansion. 635

37 Processes . 641

38 Emacs Display . 661

39 Customizing the Calendar and Diary 709

40 Operating System Interface . 721

Appendix A Emacs 20 Antinews . 747

Appendix B GNU Free Documentation License 751

Appendix C GNU General Public License 757

Appendix D Tips and Conventions . 765

Appendix E GNU Emacs Internals . 777

Appendix F Standard Errors . 797

Appendix G Buffer-Local Variables. 801

Appendix H Standard Keymaps . 805

Appendix I Standard Hooks . 809

Index . 813

New Symbols Since the Previous Edition 845

iii

Table of Contents

1 Introduction . 1
1.1 Caveats . 1
1.2 Lisp History . 2
1.3 Conventions . 2

1.3.1 Some Terms . 2
1.3.2 nil and t . 2
1.3.3 Evaluation Notation . 3
1.3.4 Printing Notation . 3
1.3.5 Error Messages . 4
1.3.6 Buffer Text Notation . 4
1.3.7 Format of Descriptions . 4

1.3.7.1 A Sample Function Description 4
1.3.7.2 A Sample Variable Description 6

1.4 Version Information . 6
1.5 Acknowledgements . 7

2 Lisp Data Types . 9
2.1 Printed Representation and Read Syntax 9
2.2 Comments . 10
2.3 Programming Types . 10

2.3.1 Integer Type . 10
2.3.2 Floating Point Type . 11
2.3.3 Character Type . 11
2.3.4 Symbol Type . 13
2.3.5 Sequence Types . 14
2.3.6 Cons Cell and List Types . 15

2.3.6.1 Dotted Pair Notation 16
2.3.6.2 Association List Type 17

2.3.7 Array Type . 17
2.3.8 String Type . 18

2.3.8.1 Syntax for Strings . 18
2.3.8.2 Non-ascii Characters in Strings 18
2.3.8.3 Nonprinting Characters in Strings 19
2.3.8.4 Text Properties in Strings 19

2.3.9 Vector Type . 20
2.3.10 Char-Table Type . 20
2.3.11 Bool-Vector Type . 20
2.3.12 Hash Table Type . 21
2.3.13 Function Type . 21
2.3.14 Macro Type . 21
2.3.15 Primitive Function Type . 22
2.3.16 Byte-Code Function Type . 22
2.3.17 Autoload Type . 22

iv GNU Emacs Lisp Reference Manual

2.4 Editing Types. 23
2.4.1 Buffer Type . 23
2.4.2 Marker Type . 23
2.4.3 Window Type . 24
2.4.4 Frame Type . 24
2.4.5 Window Configuration Type . 24
2.4.6 Frame Configuration Type . 25
2.4.7 Process Type . 25
2.4.8 Stream Type . 25
2.4.9 Keymap Type . 25
2.4.10 Overlay Type . 26

2.5 Read Syntax for Circular Objects. 26
2.6 Type Predicates . 27
2.7 Equality Predicates. 29

3 Numbers . 33
3.1 Integer Basics . 33
3.2 Floating Point Basics . 34
3.3 Type Predicates for Numbers . 35
3.4 Comparison of Numbers . 35
3.5 Numeric Conversions . 37
3.6 Arithmetic Operations . 38
3.7 Rounding Operations . 41
3.8 Bitwise Operations on Integers . 42
3.9 Standard Mathematical Functions . 45
3.10 Random Numbers . 46

4 Strings and Characters . 49
4.1 String and Character Basics . 49
4.2 The Predicates for Strings . 50
4.3 Creating Strings . 50
4.4 Modifying Strings . 52
4.5 Comparison of Characters and Strings 53
4.6 Conversion of Characters and Strings . 55
4.7 Formatting Strings . 56
4.8 Case Conversion in Lisp . 59
4.9 The Case Table . 60

v

5 Lists . 63
5.1 Lists and Cons Cells . 63
5.2 Lists as Linked Pairs of Boxes . 63
5.3 Predicates on Lists . 64
5.4 Accessing Elements of Lists . 65
5.5 Building Cons Cells and Lists . 68
5.6 Modifying Existing List Structure . 71

5.6.1 Altering List Elements with setcar 71
5.6.2 Altering the CDR of a List . 73
5.6.3 Functions that Rearrange Lists 74

5.7 Using Lists as Sets . 77
5.8 Association Lists . 79

6 Sequences, Arrays, and Vectors 83
6.1 Sequences . 83
6.2 Arrays . 85
6.3 Functions that Operate on Arrays . 86
6.4 Vectors . 87
6.5 Functions for Vectors . 88
6.6 Char-Tables . 89
6.7 Bool-vectors . 91

7 Hash Tables . 93
7.1 Creating Hash Tables . 93
7.2 Hash Table Access . 95
7.3 Defining Hash Comparisons . 95
7.4 Other Hash Table Functions . 97

8 Symbols . 99
8.1 Symbol Components . 99
8.2 Defining Symbols . 100
8.3 Creating and Interning Symbols . 101
8.4 Property Lists . 104

8.4.1 Property Lists and Association Lists 104
8.4.2 Property List Functions for Symbols 105
8.4.3 Property Lists Outside Symbols 106

vi GNU Emacs Lisp Reference Manual

9 Evaluation . 107
9.1 Kinds of Forms . 108

9.1.1 Self-Evaluating Forms . 108
9.1.2 Symbol Forms . 108
9.1.3 Classification of List Forms . 109
9.1.4 Symbol Function Indirection. 109
9.1.5 Evaluation of Function Forms 110
9.1.6 Lisp Macro Evaluation . 110
9.1.7 Special Forms . 111
9.1.8 Autoloading . 112

9.2 Quoting . 113
9.3 Eval. 113

10 Control Structures . 117
10.1 Sequencing . 117
10.2 Conditionals . 118
10.3 Constructs for Combining Conditions 120
10.4 Iteration . 121
10.5 Nonlocal Exits . 123

10.5.1 Explicit Nonlocal Exits: catch and throw 123
10.5.2 Examples of catch and throw 124
10.5.3 Errors . 125

10.5.3.1 How to Signal an Error 125
10.5.3.2 How Emacs Processes Errors 127
10.5.3.3 Writing Code to Handle Errors. 127
10.5.3.4 Error Symbols and Condition Names

. 130
10.5.4 Cleaning Up from Nonlocal Exits 131

11 Variables . 133
11.1 Global Variables . 133
11.2 Variables that Never Change . 133
11.3 Local Variables . 134
11.4 When a Variable is “Void” . 136
11.5 Defining Global Variables . 137
11.6 Tips for Defining Variables Robustly. 139
11.7 Accessing Variable Values . 141
11.8 How to Alter a Variable Value . 142
11.9 Scoping Rules for Variable Bindings 143

11.9.1 Scope . 144
11.9.2 Extent . 145
11.9.3 Implementation of Dynamic Scoping 145
11.9.4 Proper Use of Dynamic Scoping 146

11.10 Buffer-Local Variables . 146
11.10.1 Introduction to Buffer-Local Variables 146
11.10.2 Creating and Deleting Buffer-Local Bindings . . 148
11.10.3 The Default Value of a Buffer-Local Variable . . 150

vii

11.11 Frame-Local Variables . 152
11.12 Possible Future Local Variables . 153
11.13 File Local Variables . 153

12 Functions . 155
12.1 What Is a Function? . 155
12.2 Lambda Expressions . 156

12.2.1 Components of a Lambda Expression 157
12.2.2 A Simple Lambda-Expression Example 157
12.2.3 Other Features of Argument Lists. 158
12.2.4 Documentation Strings of Functions. 159

12.3 Naming a Function . 159
12.4 Defining Functions . 160
12.5 Calling Functions . 161
12.6 Mapping Functions . 163
12.7 Anonymous Functions . 164
12.8 Accessing Function Cell Contents. 166
12.9 Inline Functions . 168
12.10 Other Topics Related to Functions 168

13 Macros . 171
13.1 A Simple Example of a Macro . 171
13.2 Expansion of a Macro Call . 171
13.3 Macros and Byte Compilation . 172
13.4 Defining Macros . 173
13.5 Backquote . 173
13.6 Common Problems Using Macros . 174

13.6.1 Wrong Time . 174
13.6.2 Evaluating Macro Arguments Repeatedly 175
13.6.3 Local Variables in Macro Expansions 176
13.6.4 Evaluating Macro Arguments in Expansion 177
13.6.5 How Many Times is the Macro Expanded? 177

14 Writing Customization Definitions 179
14.1 Common Item Keywords . 179
14.2 Defining Custom Groups. 180
14.3 Defining Customization Variables. 181
14.4 Customization Types . 184

14.4.1 Simple Types . 184
14.4.2 Composite Types . 187
14.4.3 Splicing into Lists . 189
14.4.4 Type Keywords . 190

viii GNU Emacs Lisp Reference Manual

15 Loading . 193
15.1 How Programs Do Loading . 193
15.2 Library Search . 195
15.3 Loading Non-ascii Characters . 196
15.4 Autoload . 197
15.5 Repeated Loading . 199
15.6 Features . 200
15.7 Unloading . 201
15.8 Hooks for Loading . 203

16 Byte Compilation. 205
16.1 Performance of Byte-Compiled Code. 205
16.2 The Compilation Functions . 206
16.3 Documentation Strings and Compilation 208
16.4 Dynamic Loading of Individual Functions 208
16.5 Evaluation During Compilation . 209
16.6 Byte-Code Function Objects . 210
16.7 Disassembled Byte-Code . 211

17 Advising Emacs Lisp Functions 215
17.1 A Simple Advice Example . 215
17.2 Defining Advice . 216
17.3 Around-Advice . 218
17.4 Computed Advice . 218
17.5 Activation of Advice . 219
17.6 Enabling and Disabling Advice . 221
17.7 Preactivation . 221
17.8 Argument Access in Advice . 222
17.9 Definition of Subr Argument Lists . 223
17.10 The Combined Definition . 224

18 Debugging Lisp Programs 225
18.1 The Lisp Debugger . 225

18.1.1 Entering the Debugger on an Error 225
18.1.2 Debugging Infinite Loops . 226
18.1.3 Entering the Debugger on a Function Call 227
18.1.4 Explicit Entry to the Debugger 228
18.1.5 Using the Debugger . 228
18.1.6 Debugger Commands . 229
18.1.7 Invoking the Debugger . 230
18.1.8 Internals of the Debugger . 231

18.2 Edebug . 233
18.2.1 Using Edebug . 233
18.2.2 Instrumenting for Edebug . 234
18.2.3 Edebug Execution Modes . 235
18.2.4 Jumping . 236
18.2.5 Miscellaneous Edebug Commands 237

ix

18.2.6 Breakpoints . 238
18.2.6.1 Global Break Condition 239
18.2.6.2 Source Breakpoints 239

18.2.7 Trapping Errors . 239
18.2.8 Edebug Views . 240
18.2.9 Evaluation . 240
18.2.10 Evaluation List Buffer . 241
18.2.11 Printing in Edebug . 242
18.2.12 Trace Buffer . 243
18.2.13 Coverage Testing . 243
18.2.14 The Outside Context . 244

18.2.14.1 Checking Whether to Stop 245
18.2.14.2 Edebug Display Update 245
18.2.14.3 Edebug Recursive Edit 245

18.2.15 Instrumenting Macro Calls 246
18.2.15.1 Specification List 247
18.2.15.2 Backtracking in Specifications. 249
18.2.15.3 Specification Examples 250

18.2.16 Edebug Options . 251
18.3 Debugging Invalid Lisp Syntax . 253

18.3.1 Excess Open Parentheses . 253
18.3.2 Excess Close Parentheses . 253

18.4 Debugging Problems in Compilation 254

19 Reading and Printing Lisp Objects 255
19.1 Introduction to Reading and Printing 255
19.2 Input Streams . 255
19.3 Input Functions . 257
19.4 Output Streams . 258
19.5 Output Functions . 260
19.6 Variables Affecting Output. 262

20 Minibuffers . 265
20.1 Introduction to Minibuffers . 265
20.2 Reading Text Strings with the Minibuffer 266
20.3 Reading Lisp Objects with the Minibuffer 268
20.4 Minibuffer History . 270
20.5 Completion . 271

20.5.1 Basic Completion Functions 271
20.5.2 Completion and the Minibuffer 273
20.5.3 Minibuffer Commands that Do Completion 274
20.5.4 High-Level Completion Functions 276
20.5.5 Reading File Names . 278
20.5.6 Programmed Completion . 279

20.6 Yes-or-No Queries . 280
20.7 Asking Multiple Y-or-N Questions . 282
20.8 Reading a Password . 283
20.9 Minibuffer Miscellany. 284

x GNU Emacs Lisp Reference Manual

21 Command Loop . 287
21.1 Command Loop Overview . 287
21.2 Defining Commands . 288

21.2.1 Using interactive . 288
21.2.2 Code Characters for interactive 289
21.2.3 Examples of Using interactive 292

21.3 Interactive Call . 292
21.4 Information from the Command Loop 295
21.5 Adjusting Point After Commands . 297
21.6 Input Events. 297

21.6.1 Keyboard Events . 297
21.6.2 Function Keys . 298
21.6.3 Mouse Events . 299
21.6.4 Click Events . 300
21.6.5 Drag Events . 301
21.6.6 Button-Down Events . 301
21.6.7 Repeat Events . 302
21.6.8 Motion Events . 303
21.6.9 Focus Events . 303
21.6.10 Miscellaneous Window System Events 304
21.6.11 Event Examples . 304
21.6.12 Classifying Events . 305
21.6.13 Accessing Events . 307
21.6.14 Putting Keyboard Events in Strings. 308

21.7 Reading Input . 309
21.7.1 Key Sequence Input . 309
21.7.2 Reading One Event . 311
21.7.3 Invoking the Input Method 312
21.7.4 Quoted Character Input . 312
21.7.5 Miscellaneous Event Input Features 313

21.8 Special Events . 314
21.9 Waiting for Elapsed Time or Input . 315
21.10 Quitting . 316
21.11 Prefix Command Arguments . 317
21.12 Recursive Editing . 319
21.13 Disabling Commands . 321
21.14 Command History . 321
21.15 Keyboard Macros . 322

xi

22 Keymaps . 325
22.1 Keymap Terminology . 325
22.2 Format of Keymaps . 326
22.3 Creating Keymaps . 327
22.4 Inheritance and Keymaps . 328
22.5 Prefix Keys . 329
22.6 Active Keymaps . 330
22.7 Key Lookup . 333
22.8 Functions for Key Lookup . 335
22.9 Changing Key Bindings. 337
22.10 Commands for Binding Keys . 340
22.11 Scanning Keymaps . 341
22.12 Menu Keymaps . 343

22.12.1 Defining Menus . 343
22.12.1.1 Simple Menu Items 343
22.12.1.2 Extended Menu Items 344
22.12.1.3 Menu Separators 346
22.12.1.4 Alias Menu Items 347

22.12.2 Menus and the Mouse . 347
22.12.3 Menus and the Keyboard 348
22.12.4 Menu Example . 348
22.12.5 The Menu Bar . 350
22.12.6 Tool bars . 351
22.12.7 Modifying Menus . 353

23 Major and Minor Modes 355
23.1 Major Modes . 355

23.1.1 Major Mode Conventions . 356
23.1.2 Major Mode Examples . 358
23.1.3 How Emacs Chooses a Major Mode 361
23.1.4 Getting Help about a Major Mode 364
23.1.5 Defining Derived Modes . 364

23.2 Minor Modes . 365
23.2.1 Conventions for Writing Minor Modes 365
23.2.2 Keymaps and Minor Modes 367
23.2.3 Defining Minor Modes . 367

23.3 Mode Line Format . 368
23.3.1 The Data Structure of the Mode Line 369
23.3.2 Variables Used in the Mode Line. 371
23.3.3 %-Constructs in the Mode Line 373
23.3.4 Properties in the Mode Line 374
23.3.5 Window Header Lines. 375

23.4 Imenu . 375
23.5 Font Lock Mode . 377

23.5.1 Font Lock Basics . 378
23.5.2 Search-based Fontification . 378
23.5.3 Other Font Lock Variables 380
23.5.4 Levels of Font Lock . 381

xii GNU Emacs Lisp Reference Manual

23.5.5 Faces for Font Lock . 381
23.5.6 Syntactic Font Lock . 382

23.6 Hooks . 383

24 Documentation . 387
24.1 Documentation Basics . 387
24.2 Access to Documentation Strings . 388
24.3 Substituting Key Bindings in Documentation 390
24.4 Describing Characters for Help Messages 391
24.5 Help Functions . 393

25 Files . 397
25.1 Visiting Files . 397

25.1.1 Functions for Visiting Files 397
25.1.2 Subroutines of Visiting . 399

25.2 Saving Buffers . 400
25.3 Reading from Files . 403
25.4 Writing to Files . 404
25.5 File Locks . 405
25.6 Information about Files. 406

25.6.1 Testing Accessibility . 406
25.6.2 Distinguishing Kinds of Files 408
25.6.3 Truenames . 409
25.6.4 Other Information about Files 409

25.7 Changing File Names and Attributes 412
25.8 File Names . 414

25.8.1 File Name Components . 414
25.8.2 Directory Names . 416
25.8.3 Absolute and Relative File Names 417
25.8.4 Functions that Expand Filenames 417
25.8.5 Generating Unique File Names 419
25.8.6 File Name Completion . 420
25.8.7 Standard File Names . 421

25.9 Contents of Directories . 422
25.10 Creating and Deleting Directories . 423
25.11 Making Certain File Names “Magic” 424
25.12 File Format Conversion . 426

26 Backups and Auto-Saving 429
26.1 Backup Files . 429

26.1.1 Making Backup Files . 429
26.1.2 Backup by Renaming or by Copying? 430
26.1.3 Making and Deleting Numbered Backup Files . . 432
26.1.4 Naming Backup Files . 433

26.2 Auto-Saving . 434
26.3 Reverting . 437

xiii

27 Buffers . 439
27.1 Buffer Basics . 439
27.2 The Current Buffer . 439
27.3 Buffer Names . 442
27.4 Buffer File Name . 443
27.5 Buffer Modification. 445
27.6 Comparison of Modification Time . 445
27.7 Read-Only Buffers . 447
27.8 The Buffer List . 447
27.9 Creating Buffers . 449
27.10 Killing Buffers . 450
27.11 Indirect Buffers . 451
27.12 The Buffer Gap . 452

28 Windows . 453
28.1 Basic Concepts of Emacs Windows . 453
28.2 Splitting Windows . 454
28.3 Deleting Windows . 456
28.4 Selecting Windows . 457
28.5 Cyclic Ordering of Windows . 459
28.6 Buffers and Windows . 460
28.7 Displaying Buffers in Windows . 461
28.8 Choosing a Window for Display . 463
28.9 Windows and Point . 466
28.10 The Window Start Position . 467
28.11 Textual Scrolling . 469
28.12 Vertical Fractional Scrolling . 472
28.13 Horizontal Scrolling . 472
28.14 The Size of a Window . 474
28.15 Changing the Size of a Window . 476
28.16 Coordinates and Windows . 478
28.17 Window Configurations . 479
28.18 Hooks for Window Scrolling and Changes 480

29 Frames. 483
29.1 Creating Frames . 483
29.2 Multiple Displays . 484
29.3 Frame Parameters . 485

29.3.1 Access to Frame Parameters 485
29.3.2 Initial Frame Parameters . 485
29.3.3 Window Frame Parameters 486
29.3.4 Frame Size And Position . 490

29.4 Frame Titles . 492
29.5 Deleting Frames . 493
29.6 Finding All Frames . 493
29.7 Frames and Windows . 494
29.8 Minibuffers and Frames . 495

xiv GNU Emacs Lisp Reference Manual

29.9 Input Focus . 495
29.10 Visibility of Frames . 497
29.11 Raising and Lowering Frames . 497
29.12 Frame Configurations . 498
29.13 Mouse Tracking . 498
29.14 Mouse Position . 499
29.15 Pop-Up Menus . 500
29.16 Dialog Boxes . 501
29.17 Pointer Shapes . 501
29.18 Window System Selections . 502
29.19 Color Names. 503
29.20 Text Terminal Colors . 504
29.21 X Resources . 505
29.22 Display Feature Testing . 506

30 Positions . 509
30.1 Point . 509
30.2 Motion . 510

30.2.1 Motion by Characters . 510
30.2.2 Motion by Words . 511
30.2.3 Motion to an End of the Buffer 511
30.2.4 Motion by Text Lines . 512
30.2.5 Motion by Screen Lines . 514
30.2.6 Moving over Balanced Expressions 516
30.2.7 Skipping Characters . 518

30.3 Excursions . 518
30.4 Narrowing . 519

31 Markers. 523
31.1 Overview of Markers . 523
31.2 Predicates on Markers . 524
31.3 Functions that Create Markers . 524
31.4 Information from Markers . 526
31.5 Marker Insertion Types . 526
31.6 Moving Marker Positions . 527
31.7 The Mark . 527
31.8 The Region . 530

xv

32 Text . 531
32.1 Examining Text Near Point . 531
32.2 Examining Buffer Contents . 532
32.3 Comparing Text . 534
32.4 Inserting Text . 534
32.5 User-Level Insertion Commands . 536
32.6 Deleting Text . 537
32.7 User-Level Deletion Commands . 538
32.8 The Kill Ring . 540

32.8.1 Kill Ring Concepts . 541
32.8.2 Functions for Killing . 541
32.8.3 Functions for Yanking . 542
32.8.4 Low-Level Kill Ring . 542
32.8.5 Internals of the Kill Ring . 543

32.9 Undo. 544
32.10 Maintaining Undo Lists. 546
32.11 Filling. 547
32.12 Margins for Filling . 549
32.13 Adaptive Fill Mode . 551
32.14 Auto Filling . 551
32.15 Sorting Text . 552
32.16 Counting Columns . 555
32.17 Indentation . 556

32.17.1 Indentation Primitives . 556
32.17.2 Indentation Controlled by Major Mode 557
32.17.3 Indenting an Entire Region 558
32.17.4 Indentation Relative to Previous Lines 559
32.17.5 Adjustable “Tab Stops” . 560
32.17.6 Indentation-Based Motion Commands 560

32.18 Case Changes . 560
32.19 Text Properties . 562

32.19.1 Examining Text Properties 562
32.19.2 Changing Text Properties 563
32.19.3 Text Property Search Functions 565
32.19.4 Properties with Special Meanings 567
32.19.5 Formatted Text Properties 570
32.19.6 Stickiness of Text Properties 570
32.19.7 Saving Text Properties in Files 571
32.19.8 Lazy Computation of Text Properties 572
32.19.9 Defining Clickable Text . 573
32.19.10 Defining and Using Fields 574
32.19.11 Why Text Properties are not Intervals 576

32.20 Substituting for a Character Code . 576
32.21 Registers . 577
32.22 Transposition of Text. 578
32.23 Base 64 Encoding . 579
32.24 MD5 Checksum . 580
32.25 Change Hooks . 580

xvi GNU Emacs Lisp Reference Manual

33 Non-ascii Characters 583
33.1 Text Representations . 583
33.2 Converting Text Representations . 584
33.3 Selecting a Representation . 585
33.4 Character Codes . 586
33.5 Character Sets . 586
33.6 Characters and Bytes. 587
33.7 Splitting Characters . 588
33.8 Scanning for Character Sets . 588
33.9 Translation of Characters . 589
33.10 Coding Systems . 590

33.10.1 Basic Concepts of Coding Systems 590
33.10.2 Encoding and I/O . 591
33.10.3 Coding Systems in Lisp . 592
33.10.4 User-Chosen Coding Systems 593
33.10.5 Default Coding Systems. 594
33.10.6 Specifying a Coding System for One Operation

. 596
33.10.7 Explicit Encoding and Decoding 596
33.10.8 Terminal I/O Encoding . 597
33.10.9 MS-DOS File Types . 598

33.11 Input Methods . 599
33.12 Locales . 600

34 Searching and Matching 601
34.1 Searching for Strings . 601
34.2 Regular Expressions . 602

34.2.1 Syntax of Regular Expressions 603
34.2.1.1 Special Characters in Regular Expressions

. 603
34.2.1.2 Character Classes 606
34.2.1.3 Backslash Constructs in Regular

Expressions . 607
34.2.2 Complex Regexp Example. 609
34.2.3 Regular Expression Functions 610

34.3 Regular Expression Searching . 611
34.4 POSIX Regular Expression Searching 613
34.5 Search and Replace . 614
34.6 The Match Data . 615

34.6.1 Replacing the Text that Matched 615
34.6.2 Simple Match Data Access 616
34.6.3 Accessing the Entire Match Data 618
34.6.4 Saving and Restoring the Match Data 619

34.7 Searching and Case . 619
34.8 Standard Regular Expressions Used in Editing 620

xvii

35 Syntax Tables . 621
35.1 Syntax Table Concepts . 621
35.2 Syntax Descriptors . 621

35.2.1 Table of Syntax Classes . 622
35.2.2 Syntax Flags . 624

35.3 Syntax Table Functions . 626
35.4 Syntax Properties . 627
35.5 Motion and Syntax . 628
35.6 Parsing Balanced Expressions . 628
35.7 Some Standard Syntax Tables . 631
35.8 Syntax Table Internals. 631
35.9 Categories . 632

36 Abbrevs and Abbrev Expansion 635
36.1 Setting Up Abbrev Mode . 635
36.2 Abbrev Tables . 635
36.3 Defining Abbrevs . 636
36.4 Saving Abbrevs in Files . 637
36.5 Looking Up and Expanding Abbreviations 638
36.6 Standard Abbrev Tables . 640

37 Processes . 641
37.1 Functions that Create Subprocesses. 641
37.2 Shell Arguments . 642
37.3 Creating a Synchronous Process . 643
37.4 Creating an Asynchronous Process . 645
37.5 Deleting Processes . 647
37.6 Process Information . 648
37.7 Sending Input to Processes . 650
37.8 Sending Signals to Processes . 651
37.9 Receiving Output from Processes . 652

37.9.1 Process Buffers . 653
37.9.2 Process Filter Functions. 654
37.9.3 Accepting Output from Processes 656

37.10 Sentinels: Detecting Process Status Changes 656
37.11 Transaction Queues . 657
37.12 Network Connections . 658

xviii GNU Emacs Lisp Reference Manual

38 Emacs Display . 661
38.1 Refreshing the Screen . 661
38.2 Forcing Redisplay . 661
38.3 Truncation . 662
38.4 The Echo Area. 663
38.5 Invisible Text . 665
38.6 Selective Display . 667
38.7 The Overlay Arrow. 668
38.8 Temporary Displays . 669
38.9 Overlays. 671

38.9.1 Overlay Properties . 671
38.9.2 Managing Overlays . 674
38.9.3 Searching for Overlays . 676

38.10 Width . 677
38.11 Faces. 678

38.11.1 Standard Faces . 678
38.11.2 Defining Faces . 679
38.11.3 Face Attributes. 681
38.11.4 Face Attribute Functions . 683
38.11.5 Merging Faces for Display 685
38.11.6 Font Selection . 686
38.11.7 Functions for Working with Faces 688
38.11.8 Automatic Face Assignment 689
38.11.9 Looking Up Fonts . 689
38.11.10 Fontsets . 690

38.12 The display Property . 691
38.12.1 Specified Spaces . 692
38.12.2 Other Display Specifications 692
38.12.3 Displaying in the Margins 693
38.12.4 Conditional Display Specifications 694

38.13 Images . 694
38.13.1 Image Descriptors . 695
38.13.2 XBM Images . 697
38.13.3 XPM Images . 698
38.13.4 GIF Images . 698
38.13.5 Postscript Images. 698
38.13.6 Other Image Types . 698
38.13.7 Defining Images . 699
38.13.8 Showing Images . 700
38.13.9 Image Cache . 701

38.14 Blinking Parentheses . 701
38.15 Inverse Video . 702
38.16 Usual Display Conventions . 702
38.17 Display Tables . 704

38.17.1 Display Table Format . 704
38.17.2 Active Display Table. 705
38.17.3 Glyphs . 706

38.18 Beeping . 707

xix

38.19 Window Systems . 707

39 Customizing the Calendar and Diary 709
39.1 Customizing the Calendar . 709
39.2 Customizing the Holidays . 710
39.3 Date Display Format . 712
39.4 Time Display Format . 712
39.5 Daylight Savings Time . 713
39.6 Customizing the Diary . 714
39.7 Hebrew- and Islamic-Date Diary Entries 715
39.8 Fancy Diary Display. 716
39.9 Sexp Entries and the Fancy Diary Display 717
39.10 Customizing Appointment Reminders. 719

40 Operating System Interface 721
40.1 Starting Up Emacs . 721

40.1.1 Summary: Sequence of Actions at Startup 721
40.1.2 The Init File, ‘.emacs’ . 722
40.1.3 Terminal-Specific Initialization 723
40.1.4 Command-Line Arguments 724

40.2 Getting Out of Emacs . 726
40.2.1 Killing Emacs . 726
40.2.2 Suspending Emacs . 726

40.3 Operating System Environment . 728
40.4 User Identification . 731
40.5 Time of Day . 732
40.6 Time Conversion . 733
40.7 Timers for Delayed Execution . 736
40.8 Terminal Input . 738

40.8.1 Input Modes . 738
40.8.2 Translating Input Events . 739
40.8.3 Recording Input . 742

40.9 Terminal Output . 742
40.10 Sound Output . 743
40.11 System-Specific X11 Keysyms . 744
40.12 Flow Control . 745
40.13 Batch Mode . 746

Appendix A Emacs 20 Antinews 747
A.1 Old Lisp Features in Emacs 20. 747
A.2 Old Lisp Features in Emacs 20.3 . 749

Appendix B GNU Free Documentation License
. 751
ADDENDUM: How to use this License for your documents 756

xx GNU Emacs Lisp Reference Manual

Appendix C GNU General Public License. . . 757
Preamble . 757
Terms and Conditions for Copying, Distribution and Modification

. 758
How to Apply These Terms to Your New Programs 762

Appendix D Tips and Conventions 765
D.1 Emacs Lisp Coding Conventions . 765
D.2 Tips for Making Compiled Code Fast 769
D.3 Tips for Documentation Strings . 770
D.4 Tips on Writing Comments . 773
D.5 Conventional Headers for Emacs Libraries 774

Appendix E GNU Emacs Internals 777
E.1 Building Emacs . 777
E.2 Pure Storage . 778
E.3 Garbage Collection . 779
E.4 Memory Usage . 782
E.5 Writing Emacs Primitives . 782
E.6 Object Internals . 786

E.6.1 Buffer Internals . 786
E.6.2 Window Internals . 792
E.6.3 Process Internals . 795

Appendix F Standard Errors 797

Appendix G Buffer-Local Variables 801

Appendix H Standard Keymaps 805

Appendix I Standard Hooks. 809

Index . 813

New Symbols Since the Previous Edition 845

